Surgical Anatomy of the Sternoclavicular Joint
A Qualitative and Quantitative Anatomical Study

Jared T. Lee, MD, Kevin J. Campbell, BS, Max P. Michalski, MSc, Katharine J. Wilson, MSc, Ulrich J.A. Spiegl, MD, Coen A. Wijdicks, PhD, and Peter J. Millett, MD, MSc

Investigation performed at the Department of BioMedical Engineering, Steadman Philippon Research Institute, Vail, Colorado

Background: The quantitative anatomical relationships of the main ligamentous, tendinous, and osseous structures of the sternoclavicular joint have not been widely investigated. The purpose of this study was to provide a quantitative description of the sternoclavicular joint in relation to relevant surgical landmarks.

Methods: We dissected eleven nonpaired, fresh-frozen cadaveric sternoclavicular joints from four men and seven women (mean age at death, fifty-three years; range, thirty-three to sixty-four years) and measured the ligaments, musculature, and osseous landmarks with use of a three-dimensional coordinate-measuring device.

Results: The clavicular pectoralis ridge, located at the 9:30 clock-face position on a right clavicle, served as a reliable osseous landmark for reference to the soft-tissue attachments around the sternoclavicular joint. The costoclavicular ligament was the largest ligament of the sternoclavicular joint, with 80% greater footprint area than that of the posterior sternoclavicular ligament. Articular cartilage covered 67% of the medial end of the clavicle and was located anteroinferiorly. The sternothyroid muscle inserted directly over the posterior sternoclavicular joint and the medial end of the clavicle, whereas the sternothyroid muscle inserted 9.5 mm inferior to the posterior-superior articular margin of the manubrium and coursed 19.8 mm laterally along the first rib. An avascular plane that can serve as a “safe zone” for posterior dissection was observed in each specimen, posterior to the sternoclavicular joint and anterior to the sternohyoid and sternothyroid muscles.

Conclusions: The clavicular pectoralis ridge can be used as an intraoperative guide for clavicle orientation and tunnel placement in sternoclavicular ligament reconstruction. Sternoclavicular joint resection arthroplasty should avoid injuring the costoclavicular ligament, which is the largest sternoclavicular joint ligament. Resection of only the anteroinferior aspect of the medial end of the clavicle may provide adequate decompression while preserving the stability of the clavicle. The location of the sternohyoid and sternothyroid musculotendinous insertions appear to provide a “safe zone” for posterior clavicle and manubrial dissection.

Disclosure: None of the authors received payments or services, either directly or indirectly (i.e., via his or her institution), from a third party in support of any aspect of this work. One or more of the authors, or his or her institution, has had a financial relationship, in the thirty-six months prior to submission of this work, with an entity in the biomedical arena that could be perceived to influence or have the potential to influence what is written in this work. The complete Disclosures of Potential Conflicts of Interest submitted by authors are always provided with the online version of the article.
Surgical Anatomy of the Sternoclavicular Joint

Fig. 1-A Lateral view of the sternoclavicular (SC) joint at the medial end of a right clavicle with clock-face positions indicated. The most anatomically superior point is 12 o’clock, and 9 o’clock faces anteriorly. The arrow indicates the clavicular pectoralis ridge, positioned at 9:30. **Fig. 1-B** Anatomical illustration of the medial end of the clavicle, showing the extent of the articular surface and the attachment locations of the sternoclavicular, interclavicular, and costoclavicular ligaments. Note the limited articular cartilage coverage and the large attachment area of the intra-articular disc.

Materials and Methods

Dissections were performed on eleven nonpaired, fresh-frozen cadaveric sternoclavicular joints from four men and seven women with no history of clavicle, sternoclavicular joint, or manubrial surgery (mean age at death, fifty-three years; range, thirty-three to sixty-four years). Radiographs of all specimens were made to ensure absence of osteoarthritis and osseous abnormalities. Specimens were randomly allocated; six right and five left sternoclavicular joints were dissected.

Specimen Preparation

After removal of skin and subcutaneous fat from the forequarter specimen, the clavicular origin of the pectoralis major muscle was marked and then the muscle was removed. Meticulous dissection of the subclavius, sternocleidomastoid, and subclavius muscles. The anatomical locations of the muscle insertions at the medial end of the clavicle and at the manubrium are not well defined.

Currently, a paucity of information exists regarding the quantitative anatomy of the sternoclavicular joint. The purpose of this study was to define the sternoclavicular joint anatomy, to quantify the ligament and muscle-tendon insertions surrounding the sternoclavicular joint, and to define pertinent osseous landmarks, which can serve as reproducible anatomical landmarks during sternoclavicular joint surgery.

