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Abstract

In this paper, we introduce and explore a new comput-
ing paradigm we call knowledge as a service, in which a
knowledge service provider, via its knowledge server, an-
swers queries presented by some knowledge consumers.
The knowledge server’s answers are based on knowledge
models that may be expensive or impossible to obtain for
the knowledge consumers. While this new paradigm of com-
puting is promising, we must establish a solid foundation
to ensure its utility. We focus on the security aspect of the
paradigm, and particularly on the problem we call knowl-
edge breaching attack, which may allow an adversary to re-
cover the knowledge underlying a knowledge service. With-
out being able to adequately handling such an attack, the
knowledge service providers would never have any eco-
nomic incentives to develop such a paradigm. Unfortu-
nately, this paper theoretically shows that any interesting
knowledge is subject to the knowledge breaching attack,
and empirically shows that some knowledge models could
be breached after a very small number of queries (e.g., 0.2-
1% portion of the domain). Thus we need to investigate
technical means that can alleviate such powerful attacks (at
least for most practical knowledge models).

1. Introduction

With the remarkable success of knowledge discovery and
data mining techniques, we now envision a new service-
oriented computing paradigm, called knowledge as a ser-
vice, which offers new types of services based on knowl-
edge typically extracted from large volumes of data owned
and maintained by different parties. Our motivation is per-
haps best described by the following example.

Example 1.1. Bob went to the GreatLife Insurance com-
pany to buy a life insurance. To determine his premium,
the agent at GreatLife needs to know if Bob is likely to
be involved in severe car accidents, so that a higher pre-
mium will be charged if Bob fits the profile of drivers who

frequently cause severe car accidents. Since Bob has pre-
vious auto insurance from two companies, the EastInsur-
ance and the WestInsurance, a predictive model extracted
from these companies’ databases will be a great help to the
agent at GreatLife. However, due to concerns of client pri-
vacy and business competition, none of the two auto insur-
ance companies would allow GreatLife or the other com-
pany to mine its data for such a knowledge model. Fortu-
nately, GreatLife has subscribed a service from a knowledge
dissemination company, KDC, which can extract a useful
knowledge model from the data of the two auto insurance
companies by using an advanced privacy-preserving data
mining technology and use that model to answer, for a ser-
vice fee, the GreatLife agent’s question about Bob’s likeli-
hood of auto accident. Using the information obtained from
KDC, the agent at GreatLife quickly determines a premium
that simultaneously satisfied Bob and minimized the com-
pany’s risk.

The service provided by KDC in this (not so) fictional
example is what we call a knowledge service, where by
knowledge we mean knowledge models such as decision
trees, association rules, or neural networks1.
While the paradigm of knowledge as a service is promis-

ing, it must be based on a solid foundation, which, in partic-
ular, must deal with important security issues so that knowl-
edge service providers can get their investment paid off.
Besides general security problems such as controlled ac-
cess to the extracted knowledge and privacy protection in
both knowledge extraction (i.e., to protect data privacy) and
knowledge utilization (i.e., to protect privacy of queries of
a knowledge consumer [13, 4]), this paradigm faces a new
security issue called knowledge breaching attacks whereby
an adversary may recover the knowledge underpinning a
knowledge service. Without an adequate protection against
this attack, knowledge as a service could hardly take off be-
cause service providers might fear not getting their invest-
ment paid off.
In this paper, we make the following contributions.

1 To precisely define the term knowledge is a challenge and is beyond
the scope of this paper.
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Figure 1. The paradigm of knowledge as a service

1. We introduce the knowledge as a service paradigm,
and explore a framework to fulfill it.

2. We define the notion of knowledge breaching with re-
spect to a large class of knowledge service that has a
query-answer format and may be based on many dif-
ferent knowledge models (e.g., decision trees and as-
sociation rules).2 In particular, we theoretically show
that any interesting knowledge (defined in the next
section) is subject to knowledge breaching attacks.
Furthermore, we empirically show that with two spe-
cific knowledge breaching strategies, some knowledge
models could be breached after a small number of
queries (e.g., 0.2-1% of the domain).

3. We observe that knowledge breaching is unique to the
knowledge as a service paradigm, and cannot be re-
solved with traditional information security principles.
Therefore, we suggest research directions for dealing
with the powerful knowledge breaching attacks.

