Consensus-driven conceptual development of a standardized whole body-MRI scoring system for assessment of disease activity in juvenile idiopathic arthritis: MRI in JIA OMERACT working group

ARTICLE INFO

Objectives: Whole body-MRI is helpful in directing diagnostic and treatment approaches, and as a research outcome measure. We describe our initial consensus-driven phase towards developing a whole body-MRI scoring system for juvenile idiopathic arthritis.

Methods: An iterative approach using three rounds of anonymous Delphi surveys followed by a consensus meeting was used to draft the structure of the whole body-MRI scoring system, including the relevant anatomic joints and entheses for assessment, diagnostic item selection, definition and grading, and selection of appropriate MRI planes and sequences. The surveys were completed independently by an international expert group consisting of pediatric radiologists and rheumatologists.

Results: Twenty-two experts participated in at least one of three rounds of Delphi surveys and a concluding consensus meeting. A first iteration scoring system was developed which ultimately included the assessment of 100 peripheral, 23 chest, and 76 axial joints, and 64 entheses, with 2/3 diagnostic items graded in each of the items, using binary (presence/absence) and 2-3-level ordinal scores. Recommendations on anatomic MRI planes and sequences were specified as the minimally necessary imaging protocol for the scoring system.

Keywords: Whole body-MRI, Juvenile idiopathic arthritis, Spondyloarthropathy, Enthesitis-related arthritis, Children, Adolescents, Scoring system
Introduction

Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease of childhood and can involve peripheral and axial joints, and entheses [1]. Conventional MRI of peripheral and axial joints allows monitoring of disease activity and prediction of subsequent structural damage in JIA [2,3].

Whole-body MRI (WB-MRI) is increasingly being used for the evaluation of rheumatologic diseases assessing peripheral and axial joints, and entheses of the entire body on a single scanning session [4–12], thus overcoming the poor reliability of clinical joint examination especially the deep-seated joints like sacroiliac and temporomandibular joints (difficult to evaluate using ultrasound as well) [13] and providing a measure of the inflammatory load of the whole body. To our knowledge, no studies on WB-MRI have described a total inflammatory joint score for JIA patients [12].

The aim of this study was to develop a standardized WB-MRI scoring system to quantify the total inflammatory burden in children with JIA through formal consensus methods among an interdisciplinary group of experts.

Methods

This study was approved by the Research Ethics Board of The Hospital for Sick Children (Toronto, Canada).

Statements, definitions and items for the scoring system were discussed, reformulated, voted upon, and subsequently revised until consensus was achieved among participating members of the MRI in JIA (JAMRI) working group within the Outcome Measures in Rheumatology (OMERACT) network [14–16]. The group consisted of 13 pediatric radiologists from 13 institutions in 8 countries (Canada, n = 5; Belgium, n = 2; 1 each from Germany, Norway, United Kingdom, Spain, United States, Poland) and 5 pediatric rheumatologists from 5 institutions in 4 countries (2 from Canada, and 1 each from Australia, Germany and The Netherlands) who completed up to three rounds of anonymous, iterative Delphi surveys and attended post-survey discussion meetings over a 12-month period. All participants had at least 5 years of experience of musculoskeletal imaging after training at the time of the initial survey. The iterative surveys were used to decide the measurement scope, relevant anatomic joints and entheses for assessment, diagnostic item selection, definition and grading of items, and appropriate imaging sequences and planes, ultimately yielding a preliminary MRI scoring system. Previously published OMERACT MRI-based definitions were used as template definitions in initial surveys and were modified considering the pediatric population and the MRI sequences selected [9–11]. Agreement rates for potential choices, and additional suggested choices and questions were discussed amongst the group after each survey through video conference meetings and implemented in subsequent surveys. Results of the third-round survey were further discussed and refined during the OMERACT JAMRI group’s face-to-face consensus meetings conducted at the Radiological Society of North America (RSNA) scientific assemblies held in November 2016 and November 2017 in Chicago, IL towards constructing the first draft. The stepwise development of the WB-MRI scoring system is shown in Fig. 1.

Results

Twenty-two members responded to the initial survey, 18 to the second, and 15 to the third (Fig. 1). The final consensus meeting was attended by 15 members, who voted on the final set of items and grading specifications derived from the preceding surveys and meetings, with ≥ 80% agreement being considered satisfactory. Subsequent minor revisions on wording of items and definitions were approved by all authors.

