Immunological and histopathological evaluation of *Eimeria tenella* oocysts
Egyptian local isolate vaccine and its comparative efficacy with a commercial live vaccine

Desouky, A.Y.¹, Ammar, N.I.¹,², Mohamed, A.M.², Elhawary, N.M.¹, Sultan, K.¹*

¹Department of Parasitology, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt
²Animal Health Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
*Corresponding author: Khaled.soultan1@vet.kfs.edu.eg

INTRODUCTION

Chicken coccidiosis is one of the most pathogenic internal parasites of poultry which cause severe economic losses due to mortality, malabsorption, inefficient feed utilization, impaired growth rate of broilers and reduced egg production in layers (Lillihoj & Daloul, 2004). Moreover, avian coccidiosis causes economic global losses of more than 3 billion dollars per year in the poultry industry (Zhang et al., 2012; El-Shazly et al., 2020). Control of poultry coccidiosis is based mainly on the use of prophylactic anticoccidial drugs. Traditionally, the disease is controlled by chemical feed additives that can inhibit the life cycle stages of *Eimeria* (Calnek et al., 1997). Several disadvantages related to this strategy including withdrawal periods, development of drug resistance and drug residues in product’s for human consumption (Daloul & Lillehoj, 2005). Vaccines have been used in poultry industry for more than 50 years, primarily in broiler breeder and replacement layer flocks (Chapman et al., 2002). Different types of vaccines have been made to immunize chicken against coccidiosis throughout the world by using low doses of sporulated oocysts (Shafiya et al., 2017), irradiated sporulated oocysts (Raymond et al., 2014), sporozoites (Garg et al., 1999), merozoites, recombinant merozoite antigen (Jenkins, 1998), recombinant refractile body antigen (Kopko et al., 2000) and sonicated oocyst (Akhtar et al., 2001; Kadhim, 2014). Generally, vaccination against *Eimeria* spp. thought to stimulate host immune response (Allen & Fetterer, 2002; Awad et al., 2013), that may help in protection against infection. In a vaccine production, the use of local strains may give a better results than using foreign strains of a pathogen. *Fortegra* is a commercial live vaccine, distributed in Egypt but manufactured aboard, and it contains oocysts of several chicken *Eimeria* spp. So, we tried herein to make a vaccine from sporulated sonicated oocysts of a local field strain of *E. tenella* and to evaluate its efficacy as compared with a commercial live vaccine “*Fortegra*”.

MATERIALS AND METHODS

Ethical consideration: The experiment was carried out in Animal Health Research Institute, Tanta branch at the period from
October, 1st till November, 7th 2018. All procedures were carried out in accordance to national laws and regulations for the handling of animals to avoid harms and minimize their pain.

Birds and management: One day-old, broiler chicks of the “Avian 48 strain” were purchased from a Fat Hens hatchery. Upon arrival, the chicks were housed in clean, disinfected cages. Chicks raised according to routine management practice as outlined by the National Research Council requirements.

Fortegra® vaccine: It is a live oocysts of *E. acervulina*, precarious and classic strains of *E. maxima*, *E. mivati* and *E. tenella*. It was obtained from MSD Animal Health (Phils.), Inc. Company. Intervet Inc. Omaha, NE 68103, USA. U.S.Vet Lic. No.165A. Philippines: VBPR No:R-2127.

Lab-made vaccine preparation: Field strain isolate of *E. tenella* was collected from the ceca of dead broiler chickens during natural outbreak of cecal coccidiosis. Briefly, cecal contents were sieved, washed and centrifuged at 2000 rpm/5 min. Then, initial microscopic identification of the collected species was done. Collected oocysts were morphologically similar to *E. tenella*. Further identification was done as described before (Desouky et al., 2015). A clear *E. tenella* oocysts pellet was concentrated by using saturated salt solution and centrifugation at 4000rpm/10 min. The upper third of solution was collected by rubber pipette. Then washed and kept in sufficient amount of 2.5 % potassium dichromate “K2Cr2O7” for sporulation to avoid over growth of washed and kept in sufficient amount of 2.5 % potassium dichromate was removed by washing the pellets continuously on a magnetic stirrer for twelve hours at 4-8°C (Davis, 1973). Then after that, potassium dichromate was removed by washing the pellets 4 times with distilled water followed by centrifugation at 4000 rpm/10 min. The harvested oocysts were counted using McMaster chamber and aliquoted in phosphate buffer saline (PBS) and stored at 4°C until use.