The rest of this paper is organized as follows. In Section
2, we present the framework of the knowledge as a service
paradigm. In Section 3, we define the notion of knowledge
breaching for a classification service. In Section 4, we de-
scribe two potential methods that an adversary may deploy.
In Section 5, we present results from our systematic experi-
mentation with the breaching methods against some knowl-
edge models. In Section 6, we discuss some methods and
research direction that deal with knowledge breaching. Re-
lated work is discussed in Section 7, and the conclusion is
in Section 8.

2. Knowledge as a Service

Figure 1 depicts a high-level framework of the “knowl-
edge as a service” paradigm, which involves three types
of logical participants: data owners, service providers, and

2 We believe our definitions and methodologies can be naturally ex-
tended to deal with other classes of knowledge services, which may
be less popular though.

knowledge consumers. All participants, including the adver-
sary, are probabilistic polynomial-time algorithms.
In general, knowledge consumers receive service based

on knowledge that may be extracted by a service provider
from one or more data owners’ datasets. In this paper, we
focus on knowledge services that have a question-answer
format in an application context. With this type of service,
a knowledge consumer sends the server a query of a spe-
cific format, and the server sends back an answer according
to the underpinning knowledge model. More specifically,

• The data owners collect data from their daily business
transactions. Although they are responsible for protect-
ing the secrecy of the data, they are allowed to uti-
lize the data, and the derivate thereof, in their own
decision-making procedures.

• A knowledge service provider delivers knowledge ser-
vice via its knowledge server, where the knowledge
is extracted from the datasets through an appropriate
knowledge extractor, such as a privacy-preserving data
mining algorithm. We stress that the service provider,
while owning the knowledge, does not necessarily own
any data or learn any specific information about the
data from which the knowledge is extracted3.

• A knowledge consumer consults a knowledge service
in its decision making procedures. Further, the knowl-
edge consumer may also need to preserve the secrecy
of its own customers’ data, meaning that the query
instance may not have to be exposed to the service
provider.

3 We remark that while previous privacy-preserving data mining algo-
rithms (e.g., [16]) focus on the case of the participants are all data
owners, it is easy to extend the case to accommodate a new partici-
pant in a secure multi-party computation such that the new participant
does not contribute any input but gets the output exclusively. We re-
mark that this is even simpler in the approach of [1]
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3. Knowledge Breaching Attacks

A knowledge breaching attack is a malicious activity
against a knowledge server, which is launched by an ad-
versary who plays the role of a knowledge consumer or a
set of colluding knowledge consumers and aims to recover
the target knowledge underpinning the knowledge service.
The adversary attacks by making a small number of adap-
tively selected queries and using the answers to construct a
learned knowledge, which in many application scenarios is
only required to have a functionality sufficiently similar to
that of the target knowledge.

3.1. Knowledge Functions and Knowledge Leak

It is instrumental to view both target and learned knowl-
edge as functions that assign labels to instances in an ap-
plication domain. This general viewpoint can easily accom-
modate services based on different knowledge models such
as decision trees and association rules.
Let the domain U = {u1, . . . , uN} be a finite set of in-

stances (or points) and the range C be a finite set of labels.
Let F = {f | f : U → C} be a set of knowledge func-
tions. From the adversary’s point of view, the unknown tar-
get function is represented by a random variable fT that has
a probability distributionDF over F such that Pr(fT = f)
is the probability that f is the target function. We assume
that the adversary knows DF , which is the worst-case sce-
nario where the adversary can coordinate and adaptively
choose all the queries. To learn the target function, the ad-
versary queries the service for labels of a set of instances
and uses these labels to derive a learned function fL, which
is also in F . Whether the adversary can effectively learn the
target function with a small number of queries depends on
how much information the labels of queried instances tell
the adversary about the labels of remaining instances. To
the adversary, each u ∈ U is associated with a random vari-
able Xu, which represents the label assigned to u by the
unknown target function, that is, fT (u), and has a probabil-
ity distribution Du such that Pr(Xu = c) is the probabil-
ity that fT (u) = c and Pr(Xu1

= c1, . . . , Xuk
= ck) is the

joint probability that fT (ui) = ci, where i = 1, . . . , k and
k ≤ N .

