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ABSTRACT

As databases are increasingly outsourced to the cloud, data own-
ers require various security assurances. This paper investigates one
particular assurance, query integrity, by which a database querier
(either the data owner or a third party) can verify that its queries

were faithfully executed by the cloud server with respect to the out-
sourced database. Query integrity is investigated in the setting of
dynamic databases, where the outsourced databases can be updated
by the data owners as needed. We present a formal security defini-
tion of query integrity and a provably-secure efficient construction.

Our solution improves upon the state-of-the-art solutions by addi-
tionally allowing aggregate queries and more flexible join queries.
In addition, we provide better performance by eliminating a linear
factor in the extra storage complexity for security purpose. Our
solution also achieves a trade-off between computational and com-
munication complexities.

Categories and Subject Descriptors

C.2.4 [Communication Networks]: Distributed Systems; H.2
[DATABASE MANAGEMENT]:

General Terms

Security

Keywords

Dynamic outsourced database, query integrity, authenticated data
structure.

1. INTRODUCTION
When databases are outsourced to the cloud, security issues arise.

The concern that outsourced data may be modified or (partially)
deleted has led to novel solutions to assuring the storage integrity

of outsourced data [2, 12, 3, 26, 8]. However, query integrity, ver-
ifying whether or not queries against outsourced data are faithfully
executed, has not been adequately addressed. Intuitively, query
integrity aims to assure the queriers, which can be the data own-
ers and third parties (e.g., the data owners’ business partners), that
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their queries are executed against the outsourced data (i.e., neither
a portion of it nor a modified version of it). Despite some previous
studies [11, 13, 17, 18, 16, 19, 23], the problem of query integrity
largely remains open.

1.1 Our Contributions
We present a formal security definition and an efficient con-

struction for query integrity in the setting of outsourced dynamic
database. Our solution can be characterized from three perspec-
tives: (i) functionality, (ii) security, and (iii) efficiency. From the

perspective of (i) functionality, our solution supports four kinds of
queries — selection, projection, join, and aggregate. Whereas, the
state-of-the-art solutions [13, 23] only support selection, projection
and join queries, but do not support aggregate queries (see Sec-
tion 5.4 for details). Moreover, our solution supports strictly more
flexible join queries, namely that the queries do not have to be de-

fined with respect to pre-defined keyword attributes. In contrast,
the state-of-the-art solutions [13, 23] only support join queries with
respect to pre-defined keyword attributes.
From the perspective of (ii) security, our solution is provably se-

cure as long as the two underlying building-blocks are provably
secure. The first building-block is called Authenticated Outsourced

Ordered Data Set, and the second building-block is called Homo-

morphic Linear Tag. Although our concrete solution is based on
our specific constructions of these building-block, its security anal-
ysis can be directly applied to solutions that use other (perhaps
more efficient) building-blocks as long as the building-blocks sat-

isfy their respective security definitions. This is due to our modular
construction and “compiler"-like security analysis.
From the perspective of (iii) efficiency, our solution is character-

ized as follows. Let m be the number of attributes and n be the
number of tuples.

• Our solution incurs an O(n) storage complexity at the cloud
side for security purpose, in contrast to the O(mn) of [13,
23].

• For selection query, our solution incurs O(n) exponentia-
tions at the querier side, which is not as efficient as the O(n)
hash operations of [13] but more efficient than the O(n) ex-
ponentiation operations on bilinear map of [23].

Our solution incurs communication of O(n) tags, which is
less efficient than the O(log n) hash values of [13] but com-
parable to the O(n) of [23].

• For projection query, our solution incurs O(n) modular ex-
ponentiations at the querier side. This is not as efficient as
the O(n) hash operations of [13], but much more efficient

than the O(nk) exponentiation operations on bilinear map
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of [23], where k ≤ m is the number of attributes involved in

the projection operation.

Our solution incurs anO(n+m) communication complexity,
which is the same as in [23] but much more efficient than
the O((m − k)n) of [13], where k ≤ m is the number of
attributes involved in the projection operation.

• For join queries with respect to two tables of n tuples andm
attributes, our solution incursO(n)modular exponentiations
at the querier side, which is not as efficient as theO(n log n)
hash operations of [13], but more efficient than O(n) expo-
nentiation operations on bilinear map of [23].

Our solution incurs the communication complexity ofO(n+
m) tags, which is more efficient than the O(n(log n)) hash
values of [13] and comparable to the O(n) of [23].

The efficiency of our solution mainly comes from the second building-
block mentioned above, which is weaker than the Homomorphic
Linear Authenticator introduced in [2] and may be of independent
value.

1.2 Related Work
The problem of assuring query integrity in the context of out-

sourced data was fundamentally related to the concept of certified
data structures [27], which presents some results that are concep-

tually important but not efficient. The state-of-the-art solutions to
query integrity are due to [13, 23], which are the only solutions
that support selection, projection and join queries simultaneously.
These two solutions follow two respective approaches to the query
integrity problem.

• The tree-based approach: Basically, this approach uses the

Merkle hash tree [15] or its variants to index search keys [11,
17, 13, 7, 16, 31, 20, 21]. As a result, this approach leads to
logarithmic complexity in terms of both communication and
verification, possibly with some further tricks (e.g., using the
Merkle hash tree to maintain signatures at multiple hash tree
levels [11]). The best solution in this approach is due to [13],

which uses the Merkle B-tree and the Embedded Merkle B-
tree in order to reduce I/O operations.

• The signature-based approach: Basically, this approach uses
the signature aggregation technique [5, 18] to aggregate the
validity of query answers [18, 19, 23, 22]. As a result, this

approach can lead to low (even constant) communication com-
plexity, but may require special treatment for handling more
powerful (e.g., projection) queries and often leads to large
storage and computational complexities. The best solution
in this approach is due to [23], which uses aggregate signa-
tures to sign each attribute and returns a single signature as

the validity proof for projection queries. This solution uses a
chaining signing technique to build the index for the search
key so as to facilitate range queries, and publishes a certi-
fied bitmap corresponding to every update so as to facilitate
dynamic updates. These cause a large storage and commu-
nication overhead while including many exponentiations and

pairing operations.

There are studies that are somewhat related to the theme of the
present paper as well. These include: authenticating the answers to
set operations using accumulator [25], authenticating the answers
to aggregate queries using authenticated prefix-sums trees [14], au-
thenticating the answers to join queries [30], authenticating count

queries with respect to multi-dimensional data while preserving

privacy [29], and assuring probabilistic integrity in selection and

join operations [28]. Query integrity is also somewhat related to
outsourced verifiable computation [1, 6, 10].

Paper outline.
The rest of the paper is organized as follows. Section 2 presents

the functional and security definitions of outsourced dynamic datab-
ase with the requirement of query integrity. Section 3 describes the
first building-block, and Section 4 describes the second building-
block. Section 5 presents the main construction of authenticated

outsourced dynamic database and analyzes its security and effi-
ciency. Section 6 presents an extension of the construction to ac-
commodate storage integrity of outsourced dynamic database. Sec-
tion 7 concludes the paper with future research directions.

2. QUERY INTEGRITY FOR OUTSOURC-

ED DYNAMIC DATABASES: DEFINITI-

ONS
In the context of the present paper, a relational database consists

of multiple tables, and each table has multiple tuples and multiple
attributes. As shown in Figure 1, an outsourced database system

has three participants: data owner (who outsources its database to
the cloud), database server (i.e., the cloud), and database queriers
(e.g., business partners of the data owner). The data owner uses
a management interface to outsource its database to the cloud, in-
cluding dynamic updates of the database. There is also a query

interface, which can be used by any third party, including the data

owner itself if desired.