Anatomical Measurements

Three manubrial landmarks were used as reference points for data calculation and included the superior aspect of the manubrium and first rib in neutral rotation and elevation. Two coordinate frames were secured to the anterior aspect of the manubrium and the superior aspect of the clavicle, respectively (see Appendix). For each specimen, a coordinate-measuring device (MicroScribe MX, GoMeasure3D, Amherst, Virginia) was used to collect three-dimensional positional data. The sternoclavicular coordinate system used in this study was modeled on previously published recommendations for a thoracic coordinate system.

The coordinate system was defined using three points on the superior aspect of the manubrium: the most anteromedial, anterolateral, and posterolateral points. The anterior axis was aligned with the anterolateral and posterolateral points, with the superior axis orthogonal to it, in line with anteromedial and anterolateral points, and with the lateral axis orthogonal to the others. A clock-face coordinate system was generated for the clavicle with use of circumferential data points 2 cm from the joint line, with 12 o’clock defined as the most superior point (Fig. 1).

The sternum was potted in a polymethyl methacrylate cylinder, and the specimens were secured in a custom fixture, which rigidly stabilized the manubrium, clavicle, and first rib. The clavicle was secured in relationship to the manubrium and first rib in neutral rotation and elevation. Two coordinate frames were secured to the anterior aspect of the manubrium and the superior aspect of the clavicle, respectively (see Appendix). For each specimen, a coordinate-measuring device (MicroScribe MX, GoMeasure3D, Amherst, Virginia) was used to collect three-dimensional positional data. The sternoclavicular coordinate system used in this study was modeled on previously published recommendations for a thoracic coordinate system.

The coordinate system was defined using three points on the superior aspect of the manubrium: the most anteromedial, anterolateral, and posterolateral points. The anterior axis was aligned with the anterolateral and posterolateral points, with the superior axis orthogonal to it, in line with anteromedial and anterolateral points, and with the lateral axis orthogonal to the others. A clock-face coordinate system was generated for the clavicle with use of circumferential data points 2 cm from the joint line, with 12 o’clock defined as the most superior point (Fig. 1).

The sternum was potted in a polymethyl methacrylate cylinder, and the specimens were secured in a custom fixture, which rigidly stabilized the manubrium, clavicle, and first rib. The clavicle was secured in relationship to the manubrium and first rib in neutral rotation and elevation. Two coordinate frames were secured to the anterior aspect of the manubrium and the superior aspect of the clavicle, respectively (see Appendix). For each specimen, a coordinate-measuring device (MicroScribe MX, GoMeasure3D, Amherst, Virginia) was used to collect three-dimensional positional data. The sternoclavicular coordinate system used in this study was modeled on previously published recommendations for a thoracic coordinate system.

The coordinate system was defined using three points on the superior aspect of the manubrium: the most anteromedial, anterolateral, and posterolateral points. The anterior axis was aligned with the anterolateral and posterolateral points, with the superior axis orthogonal to it, in line with anteromedial and anterolateral points, and with the lateral axis orthogonal to the others. A clock-face coordinate system was generated for the clavicle with use of circumferential data points 2 cm from the joint line, with 12 o’clock defined as the most superior point (Fig. 1).

The sternum was potted in a polymethyl methacrylate cylinder, and the specimens were secured in a custom fixture, which rigidly stabilized the manubrium, clavicle, and first rib. The clavicle was secured in relationship to the manubrium and first rib in neutral rotation and elevation. Two coordinate frames were secured to the anterior aspect of the manubrium and the superior aspect of the clavicle, respectively (see Appendix). For each specimen, a coordinate-measuring device (MicroScribe MX, GoMeasure3D, Amherst, Virginia) was used to collect three-dimensional positional data. The sternoclavicular coordinate system used in this study was modeled on previously published recommendations for a thoracic coordinate system.

The coordinate system was defined using three points on the superior aspect of the manubrium: the most anteromedial, anterolateral, and posterolateral points. The anterior axis was aligned with the anterolateral and posterolateral points, with the superior axis orthogonal to it, in line with anteromedial and anterolateral points, and with the lateral axis orthogonal to the others. A clock-face coordinate system was generated for the clavicle with use of circumferential data points 2 cm from the joint line, with 12 o’clock defined as the most superior point (Fig. 1).