Scope of the outcome measure

Since active inflammation determines the need for treatment and frequency of follow up in JIA, the working group decided to limit the scope of the scoring system to synovial and enthesal inflammation in peripheral and axial joints. It was recognized that assessment of chronic osteochondral changes and estimation of total damage using a scoring system would be highly challenging and unreliable considering the low spatial resolution and large field-of-view of WB-MRI. Hence, our group decided to keep osteochondral damage as an ancillary assessment and prioritize inflammatory joint and enthesal changes for item and protocol selection.

Selection of anatomic sites for assessment

All peripheral joints including joints of upper and lower limbs, and chest outside spine (Fig. 2 A) were included in the MRI scoring system. Axial joints included sacroiliac joints (SIJs) and joints of the spine represented by all disco-vertebral units (DVUs) from C2-3 to L5-S1, atlanto-dental, pairs of lateral atlanto-occipital and atlanto-axial joints, and pairs of facets joints from C2-3 to L5-S1 (Fig. 2 B) [17]. Costovertebral, costotransverse, and temporomandibular joints were excluded from the scoring system due to the wide field-of-view and out of plane imaging of these articulations on WB-MRI. If any abnormality was identified in any of these joints as they were not part of the MRI scoring system, this would be recorded as an ancillary finding. The members agreed to include most of the enthesal sites of the body (Fig. 2 C).

First iteration of the WB-MRI scoring system

The proposed scoring system is organized into 3 parts, one part dedicated to imaging of peripheral and chest joints (Fig. 2 A), one to axial joints including SIJ and spine (Fig. 2 B), and one to entheses (Fig. 2 C).

(1) Peripheral and chest joints
Effusion/synovial thickening, bone marrow edema (BME), and pericapsular soft tissue edema were selected as key findings for scoring peripheral and chest joints (Table 1A, Fig. 3 A). The single slice with most extensive inflammation was selected for scoring all items. Based on size or volume, the joints were divided into: (i) large and medium joints: glenohumeral, hip, knee, elbow; and (ii) small joints: acromioclavicular, sternoclavicular, manubriosternal, costochondral, wrist, ankle and small joints of hands and feet.

(a) Effusion/synovial thickening
Effusion/synovial thickening was considered altogether as a single item as it is often difficult to differentiate these two findings by MRI without intravenous administration of contrast. Whereas grading levels of large and medium joints ranged from 0 to 2 (ordinal data: 0-absent or normal amount of intraarticular fluid, 1-mild, 2-moderate/severe pathology), grading levels of small volume joints ranged from 0,1 (binary data: 0-absent or minimal trace amount of physiologic intraarticular fluid appearing as “pencil thin linear intra-articular
hyperintense signal", 1-more than minimal trace amount of physiologic fluid) considering differences in size of the joint.

(b) Bone marrow edema (BME)

BME was graded according to both extent and intensity of edema. For assessment of extent of BME in each selected medium and large joint, the subchondral surface was evaluated in halves (2/2 for the entire joint) provided equal weight to the proximal and distal articular surfaces of the joint, e.g. acetabular and femoral articular surfaces (one score was given to signal abnormality noted in each half of the articular surface, binary data: 0-absent; 1-present, as shown in Fig. 3 A1). For the small joints, BME was recorded on either side of the articular surface without segmentation and received a score of one for signal changes observed on each side of the articular surface (as shown in Fig. 3 A2). An additional score of 1 was given to indicate presence of intense edema (as shown in Fig. 3 A1). The reader would give a score for intensity of BME in each joint based on the anatomic area with most severe signal changes noted in this joint in any slice (not on a per bone basis).

BME was also recorded in carpals, tarsals, metacarpals, metatarsals and phalanges after excluding BME that was confined to the articular surface which had already been scored as part of joint involvement. A score of one was given to each involved bone.
For the pericapsular soft tissue inflammation item, a 0,1 score (binary data) was used to grade this finding. Definitions and item scoring for (a) effusion/synovial thickening, (b) BME and (c) pericapsular soft tissue edema are shown in Table 1A.

(c) Pericapsular soft tissue edema

Figure 2. Selection of anatomic sites for assessment of inflammation in juvenile idiopathic arthritis using whole body (WB)-MRI.