Cloud

Data (DB) Owner DB Querier

DB outsource 

(update & 

maintenance)

SQL query

DB

Result & Proof

Management 

interface

Query 

interface

Figure 1: Outsourced dynamic database system model.

Intuitively, query integrity means that any query qry is faithfully
executed with respect to the database D. If we treat a query qry as
a function, the querier should be able to verify that the answer to
its query is indeed qry(D). The concern is legitimate because the
cloud may execute the query qrywith respect toD′, whereD′ 6= D
because (for example) the cloud vendor may use an outdated ver-
sion of D rather than the up-to-date one, or D′ ⊂ D because the
cloud vendor wants to spend less resources on searching the entire
D. Moreover, the cloud may return the answer to a modified query
qry′ on database D or even some D′ 6= D. As a concrete exam-
ple, a query qry asks for the tuples with some attribute values that

belong to the interval [10, 100], but the cloud actually returns the
tuples whose attribute values belong to the smaller interval [10, 20].
Without assuring query integrity, the querier cannot tell whether the
returned answer is indeed qry(D) or some qry′(D′).
In what follows, we present the functional and security defini-

tions of Authenticated Outsourced Dynamic Database (AuthDDB),

which was somewhat inspired by the definitions of Authenticated
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Data Structures that allow verifiable queries over dynamic sets [24,

25].

Definition 1. (AuthDDB) LetD be a database outsourced to the
server. An AuthDDB scheme consists of the following algorithms:

• KeyGen: This algorithm takes as input the primary security
parameter ℓ, and outputs a pair of private and public keys
(sk, pk). We denote this by

(sk, pk)← KeyGen(1ℓ).

• SetUp: This algorithm is executed by a data owner O before
outsourcing its database D to the server. By taking as input
the private key sk and the database D, this algorithm out-
puts some cryptographic auxiliary information Au and state

information State. BothD and Au will be outsourced to the
server and State will be made public (so as to allow third
parties to verify the query answers). We denote this by

(State,Au, D)← SetUp(sk,D)

• Update: This protocol is executed between a data owner O
and the server S to perform update operations, the detail of
which is described byUpd. By taking as input the private key

sk and the current state information State, the data owner in-
teracts with the server, which takes as input the stored data
D and the cryptographic auxiliary information Au. The data
owner O updates its state information to State′ from the up-
date information Upd, and the server obtains Au′ and D′ by
updating the stored database accordingly. We denote the pro-

tocol by

(Au′,State′, D′)← (O(sk,State,Upd)↔ S(Au, D))

• QueryVrfy: This is a protocol between a querier Q, which
issues a SQL query qry, and the server S, which answers
the query with the result Rst and a proof Prf. The querier
verifies the result Rst with Prf, and outputs reject if Rst is

not valid with respect to the query qry and the state State;
otherwise, the querier accepts Rst and Prf. We denote the
protocol by

{(reject), (accept,Rst,Prf)} ←

(Q(pk, qry, State)↔ S(Au, D))

We require an AuthDDB scheme to be correct, meaning that for
any honest server, (sk, pk) ← KeyGen(1ℓ), (State,Au, D) ←
SetUp(sk,D), polynomial-many executions of the Update proto-
col, and a query qry, it holds that

(accept,Rst,Prf)← (Q(pk, qry,State)↔ S(Au, D))

We require an AuthDDB scheme to be sound, meaning that no
malicious server can return incorrect query answers without being
detected by the querier. Specifically, we say an AuthDDB scheme

is sound if for any query qry on database D, the server can not
return an incorrect Rst such that

(accept,Rst,Prf)} ← (Q(pk, qry,State)↔ S(Au, D)).

Formally,

Definition 2. (soundness ofAuthDDB) LetΛ = (KeyGen,SetUp,
Update,QueryVrfy) be an AuthDDB scheme and A be a proba-
bilistic polynomial-time adversary. Consider the following security

game between a challenger and A.

• The challenger runs (sk, pk)← KeyGen(1ℓ) and give pk to
the adversary A.

• A makes oracle access to SetUp, by presenting a database
D0. The challenger computes

(State0,Au0, D0)← SetUp(sk,D0),

and gives State0,Au0 to A. The challenger makes State0
public.

• A asks for updating D0 adaptively with Updi, i ≥ 0. The
challenger computes

(Aui+1,Statei+1, Di+1)←

(O(sk,Statei,Updi,Aui, Di)↔ S(Aui, Di)).

• A may execute QueryVrfy polynomial-many times. Eventu-
ally,A outputs a query qry and a query result Rst with proof

Prf.

• A wins the game if

(accept,Rst,Prf)} ← (Q(pk, qry,Statek)↔ S(Auk, Dk))

for some k ≥ 0 and Rst 6= localRst, where localRst ←
LocalQuery(qry, Dk) is produced by the challenger that faith-
fully executes query qry on database Dk.

We say that Λ is sound if any polynomial-time algorithm A can
win the game with at most a negligible probability.

3. BUILDING-BLOCK I: AUTHENTICATED

OUTSOURCED ORDERED DATA SET

(AUTHODS)
In this section, we introduce a building block for assuring range

query integrity on ordered data set that is outsourced to the server.
This building-block is called Authenticated Outsourced Ordered
Data Set (AuthODS), which is similar to AuthDDB.

3.1 Definition of AuthODS

Definition 3. (AuthODS) Let E be an ordered data set. An

AuthODS scheme consists of the following algorithms, which are
similar to those in Definition 1:

• KeyGen: This key generation algorithm generates the pub-

lic/private key as KeyGen in Definition 1.

• SetUp: This setup algorithm is the same as SetUp in Defi-
nition 1, except that the database is replaced with an ordered
set E.

• Update: This update protocol proceeds is the same asUpdate
in Definition 1, except that the update operations are element
insertion/deletion/update on the ordered data set E.

• QueryVrfy: This query protocol is the same asQueryVrfy in

Definition 1, except that it only supports range query qry(a, b)
that asks for all elements in the interval [a, b].

The correctness of AuthODS can be defined similar to that of

AuthDDB scheme.
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Definition 4. (soundness ofAuthODS) For anAuthODS scheme,

Λ = (KeyGen,SetUp,Update,QueryVrfy), we consider the se-
curity game as in Definition 2, except that (i) the initial database
is replaced with an ordered set E, (ii) the update operation is ele-
ment insertion, deletion or update on the ordered data set, and (iii)
the queries are only range queries qry(a, b) that ask for elements in
the interval [a, b]. We say that Λ is sound if any polynomial-time

algorithmA can win the game with at most a negligible probability.

3.2 Construction and Analysis of AuthODS:
Merkle B-Tree

Now we describe an AuthODS scheme, which is a Merkle B-

tree (MB-tree) and has been extensively studied in [13, 17]. Merkle
B-tree applies the basic idea of Merkle tree on a B+ tree structure,
where the operations on Merkle B-tree (e.g., insertion and deletion)
are similar to those on B+ tree. The primary advantage of B+

tree is that it has a large fan-out, which can reduce the number
of I/O operations when searching for an element [13]. Let Sig =
(KeyGen,Sign,Verify) be a secure signature scheme. Let E be an
ordered set. The Merkle B-tree scheme consists of algorithms as
follows:

• (sk, pk)← KeyGen(1ℓ): This algorithm runs Sig.KeyGen
(1ℓ) to obtain a pair of private and public keys (sk, pk).