The sternum was potted in a polymethyl methacrylate cylinder, and the specimens were secured in a custom fixture, which rigidly stabilized the manubrium, clavicle, and first rib. The clavicle was secured in relationship to the manubrium and first rib in neutral rotation and elevation. Two coordinate frames were secured to the anterior aspect of the manubrium and the superior aspect of the clavicle, respectively (see Appendix). For each specimen, a coordinate-measuring device (MicroScribe MX, GoMeasure3D, Amherst, Virginia) was used to collect three-dimensional positional data. The sternoclavicular coordinate system used in this study was modeled on previously published recommendations for a thoracic coordinate system.

The coordinate system was defined using three points on the superior aspect of the manubrium: the most anteromedial, anterolateral, and posterolateral points. The anterior axis was aligned with the anterolateral and posterolateral points, with the superior axis orthogonal to it, in line with anteromedial and anterolateral points, and with the lateral axis orthogonal to the others. A clock-face coordinate system was generated for the clavicle with use of circumferential data points 2 cm from the joint line, with 12 o’clock defined as the most superior point (Fig. 1).
Fig. 2
Anterior view of the right sternoclavicular joint with clavicles removed.

Fig. 3
Anatomical illustration of both sternoclavicular (SC) joints (anterior view). Muscle attachments are excluded from the left sternoclavicular joint to illustrate intra-articular structures. Cartilage is depicted as darker than the surrounding osseous structures.
System Validation
To assess the accuracy of the coordinate-measuring device in our testing facility, a single point articulation test (SPAT) based on the B89.4.22 ASME standard and the manufacturer’s recommendations was performed. The average SPAT result was 0.113 mm.

Statistical Methods
Data were assessed for symmetry and normality, and no evidence was found for deviations from normality. Continuous variables were reported as the mean and parametric 95% CI.

Source of Funding
No external source of funding was received.

Results
The targeted anatomical structures were identified in all eleven specimens. The calculated measurements for each ligamentous, tendinous, or osseous structure are reported in Tables I and II. For point of insertion and location of osseous landmarks, a clock face correlating with an on-end sagittal view of the medial end of a right clavicle was used for quantitative purposes (Fig. 1 and Table I).

Osseous Landmarks
Clavicular Pectoralis Ridge
A longitudinal ridge along the anterior border of the medial end of the clavicle was identified at the thin, tendinous origin of the clavicular head of the pectoralis major muscle. Therefore, this osseous landmark was defined as the clavicular pectoralis ridge (Figs. 3 and 4). The pectoralis major muscle belly filled a fossa inferior to the ridge. On a right clavicle, the clavicular pectoralis ridge was located at the 9:30 clock-face position. It was raised slightly from the surrounding bone and ran the length of the origin of the pectoralis major on the clavicle.

Costoclavicular Tubercle
The insertion of the costoclavicular ligament on the medial end of the clavicle was located on the inferior edge of the clavicle, with a definable and palpable tubercle in all specimens located at the 7 o’clock position. As this tubercle is on the inferior aspect of the clavicle and is covered by the stout costoclavicular ligament, it was only palpable after dislocation of the sternoclavicular joint.

Intra-Articular Disc and Articular Cartilage
The medial end the clavicle was covered with the closely associated intra-articular disc. The disc was complete in ten of eleven specimens but had a tear in one specimen. The disc had a robust insertion on the posterosuperior aspect of the clavicle with peripheral attachments to the anterior and posterior sternoclavicular ligaments (Fig. 1). Inferiorly, the disc had a less robust attachment. The disc measured an average of 18 mm (95% CI, 14.9 to 21.1 mm) in diameter and was 5.4 mm (95% CI, 4.3 to 6.4 mm) thick and tapered centrally with
concavity appreciated on both the clavicular and manubrial sides.

Articular cartilage covered 67% (95% CI, 59.4% to 75.0%) of the medial end of the clavicle, with coverage only on the anteroinferior aspect of the clavicle and including the inferior portion and underside of the clavicle at its articulation with the manubrial and first-rib costal cartilage. The antero-superior margin of the cartilage began near the clavicular pectoralis ridge (Fig. 1).

Tendon Insertions

Sternohyoid
The sternohyoid muscle was identified as a thin strap muscle with insertion onto the posterior aspect of the sternoclavicular joint capsule and the clavicle. The majority of the sternohyoid insertion was on the clavicle (Fig. 5), with a long, thin insertion extending medial to lateral (Table II). At its most medial edge, the tendon insertion was 4.6 mm (95% CI, 1.0 to 8.2 mm) lateral to and 1.1 mm (95% CI, −1.7 to 3.9 mm) inferior to the posterior-superior manubrial articular cartilage. The lateral edge of the insertion was 19.5 mm (95% CI, 12.3 to 26.7 mm) lateral and 5.2 mm (95% CI, 1.3 to 9.1 mm) inferior to the superior manubrial articular cartilage.

