Fundamentals of Aerosol Transport & Practical Layered Risk Reduction for Indoor Environments

Richard L. Corsi, Ph.D., P.E.
H. Chik M. Erzurumlu Dean
Maseeh College of Engineering & Computer Science
Portland State University
Fundamentals

- Sources of emissions
- Exposure pathways
- General fate
- Deposited inhalation dose

Layered Risk Reduction Strategy
Sources of Emissions

- Breathing
- Speaking
- Singing
- Coughing
- Flushing?
- Resuspending?

- Virus not naked (embedded in particles)
- Particles = combo of mucous & saliva
- Particle sizes vary widely (< 0.3 μm to 200 μm)
- Small fraction of viruses infectious
Mean = 75,400 SD = 97,300 / cough

Range: 900 – 302,000 / cough

• 0.35-10 μm
Reasonable range = 300 to 3,000/min (some super-emitters to 12K/min)

Super-emitter: 6 min of speaking loudly ≈ mean emission of single cough

Breathing ≈ order of magnitude lower than average speaking
Exposure Pathways & General Fate

1. Direct contact
2. Fomites
3. Close contact: Near-field aerosols + droplets
4. Far-field aerosols
Inactivation Rates of SARS-CoV-2

van Doremalen, et al., NEJM, March 17, 2020

- $t_{1/2} = 1.1 \text{ hr}$ → decay rate = 0.63/hr
- “ballpark” of ACH for residential buildings
- lower than many non-residential buildings
Deposited Inhalation Dose

\[\text{Dose}_{\text{inhal},i} = C_i \ (\#/L) \times B \ (L/min) \times t \ (min) \times f_{\text{dep},i} \]

- \(C_i \) = concentration of particles of size \(i \)
 - emissions; mask; deposition; ventilation; control
 - time infector is in space
- \(B \) = Respiratory minute volume
 - activity (can vary significantly)
- \(t \) = Time in space with an infector
- \(f_{\text{dep},i} \) = Deposition of particles of size \(i \) in resp
 - particle size; breathing mode; activity
Deposition In Respiratory System

![Diagram of the respiratory system]

![Graph showing predicted total and regional deposition for light exercise (nose breathing) based on ICRP deposition model. Average data for males and females.]

FIGURE 11.3 Predicted total and regional deposition for light exercise (nose breathing) based on ICRP deposition model. Average data for males and females.

W.C. Hinds, Aerosol Technology, 2nd Ed. 1999, John Wiley & Sons
Layered Risk Reduction (LRR) Strategy

- Reduce source
- Require masks indoors
- Distance from source
- Reduce time indoors
- Ventilate
- Filter / Inactivate
- Clean
- Educate

- LRR can lead to risk reduction > 90%

Richard L. Corsi, Ph.D., PE.
Dean, Maseeh College of Engineering & Computer Science, Portland State University
Reduce Source / Require Masks

“If there is a pile of manure in a space, do not try to remove the odor by ventilation. Remove the pile of manure.” - Max von Pettenkofer (1858)

- Test & isolate
- De-densify (less occupants)
- Require masks for all
- Reduce speaking to extent possible
- Ban certain activities (singing, aerobics)
- Replace flooring?
At air speed of 5 cm/s in free stream

<table>
<thead>
<tr>
<th>d_a (μm)</th>
<th>V_{TS} (m/s)</th>
<th>k_d (1/hr)</th>
<th>$X_{1.5m}$ (m) - GS</th>
<th>$X_{50%}$ (m) - PF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>7.5E-06</td>
<td>0.05</td>
<td>10000</td>
<td>2500</td>
</tr>
<tr>
<td>1</td>
<td>3.0E-05</td>
<td>0.1</td>
<td>2500</td>
<td>1200</td>
</tr>
<tr>
<td>5</td>
<td>7.5E-04</td>
<td>1.5</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>10</td>
<td>3.0E-04</td>
<td>7</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>50</td>
<td>7.5E-02</td>
<td>100</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Particles ≤ 10 μm not substantially removed w/in 6 ft

Even 50 to 100 μm particles can travel > 6 ft (warm jet)
Engineering Controls

- Increase outdoor air supply (correctly)
- Centralized or room-specific filtration
- Portable air cleaner
- UVGI: Inactivate (destroy) virus
- Others? (generally not rigorously tested)

http://www.sheffield-pottery.com/
Portable Air Cleaners

- HEPA-based portable air cleaner
- HEPA = High Efficiency Particulate Air
- Key attribute = Clean Air Delivery Rate (CADR)
- CADR = $\eta \times Q$
 - η = single pass removal fraction (-)
 - Q = volumetric flowrate (ft3/min)
- Example: $\eta = 0.5$; Q = 500 ft3/min; CADR = 250 ft3/min
Portable Air Cleaners