• (State,Au)← SetUp(sk, E): This algorithm outputs a suc-
cinct signature which can be used for verification. The struc-
ture of Merkle B-tree T is similar to B+ tree, where the
leaves store elements in the ordered set E, and the values

of internal nodes are computed from the concatenation of the
values of their children via an appropriate hash function. The
root of the tree will be signed to produce the state informa-
tion, denoted by State = Sig.Sign(T ) and Au = T .

• Update: The update protocol fulfills update operations. For
simplicity, we consider the example of the replacement op-

eration while assuming that the replacement preserves the
order of the elements. We refer to [13] for details about the
insertion and deletion operations. Suppose Upd = “update
the element Ei to E′

i”. Upon receiving Upd from the data
owner, the server updates E to E′ by replacing Ei with E′

i,
and updates T to T ′. The server provides a proof, a path of

Ei in T , namely a sequence including values of the nodes
from Ei to the root of MB-tree as well as the values of these
nodes’ siblings. The data owner can hash the path ofEi from
the bottom to the top and verify whether the root is valid with
respect to state State or not. If so, the data owner updates
the path from the bottom to the top by replacing Ei with E

′
i,

which will result in a new root, signs the new root, and sets
State′ = Sig.Sign(T ′); otherwise, the data owner aborts.

• QueryVrfy: Given a range query qry(a, b), the server outputs
a proof Prf showing that Rst contains all elements in [a, b].

– If Rst is empty, which means there exists some s, such
that Es < a, b < Es+1. The server returns the proof

Prf including two paths: a path of Es and a path of
Es+1. The querier hashes each path from bottom to the
top, and verify whether the roots match the state State,
and Es is neighbor to Es+1. If so, the querier returns
the null set Rst, Prf , and accept. Otherwise, abort.

– If Rst is not null, suppose the query result is (Es, . . . ,
Et), s ≤ t. The server returns the proof Prf includ-

ing two paths: one path of the left-most neighbor leaf

of Es, and the other path of the right-most leaf of Et.

Then the querier uses Prf and the result Rst to con-
struct a B+ tree, and verifies whether the root of the
this B+ tree is valid for State = Sig.Sign(T ). If so,
the querier returns (Rst,Prf , accept); otherwise, the
querier aborts.

THEOREM 1. Assuming that Sig is a secure signature scheme

and the hash function is collision resistant, the Merkle B-tree scheme

is sound with respect to Definition 4.

4. BUILDING-BLOCK II: HOMOMORPHIC

LINEAR TAG (HLT)
Now we present the second building block, HLT. Intuitively,

HLT offers the following property: If messages M1, . . . ,Mn are

respectively tagged with σ1, . . . , σn using some cryptographic func-
tion, then for coefficients c1, . . . , cn in a pre-defined coefficient
space, the aggregate messageM =

∑n

i=1 ciMi can be verified via
the aggregate tag σ of σ1, . . . , σn and the coefficients c1, . . . , cn.
HLT can be divided into two types:

• Publicly verifiable HLT: It allows anyone (without knowing
any secret) to verify the validity of tags. In order to allow
any third party to verify query integrity, this type of HLT is

needed for the purpose of the present paper.

• Privately verifiable HLT: It allows someone who knows the
relevant secret to verify the validity of tags. Putting this into
the context of the present paper, this type ofHLT can be used
to allow the data owner (but not third parties) to verify query

integrity. Therefore, this type of HLT will not be discussed
further in the paper.

The concept of HLT was inspired by the notion of Homomor-

phic Linear Authenticator (HLA), which was formally introduced
in [3]. The difference between them is that HLT is weaker than
HLA because HLT only considers attacks that do not attempt to
tamper the individual tags (which is dealt with by another layer of
protection for free, namely by the first building-block); whereas,
HLA explicitly accommodates attacks that aim to tamper the indi-

vidual tags. This makes it possible to construct HLT schemes that
are more efficient that their HLA counterparts. It is worthwhile to
point out the following feature of HLT and HLA: the aggregated
message M and the aggregated tag σ are sufficient to allow the
verifier to test their validity without knowing the individual mes-
sages M1, . . . ,Mn. This is not the case for aggregate signatures

[5], batch RSA [9], and condensed RSA [18], which are not suffi-
cient for the purpose of HLT or HLA.

4.1 Definitions of HLT

Definition 5. (publicly verifiableHLT) A publicly verifiableHLT
scheme consists of the following algorithms:

• (pk, sk) ← KeyGen(1ℓ): This algorithm takes as input a
security parameter ℓ, and outputs a pair of public and private
keys (pk, sk). It may optionally specify a coefficient domain
C and a message spaceM.

• σi ← TagGen(sk,Mi): This algorithm takes as input the

private key sk and a messageMi ∈M, and outputs a tag σi

forMi.

• σ ← HLTAgg(~c, ~Tag): This linear aggregation algorithm

takes as input a vector of tags ~Tag = (σ1, . . . , σn) with re-

spect to a vector of messages ~M = (M1, . . . ,Mn) and a
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vector of coefficients ~c = (c1, . . . , cn). It outputs an ag-

gregate tag σ with respect to the aggregated message M =∑n

i=1 ciMi.

• {0, 1} ← Vrfy(pk,M ′, σ′): This deterministic algorithm
takes as input the public key pk, a candidate message M ′,
and a tag σ′. It outputs 1 if σ′ is valid with respect to M ′,

and outputs 0 otherwise.

We require a HLT scheme to be correct, meaning that any faith-
fully aggregated message M and tag σ are always accepted as
valid. Formally, this means that for (pk, sk) ← KeyGen(1ℓ),
~M = (M1, . . . ,Mn) ∈ M

n, ~Tag = (σ1, . . . , σn) where σi ←
TagGen(sk,Mi) for 1 ≤ i ≤ n, and ~c = (c1, . . . , cn) ∈ C

n, then

σ ← HLTAgg(~c, ~Tag) implies 1← Vrfy(pk,
∑n

i=1 ciMi, σ).
The intuition behind the following security definition of HLT is:

for any tag σ generated for message M , there is no probabilistic
polynomial time adversary that can present M ′ 6= M such that
1← Vrfy(pk,M ′, σ). Formally, we have:

Definition 6. (security of HLT) Let Λ = (KeyGen,TagGen,
HLTAgg,Vrfy) be aHLT andA be a probabilistic polynomial-time

adversary. Consider the following security game between a chal-
lenger and A:

1. The challenger runs (pk, sk) ← KeyGen(1ℓ) and gives pk
to A. The optional coefficient domain C and the message
spaceM are specified by KeyGen.

2. A may make oracle queries to TagGen by adaptively select-
ing M1, . . . ,Mn fromM. The challenger computes σi ←
TagGen(sk,Mi) for 1 ≤ i ≤ n and returns tags (σ1, . . . , σn)
to A. The challenger keeps the lists of messages and tags:
(M1, . . . ,Mn) and (σ1, . . . , σn).

3. A may make oracle queries to HLTAgg by selecting a vector
of coefficients ~c = (c1, . . . , cn), obtain the aggregate tag σ,
and run Vrfy with the aggregate tag σ and the aggregated

message
∑n

i=1 ciMi. This can be performed polynomially
many times.