Ancillary items

Items that were not scored as a part of the scoring system but were recorded if present, such as chronic nonbacterial osteomyelitis (CNO)-like abnormalities in periphyseal regions, involvement of costovertebral and costotransverse joints, tenosynovitis, tendinosis and...
<table>
<thead>
<tr>
<th>A</th>
<th>Peripheral and Chest Joints</th>
<th>(a) Effusion/synovial thickening</th>
<th>(b) Bone marrow edema (BME)</th>
<th>(c) Pericapsular soft tissue inflammation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Hyperintense signal intensity (isointense to that of cerebrospinal fluid) within the joint space distending the joint capsule on T2-weighted fat-saturated or STIR or other fluid sensitive sequence. Note: Synovial thickening is not properly assessed with fluid sensitive sequences solely and on the given large field-of-view of WB-MRI. It may show low or intermediate signal on T2- or STIR images and requires the use of gadolinium to differentiate from effusion which is not part of this protocol.</td>
<td>Edema-like marrow signal changes within the subchondral bone on T2-weighted fat-saturated or STIR or other fluid sensitive sequence that is not compatible with normal hematopoietic marrow signal (Fig. 2A).</td>
<td>Hyperintense signal intensity within the extra-capsular soft tissue around the joint on T2-weighted fat-saturated or STIR or other fluid sensitive sequence, which does not involve the tendons.</td>
<td></td>
</tr>
<tr>
<td>Grading</td>
<td>For large and medium volume joints: 0-Absent or physiologic amount of intraarticular fluid, 1-Mild: Amount of fluid mildly distending one or more recesses and / or involving the entire joint compartment, 2-Moderate/severe: Amount of fluid moderately to markedly distending one or more joint recesses and / or involving the entire joint compartment. No recording of the extent of effusion/synovial thickening. More precise differentiation between 1 and 2 severity categories should be displayed on representative images of a future atlas. For small volume joints: 0-Absent or trace amount of physiologic intraarticular fluid appearing as “pencil thin linear intra-articular hyperintense signal” 1-More than trace amount of physiologic fluid (appearing as “pencil thin linear high signal”) in one or more joint recesses and / or involving the entire joint compartment.</td>
<td>(i) Extent of BME: Segmentation of articular surfaces into halves. One score is given to signal abnormality noted in each half of the articular surface (binary data, Fig. 2A): 0-Absent; 1-Present: maximum total score of 4.</td>
<td>0-Absent, 1-Present.</td>
<td></td>
</tr>
<tr>
<td>Item Score</td>
<td>/2 OR /1 per joint: 2- for large and medium volume joints and 1- for small volume joints respectively.</td>
<td>(ii) Intensity of BME (Fig. 2B): 0-Signal intensity less than that of an adjacent vessel (vein with slow flow) or fluid (joint fluid or fluid in the urinary bladder), 1-Signal intensity equal to that of an adjacent vessel (body fluid).</td>
<td>/4 + /1 per joint for the large and medium volume joints</td>
<td></td>
</tr>
<tr>
<td>Total peripheral joint inflammation index:</td>
<td>/2</td>
<td>/1 per joint.</td>
<td>/1 per joint.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B1</th>
<th>Axial joints: sacroiliac joint (SIJ)</th>
<th>(d) Bone Marrow Edema (BME)</th>
<th>(e) Effusion/synovial thickening</th>
<th>(f) Capsulitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Edema-like marrow signal changes within the subchondral bone of sacral and iliac sides of the SIJ on T2-weighted fat-saturated or STIR or other fluid sensitive sequence, that is not compatible with physiologic hematopoietic marrow signal [14]. Bone marrow signal in the center of sacrum constitutes the reference normal signal (Fig. 2B).</td>
<td>Areas of hyperintense signal within the synovial and cartilaginous portion of the SIJ which is equivalent to that of cerebrospinal fluid and more than that of a thin, regular line of physiologic high signal on T2-weighted fat-saturated or STIR or other fluid sensitive coronal oblique sequence (Fig. 2B).</td>
<td>Areas of hyperintense signal along the superior portion of the SIJ capsule on T2-weighted fat-saturated or STIR or other fluid sensitive coronal oblique sequence (Fig. 2B).</td>
<td></td>
</tr>
<tr>
<td>Grading</td>
<td>0-Absent 1-Presence of edema-like marrow signal, 1 score given for each quadrant of the SIJ. 2-Presence of edema-like marrow signal, 2 score given for each quadrant of the SIJ. 3-Presence of edema-like marrow signal, 3 score given for each quadrant of the SIJ. 4-Presence of edema-like marrow signal, 4 score given for each quadrant of the SIJ.</td>
<td>1-Presence of effusion/synovial thickening anywhere within the synovial and cartilaginous portion of the SIJ on the slice with most extensive inflammation, given a score of 1 for each involved joint.</td>
<td>0-Absent, 1-Presence of capsulitis along the superior joint capsule on the slice with most extensive inflammation, given a score of 1 for each involved joint.</td>
<td></td>
</tr>
<tr>
<td>Item Score</td>
<td>/8 + /8</td>
<td>Total SI inflammation index</td>
<td>/2</td>
<td>/2</td>
</tr>
<tr>
<td>d + e + f</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B2</th>
<th>Axial joints: spine</th>
<th>(g) Bone marrow edema (BME)</th>
<th>(h) Corner inflammatory lesion (CIL)</th>
<th>(i) BME and/or effusion/synovial thickening</th>
<th>(j) BME and/or effusion/synovial thickening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Disco vertebral Units (DVU)</td>
<td>Craniovertebral junctions: - Atlanto-dental, - Atlanto-axial,</td>
<td>Cervical, thoracic, and lumbar spine segments: - Facet joints</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
For the scoring of extent of BME, each SIJ was divided into quadrants and intensity of edema as it was the approach for peripheral joints. Sequences as shown in Fig. 3B.

