10.1 Probability

❑ Probability

1. **Exercise:** *Rolling a Die.* A die is rolled 1000 times. The table in the margin shows the number of times the die came up each possible number. Use this experiment to estimate the probability of each possible outcome.

<table>
<thead>
<tr>
<th>Face</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>166</td>
</tr>
<tr>
<td>2</td>
<td>176</td>
</tr>
<tr>
<td>3</td>
<td>158</td>
</tr>
<tr>
<td>4</td>
<td>178</td>
</tr>
<tr>
<td>5</td>
<td>153</td>
</tr>
<tr>
<td>6</td>
<td>169</td>
</tr>
<tr>
<td>Total</td>
<td>1000</td>
</tr>
</tbody>
</table>

❑ Equally Likely Outcomes

2. **Exercise:** A jar contains 7 black balls, 6 yellow balls, 4 green balls, and 3 red balls. The jar is shaken and you remove a ball without looking. What is the probability that (a) the ball is red? (b) that it is white? (c) that it is either black, yellow, green or red?

❑ The Addition and Complement Rules

3. **Exercise:** *Playing Cards.* A card is drawn from a well-shuffled standard deck of 52 cards.

 a) What is the probability of drawing an ace?
 b) What is the probability of drawing a king?
 c) What is the probability of not drawing a king?
 d) What is the probability of drawing an ace or a king?

4. **Exercise:** A jar contains 7 black balls, 6 yellow balls, 4 green balls, and 3 red balls. The jar is well shaken and a ball is drawn from the jar.

 a) Find the probability that the ball is yellow.
 b) Find the probability that the ball is red.
 c) Find the probability that ball is red or yellow.

10.2 Multiplication Tress and Bayes’ Rule

❑ Genetics

5. **Exercise:** *Genetics.* Suppose that a pea plant of genotypes *FF* and *ff* are crossed. A sperm allele is transmitted from the *FF* plant, while an ovum allele is transmitted from the *ff* plant.

 a) Find the probability that an offspring is of each of the three genotypes.
 b) Find the probability that the offspring will have purple flowers.
 c) Find the probability that the offspring will have white flowers.
6. **Exercise:** Genetics. Suppose that a pea plant of genotype \(Ff \) is self-pollinated.

 a) Find the probability that an offspring is of each of the three genotypes.
 b) Find the probability that the offspring will have purple flowers.
 c) Find the probability that the offspring will have white flowers.

\[\text{Bayes’ Rule} \]

\[
P(D|T +) = \frac{P(D +)P(T + |D +)}{P(D +)P(T + |D +) + P(D -)P(T + |D -)}
\]

Similarly formulas may be written for \(P(D - |T +), P(D + |T -) \) and \(P(D - |T -) \).

Bayes’ Rule is used to update the probability of an event (like occurrence of a disease) given extra information (like a positive test). It is often easier to formulate Bayes’ Rule using a multiplication tree.

7. **Exercise:** Coronary Artery Disease. In a study of 101 patients, 37 do not have coronary artery disease (CAD) and 64 have CAD. All 101 patients were given a certain echocardiography test for CAD. Of the 37 patients without CAD, 34 had a negative test while 3 had a positive test. Of the 64 patients with CAD, 54 had a positive test and 10 had a negative test. Find the sensitivity and the specificity of the test.

8. **Exercise:** Diagnosing Coronary Artery Disease. A man in his 20s with no available family history sees a doctor complaining of chest pain. Because of his age, the doctor estimates the probability that the patient has CAD as 0.05. The patient is then given the echocardiography test of Example 4, and the test returns positive. Find the probability that the patient has CAD given the positive test result.