Definition 3.1. Let Q ⊂ U be a set of points asked by the
adversary (or query points), S = {< u, c >| u ∈ Q, c =
fT (u)} be the query-answer pairs, and Pr(Xu = c | S) be
the probability that fT (u) = c given S. An point u ∈ U−Q
is sensitive to Q if ∃c ∈ C, such that, Pr(Xu = c | S) �=
Pr(Xu = c). The target function has a knowledge leak if
∃Q ⊂ Uand ∃u ∈ U − Q such that u is sensitive to Q.

Intuitively, a knowledge leak gives a hint to the adver-
sary about what labels the target function may assign to

Algorithm KFB:
Input: Service S, domain U of target function
fT , accuracy threshold p0, significance level α
Output: Learned function fL after querying Q
such that Pr(pfL,Q > p0) = 1 − α
Method:
1. DeriveInitialFunction(fL, U , S);
2. while TestAccuracy(S, fL, U , p0, α) is not
successful do

3. Refine(fL, S);
4. return fL.

Figure 2. A General Algorithm for Knowledge
Function Breaching

the not-yet-queried (or unseen) points. We say a knowl-
edge (function) is interesting if it describes certain hidden
patterns of the data, therefore, assigns labels to points de-
pendently; non-interesting otherwise. The following theo-
rem shows that any interesting knowledge is vulnerable to a
knowledge breaching. (The proof is omitted due to the lack
of space. See [25])
Theorem 3.1. If Pr(fT = f) �= Πu∈U Pr(Xu = f(u)),
then f has a knowledge leak.
Notice that both Definition 3.1 and Theorem 3.1 address

knowledge leak qualitatively and provide no quantitative
measure of such a leakage. To devise an ideal metric of
knowledge breaching, we need to take into consideration
the adversary’s a priori knowledge, which is unfortunately
not available to us. Thus in the rest of this paper, we sim-
ulate the adversary by using the probability that the adver-
sary’s learned function correctly labels an unseen point as a
simple measure for knowledge breaching. Formally,

Definition 3.2. LetQ ⊂ U be a set of queried points, pfL,Q

be the probability that the learned function fL correctly la-
bels a point in U − Q, and 0 ≤ p0 ≤ 1 be a real number.
We say that fL causes a degree p0 knowledge breaching of
fT if pfL,Q > p0.

Typically, pfL,Q is not directly available to the adver-
sary. However, the adversary may estimate it statistically by
making some queries, as shown in the next section.

4. Two Methods of Knowledge Breaching

In this section, we describe two knowledge breaching
methods, region split and active learning, which are special-
ization of the general algorithm shown in Figure 2. In this
algorithm, an initial syntactic representation of the learned
function is first constructed (step 1), and then repeatedly
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tested (step 2) and refined (step 3) until the resulting learned
function satisfies a given accuracy threshold (p0) with a re-
quired confidence (1 − α). Each of these steps needs to
query the service for one or more points. The two meth-
ods differ in steps 1 and 3, and in the representation of the
learned functions. However, step 2 is identical in both meth-
ods, where a statistical hypothesis test is used to check if
the learned function satisfies the accuracy thresholds. In the
following we give a rather brief presentation of the meth-
ods due to the lack of space. More details can be found in a
longer version of this paper.

4.1. Region Split Method

In the region split method, the learned function is repre-
sented as a list of cube-shaped regions of an n-dimensional
domain U , which is the result of recursive split of the do-
main. Each region is represented by its corner points and
their labels which are obtained through queries. To find the
label of a point inside a region, a simple majority votes
among the region’s corner points is taken and the winning
label is assigned to the point. If there is a tie of two or more
labels, one label is random chosen to break the tie. A region
needs to be split if it contains a known mislabeled point.
Thus, a region split refines the learned function.

4.1.1. Region Split To ease the presentation, consider
a domain U where each dimension Ai is a finite interval
[Li, Hi] of integers, where 1 ≤ i ≤ n. A region in U is de-
fined by r = {< v1, . . . , vn >| vi ∈ [li, hi], Li ≤ li ≤
hi ≤ Hi, 1 ≤ i ≤ n}. The set of corner points of r is de-
fined by {< v1, . . . , vn >| vi = li ∨ vi = hi}. By this defi-
nition, a region can not be empty.
To split the region, for each dimension Ai such that

li < hi, the interval [li, hi] is split as evenly as possi-
ble into two sub-intervals [li, mli] and [mhi, hi], where
mli = �(hi + li)/2	 and mhi = mli + 1. Now a sub-
region of r is the set of points {< v1, . . . , vn >| vi ∈ Ii},
where interval Ii = [li, mli] or [mhi, hi]. Notice that these
sub-regions are pair-wise disjoint and that a single-point re-
gion cannot be split any further. After a new region is ob-
tained, its corner points are labeled by querying the service.