BME, effusion/synovial thickening, and capsulitis were selected as key pathologic items for assessing SIJs (Table 1B1). All items were rated or short tau inversion recovery (STIR) or other fluid sensitive sequence, that is not compatible with physiologic hematopoietic marrow signal [15]; (i, j) and/or an area of hyperintense signal within the craniovertebral junction and facet joint space on fluid sensitive sequence. Bone marrow signal in the center of each vertebra constitutes the reference signal. If the entire vertebra has abnormal signal, the signal intensity that is closest to the physiologic level for the patient’s age is used for reference. Disc lesions are not scored.

Table 1 (Continued)

<table>
<thead>
<tr>
<th>Grading</th>
<th>Definition</th>
<th>Item Score</th>
<th>Total spine inflammation index</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-Absent</td>
<td>Presence of edema: Each DVU is divided into four quadrants: upper anterior endplate, upper posterior endplate, lower anterior endplate, and lower posterior endplate (Fig. 3C).</td>
<td>(g, h, i, j) Edema-like marrow signal changes within the vertebral body at or in continuation with the vertebral endplate or within the bones forming the joints of the craniovertebral junction or in the facets on T2-weighted fat-saturated or STIR or other fluid sensitive sequence, that is not compatible with physiologic hematopoietic marrow signal [15]; (i, j) and/or an area of hyperintense signal within the craniovertebral junction and facet joint space on fluid sensitive sequence. Bone marrow signal in the center of each vertebra constitutes the reference signal. If the entire vertebra has abnormal signal, the signal intensity that is closest to the physiologic level for the patient’s age is used for reference. Disc lesions are not scored.</td>
<td>1 per lesion</td>
</tr>
<tr>
<td>0-Absent</td>
<td>Presence of edema-like marrow changes within the corner of superior and inferior endplates of vertebrae. Each lesion gets a score of 1 on the sagittal slice with most extensive inflammation (Supplementary-Fig. 2).</td>
<td>(g, h, i, j) Edema-like marrow signal changes within the vertebral body at or in continuation with the vertebral endplate or within the bones forming the joints of the craniovertebral junction or in the facets on T2-weighted fat-saturated or STIR or other fluid sensitive sequence, that is not compatible with physiologic hematopoietic marrow signal [15]; (i, j) and/or an area of hyperintense signal within the craniovertebral junction and facet joint space on fluid sensitive sequence. Bone marrow signal in the center of each vertebra constitutes the reference signal. If the entire vertebra has abnormal signal, the signal intensity that is closest to the physiologic level for the patient’s age is used for reference. Disc lesions are not scored.</td>
<td>5</td>
</tr>
<tr>
<td>0-Absent</td>
<td>Presence of edema-like marrow inflammation. The first into halves and each half was further divided into upper and lower parts) as shown in Fig. 3 B1. Thus, a score of 1 was considered for the presence of BME into each quadrant with a maximum score of 8 (range 0–8). An additional score of 1 per quadrant was given for each joint for intense edema when the signal was equal or greater than the signal of presacral veins resulting in a range of 0–8 (Fig. 3 B1) score. So, a total score of 0–16 could be given for BME as shown in Fig. 3 B1.</td>
<td>1-Presence of intense edema: Hyperintense signal isointense to that of cerebrospinal fluid acts as a reference for assigning one “intense” score to a bone lesion (Fig. 1C).</td>
<td>46</td>
</tr>
<tr>
<td>0-Absent</td>
<td>Presence of intense edema: Hyperintense signal isointense to that of cerebrospinal fluid acts as a reference for assigning one “intense” score to a bone lesion (Fig. 1C).</td>
<td>1-Presence of intense edema: Hyperintense signal isointense to that of cerebrospinal fluid acts as a reference for assigning one “intense” score to a bone lesion (Fig. 1C).</td>
<td>46</td>
</tr>
</tbody>
</table>

