2.7 Differential Techniques: The product and Quotient Rule:

Product Rule:

Let, \(f(x) = x \cos x \). Find \(f'(x) \).

Quotient Rule:

\[
f(x) = \frac{x^2 - 3x}{x - 1}
\]

2.8 Chain Rule

(a) \(f(x) = (1 + x^3)^{\frac{1}{2}} \)

2.9 Higher-Order Derivatives

For \(y = \frac{1}{x} \), find \(\frac{d^2y}{dx^2} \)

3.0 Using Derivatives to Find Absolute Maximum and Minimum Values

Exercise: Lung Cancer: The rate of lung and bronchus cancer per 100,000 American males since 1930 is approximated by the function

\[
r(x) = -0.000775x^3 + 0.0696x^2 - 0.209x + 4.68,
\]

where \(x \) is the number of years since 1930. Sketch the graph of \(r(x) \).

Exercise:

Find the absolute maximum and minimum values of \(f(x) = x^3 - 3x + 2 \) over the interval \([\frac{3}{2}, 3]\).