4. Eventually,A selects a vector of coefficients~c = (c1, . . . , cn),
where ci ∈ C, and some M

′ ∈M.

5. The adversary A wins the game if 1 ← Vrfy(pk,M ′, σ)

and M ′ 6=
∑n

i=1 ciMi, where σ ← HLTAgg(~c, ~Tag) was

computed by the challenger, where ~Tag = (σ1, . . . , σn) cor-
responds to the message vector (M1, . . . ,Mn) that can be
identified by the coefficient vector ~c = (c1, . . . , cn) pro-
vided by the adversary A.

We sayΛ is secure if no probabilistic polynomial-time algorithmA
can win the game with a non-negligible probability in the security

parameter ℓ.

From the security game, we observe that the adversaryA is only
allowed to manipulate the messages M1, . . . ,Mn but not the tags.
This further explains why HLT is weaker than the aforementioned
HLA (Homomorphic Linear Authenticator) [2, 3, 26], where the
adversary can manipulate both messages and tags. This can be
stated as:

LEMMA 1. Any secure HLA scheme as defined in [3] is also a

secure HLT scheme as defined above.

4.2 Construction and Analysis of HLT
We present a HLT scheme whose security is based on the Dis-

crete Logarithm (DLOG) problem. The scheme consists of the fol-

lowing algorithms.

• (sk, pk)← KeyGen(1ℓ):

1. Let q be a ℓ−bit prime and p be another large prime
such that q|(p− 1).

2. Select v1 and v2 uniformly at random from Z∗
p such

that the order of v1 and v2 is q

3. Select sj1, sj2 uniformly at random from Z∗
q and set

zj = v
−sj1
1 v

−sj2
2 mod p, for 1 ≤ j ≤ m.

4. Let sk = {(s11, s12), . . . , (sm1, sm2)} and pk = {v1,
v2, z1, . . . , zm}.

5. The coefficient domain C is [0, q) and the message space
isM = [0, q)m.

• σi ← TagGen(sk,Mi): For Mi ∈ M, the tag σi is com-
puted by selecting r1, r2 uniformly at random from Z∗

q and:

x = vr11 vr22 mod p,

y1 = r1 +
m∑

j=1

Mi[j]sj1 mod q,

y2 = r2 +
m∑

j=1

Mi[j]sj2 mod q.

Let σi = (x, y1, y2).

• σ ← HLTAgg(~c, ~Tag): Given tags ~Tag = (σ1, . . . , σn)
with σi = (xi, yi1, yi2), and~c = (c1, . . . , cn), the aggregate
tag σ = (x, y1, y2) is computed as:

x =
n∏

i=1

xci
i mod p,

y1 =
n∑

i=1

ciyi1 mod q,

y2 =

n∑

i=1

ciyi2 mod q.

• {0, 1} ← Vrfy(pk,M, σ): To verify that M is valid with
respect to tag σ, check whether:

x
?
= vy11 vy22

m∏

j=1

z
M[j]
j mod p.

If it holds, return 1; otherwise, return 0.

It can be verified thatM =
∑n

i=1 ciMi matches the aggregated
tag σ because

vy11 vy22

m∏

j=1

z
M[j]
j = v

∑n
i=1 ciyi1

1 v
∑n

i=1 ciyi1
2

m∏

j=1

z
∑n

i=1 ciMi[j]
j

=
n∏

i=i

vciyi11

n∏

i=i

vciyi22

m∏

j=1

z
∑n

i=1 ciMi[j]
j

=

n∏

i=i

(vciyi11 vciyi22

m∏

j=1

z
ciMi[j]
j )

=

n∏

i=i

xci
i = x
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THEOREM 2. Assuming DLOG problem is hard, theHLT scheme

is secure according to Definition 6.

PROOF. Let M1, . . . ,Mn be the messages adaptively selected
by A and σ1 = (x1, y11, y12), . . . , σn = (xn, yn1, yn2) be the
corresponding tags generated by the challenger. Assume the ad-

versary wins the security game with a non-negligible probability.
That is, it outputs a vector of coefficients ~c = {c1, . . . , cn} and
a message M ′ ∈ M, such that M ′ 6= M =

∑n

i=1 ciMi but

1 ← Vrfy(pk,M ′, σ), where σ ← HLTAgg(~c, ~Tag), and ~Tag =
(σ1, . . . , σn). We show that if A wins the security game with a

non-negligible probability, then we can solve the DLOG problem:
given v1, v2 randomly selected from Z∗

p , find logv2(v1).

Suppose σ = (x, y1, y2). Since 1← Vrfy(pk,M ′, σ), we have

x = vy11 vy22

m∏

j=1

z
M′[j]
j .

On the other hand, as σ ← HLTAgg(~c, ~Tag), we have

x = vy11 vy22

m∏

j=1

z
M[j]
j ,

where M =
∑n

i=1 ciMi. Therefore, we have

m∏

j=1

z
M′[j]
j =

m∏

j=1

z
M[j]
j ,

namely

m∏

j=1

z
M′[j]−M[j]
j = 1.

As M ′ 6= M , let ∆M [j] = M ′[j] − M [j] for 1 ≤ j ≤ m.

Since zj = v
−sj1
1 v

−sj2
2 , we have

v
∑m

j=1 −sj1∆M[j]

1 v
∑m

j=1 −sj2∆M[j]

2 = 1.

We claim that
∑m

j=1−sj1∆M [j] mod q = 0 with negligible
probability because sj1 for 1 ≤ j ≤ n are kept secret. Then we
have

v1 = v

∑m
j=1 sj2∆M[j]

∑m
j=1

−sj1∆M[j]

2 .

Performance.
As stated in Lemma 1, any secure HLA scheme is also a se-

cure HLT scheme. Now we show that HLT constructions can be
significantly more efficient than HLA schemes. Specifically, we
compare our HLT with two HLA schemes presented in [2, 26]. We
use comparable parameters that offer the same level of security.
Specifically, the parameter q is 140-bit and p is 512-bit in our HLT
scheme, p is 160-bit in [26] and N is 1024-bit in [2]. We consider

n messages, namely Mi = (Mi[1], . . . ,Mi[m]) for 1 ≤ i ≤ n,
and compare the costs of the respective operations.
As shown in Table 1, the HLA scheme presented in [26] has the

shortest tag but incurs the most expensive computation. Recall that
exponentiations and multiplications in pairing groups are much less
efficient than those in integer groups (e.g., the cost of one pairing

is about that of 6-20 exponentiations [4]).

HLT HLA [26] HLA [2]

assumption DLOG CDH Factoring

pairing-based? No Yes No

tag size 790 bits 160 bits 1024 bits

tagGen 2n Ex+mnMu mnEx+mnMu mnEx+mnMu

verify (single) mEx 2Pairing +mEx mEx

verify mEx+mn Mu 2Pairing + (m + n)Ex (m + n)Ex
(aggregate) +mnMu +mnMu

tagAggregate nEx+ 2n Mu nEx+ n Mu nEx+ nMu

Table 1: Performance of HLT and HLA, where Ex denotes ex-

ponentiation andMu denotes multiplication.

5. QUERY INTEGRITYFOROUTSOURCED

DYNAMICDATABASES: CONSTRUCTION

AND ANALYSIS
In this section, we begin with a discussion on the solution design

space. Then, we present the main construction and analyze its se-

curity. Finally, we discuss its efficiency with a comparison to the
state-of-the-art solutions.