Abbreviations: STIR, Short Tau Inversion Recovery.

(1) Sacroiliac joints

BME, effusion/synovial thickening, and capsulitis were selected as key pathologic items for assessing SIJs (Table 1B1). All items were scored by using single slice with most extensive inflammation. The items were scored on the same or different slices depending on which slice demonstrates the worst finding for each item. Different slices can be selected for the right and left side of joint based on the slice with worst finding. SJ was graded only on T2-weighted fat-saturated or short tau inversion recovery (STIR) or other fluid sensitive sequences as shown in Fig. 3 B.

(d) BME

In order to maintain uniformity, BME was graded both for extent and intensity of edema as it was the approach for peripheral joints. For the scoring of extent of BME, each SJ was divided into quadrants (first into halves and each half was further divided into upper and lower parts) as shown in Fig. 3 B1. Thus, a score of 1 was considered for the presence of BME into each quadrant with a maximum score of 8 (range 0–8). An additional score of 1 per quadrant was given for each joint for intense edema when the signal was equal or greater than the signal of presacral veins resulting in a range of 0–8 (Fig. 3 B1) score. So, a total score of 0–16 could be given for BME as shown in Fig. 3 B1.

(e) Effusion/synovial thickening

Effusion/synovial thickening was considered altogether as a single item. Each SJ received a 0,1 score (binary data) for pathology, with a maximum score of 2. It was scored on a single coronal slice with most extensive inflammation, separately for the left and right joints as shown in Fig. 3 B2 (utilizing all slices of that joint to check for presence (score of 1) or absence (score of 0) of the item.

(f) Capsulitis

Capsulitis refers to inflammatory changes in the joint capsule, and is most commonly evident at the superior margin of the SJ. Only the superior portion of the SJ capsule is scored, with a 0,1 score (binary data). Once again, the single slice with the worst finding was used for scoring purposes and received a score of 1 per joint with a maximum score of 2 as shown in Fig. 3 B2.

Definitions and item scoring for (d) BME, (e) effusion/synovial thickening, and (f) capsulitis for sacroiliac joints (SJs) are shown in Table 1B1.
Figure 3. A. Examples of use of scoring system in peripheral (hip and acromioclavicular) joints. Grading of bone marrow edema (BME): A1. Extent and intensity of BME for large and medium joints: Coronal short tau inversion recovery (STIR) MR image of the right hip of a 15-year-old boy with enthesitis-related arthritis (ERA) shows segmentation of articular surfaces into halves. A score of 1 is given to each half for the presence of BME (thin arrow). An additional score of 1 is given per joint as the signal in the area of most severe abnormal signal (thick arrow) is similar to that of the signal of the adjacent vessels (gray arrow). In this case the final BME score would be 3 which equals extent (0+1+1+0) + intensity (1).

A2. Extent of BME for small joints: Coronal STIR MR image through the acromioclavicular joint in a 13-year-old boy with ERA shows a score of one for each articular surface. In this case the BME score would be 2 which equals extent (1+1) + intensity (0).