- Equivalent air changes per hour = EqACH = \(\frac{CADR}{V} \) (V = volume of indoor space)
- Example: \(V = 600 \text{ ft}^2 \times 8 \text{ ft} = 4,800 \text{ ft}^3 \)
- CADR = 300 ft\(^3\)/min
- EqACH = \(300 \text{ ft}^3/\text{min} / 4,800 \text{ ft}^3 = 0.0625/\text{min} \) (or \(\times 60 = 3.8/\text{hr} \))

If \(\lambda = 0.5/\text{hr} \) \(\frac{3.8}{0.5} = 7.6 \)

\(1 + 7.6 = 8.6 \)

89% reduction
DIY - Portable Air Cleaners

- Box fan sucking through filter
- Multiple filters in parallel (benefits)
- Cost = $30 to $60 (+ filter replacement)
- Some reports of good performance
Example: Portable Air Cleaners

Example of filter/fan performance
Black carbon during wildfire smoke event, house #4, windows and doors closed

@MPHPJect

Richard L. Corsi, Ph.D., PE.
Dean, Maseeh College of Engineering & Computer Science, Portland State University
Summary

- Four major transmission pathways
- Known sources of SARS-CoV-2 (high variability)
- SARS-CoV-2 conveyed via aerosols (important)
- Can travel long distances from infector (source)
- Deposited inhaled dose critical: \(D = C \times B \times t \times f \)
- Layered Risk Reduction Strategy
 - Potential for significant benefit

- Reduce source
- Require masks indoors
- Distance from source
- Reduce time indoors
- Ventilate
- Filter / Inactivate
- Clean
- Educate
Extra Slides for Discussion
Resuspension of Particles?

Ren, J. et al. *Building & Environment* (accepted)

Richard L. Corsi, Ph.D., PE.
Dean, Maseeh College of Engineering & Computer Science, Portland State University
Ren, J. et al. *Building & Environment* (accepted)

Should carpet be removed before reopening?

Easier to clean/disinfect impermeable flooring.
Masks

- **Masks protect others***
 - Reduction in large droplets
 - Reduced initial jet distance

- **Masks protect you***
 - Large droplet “projectiles”
 - Small amt of aerosols

- **Want low degree of penetration**
 - Fibrous
 - Random fiber orientation
 - Thicker = better
 - Must be breathable

- **Want low leakage**
 - Minimize “least resistance”
 - Often around crease of nose
 - Separate nose & mouth?

Masks reduce airborne transmission

Infectious aerosol particles can be released during breathing and speaking by asymptomatic infected individuals. No masking maximizes exposure, whereas universal masking results in the least exposure.

- **Particle size (µm)**
 - 100
 - 10
 - 1
 - 0.1

Infected, asymptomatic

Healthy

GRAPHIC: V. ALTOUNIAN/SCIENCE
Particle deposition in resp system

- Nose breathers
- Dominated by head region (25% ALV)
- Fate mechs impact volume deposited

Simulation for university lecture

- 0.5 to 4 μm particles from infector
- Fate: exhaust to outdoors dominates
- Fate: Surface dep up as vent down
- Fate: HEPA-PAC signif
Particle Deposition Mechanisms

Gravitational settling important
Other deposition mechanisms

- Humans
- Furnishings
- Fan blades
- Fiber in a filter

More “clutter” = more op for removal
More mixing = more op for removal

Electrostatic & thermophoretic effects

\[\beta_i = \lambda + k_{dep,i} + \sum \frac{C_i Q_i c_i}{v} + f_{air,i} \frac{Q_b}{v} + \cdots \]

- \(k_{dep} \) for 0.5 to 10 \(\mu \)m particles \(\approx \) 0.1 to 7 h\(^{-1}\)
- Context: \(\lambda \approx (0.3 \text{ to } 4 \text{ h}^{-1})^* \) – \(fn(\text{type of building}) \)
EID Applied to Restaurant X