5.1 Solution Space
As discussed in the related work section, the state-of-the-art so-

lutions to the query integrity problem fall into two approaches. The
first approach is tree-based [13]. This approach incurs the least
computational complexity because of the hash functions, but also
incurs O(n log n) communication overhead. The second approach
is signature-based [23]. This approach incurs high computational

complexity of O(kn) bilinear map exponentiations and communi-
cation complexity of O(n) bitmaps (a small constant bits). Both
approaches incur O(mn) extra storage complexity in the cloud.
Our solution is based on a third approach. It reduces the extra

complexity at the cloud side from O(mn) to O(n). It achieves
a balanced trade-off between computational and communication

communications. Specifically, it is less efficient than the tree-based
solution in terms of computational complexity but substantially more
efficient than the tree-based solution in terms of communication
complexity. It is also substantially more efficient than the signature-
based solution in terms of computational complexity but less effi-

cient than the signature-based solution in terms of communication
complexity. Perhaps more importantly, our solution can accommo-
date aggregate queries, which are not supported by the state-of-the-
art solutions [13, 23].
The high-level idea of our solution is the following: The HLT

scheme generates a tag for each tuple in the table, and theAuthODS

scheme can be built on those tags, which are ordered by the search
key. Intuitively, the AuthODS scheme provides two functionali-
ties: one is to enable range query, and the other is to guarantee tag
integrity (i.e., preventing HLT tags from being manipulated). The
performance gain comes from the HLT scheme because only one
aggregate tuple is needed to verify the integrity of (parts of) tuples.

This is critical for the projection query because its query result only
contains a portion of attributes from all tuples.

5.2 Proposed Construction
Let R be a table of n tuples with schema (A1, . . . , Am) and

r1, . . . , rn be tuples ordered by search key A1. Let L and U be the
lower and upper bounds of the search key A1, respectively.
Let ΛRS = (KeyGen,SetUp,QueryVrfy,Update) be a secure

AuthODS scheme and ΛHLT = (KeyGen,Tag,Vrfy,HLTAgg) be
a secure HLT scheme. The AuthDDB scheme is described as fol-

lows:

• KeyGen: Given the primary security parameter ℓ, the data
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owner obtains two secondary security parameters ℓ1 and ℓ2,
and generates a pair of private and public keys (sk, pk),

1. Compute (ΛRS.sk,ΛRS.pk)← ΛRS.KeyGen(1
ℓ1).

2. Compute (ΛHLT.sk,ΛHLT.pk)← ΛHLT.KeyGen(1
ℓ2).

3. sk = {ΛRS.sk,ΛHLT.sk} and pk = {ΛRS.pk,ΛHLT.pk}.

4. ΛHLT.KeyGen specifies the coefficient domain C and
the message spaceM, s.t. (ri.A1, . . . , ri.Am) ∈ M
for ri ∈ R, 1 ≤ i ≤ n.

• SetUp: The data owner takes as input the private key sk and
a table R, and obtains State and Au as follows:

1. Let r0 and rn+1 be two tuples added at both ends of ta-
ble R in order to facilitate range query, where r0.A1 =
L and rn+1.A1 = U .

2. Compute σi ← ΛHLT.TagGen(ΛHLT.sk, ri) for tuple
ri, 0 ≤ i ≤ n+ 1.

3. Let ERS be the ordered data set, such that ERS = {E0,
. . . , En+1} whereEi = (ri.A1, σi) for 0 ≤ i ≤ n+1
and ERS is ordered by A1. Compute (StateRS,AuRS,
ERS)← ΛRS.SetUp(ΛRS.sk, ERS).

4. Let State = StateRS and Au = (AuRS, ERS). R and
Au will be outsourced to the server, and State will be
made public.

• Update: The data owner interacts with the server to update
the stored table with the update information Upd.

Insertion: Suppose Upd is “insert the tuple r into R where
rs.A1 < r.A1 < rs+1.A1, 0 ≤ s ≤ n”:

1. The data owner computes σ ← ΛHLT.TagGen(ΛHLT.sk,
r).

2. Let UpdRS be “add an element of E = (r.A1, σ) be-
tween Es and Es+1”. The data owner takes as input
UpdRS,ΛRS.sk and StateRS, runs protocolΛRS.Update
with the server, who takes as input UpdRS and AuRS.

Eventually, the data owner outputs State′RS and the server
updates AuRS to Au

′
RS and ERS to E

′
RS.

3. The data owner deliversUpd to the server, and the server
updates R to R′.

Replacement: Suppose Upd is “update the tuple r with r′”:

1. The data owner fetches the tag σ for the tuple r from
the server.

2. The data owner computes σ′ ← ΛHLT.TagGen(ΛHLT.sk,
r′).

3. LetUpdRS be “update the element (r.A1, σ)with (r
′.A1,

σ′)”. The data owner takes as input UpdRS,ΛRS.sk
and StateRS, runs protocol ΛRS.Updatewith the server,
who takes as input UpdRS and AuRS. Eventually, the
data owner outputs State′RS and the server updatesAuRS
to Au′RS and ERS to E

′
RS.

4. The data owner deliversUpd to the server, and the server
updates R to R′.

Deletion: Suppose Upd is “delete the tuple r”:

1. The data owner fetches the tag σ for the tuple r from
the server.

2. Let UpdRS be “delete the element (r.A1, σ)”. The data
owner takes as input UpdRS,ΛRS.sk and StateRS, runs
protocol ΛRS.Update with the server, who takes as in-
put UpdRS and AuRS. Eventually, the data owner out-
puts State′RS and the server updates AuRS to Au′RS and
ERS to E

′
RS.

3. The data owner deliversUpd to the server, and the server
updates R to R′.

We present the construction of QueryVrfy protocol based on the

query type. Recall that State = StateRS and Au = (AuRS, ERS).

QueryVrfy on Selection Query.

Suppose the selection query is qry =“select * from R where
A1 ≥ a and A1 ≤ b”. There are two scenarios.

• If the result Rst is not null, assume Rst = {rs, . . . , rt}, 1 ≤
s ≤ t ≤ n, where rs−1.A1 < a ≤ rs.A1 and rt.A1 ≤ b <
rt+1.A1. The protocol proceeds as follows:

1. The server sets Rst = {rs, . . . , rt}, and sends Rst to
the querier.

2. The querier runs protocol ΛRS.QueryVrfy with the server
for range query qry(a, b). If the output is reject, the
querier aborts; otherwise, the querier obtains range query
result RstRS = ((rs.A1, σs), . . . , (rt.A1, σt)) and PrfRS.

3. The querier randomly selects a vector of coefficients

~c = (cs, . . . , ct), computes σ ← ΛHLT.HLTAgg(~c, ~Tag)

where ~Tag = (σs, . . . , σt), and runs
ΛHLT.Vrfy(ΛHLT.pk,

∑t

i=s
ciri, σ). If the output is 1,

the querier returns (accept,Prf = (RstRS,PrfRS),Rst);
otherwise, the querier returns reject.

• If the result Rst is null, there exist two tuples rs, rs+1, 0 ≤
s ≤ n such that rs.A1 < a, b < rs+1.A1. The querier
can verify this fact by running protocol ΛRS.QueryVrfy with

range query qry(a, b), which should return accept and RstRS
is null.

QueryVrfy on Projection Query.