B. Examples of use of scoring system in axial (sacroiliac) joints. B1. Grading of BME of sacroiliac joint (SIJ) in a 13-year-old boy with psoriatic arthritis presenting with axial involvement. Coronal STIR MR image of the SIJs shows segmentation of each joint into quadrants, right (R): upper iliac=1, upper sacral=2, lower sacral=3, lower iliac=4; left (L): upper iliac=1, upper sacral=2, lower sacral=3, lower iliac=4. An ill-defined hyperintense STIR signal is noted within the subchondral bone (dashed arrow,) of SIJ suggests BME. A focus of hyperintense signal (thick arrow) equals that signal of presacral vessels (thin arrow) considered to represent an
Lesions. A CIL is defined as a focus of increased signal intensity within the bone at and around the attachment of tendon/ligament/muscle on T2-weighted fat-saturated or STIR or other fluid sensitive sequence, measured perpendicular to the long axis of entheses (Supplementary Fig. 3).

Selection of anatomic sites for assessment of inflammation in juvenile idiopathic arthritis using whole body (WB)-MRI.

<table>
<thead>
<tr>
<th>C</th>
<th>Item</th>
<th>Entheses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bone marrow edema (BME)</td>
<td>Periarticular soft tissue high signal</td>
</tr>
</tbody>
</table>
| | Abnormal increased signal intensity within the bone marrow (black arrow) is equal to the signal noted in a vessel. A score of 1 is given if marrow edema-like signal seen in any quadrant on the single slice with most severe abnormal signal. The area with most severe signal abnormality per entheseal site was graded, regardless of number of slices involved, for the entire spine, all the abnormal disco-vertebral levels were selected for scoring. A score of 1 is assigned if intense marrow hyperintense signal is noted in any quadrant of a chosen single slice for each selected level. Hence, the maximum score is 5 per DVU. In this case, the total BME score at the marked level would be 4 which encompasses extent (1+1+1+1) and intensity (1).

This includes atlanto-dental and paired lateral atlanto-occipital and atlanto-axial joints. Binary scoring was deemed sufficient for the five craniovertebral joint junctions. Presence of BME and/or joint effusion/synovial thickening in any number of slices per joint received a score of 1.

| BME and/or effusion/synovial thickening-facet joints | Likewise, disease involvement in the 46 (23 paired joints) facet joint was scored as 0-absent or 1-present per joint, regardless of the number of slices involved per joint. Each of the items, BME and joint effusion/synovial thickening together, received a score of 1 per joint.

Table 2

Selection of anatomic sites for assessment of inflammation in juvenile idiopathic arthritis using whole body (WB)-MRI.

(a) Bone marrow edema (BME) and/or effusion/synovial thickening-Craniovertebral junctions (atlanto-dental, atlanto-occipital, and atlanto-axial joints)

Area of abnormal increased signal intensity in the surrounding bursa/soft tissue apart from the concerned tendon/ligament/muscle attached at the entheses on fluid sensitive sequences (Supplementary Fig. 3).

<table>
<thead>
<tr>
<th>Grading</th>
<th>(i) Extent of BME:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-Absent</td>
<td>(ii) Intensity of BME:</td>
</tr>
<tr>
<td>1-Present</td>
<td>0-Absent</td>
</tr>
</tbody>
</table>

Example: Effusion/synovial thickening in the paraesophageal region.

This includes atlanto-dental and paired lateral atlanto-occipital joint junctions.

Examples of use of scoring system in axial (spine) joints.

Spine

In this scale, BME is the most important item for evaluating spine, although with different grading schemes for different types of spinal joints (Table B2). Additionally, an item named “joint effusion/synovial thickening” was used for assessing craniovertebral and facet joints, although its scoring was combined with BME for final scoring.

(g) BME – disco-vertebral units (DVUs)

The DVUs from C2/C3 to L5/S1 were graded for BME. After scanning the entire spine, all the normal disco-vertebral levels were selected for scoring. After selecting DVUs, a single sagittal slice representing the areas with most abnormal signal for each DVU level were selected for scoring. Similar to the SIJ evaluation, edema within the DVUs was assessed for “extent” and “intensity.” Each DVU was divided into four parts as shown in Fig. 3C1. Each part received a score of 1 for the presence of BME (Fig. 3C2). An additional score of 1 was assigned for intense edema (Fig. 3C2). So, the maximum score per DVU was 5. BME in the center of each vertebral body constituted the reference normal signal. Edema was considered “intense” if the marrow high signal was equal or greater to that of the adjacent cerebrospinal fluid.