Sternothyroid
The sternothyroid was identified as the deeper of the two strap muscles, with a more inferior insertion on the posterior aspect of the sternum and costal cartilage. It also had a long, thin insertion running from medial to lateral. The medial edge of the insertion was 0.3 mm (95% CI, −2.4 to 3.1 mm) medial to and 9.5 mm (95% CI, 5.5 to 13.6 mm) inferior to the posterior-superior manubrial cartilage, while the lateral edge of the insertion was 19.8 mm (95% CI, 12.4 to 27.1 mm) lateral to and 5.4 mm (95% CI, 0.7 to 10.3 mm) inferior to the superior manubrial cartilage and was on the posterior first-rib costal cartilage.

We found a fascial attachment between the right and left muscle bellies of the sternohyoid and sternothyroid muscles with a midline raphe that inserted onto the posterior aspect of the manubrium. Anterior to this fascial layer and the muscle bellies was a potential “safe zone” with no vascular structures (Fig. 6).
Sternocleidomastoid
The manubrial insertion of the sternocleidomastoid was found to have a round tendon with a footprint area of 83.2 mm² (95% CI, 67.5 to 98.9 mm²). The tendon was 7.7 mm (95% CI, 4.7 to 10.7 mm) inferior to the superior ipsilateral manubrial cartilage. The manubrial head of the sternocleidomastoid was 10.2 mm (7.0 to 13.3 mm) medial to the closest manubrial cartilage. As the tendon coursed superiorly, it crossed over the superior half of the sternoclavicular joint (Figs. 3 and 4).

The clavicular head of the sternocleidomastoid inserted on the superior surface of the clavicle, with a broad linear insertion. The insertion footprint area was 199.5 mm² (95% CI, 150.3 to 248.7 mm²), and the most medial extent of the tendon was 9.9 mm (95% CI, 2.9 to 17.0 mm) lateral to the superior articular margin of the clavicle.

Subclavius
The subclavius muscle belly had a long origin with the most medial edge starting 20 mm (95% CI, 13.2 to 26.9 mm) lateral to the inferior cartilage of the clavicle. The tendon coursed obliquely to insert on the lateral aspect of the first-rib costal cartilage (Fig. 4, Table II).

Ligaments
Costoclavicular Ligament
The costoclavicular ligament was found to be a short, robust ligament between the first-rib costal cartilage and the costoclavicular tubercle on the medial end of the clavicle. From its origin on the first rib, it coursed from medial to lateral to insert on the inferior aspect of the clavicle. On the clavicle, the center of the costoclavicular ligament was 13.8 mm (95% CI, 9.8 to 17.7 mm) lateral to the inferior sternoclavicular articular margin and the most medial fibers were 10.3 mm (95% CI, 5.6 to 15.1 mm) lateral to the same point of reference (Fig. 4). On the first-rib cartilage, the most medial fibers of the costoclavicular ligament were 8.3 mm (95% CI, 5.9 to 10.6 mm) lateral to the inferior manubrial articular cartilage margin, and the center of the insertion was 14.8 mm (95% CI, 12.6 to 17.0 mm) lateral to the same point.

The costoclavicular ligament had the largest footprint of the sternoclavicular joint-associated ligaments (Table I). The
origin on the clavicle had a footprint area of 182.8 mm² (95% CI, 113.8 to 251.7 mm²), and the footprint on the first-rib costal cartilage was 160.8 mm² (95% CI, 136.0 to 185.6 mm²).

Posterior Sternoclavicular Ligament

The posterior sternoclavicular ligament appeared as a diffuse thickening of the posterior joint capsule with no discrete ligament identified. The broad manubrial attachment had an origin centered 5.4 mm (95% CI, 3.6 to 7.1 mm) inferior to the posterior-superior manubrial articular cartilage. However, the entire origin extended proximally and distally from this point (Fig. 5). The insertion on the clavicle was also broad with the center of insertion located at the 4:30 clock-face position (Fig. 5 and Table I).