About 4000 *E. tenella* sporulated oocysts /ml stirred continuously on a magnetic stirrer for twelve hours at 4-8°C (Akhtar et al., 2001), followed by ultra-sonication at 60 kHz for 5 shots of one minute each with an interval of 30 seconds in jacketed vessel at 4-8°C (Ultra Sonics Homogenizer 4710 series Cole Parmer Instrument Co. Chicago, Illinois 60648) (Akhtar et al., 1998). Centrifugation at 10,000 x g for 30 min at 4°C. Supernatant of sonicated suspension was used as antigen, collected in 100 µl aliquots (Akhtar et al., 2001).

Experimental design: A total of 80 broiler chicks one day old were used. Upon arrival, chicks were divided into 4 groups (20 chicks each):

- **G1:** Non challenged, non-vaccinated and kept as control negative group.
- **G2:** Immunized with lab-made *E. tenella* vaccine by oral route at day 6 of age (Akhtar et al., 2001) and challenged by 50,000 sporulated *E. tenella* oocysts at day 21 of age.
- **G3:** Vaccinated by Fortegra® vaccine at day 6, then challenged by 50,000 sporulated oocysts of *E. tenella* at day 21 of age.
- **G4:** Infected by 50,000 sporulated oocysts of *E. tenella* at day 21 of age but non vaccinated and kept as control positive.

Evaluation parameters: The experiment was terminated at day 7 after challenge (28 days of age). During the whole period of the experiment all groups were observed daily and clinical signs were recorded. Blood was collected from wing vein at 16, 21 and 28 day of age. Humeral immunity was estimated by measuring Immunoglobulin A (IgA) level in serum and cecum (ELISA Kit Catalog No: MBS2507630 96T) (MyBiosource), cellular immunity was evaluated through estimation of InterLukin 4 (IL4) level in serum (ELISA Kit Catalog Number. MBS704068, MyBiosource).

Also, five birds from each group were sacrificed by cervical dislocation on day 7 post challenge and their ceca were collected for lesion scoring in accordance to Johnson and Reid (1970). Specimens from cecum were collected and processed for histopathological examination according to method described by Bancroft et al. (1994) at 4th week (end of experiment). Birds dropping (in each group separately) were collected at zero day of challenge and at days 6 and 7 post challenge for counting oocysts per gram (OPG) using McMaster chamber according to Lillegard and Ruff (1987).

Statistical analysis: Data were represented as mean±SE (standard error). One way analysis of variance (ANOVA)-Tukey test was used to compare the mean values of the various groups at significance level of *P*<0.05. Statistical analysis was performed using the method cited in Petrie and Watson (1999) and computerized using SPSS 20 (2011).

RESULTS

Regarding the parameters evaluated in the current work; the IL4 level in serum of chicken during the experimental period is shown in Table 1. There was no significance difference between all experimental groups at day 16 and 21, but at day 28 of age (seven days after challenge) there was significant difference between control group (G4 22.60±2.09523) and vaccinated groups (G2 and G3); G2 (17.6333±2.1247) showed higher IL4 level than G3 (12.6333±3.1599).

There was no significance difference between experimental groups at days 16 and 21. At day seven after challenge (i.e. day 28), the level of IgA of G2 (5.3900±0.1809) was higher than other groups, but there was no significance difference between G3 (2.9283±1.3042) and G4 (1.2673±0.758). The levels of IgA in sera of chicks during the experimental period are clarified in Table 2.

There was no significance difference between all groups at day 16 and 21 of age, but there was significant increase. Whereas, at day 28 IgA level in G2 (4.4657±1.75943) was higher than that of G3 (2.7790±0.45525). While IgA level in cecum of chicks during experiment is shown in Table 3.

At day 21 of age there was no significant difference in OPG between all groups, whereas at day 27 (day 6 post challenge) vaccinated groups (G2 and G3) showed significant decrease in OPG as compared to G4. At day 28 age, G2 showed no significant difference in OPG with G3. OPG in all groups of chicks are shown in Table 4.

Lesion score of ceca of chicken at day 7 post challenge showed that there was no significance difference between vaccinated groups (G2 and G3) whereas, control positive group (G4) showed higher lesion score. Lesion score in ceca of all groups is shown in Table 5.

Histopathological examination of ceca of all groups is shown in Fig. 1. Briefly, intestines of chicken in G1 showed normal histopathological features as normal intestinal glands with its normal small basophilic nuclei. While, intestines of chicken in G2 showed normal intestinal glands with very few numbers of *E. tenella* oocysts, proliferated activating intestinal gland cells present with presence of some inflammatory cells. Intestine of chicken in G3 showed moderate infection by schizonts stages only of *E. tenella* with infiltration of inflammatory cells. Lastly, G4 chicken intestines showed infection by different developmental
Table 1. Interleukin 4 (IL4) levels in serum of chickens of all groups detected during the experiment

<table>
<thead>
<tr>
<th>Age by day</th>
<th>Experimental groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1</td>
</tr>
<tr>
<td>16</td>
<td>4.9000 ± 0.32146a</td>
</tr>
<tr>
<td>21</td>
<td>6.0333 ± 0.40552a</td>
</tr>
<tr>
<td>28</td>
<td>6.1667 ± 0.61734c</td>
</tr>
</tbody>
</table>

a,b Values bearing similar superscript between rows do not differ at (P<0.05).