Suppose the projection query is qry =“select A1, . . . , Ak from
R” (k ≥ 1). The protocol proceeds as follows:

1. The server sets Rst = {(ri.A1, . . . , ri.Ak), 1 ≤ i ≤ n} and
passes it to the querier.

2. The querier runs protocol ΛRS.QueryVrfy with the server on
range query (L,U). If the output is reject, the querier aborts;
otherwise, the querier obtains the range query result RstRS =
((r0.A1, σ0), . . . , (rn+1.A1, σn+1)) and proof PrfRS.

3. The querier randomly selects a vector of coefficients ~c =
(c1, . . . , cn) and sends it to the server.

4. The server computes r.Aj =
∑n

i=1 ciri.Aj , k+1 ≤ j ≤ m
and sends (r.Ak+1, . . . , r.Am) to the querier as part of Prf.

5. The querier computes r.Aj =
∑n

i=1 ciri.Aj , 1 ≤ j ≤ k
from Rst = {(ri.A1, . . . , ri.Ak), 1 ≤ i ≤ n} and the

aggregated tag σ = ΛHLT.HLTAgg(~c, ~Tag), where ~Tag =
(σ1, . . . , σn).
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6. The querier computes ΛHLT.Vrfy(ΛHLT.pk,M, σ) whereM
= (r.A1, . . . , r.Am). If the output is 1, the querier returns

(accept,Rst,Prf = (RstRS,PrfRS, r.Ak+1, . . . , r.Am));

otherwise, the querier returns reject.

QueryVrfy on Join Query.

Let P be another table with schema (B1, . . . , Bm) and be pro-
cessed by SetUp, where B1 is the search key. For convenience,
suppose P has n tuples, and A2 and B2 are the respective primary
key for tables R and P . Suppose the join query is qry =“select
R.∗, P.∗ from R,P where R.As = P.Bt” (1 ≤ s, t ≤ m). The
protocol proceeds as follows:

1. The server sets Rst = (R∗, P ∗) and passes it to the querier,
whereR∗ andP ∗ are the tuples inR and P such thatR.As =
P.Bt.

2. The querier runs QueryVrfy on projection queries with qryR
= “select A2, As from R” and qryP = “select B2, Bt from
P ", respectively. If either execution outputs 0, the querier
aborts; otherwise, the querier obtains {(ri.A2, ri.As, σi), 1 ≤
i ≤ n} and {(pj .B2, pj .Bt, σ

′
j), 1 ≤ j ≤ n}.

3. The querier identifies tuples satisfying R.As = P.Bt from
{(ri.A2, ri.As, σi), 1 ≤ i ≤ n} and {(pj .B2, pj .Bt, σ

′
j),

1 ≤ j ≤ n}. Specifically, let α and β be two sets of indices
such that α ⊆ {1, . . . , n}, β ⊆ {1, . . . , n} and i ∈ α, j ∈
β, ri.As = pj .Bt. Then, the querier obtains two sets of tu-

ples {(ri.A2, ri.As, σi), i ∈ α} and {(pj .B2, pj .Bt, σ
′
j), j ∈

β}, where i ∈ α, j ∈ β, ri.As = pj .Bt. The querier verifies
that the number of tuples inR∗ equals to the number of tuples
in {(ri.A2, ri.As, σi), i ∈ α}, and the number of tuples in
P ∗ equals to the number of tuples in {(rj .B2, pj .Bt, σ

′
j), j ∈

β}. If both are true, the querier continues; otherwise, the

querier aborts.

4. The querier randomly selects a vector of coefficients ~c =
(c1, . . . , c|α|), computes σ by aggregating tags {σi, i ∈ α},
and executes ΛHLT.Vrfy with ~c, σ, R∗ and ΛHLT.pk. The

same is executed with respect to P ∗. If both executions out-
put 1, the querier returns

(accept,Rst,Prf = (RstRS,R,PrfRS,R,RstRS,P ,RstRS,P ));

otherwise, the querier returns reject. Here (RstRS,R,PrfRS,R)
are the query result and proof when executing QueryVrfy on
projection query qryR, and that (RstRS,P ,PrfRS,P ) are the
query result and proof when executing QueryVrfy on projec-
tion query qryP .

QueryVrfy on Aggregate Query.

Suppose the aggregate query is qry =“select SUM(A2) from

R where A1 ≥ a and A1 ≤ b”. Suppose 1 ≤ s ≤ t ≤ n,
rs−1.A1 < a ≤ rs.A1 and rt.A1 ≤ b < rt+1.A1. The protocol
proceeds as follows:

1. The server sets r.Aj =
∑t

i=s
ri.Aj for j = 1, . . . ,m, sets

Rst = r.A2, and passes Rst and (r.A1, r.A3, . . . , r.Am) to
the querier.

2. The querier runs protocol ΛRS.QueryVrfy on range query
qry(a, b) with the server. If the output is reject, the querier
aborts; otherwise, the querier obtains RstRS = ((rs.A1, σs),
. . . , (rt.A1, σt)) and PrfRS for the range query.

3. The querier computes σ ← ΛHLT.HLTAgg(~c, ~Tag), where ~c

is a vector of 1’s and ~Tag = (σs, . . . , σt). The querier com-
putes ΛHLT.Vrfy(ΛHLT.pk,M, σ), whereM = {r.A1, · · · ,
r.Am}. If the output is 1, the querier returns

(accept,Rst,Prf = (RstRS,PrfRS, r.A1, r.A3, . . . , r.Am));

otherwise, the querier returns reject.

REMARK 1. In selection/projection/join query, we use randomly
selected ~c to prevent aggregate attack. To see this, let us con-

sider the case without using ~c, namely ~c is composed of 1s. The

server has r′i = ri, s − 1 ≤ i ≤ t + 1, and manipulates two tu-

ples re, re+1, s ≤ e ≤ t − 1, to obtain r′e = (re.A1, re.A2 +
1, re.A3, . . .) and r′e+1 = (re.A1, re.A2 − 1, re.A3, . . .), which
makes

∑t

i=s
ri =

∑t

i=s
r′i. Hence, the server could haveΛHLT.Vrfy

output 1 with manipulated {r′s, . . . , r
′
t}.

REMARK 2. Note that our solution toward the aggregate query

supports only SUM queries and weighted SUM queries.

5.3 Security Analysis
It is easy to check the correctness of the AuthDDB scheme. In

what follows we focus on its security.

THEOREM 3. Assume ΛRS is a secure AuthODS scheme and

ΛHLT is a secureHLT scheme, where the coefficient space is large

enough (e.g. 1/|C| is negligible). The proposed AuthDDB scheme

attains the soundness with respect to the selection, projection, join

and aggregate queries.

The basic idea to prove the soundness is to show that if there ex-

ists a probabilistic polynomial-time adversaryA that breaks sound-
ness of the AuthDDB scheme, we can break either soundness of
ΛRS or security of HLT.

PROOF. We show our proof through a sequence of games be-

tween a challenger, who plays the role of the data owner , and ad-
versary A, who acts as the malicious server.
Game 0: Game 0 is defined as in Definition 2, where the challenger
only keeps the relevant public/private keys and the latest state in-
formation Statek.
Game 1: Game 1 is defined as in Definition 2, where the challenger

keeps the relevant public/private keys, the latest state information
Statek and the latest auxiliary information Auk. We can see that
the probability that A wins Game 1 is at most negligibly less than
the probability thatA wins Game 0.
Game 2: Game 2 is defined as in Definition 2, where the challenger

keeps the relevant public/private keys, the latest state information
Statek, the latest auxiliary information Auk, and the latest database
Dk . We can see that the probability that A wins Game 2 is at most
negligibly less than the probability that A wins Game 1.
Let Statek,Auk andDk = R be the latest version of the state in-

formation, the auxiliary information and the database, where Statek
= StateRS,Auk = (AuRS, ERS), andERS = {(L, σ0), (r1.A1, σ1),
. . . , (rn.A1, σn), (U,σn+1)}.