Anterior Sternoclavicular Ligament

The anterior sternoclavicular ligament was identified as an oblique capsular thickening running from inferomedial to superolateral across the anterior surface of the sternoclavicular joint. Dissection of the ligament and anterior capsule revealed it to be the anterior attachment of the intra-articular disc. The manubrial origin was 11.2 mm (95% CI, 7.8 to 14.6 mm)

<table>
<thead>
<tr>
<th>TABLE I Quantitative Characteristics of the Sternoclavicular Ligaments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
</tr>
<tr>
<td>Anterior sternoclavicular ligament</td>
</tr>
<tr>
<td>Posterior sternoclavicular ligament</td>
</tr>
<tr>
<td>Costoclavicular ligament</td>
</tr>
<tr>
<td>Interclavicular ligament†</td>
</tr>
<tr>
<td>Clavicular pectoralis ridge</td>
</tr>
</tbody>
</table>

*Values are given as the mean with the 95% confidence interval in parentheses. Distances are given to the center of the ligament except for that of the costoclavicular ligament, which represents the distance to the most medial edge. Clock-face position relates to viewing the articular surface of the right clavicle from medial to lateral. SMC = superior manubrial cartilage, IMC = inferior manubrial cartilage, and SCJC = sternoclavicular joint cartilage. †The interclavicular ligament has no direct insertion on the manubrium but bridges from clavicle to clavicle.

<table>
<thead>
<tr>
<th>TABLE II Quantitative Characteristics of Muscular Tissues Around the Sternoclavicular Joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
</tr>
<tr>
<td>Sternothyroid</td>
</tr>
<tr>
<td>Lateral edge</td>
</tr>
<tr>
<td>Sternohyoid</td>
</tr>
<tr>
<td>Lateral edge</td>
</tr>
<tr>
<td>Sternocleidomastoid</td>
</tr>
<tr>
<td>Subclavius</td>
</tr>
</tbody>
</table>

*Muscle tendon locations, in relationship to osseous intraoperative landmarks of the sternoclavicular joint, as well as footprint areas are presented. Values are given as the mean with the 95% confidence interval in parentheses. SMC = superior manubrial cartilage, and IMC = inferior manubrial cartilage.
The most important findings of this study were the identification of osseous landmarks, including the clavicular pectoralis ridge, which was located at the 9:30 position on a right clavicle; the quantification of the costoclavicular ligament as the largest ligament of the sternoclavicular joint; the characterization of the articular surface of the medial end of the clavicle; and further characterization of the sternothyroid and sternohyoid muscle insertions located immediately posterior and inferior to the sternoclavicular joint, providing a definable layer between the posterior aspect of the sternoclavicular joint and the mediastinal structures.

The clavicular pectoralis ridge was identified on the anterior surface of the clavicle in all specimens. We named this structure the clavicular pectoralis ridge because it is the clavicular attachment site for the pectoralis major muscle. With its position noted in terms of a clock-face measurement, this landmark can serve as a reference for all other pertinent structures. We believe a clock-face orientation of the medial end of the clavicle is the most reproducible method for determining structure location, as large variations in clavicular size have been observed between individuals and even from side to side within the same individual.23-28.

With sternoclavicular joint instability or dislocation, typically all ligamentous structures have been torn, and there is no restraint to medial clavicle rotation or translation. Additionally, during surgical reconstruction of the anterior and posterior sternoclavicular ligaments, a complete release of the soft-tissue envelope surrounding the medial end of the clavicle is required for exposure.19,20. In these cases, the clavicular pectoralis ridge can be helpful in determining the anatomical orientation of the clavicle to prevent iatrogenic malrotation.

Sternoclavicular joint stability is predominantly attributed to the costoclavicular ligament, the posterior sternoclavicular ligament, and the anterior sternoclavicular ligament. Whether a resection arthroplasty or ligament reconstruction is performed, sternoclavicular joint stability must be maintained. Many authors have described the costoclavicular ligament as the predominant stabilizer of the sternoclavicular joint in all planes of motion except lateral clavicle depression.14,16,17,29. Supporting these assertions, we found the costoclavicular ligament to be the largest ligament associated with the sternoclavicular joint. However, Spencer et al. found the anterior and posterior sternoclavicular ligaments to be the primary stabilizers to anterior and posterior stability, whereas the costoclavicular ligament provided limited stabilization.30. Additional studies are needed to determine the biomechanical characteristics of the costoclavicular ligament.