(h) Corner inflammatory lesion (CIL)

Usually it is not very easy to separate a CIL from a DVU lesion. It was suggested that as of now we should record and score both lesions. A CIL is defined as a focus of increased signal changes within the bone at and around the attachment of tendon/ligament/muscle on T2-weighted fat-saturated or STIR or other fluid sensitive sequence, measured perpendicular to the long axis of entheses (Supplementary Fig. 3).

(j) BME and/or effusion/synovial thickening-facet joints

Likewise, disease involvement in the 46 (23 paired joints) facet joints was scored as 0-absent or 1-present per joint, regardless of the number of slices involved per joint. Each of the items, BME and joint effusion/synovial thickening together, received a score of 1 per joint.

<table>
<thead>
<tr>
<th>Item Score</th>
<th>Total entheseal inflammation index</th>
</tr>
</thead>
<tbody>
<tr>
<td>/2 + 1/1 per entheseal site</td>
<td>/1 per entheseal site</td>
</tr>
<tr>
<td>k + l + m</td>
<td>/1 per entheseal site</td>
</tr>
</tbody>
</table>

Examples of use of scoring system in axial (spine) joints.

(a) Bone marrow edema (BME) and/or effusion/synovial thickening-Craniovertebral junctions (atlanto-dental, atlanto-occipital, and atlanto-axial joints)

This includes atlanto-dental and paired lateral atlanto-occipital and atlanto-axial joints. Binary scoring was deemed sufficient for the five craniovertebral joint junctions. Presence of BME and/or joint effusion/synovial thickening in any number of slices per joint received a score of 1.

(j) BME and/or effusion/synovial thickening-facet joints

Likewise, disease involvement in the 46 (23 paired joints) facet joints was scored as 0-absent or 1-present per joint, regardless of the number of slices involved per joint. Each of the items, BME and joint effusion/synovial thickening together, received a score of 1 per joint.

Grading (i) Extent of BME:

- 0-Absent
- 1-Mild: Confluent marrow hyperintense signal measures < 1 cm from the entheseal surface
- 2-Moderate to severe: Confluent marrow hyperintense signal measures ≥ 1 cm from the entheseal surface.

(ii) Intensity of BME:

- 0-Signal intensity less than that of an adjacent vessel/vein with slow flow or body fluid area
- 1-Signal intensity equal to that of an adjacent vessel/vein
- 2-4 Signal intensity greater than that of an adjacent vessel/vein

<table>
<thead>
<tr>
<th>Item</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>k) Bone marrow edema (BME)</td>
<td>Edema-like marrow signal changes within the bone at and around the attachment of tendon/ligament/muscle on T2-weighted fat-saturated or STIR or other fluid sensitive sequence, measured perpendicular to the long axis of entheses (Supplementary Fig. 3).</td>
</tr>
<tr>
<td>l) Periarticular soft tissue high signal</td>
<td>An area of abnormal increased signal intensity in the surrounding bursa/soft tissue apart from the concerned tendon/ligament/muscle attached at the entheses on fluid sensitive sequences (Supplementary Fig. 3).</td>
</tr>
<tr>
<td>m) Tendon/ligament high signal</td>
<td>Abnormal increased signal within the inserted structure: Insubstance increased signal at or within 1.2 cm of tendon/ligament/muscle attachment after excluding magic angle effect on fluid sensitive sequences (Supplementary Fig. 3).</td>
</tr>
</tbody>
</table>
(m) Tendon/ligament abnormal signal

Binary scoring was adopted for this item. A score of 1 was given if an intrasubstance increased signal abnormality was noted in each involved tendon/ligament, regardless of number of slices (Data-in-brief Fig. 2).

Definitions and item scoring for (k) BME; (l) perienthesal soft tissue abnormal signal and (m) tendon/ligament abnormal signal are shown in Table 1B2. An example of the use of the scoring system in entheses is shown in Data-in-brief Fig. 2.