Table 2. Immunoglobulin A (IgA) level in serum of chickens of all groups detected during the experiment

<table>
<thead>
<tr>
<th>Age by day</th>
<th>Experimental groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1</td>
</tr>
<tr>
<td>16</td>
<td>0.5603 ± 0.030a</td>
</tr>
<tr>
<td>21</td>
<td>0.5993 ± 0.039a</td>
</tr>
<tr>
<td>28</td>
<td>0.5683 ± 0.052c</td>
</tr>
</tbody>
</table>

a,b Values bearing similar superscript between rows do not differ at (P<0.05).

Table 3. Immunoglobulin A (IgA) level in ceca of chickens of all groups detected during the experiment

<table>
<thead>
<tr>
<th>Age by day</th>
<th>Experimental groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1</td>
</tr>
<tr>
<td>16</td>
<td>1.105 ± 0.088a</td>
</tr>
<tr>
<td>21</td>
<td>1.322 ± 0.108b</td>
</tr>
<tr>
<td>28</td>
<td>1.51 ± 0.189b</td>
</tr>
</tbody>
</table>

a,b Values bearing similar superscript between rows do not differ at (P<0.05).

Table 4. Oocyst per gram (OPG as x 10^4) for chickens in all groups detected during the experiment

<table>
<thead>
<tr>
<th>Age by day</th>
<th>Experimental groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1</td>
</tr>
<tr>
<td>21</td>
<td>0.0350 ± 0.00764a</td>
</tr>
<tr>
<td>27</td>
<td>0.9590 ± 0.0870c</td>
</tr>
<tr>
<td>28</td>
<td>0.1500 ± 0.2783d</td>
</tr>
</tbody>
</table>

a,b Values bearing similar superscript between rows do not differ at (P<0.05).

Table 5. Cecal lesion score (LS) for chickens in all groups detected during the experiment

<table>
<thead>
<tr>
<th>Age by day</th>
<th>Experimental groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1</td>
</tr>
<tr>
<td>LS</td>
<td>0^c</td>
</tr>
</tbody>
</table>

a,b Values bearing similar superscript between rows do not differ at (P<0.05).

stages of *Eimeria* i.e. schizonts, macrogametes and microgametes. Also, intestines of infected chickens showed different stages of parasite, villous atrophy, severe inflammation, mononuclear inflammatory cell infiltration, severe hemorrhagic areas.

DISCUSSION

In Egypt, chicken coccidiosis is a serious problem in poultry production sector. *E. tenella* is a major pathogenic species, with wide prevalence and high detection rates (Abu-Akkada
Figure 1. Histopathological pictures of ceca of chickens of all groups detected at day 28. Stain Haematoxylin and Eosin X100. (A) Cecum of chickens in G1 showing normal intestinal glands with its normal small basophilic nuclei. (B) Cecum of chickens in G2 showing normal intestinal glands with very few numbers of coccidial cysts, proliferated activating intestinal gland cells present (blue arrow) with presence of some inflammatory cells. (C) Cecum of chickens in G3 showing moderate infection by schizonts stages only of the coccidial life cycle stages (yellow arrow) with infiltration of inflammatory cells. (D) Cecum of chickens in G4 showing active infection by *E. tenella* and the presence of different *Eimeria* stages including schizonts, macrogametes and microgametes.

& Awad, 2012). There are many past and ongoing on researches dealing with vaccination and immunization against avian coccidiosis with different theories and application in order to achieve the best results (Shivaramaiah et al., 2014; Ahmad et al., 2016). But, it is well known that coccidial antigen can vary geographically according to strain (Allen & Fetterer, 2002; Awad et al., 2013). So, the current work comprised the use an antigenic material made from local Egyptian strain to immunize broilers against the pathogenic strain of *E. tenella*, and to compare the efficacy of the lab-made vaccine with a commercial one.

IL4 is produced mainly by CD4+ TH2, CD8+ T cells, NKT cells, and granulocyte, basophils, eosinophils, and mast cells; elevated levels of IL-4 are typically associated with tissue injury and TH2 diseases caused by infection with parasites or extracellular pathogens (Martinez, 2008). The results represented herein agreed with the findings of Chapman et al. (2005) who reported that the primary infection with *E. tenella* oocyst induced complete protection against homologous challenges, and agreed with Davou et al. (2018) who reported that the prominent cytokines detected in the infected broilers were IFN-γ, IL2, IL4, IL6, TNF and TGF. However, Cacho et al. (2012) reported that the numbers of cells secreting the Th2 cytokines IL4 and IL10 were diminished in immunized and infected chickens compared with the non-immunized/non infected one. The results were disagreed with Hong et al. (2006) who reported that IL4 decreased after primary or secondary infection of *E. acervulina* and *E. tenella*. This difference in the results may be due to difference in chicken age during vaccination, the strain of *Eimeria* used in vaccine preparation and other environmental factors.