- Use metadata from restaurant + tracer studies
- Index case: Assumptions related to emissions (cough, speak, breathe)
- Particle size distributions (0.5 to 4 μm) – can do more
- 89 patrons / 1 infector / 10 infected
- Significant metadata
- 138 m² / 431 m³ ACH = 0.6-0.8 h⁻¹ (0.75-1.04 L/s-p)
- Video; tracers (researchers/manikins); CFD

Li, Y. et al., doi.org/10.1101/2020.04.16.20067728 doi medRxiv preprint
Comparative Analysis – Restaurant X

- EID: Deposited inhaled volume in ABC patrons
- $1 – 10 \text{ pL (}10^{-12} \text{ L)} / \text{patron for 75 min event}$
- Range depends on assumed emissions / mixing

Screening Approach (scenario comparisons)*

- Take index case (Index X) for Restaurant X (similar emissions)
- Place in different environments & determine Ω

$$\Omega = \frac{\text{Volume}_{\text{dep}}}{\text{Volume}_{\text{dep, Restaurant X}}}$$

* In lieu of having a dose-response relationship
Busy Restaurant

100 m² x 3.14 m; 69 patrons + Index X; 75 minute event
ASHRAE 62.1 yields 4.1 h⁻¹

- Masks
- Distancing
- Very well ventilated
- Outdoors
- Reduced time
- Take out
- Delivery

Additional considerations: close contact & fomites
Choir Practice

- 50 participants (+ Index X) in 100 m² x 2.8 m for 75 min
- 50% time singing (elevated speaking); Heavier breathing (emit & inhale)*
- ASHRAE 62.1 2019 yields 3.6 h⁻¹

* Based on literature, e.g., Salomoni et al., *PloS One*, 2016; 11(5): e0155084

Additional considerations: close contact & fomites

- Concern across board
- Outdoors w/ distancing
- Remote?
Gym w/ Aerobic Activity

- 40 patrons; Staff member = Index X; Heavy breathing receptor (aerobics)
- 100 m² x 4 m; ASHRAE 62.1 2019: yields 3.9 h⁻¹

- Avoid indoor gyms (perhaps signif’ cross-flow)
- Outdoor workout
- Masks
- Physical distancing

Additional considerations: close contact & fomites
Ride Share

1 Patron + Index X as driver; 3 m3 cab; 20 mph; 20 minutes across town

Air exchange rates reasonable based on a number of peer-reviewed papers

- Wear mask
- Insist driver wears mask
- Crack open windows
- Avoid long trips / busy commutes
- Can get $\Omega \approx 0.1$

Additional considerations: close contact & fomites
Elevator

Index X + 1; 1 min travel w/o door opening; Air changes = 60 h\(^{-1}\) (1 min\(^{-1}\))

- Elevator airborne negligible
- Short trip / well-ventilated
- Focus on close contact (but note short time)
- Masks
- No speaking etiquette
- Reduce density
- Distance & face away

Additional considerations: close contact & fomites

< 1/1,000\(^{th}\) Restaurant X

100 x lower than previous low
• 700 ft²; 25 students for 75 min

• **Infector = teacher**
 • Occasional cough (Index X)
 • Speaks 50% of time
 • Lower amp than Index X

• **Infector = student**
 • No cough (10% speak)

• Masks decrease Ω

Additional considerations: close contact & fomites
General Fate & Pathways

\[
\frac{dC_i}{dt} = \frac{E_i}{V} - \beta_i C_i \\
\beta_i = \lambda + R_{dep} + \sum \frac{z_i q_i}{V} + \sum f_{ani} \frac{Q_b}{V}
\]
Particle Deposition by Settling

Gravitational settling

\[V_{TS} = \frac{\rho_p d_e^2 gC_c}{18 \eta X} = \frac{\rho_o d_a^2 gC_c}{18 \eta} \]

<table>
<thead>
<tr>
<th>(d_p (\mu m))</th>
<th>(t (1.5 \text{ m}))</th>
<th>(x (\text{ m}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>56 hr</td>
<td>10000</td>
</tr>
<tr>
<td>1</td>
<td>14 hr</td>
<td>2500</td>
</tr>
<tr>
<td>5</td>
<td>33 min</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>8 min</td>
<td>25</td>
</tr>
<tr>
<td>20</td>
<td>2 min</td>
<td>6</td>
</tr>
<tr>
<td>50</td>
<td>20 sec</td>
<td>1</td>
</tr>
</tbody>
</table>

Based on 5 cm/s air speed in free stream

Particles \(\geq 50 \mu m \) can travel further than 1 m

Other mechs important as \(d_p \) becomes small