MRI sequences and planes

Concepts and gradings for inflammation were based on considerations on a protocol that would have a fluid sensitive sequence, either a STIR or a fat-suppressed T2-weighted sequence. A T1-weighted sequence without contrast would not be needed for assessing inflammation as marrow edema may not be conspicuous on non-contrast T1-weighted sequence. The group felt that the use of intravenous contrast could be informative but not feasible in the screening setting considering the added scan time and potential long-term effects related to retention of contrast agent [19]. Recommendations for a preliminary core unenhanced WB-MRI protocol that evaluated multiple joints and entheses affected in JIA on coronal STIR images with additional images for specific parts of the body is shown in Table 2, Data-in-brief Fig. 3.

Discussion

Our WB-MRI scoring system for JIA focused on the assessment of the inflammation in the joints and entheses of the body. Future validation studies of this scale are required which may modify this initial iteration.

Periphery regions demonstrating CNO-like lesions [18] are not uncommon on WB-MRI due to overlap between imaging findings of enthesis-related arthritis (ERA) subtype of JIA and CRMO. Nevertheless, the working group members voted to not include these regions in the scoring system at this initial iteration.

Rationale for excluded items

Based on the experience of the expert group, the low spatial resolution limitations of WB-MRI for assessing components of small joints make it more challenging for readers to interpret abnormalities in small joints. Hence, detailed evaluation of the small joints of hands and feet should be conducted by dedicated regional imaging if clinically warranted. The costovertebral and costotransverse joints were excluded from the scoring system based on consensus opinion, since the group felt that it is not usual that these joints are not covered on the sagittal plane of WB-MRI, and it is difficult to assess these joints on coronal planes. Their detail assessment requires a dedicated axial plane. Thickening of attached tendons/ligaments were not considered in the scoring system as our members felt that no existing definitions or standardized normal MRI values’ data are currently available for tendon thickness in different locations.

For assessment of effusion/synovial thickening of peripheral joints, these joints were divided into three categories based on their size. The experts decided not to use normative measurements for grading purposes, instead to apply a gestalt pattern recognition criterion-based assessment upon comparison with reference images for grading (atlas under development).

Most members considered that diffusion-weighted and contrast-enhanced imaging were techniques that were not ready to be used as outcome measures for a WB-MRI scoring system at the present. Use of contrast in pediatric population will remain an issue of concern particularly given that the effects of retention of gadolinium within the brain, remains uncertain [20]. With the long scan times in WB-MRI, the post-injection delay varies widely across body parts resulting in differential enhancement of structures at varying times after injection, which may lead to incorrect interpretation of findings [21–22].

The total scan time of the proposed protocol is approximately 40–45 min per patient, depending on the body size, which is challenging for young patients. The group felt that dedicated coronal images of hands would add time for little benefit, as the field-of-view would be too large to visualize subtle changes. Instead, positioning the patients’ hands in supine position on their thighs or buttocks enables acquisition of coronal views of hands without the need for additional sequences.

Conclusion

WB-MRI is a promising tool with great potential in determining the total inflammatory burden and assessing treatment response in JIA. Our structured consensus efforts within the OMERACT MRI in JIA working group have initiated the development of a pediatric WB-MRI scoring system for JIA. Iterative refinements to the scoring system are warranted in response to subsequent feasibility, reliability and responsiveness testing in upcoming studies.

CRediT authorship contribution statement

Acknowledgments

Robert A. Colbert and Hemalatha Srinivasalu were supported by the NIAMS Intramural Research Program Grant 201-AR-041184. Mirka Mal Tolend was partially supported by a Mergelas Family Graduate Scholarship Award (2019-2020).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.semarthrit.2021.07.017.

References

Working Group website (https://urldefense.com/v3/__https://omeract.org/working-groups/jam/__;!!D0zGoin7BXIfIi3suGsGyklj0UxAG-yuQmqn8G2k0AZsIDF-WlAGMj6Oq8hSmV3s5XIFuxFiWxd$).

The OMERACT Handbook (2019): (https://urldefense.com/v3/__https://omeract-handbook.org/handbook__;!!D0zGoin7BXIfIi3suGsGyklj0UxAG-yuQmqn8G2k0AZsIDF-WlAGMj6Oq8hSmV3s5XIFuxFiWxd$).