4.1.2. Test of the Accuracy Hypothesis The accuracy of
fL is tested by a standard statistical hypothesis test [22] that
check if Pr(pfL,Q > p0) > 1 − α using a random sample
of size m. Here, p = pfL,Q is the probability that a point is
correctly labeled by fL. Let H0 : p = p0 and Ha : p > p0

be the null and the alternative hypothesis, respectively. The
sample probability p̂ is used as an estimator in the Z-test to
see if H0 can be rejected (that is, Z > zα, where

Z =
p̂ − p0√
p0(1−p0)

m

and zα is the value satisfying P (Z > zα) = α.) The sample
size can be determined based on [22]. In our experiments, a
5%more points is sampled to ensure that the test-refinement
loop would terminate.

4.1.3. Refine the Learned Function If the learned func-
tion fails the accuracy test, it must contains some problem-
atic region that contains at least one mislabeled point. To
refine, these problematic regions are further split. One way
to refine is to make one split for each problematic region.
An alternative is to split each problematic region repeat-
edly until every sub-region has consistently labeled corner
points (that is, they have the same labels). While the first
option may do too little in each round and therefore cause
too many queries (needed by many rounds of test and re-
fine steps), the second option may do too much in one round
even when the accuracy threshold is not that high therefore
waste queries (needed to label new regions’ corner points).
To solve these problems, we adopt a heuristic method that
performs repeated split similar to the second option but in-
terleaves the splits with pseudo hypothesis tests that uses the
sample taken in step 2 instead of fresh ones. This heuristic
aims to save the number of queries while it still allows re-
gions to be split deeply enough to avoid mislabeling.

4.2. Active Mining Method

We consider a well known active learning algorithm [15],
which trains, on the same set of training instances, two
classifiers: a probabilistic classifier, which is used to se-
lect training instances, and a decision tree classifier. The
training instances are selected in passes until their number
reaches a given threshold. Initially, the probabilistic clas-
sifier is trained on three instances given by an expert. In
each subsequent pass, the probabilistic classifier is used to
estimate a label and a certainty factor for each unlabeled
instance. Then, four instances whose estimated labels are
the least certain are selected, labeled by the expert, and
combined with existing training instances. The probabilis-
tic classifier is then retrained on the expanded set of training
instances. This algorithm cannot be directly used in our set-
ting for following reasons.

1. Its termination condition is based on a threshold of the
number of training samples rather than the accuracy of
the learned model.

2. The number of newly selected training instances
(namely, four) is too small compared to the num-
ber of random samples needed by our accuracy hy-
pothesis test.

3. It relies on human experts for initial training samples.

4. Its first classifier is limited to a binary classification.
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Figure 3. Number of Queries

To adapt the active learning algorithm for our purpose, we
extend it in following ways. First, a standard hypothesis test
is used as the termination condition. Second, in each pass,
two sets of new training samples are added to the existing
training set: the set of samples obtained via the uncertainty
sampling and the set of samples used in the hypothesis test.
Third, instead of using a fixed small number of initial train-
ing samples provided by a human expert, we allow the al-
gorithm to choose some random points as the initial train-
ing samples, and query the service to obtain their labels. Fi-
nally, in order to accommodate multiple labels, we require
that the first classifier is able to estimate a probability distri-
bution of labels for any given point in the function domain,
and uses this probability distribution to compute the cer-
tainty of the estimated labels. Due to limited space, the de-
tails are omitted. The second classifier trained by the modi-
fied active learning method is the learned function.