Although the biomechanical importance of the costoclavicular ligament has yet to be defined, clinically, Rockwood et al. have shown that costoclavicular ligament preservation is necessary for good outcomes in cases of resection arthroplasty of the sternoclavicular joint.31. Regarding preservation of this ligament, the distance from the inferior surface of the clavicle to the center of insertion of the costoclavicular ligament previously was described, and our findings are consistent with reports of 10 mm to 12.6 mm.31,32. Our data support medial clavicle resections of ≤50 mm to avoid compromising the integrity of the costoclavicular ligament.33.

Previous techniques of resection arthroplasty have described complete resection of the medial end of the clavicle. However, we found that the articular cartilage covered only 67% of the medial end of the clavicle, with the coverage located at the most anteroinferior aspect. Limited resection of only the articular cartilage, as opposed to the entire medial end of the clavicle, would have the benefit of maintaining the important costoclavicular and posterior sternoclavicular ligaments and may be of considerable benefit in arthroscopic sternoclavicular joint decompression.33-35. Studies regarding the location and extent of medial clavicle resection to gain adequate decompression and maintain stability are needed.

Through our investigation, we were able to characterize the relationship of the sternohyoid and sternothyroid to the posterior aspect of the sternoclavicular joint and identified the presence of an avascular plane for posterior sternoclavicular joint dissection. This avascular “safe zone” was between the posterior aspect of the manubrium and the sternothyroid muscle belly. On average, it extended from the posterior-superior manubrial articular cartilage inferiorly 9.5 mm and extended laterally from that point 19.8 mm along the posterior border of the first rib. This “safe zone” also crossed the midline between the connective-tissue raphe of the two sternothyroid muscle bellies.

The parameters of this “safe zone” for posterior dissection are particularly useful when performing dissection of the posterior aspect of the manubrium. During figure-of-eight sternoclavicular ligament reconstructions, posterior manubrial dissection is required for safe tunnel placement.19,20,35,36. Dissection outside of the parameters of the “safe zone” places elevators and retractors within the mediastinum, with increased risk of vascular injury. The strap muscles are relatively thin and at risk for injury, especially with posterior sternoclavicular joint dislocation. In these cases, three-dimensional imaging should be carefully evaluated to ensure these muscles remain intact. With sternothyroid muscle disruption or attenuation, additional precautions should be taken with posterior sternoclavicular joint dissection.

The authors of previous studies have reported qualitative evaluations of the sternoclavicular joint with particular attention to the intra-articular disc and capsular and extra-capsular
joint ligaments in relation to each other. The current study, in addition to reaffirming and expanding on previous qualitative descriptions, provides quantitative values for footprints of the intra-articular disc, the capsular and extra-capsular ligaments, and the sternohyoid, sternothyroid, and sternocleidomastoid muscles. This study also adds to the work of Ponce et al. regarding the dangers of operating in the region of the sternoclavicular joint by describing an avascular "safe zone" for posterior clavicle and manubrial dissection.

The strengths of this study include radiographic screening of all specimens, the use of a clock-face method to reference the location of anatomical structures without the bias of size of specimen, and the use of fresh-frozen cadaveric specimens all with an age at death of less than sixty-five years. We acknowledge that there are some limitations. A limited number of specimens were used, which may limit the generalizability of our findings. We did not report data stratified by sex or provide size comparisons of the medial end of the clavicle, which may explain why we found some variability among specimens in terms of the distance of structures from osseous landmarks. Nonetheless, the consistent location in all specimens of the clavicular pectoral ridge as well as the sternohyoid and sternothyroid functioning as a layer separating the posterior aspect of the sternoclavicular joint from the mediastinal vessels debilitate these limitations partially. Finally, we did not quantify the distance or relationship to important neurovascular structures, as other authors have already reported these values.

This anatomical study quantitatively defined the anatomy of the sternoclavicular joint. We identified a consistent osseous prominence, the clavicular pectoralis ridge, to serve as an intraoperative landmark. The costoclavicular ligament was identified as the largest of the ligaments associated with the sternoclavicular joint, and we found that only the anteroinferior aspect of the medial end of the clavicle was covered with articular cartilage. We also identified a "safe zone" for posterior dissection, a plane between the posterior aspect of the sternoclavicular joint and the muscle insertions of the sternohyoid and sternothyroid, which can improve safety of surgical treatment of sternoclavicular joint pathology.

Appendix

A figure showing the custom rig developed to secure each specimen and an anterior view of a specimen that has been secured is available with the online version of this article as a data supplement at jbjos.org.

Note: The authors acknowledge Kyle Jansson for his development of the custom fixture used for rigid fixation of the specimen, Angelica Wedell and Bany Lickhaus for assistance with the illustrations, and Ryan Warth, MD, for manuscript preparation.

References