Soundness of Selection Query Suppose the adversary A finds

a selection query qry with query result Rst and proof Prf, and
wins Game 2. In other words, given qry =“select * from R where
A1 ≥ a and A1 ≤ b”, A returns Rst = {r′s, . . . , r

′
t} and Prf =

{RstRS,PrfRS}, and wins Game 2, whereRstRS = {(r′s.A1, σ
′
s), . . . ,

(r′t.A1, σ
′
t)}. Let localRst ← LocalQuery(qry, DK) and localRstRS

← ΛRS.LocalQuery(qry(a, b), ERS), which are produced by the

challenger with stored Statek,Auk and Dk = R.
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Since A wins Game 3, we have

(accept,RstRS,PrfRS)←

(Q(ΛRS.pk, qry(a, b),Statek)↔ S(AuRS, ERS)).

This means that given range query qry(a, b), RstRS is the query re-
sult on the ordered data setERS with respect to state Statek. On the
other hand, if localRstRS 6= RstRS, there exist two different query

results with respect to qry(a, b), which contradicts with the sound-
ness of ΛRS. Since ΛRS is sound, we have Rstrs = localRstRS.
Therefore, we can assume localRst = {rs, . . . , rt}.
Suppose ~c = (cs, . . . , ct) is the coefficient vector sent from the

challenger toA. The challenger computes σ′ ← ΛHLT.HLTAgg(~c,
~Tag′), where ~Tag′ = (σ′

s, . . . , σ
′
t). Since the adversary wins

Game 2, it should satisfy:

1← ΛHLT.Vrfy(ΛHLT.pk,

t∑

i=s

cir
′
i, σ

′).

If localRst 6= Rst, there exist some i, s ≤ i ≤ t, ri 6= r′i. So, we
have

∑t

i=s cir
′
i =

∑t

i=s ciri with negligible probability because
c1, . . . , cn are randomly selected from C and

1
|C|

is negligible. That

is, we have another equation

1← ΛHLT.Vrfy(ΛHLT.pk,
t∑

i=s

ciri, σ
′),

which allows us to break security of ΛHLT if localRst 6= Rst. This
means that if A breaks the soundness of AuthDDB, we can break
either the soundness of ΛRS or the security of ΛHLT.

Soundness of Projection Query suppose the adversary A finds a
projection query qry with query result Rst and proof Prf, and wins

Game 2. In other words, given qry =“select A1, . . . , Ak from R”
(k ≥ 1), A returns query result Rst = {(r′i.A1, . . . , r

′
i.Ak), 1 ≤

i ≤ n} andPrf = (RstRS,PrfRS, r
′.Ak+1, . . . , r

′.Am). Let localRst
← LocalQuery(qry, Dk) and localRstRS ← ΛRS.LocalQuery(
qry(a, b), ERS), which are produced by the challenger with stored
Statek,Auk and Dk = R.
Since A wins Game 2, we have

(accept,RstRS,PrfRS)←

(Q(ΛRS.pk, qry(L,U),Statek)↔ S(AuRS, ERS)).

This means that given range query qry(L,U), RstRS is the query re-
sult on the ordered data setERS with respect to state Statek. On the
other hand, if localRstRS 6= RstRS, there exist two different query
results with respect to qry(a, b), which contradicts with the sound-
ness of ΛRS. Since ΛRS is sound, we have Rstrs = localRstRS.
Therefore, we can assume localRst = {r1, . . . , rn}.
Suppose ~c = (c1, . . . , cn) is the coefficient vector sent from the

challenger toA. The challenger computes σ′ ← ΛHLT.HLTAgg(~c,
~Tag′), where ~Tag′ = (σ′

s, . . . , σ
′
t) and r

′.Aj =
∑n

i=1 ciri.Aj , 1 ≤
j ≤ m. Since A wins Game 2, we have

1← ΛHLT.Vrfy(ΛHLT.pk, (r
′.A1, . . . , r

′.Am), σ′).

If localRst 6= Rst, there exist some i, j, 1 ≤ i ≤ n, 1 ≤ j ≤
k such that ri.Aj 6= r′i.Aj . This means that

∑n

i=1 cir
′
i.Aj =∑n

i=1 ciri.Aj with negligible probability. Therefore, we obtain
another equation

1← ΛHLT.Vrfy(ΛHLT.pk, (
n∑

i=1

ciri.A1, . . . ,
n∑

i=1

ciri.Am), σ′),

which allows us to break the security of ΛHLT if localRst 6= Rst.

This means that if A breaks the soundness of AuthDDB, we can
break either the soundness of ΛRS or the security of ΛHLT.

Soundness of Join Query This holds because of the soundness of

the projection query and the security of ΛHLT.

Soundness of Aggregate Query Suppose the adversary A finds

an aggregate query qry with query result Rst and proof Prf , and
wins Game 2. In other words, given qry=“select SUM(A2) from
R where A1 ≥ a and A1 ≤ b”, A returns query result Rst =
r′.A2 and Prf = {r′.A1, r

′.A3, . . . , r
′.Am,RstRS,PrfRS}, where

RstRS = {(r′s.A1, σ
′
s), . . . , (r

′
t.A1, σ

′
t)} for the range query qry(a, b).

Let localRst ← LocalQuery(qry, DK) and localRstRS ← ΛRS.
LocalQuery(qry(a, b), ERS), which are produced by the challenger
with stored Statek,Auk and Dk = R.
since the adversary wins Game 2, we have

(accept,RstRS,PrfRS)←

(Q(ΛRS.pk, qry(a, b),Statek)↔ S(AuRS, ERS))

This means that given range query qry(a, b), RstRS is the query
result on the ordered data set ERS with respect to state Statek.
On the other hand, if localRstRS 6= RstRS, there exist two dif-
ferent query results with respect to qry(a, b), which contradicts

with the soundness of ΛRS. Since ΛRS is sound, we have Rstrs =
localRstRS, which means that any tuple ri in R, where s ≤ i ≤
t, satisfies a ≤ ri.A1 ≤ b. The challenger computes σ′ ←

ΛHLT.HLTAgg(~c, ~Tag′), where ~Tag′ = (σ′
s, . . . , σ

′
t) and ~c is all

1’s. If A wins Game 2, it should satisfy

1← ΛHLT.Vrfy(ΛHLT.pk, (r
′.A1, . . . , r

′.Am), σ′).

If localRst 6= Rst, we have
∑t

i=s ri.A2 6= r′.A2. Therefore, we
obtain another equation

1← ΛHLT.Vrfy(ΛHLT.pk, (

t∑

i=s

ri.A1, . . . ,

t∑

i=s

ciri.Am), σ′),

which allows us to break the security of ΛHLT if localRst 6= Rst.
This means that if A breaks the soundness of AuthDDB, we can
break either the soundness of ΛRS or the security of ΛHLT.