5. Experiments

We implemented the two knowledge breaching methods
described in Section 4 and applied them to nine manually
created target functions (referred to as m01, m02, . . ., m09),
which are binary functions over a 2-dimensional domain of
500× 500 points and have a variety of complexities. In our
experiments, we vary the accuracy threshold p0 from 0.8 to
0.95 with an increment of 0.05, and fixed the significance
level at α = 0.05. For active learning method, we scaled
the size of the initial training samples from 0 to 20% of the
domain size.
We measured the performance by the number of queries

including those for creating the initial learned function,
performing the accuracy hypothesis tests, and refining the

learned functions, and the number of refinements needed to
derive learned functions. The size of random samples used
in the hypothesis test is 71.
We compare performances of the region split method (re-

ferred as split) and four different setups of the active learn-
ing method according to the size of the initial training set:
(1) with no initial sample (referred as t0.0), (2) with initial
set of the size of the random samples used in the hypothe-
sis test, in this case 71 (referred as t1.0), (3) with a set con-
taining 0.05% points of the domain (referred as t0.0005),
and (4) with a set containing 0.5% points of the domain (re-
ferred as t0.005). Below we simply refer to these testing
conditions by the names in parenthesis, and treat them as if
they are different algorithms.

5.1. Results and Discussion

In Figures 3 and 5, each of the four charts corresponds to
a different value of accuracy threshold p0, in which the hori-
zontal axis identifies target functions and the vertical axis is
the number of queries (in Fig. 3) or refinements (in Fig. 5).
For each target function, the charts show the performance
of each of the above-mentioned five algorithms, as identi-
fied by the legend.

5.1.1. Function Breaching is Inevitable Fig. 3 clearly
shows that all the five algorithms can successfully derive
the learned functions with respect to each given accuracy
threshold. However, the performance seems to reflect to
some extent the inherent complexity of target functions. For
example, the most complex function m7 has much worse
performance than the simplest function m4.
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Figure 4. Effect of Accuracy Threshold

Figure 5. Number of Refinements

5.1.2. Effect of Accuracy Threshold Fig. 4 shows the
number of queries of two target functions under the five al-
gorithms, where the horizontal axis is the accuracy thresh-
old, and the curves represents the performance of the algo-
rithms. Although most tests confirm the intuition that the
higher the accuracy threshold is the more the queries are re-
quired, exceptions do exist. For example, with target func-
tion m04, algorithm t0.0 issues less queries for p0 = 0.95
than for p0 = 0.9. Similarly algorithm split issues less
queries for p0 = 0.9 than for p0 = 0.85. A preliminary
interpretation is that while for t0.0, the exception may be
caused by the fact that the size of the initial training set is
0, for split, the exception is perhaps due to the characteris-
tics of m04.

5.1.3. Effect of the Number of Initial Training Samples
The number of initial training samples is an important pa-
rameter in the active learning method. For a given accuracy
threshold, it holds that (1) the more the training samples
are used in the Step 1, the less the number of refinement is
needed; and (2) when the number of initial training samples

reaches a certain threshold, no refinement is needed (see the
curve corresponding to algorithm t0.005 in Fig. 5) and thus
the active learning method actually degenerates to a tradi-
tional passive learning method.
On the other hand, when the number of initial training

samples is less than a certain threshold, the dependency of
the number of queries on the number of initial training sam-
ples is elusive. For example, as shown in Fig. 3 none of split,
t0.0, t-1.0, and t0.0005 always outperforms the others.

6. Discussion

In the last two sections we theoretically and empiri-
cally showed that knowledge breaching is a powerful attack
against some interesting knowledge functions or models. A
natural next question is: Can we efficiently deal with such
attacks? It would be ideal if we can completely block such
attacks. However, despite the existing solutions to the vari-
ous security problems, we observe that traditional security
principles cannot adequately deal with this attack. This is
so because an adversary would have to be allowed to query
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a knowledge server with respect to instances chosen by the
adversary. For example, the above results have showed that
a notion similar to the “security against an adaptive adver-
sary” in cryptography is doomed.
One approach to mitigating the knowledge breaching at-

tack would be to limit the number of queries a knowledge
consumer is allowed to present. (This strategy has been de-
ployed in statistical database systems to limit the informa-
tion that can be inferred by an adversary; see Section 7 for
further discussion.) However, this approach is very restric-
tive because, after all, the primary motivation of knowledge
as a service is to maximize the revenue of the knowledge
service provider while preserving the privacy of various le-
gitimate participants and satisfying the need of the knowl-
edge consumers.
A better approach is to allow the knowledge server to

charge the knowledge consumers according to an appropri-
ate price mechanism. However, the problem of determining
such a price mechanism is challenging because it should be
based on the average- or even the best-case learning com-
plexity bounds from the adversary’s perspective. We stress
that the learning complexity bounds in computational learn-
ing theory are typically in the worst-case scenarios. It is
not clear how we can derive the average-/best-case learn-
ing complexity bounds, given that there are possibly in-
finitely many ways to breach a knowledge function. As a
first step towards this ultimate goal, we have found a heuris-
tic method whereby an adaptive pricing mechanism can be
imposed. We will fully explore it in a future work.