The results of IgA level in serum of chicks agreed with Ayaz et al. (2008). Also, agreed with results of other studies Anwar et al. (2008); Bahram and Bahrami (2006); and Akhtar et al. (1998) that indicated IgA level was elevated in vaccinated birds with different types of *E. tenella* vaccines e.g., local gametocytes, sonicated sporulated sporocysts and inactivated sonicated vaccines.

Meanwhile, our results about IgA in ceca agreed with Davis et al. (1978) who showed that cecal contents from immune birds contained high levels of IgA. Girard et al. (1997) observed an elevation in secretory IgA in mucosal tissue from the duodenum and cecum 14 days post-infection. Parker et al. (2007) found that chicken vaccinated with a commercial coccidia vaccine showed *E. tenella* infection, even if manifested by high lesion score, does not have to decrease the cecal production of IgA. Akhtar et al. (1998) used sonicated coccidial oocyst vaccine orally, and found that the antibodies produced in cecum were principally IgA.

Results of OPG in the current work agreed with Anwar et al. (2008), they detected significant higher oocysts count in LivaCox®-vaccinated group as compared to local gametocyte-vaccinated chickens. Akhtar et al. (2001) found that the supernatant of sonicated sporulated oocysts vaccine gives the lowest OPG post challenge as compared with the sediment of the same vaccine. Bahram and Bahrami (2006)
found that sonicated sporulated oocysts gives the lowest no. of OPG appeared in feces from day 5 to 7 post challenge. According to Suprihati and Yunus (2018) the oocysts firstly appeared on the day 6 pi, then reached peak on the day 9 pi before numbers declined rapidly and the fewest oocysts were detected on day 12 pi. The same pattern of daily oocysts output was seen in both E. tenella primary and challenge infection, but oocysts output per day of the E. tenella challenge infected chicken were significantly lower than E. tenella primary infected chicken.

Lesion score results agree with those of Anwar et al. (2008) who detected that local gametocyte and LivaCox® immunized chickens developed lesions (1.0–2.0) respectively. Ritzi et al. (2016) reported that birds received Immucox® vaccine through gel droplet administration at the hatchery, had significantly lower lesion scores than control birds. At post-mortem examination of naturally infected chicken with Eimeria sp. Ayaz et al. (2008) observed minimum lesion scoring in group of birds immunized with sonicated gametocytes followed by group received gametocytes inactivated with formalin and group received intact gametocytes. Madison (2015) stated that Fortegra® vaccine resulted in lower lesion scores compared to the conventional and control groups at 14, 17 and 21 days post-vaccination.

The present histopathological findings were similar to those reported by Akhtar et al. (2001). These results were similar to those reported by Madison (2015) and Rafiqi et al. (2017). Suprihati and Yunus (2018) detected that E. tenella infected chicken were significantly lower than E. tenella primary infected chicken.

CONCLUSION

Oral administration of Fortegra® was compared with lab-made vaccine of E. tenella sonicated sporulated oocysts local Egyptian strain in this study. Better results were obtained regarding to IL4 using the commercial vaccine, but the lab-made vaccine showed higher IgA level in both serum and cecum. There were no significant differences between two groups concerning the other parameters. So, a vaccine based on sonicated sporulated oocysts of E. tenella local strain when given orally, showed potentiation of immune response against challenge infection. This may be of interest in further studies on vaccination and immunization against cecal coccidiosis in broilers.

ACKNOWLEDGMENTS

The authors wish to express their thanks to all the workers and Veterinarians who helped during the study. They also are grateful to the staff members of the Parasitology Department, Faculty of Veterinary Medicine, Kafrelsheik University, as well as to the Department of Parasitology, Animal Health Institute, Tanta branch for their help and support during this work.

Conflict of interest

The authors declare that they have no conflict of interest. This research is a part of N.I. Ammar’s study to acquire the Ph.D. in Parasitology.

REFERENCES

Desouky et al. (2021), Tropical Biomedicine 38(1): 8-13

Eimeria tenella. *Soil Immunology* **1-6**.

SPSS 20 (2011). SPSS for Microsoft products screenshot(s) 2011, © Copyright IBM/SPSS Statics v20 corporation.

Desouky et al. (2021), *Tropical Biomedicine* **38**(1): 8-13