5.4 Performance
We compare the asymptotic performance of our solution with

that of the two state-of-the-art solutions [13, 23]. As shown in Ta-
ble 2, our solution is more expressive because it additionally sup-
ports aggregate queries, such as: “select SUM(A2) from R where

A1 > a." Moreover, our solution allows the join query with respect
to arbitrary attributes, such as: “select R.∗, P.∗ from R,P where
R.A3 = P.B4" without requiring that R.A3 and P.B4 be search
keys. Whereas, this type of join queries cannot be handled by the
state-of-the-art solutions [13, 23].

Regarding pre-processing the database before outsourcing it to
the cloud, our solution is more efficient than [23], and as efficient
as [13]. In addition, our solution incurs the least extra storage com-
plexity. To see this, we compare the three solutions with parame-
ters in Table 1. Figure 2(a) shows that our solution is storage-space
more efficient than [13, 23] as long as the number of attributes is

greater than Tag/Hash, which is often the case. Moreover, from
Figure 2(b) we can see that the storage-space requirement in our
solution is independent of the number of attributes; in contrast, the
storage-space complexity of [13, 23] increases linearly with respect
to the number of attributes.
Regarding selection queries, projection queries and join queries,

our solution incurs respective computational complexity O(log n)
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Functions Selection, Projection, Join Selection, Projection, Join Selection, Projection, Join, Aggregate

Technique Merkle-based Hash Tree Aggregate Signature with Chaining Merkle-based Hash Tree and HLT

Security Sound Sound Sound

Data PreProcessing O(n)Hash O(mn)Ex O(n)Hash+ O(n)Ex
Storage Overhead O(mn)Hash O(mn)AggSig O(n)Hash + O(n)Tag

Selection
ComputationS N/A O(n)Mu N/A
Communication O(logn)Hash O(n)Bitmap O(logn)Hash+O(n)Tag
ComputationV O(n)Hash O(n)Ex O(logn)Hash+O(n)Ex

Projection
ComputationS N/A O(kn)Mu O(n)Mu
Communication O((m− k)n)attribute O(n)Bitmap O(n+m)Tag
ComputationV O(n)Hash O(kn)Ex O(n)Ex

Join
ComputationS N/A O(n)Mu O(n)Mu
Communication O(n log (n))Hash+ R∗ O(n)Bitmap+ R∗ O(n+m)Tag
ComputationV O(n log (n))Hash O(n)Ex O(n)Ex

Aggregate
ComputationS N/A N/A N/A
Communication N/A N/A O(logn)Hash+O(λ)Tag
N/A N/A N/A O(logn)Hash+O(λ)Ex

Update
ComputationS O(logn)Hash N/A O(logn)Hash
Communication O(1) O(1) O(1)
ComputationO O(logn)Hash O(m)Ex O(logn)Hash

Table 2: Comparison of asymptotic performance, where Hash is 160 bits, Sig is 1024 bits, AggSig= 160 bits, Tag= 792 bits, Bitmap

is a small constant, Ex denotes modular exponentiation, Mu denotes modular multiplication Pairing denotes pairing operation, k is

the number of attributes in projection query, attribute is an attribute value in R, R∗ denotes unmatched tuples in R, and assume

|R| = |P | = n in join query. Note that our solution supports aggregate queries and more flexible join queries, and we do not count

the basic search operation in the comparison.
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Figure 2: Comparison of storage overhead

Hash plus O(n)Ex, O(n)Ex, and O(n)Ex at the querier side in or-
der to aggregate HLT tags. However, our solution still outperforms
[23], which incurs respective computational complexity O(n)Ex,
O(kn)Ex, and O(n)Ex on bilinear group.
Regarding projection queries and join queries, our solutions re-

quires O(n + m) tags. In contrast, [13] requires O((m − k)n)
attribute values for projection queries, and O(n log n) hash values
plus those unmatched tuples in R for join queries. Although [23]
only requiresO(n) certified bitmap (recording updated tuples in on
update period) for projection queries, it requires at least O(n) cer-
tified bitmap plus those unmatched tuples in R for join queries. It
is due to the fact that [13, 23] have to fetch at least one table (either
R or P ) for join queries.
Regarding aggregate queries, the computational and communi-

cation complexities are the same regardless of the number of at-
tributes the querier wants to aggregate. For example, our solution

incurs the same complexity for queries such as: “select SUM(A1),

. . ., SUM(Ak) from R where A1 > a and A1 < b" and “select
SUM(A1) from R where A1 > a and A1 < b".

6. INTEGRATE QUERY INTEGRITY AND

STORAGE INTEGRITY
The accompanying concept to query integrity is storage integrity,

namely the assurance that the outsourced data is kept intact in the

cloud. Elegant solutions to storage integrity include Provable Data
Possession (PDP) [2] and Proof of Retrievability (POR) [12]. In
particular, PDP can achieve constant computational and communi-
cation complexities in the static setting [2], and logarithmic com-
putational and communication complexities in the dynamic setting
[8].

A systematic solution should assure both query complexity and
storage complexity. Intuitively, query integrity is more demand-
ing than storage integrity because storage integrity does not have
to deal with the structure of database. However, one cannot simply
adapt PDP/POR techniques to the setting of outsourced database

because they deal with unstructured data. In what follows, we
sketch a solution that integrates PDP-flavor storage integrity with
respect to the logical structure of the outsourced database (rather
than the physical structure of the database). The solution is not
optimal because it incurs communication complexity of O(n) tags
and computational complexity of O(n) exponentiations. We defer

a detailed analysis of the following solution to an expanded version
of this paper.
Specifically, for a tableR with schema (A1, . . . , Am), whereAi

is the primary key (ID) that uniquely identifies a tuple. In order to
ensure storage integrity, the database storage integrity auditor (e.g.,
the data owner or a third party) can perform the procedure shown

in Figure 3. Since the auditor has no knowledge about R, it fetches
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DB Auditor

Cloud

DB

1:  Select Ai from R (Ai is primary key)

2: {r1.Ai,  , rn.Ai},  Prf ={!1,  , !n}

3:  {(r b1.Ai, c1),  .. (rbt.Ai, ct) }

4:  c1rb1 +   + ctrbt

Figure 3: Procedures to ensure storage integrity

and verifies integrity of all primary keys (IDs) in R and their tags,

which is showed in Steps 1 and 2. Then the auditor randomly se-
lects t primary IDs from the set of IDs and t coefficients, denoted
by (rb1 .Ai, c1), . . . , (rbt .Ai, ct), and asks the server to compute
an aggregate tuple r =

∑t

i=1 cirbi . Suppose σ is the aggregated
tag of σb1, . . . , σbt with coefficients c1, . . . , ct, the auditor can ver-
ify storage integrity by running ΛHLT.Vrfy(ΛHLT.pk, r, σ). If the
output is 1, the storage assurance can be guaranteed with (1− f)t

confidence, where f is the fraction of the corrupted tuples.

7. CONCLUSION
We presented an efficient solution to the problem of query in-

tegrity in the setting of outsourced dynamic databases. Query in-
tegrity allows a querier, the data owner or a third party, to verify
that its queries were faithfully executed by the cloud server. Com-
pared with the state-of-the-art solutions, our solution is: (i) more

powerful by additionally supporting aggregate queries (in addition
to selection, projection, and join queries), and (ii) more efficient
by eliminating a logarithmic (or even linear) multiplication factor
from the overall cost (depending on the type of the queries).
Our solution still incurs linear complexity. A notable direction

for future research is to address the following open problem: Can

we attain query integrity logarithmic (or constant) complexity as in
the case of assuring storage integrity?
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