7. Related Work

On database as a service and knowledge sharing.
Service-oriented computing is an active research area and
a number of service types can be identified, including ap-
plication as a service, database as a service [14], data min-
ing model as a service [19], and the general notion of web
service. The knowledge as a service presented in this pa-
per is a natural evolution of this trend and helps bridge the
deviation of knowledge utilization from knowledge extrac-
tion.
The sharing of data mining models has recently attracted

increasingly more attention in the data mining community
[9, 19, 23]. The Predictive Modelling Markup Language
(PMML) [9] has been proposed by the Data Mining Group
as a standard format of data mining models. A number of
commercial as well as research prototype data mining sys-
tems, such as [23], are able to import/export PMML-based
models. These techniques can be seamlessly integrated into
knowledge as a service paradigm and are complimentary to
the security aspect of knowledge services.
On privacy protection of data. Many useful techniques for
privacy protection have been contributed by the cryptogra-

phy community [6, 7, 8]. These techniques protect users’
anonymity while allowing them to show their legitimacy.
On the other hand, inference control in statistical databases,
which allows accesses to statistics about groups of entities
while protecting the confidentiality of the individual enti-
ties, have been extensively investigated [10, 18, 24]. We re-
mark that all these techniques don’t address the problem of
knowledge breaching in the context of knowledge as a ser-
vice.
On privacy-preserving data mining and computational
machine learning. It is interesting that on the one hand,
the paradigm of knowledge as a service accommodates
(privacy-preserving) data mining as a useful component,
and on the other hand, knowledge can be compromised via
data mining and machine learning algorithms.
There are two approaches to privacy-preserving data

mining. The first approach is to randomize the values in
individual records [1]. A model is then built over the ran-
domized data, after first compensating for the randomiza-
tion (at an aggregate level). This approach is potentially vul-
nerable to privacy breaches: based on the distribution of the
data, one may be able to learn with high confidence that
some of the randomized records satisfy a specified prop-
erty (even though privacy is preserved on average). In gen-
eral, this approach is still in its early stage (see [11] for
the subtleties in capturing the right notion of privacy) and
does not provide accurate knowledge. The second approach
is based on cryptographic secure multi-party computation
techniques [26, 13, 16]. This approach does provide accu-
rate knowledge and a strict privacy guarantee, but is typi-
cally much less efficient. In spite of some recent advances in
cryptography (e.g., [12]), significant performance improve-
ments are very much needed.
As a theoretical branch of machine learning, the com-

putational learning theory has been focused on identify-
ing concept classes that can be learned by polynomial al-
gorithms with polynomial number of training samples in
various theoretical learning models [21, 2, 17, 3]. Our re-
sult in Theorem 3.1 is in an information-theoretic sense be-
cause there is no assumption on the adversary’s computa-
tional capability. Thus, one may wonder if a probabilistic
polynomial-time adversary can efficiently learn the target
knowledge with a small number of queries. This is related
to the computational learning theory [20], which is primar-
ily concerned with the complexity of learning in theoretical
models such as learnability results and complexity bounds
in the worst case. However, the results in learning theory
often do not provide practical solutions (or algorithms) be-
cause even if a knowledge function is not learnable in the-
ory, it could still be significantly breached in practice. Fur-
ther, what seems to be needed for our purpose is the aver-
age case or even best case complexity bounds .
Knowledge as a service vs. priced information. A no-
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tion that is remotely related to the knowledge as a service
paradigm is the so-called priced information [5].

8. Conclusion

We introduced a new computing paradigm called knowl-
edge as a service. We explored a high-level framework
fulfilling this paradigm, and focused on the crucial secu-
rity issue of knowledge breaching attacks. We theoretically
showed that any knowledge service based on interesting
knowledge function is vulnerable to these attacks. Through
systematic experiments (with various heuristic optimiza-
tions), we also empirically showed that some knowledge
models can be breached quickly. Finally, we discussed why
traditional security principles cannot solve the problem of
knowledge breaching, and suggested research directions to-
wards dealing with these powerful attacks.
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