TWO EASY PIECES

Neal Richmond, MD, FACEP
MedStar Mobile Integrated Healthcare System
Fort Worth, Texas
WE’VE BEEN CHASING THIS HOLY GRAIL

• Performance measurement and quality in EMS
• For almost as long as we’ve been chasing response times
MEASURING QUALITY IN EMS

Since 2001

- Three national agencies: NASEMSO, HRSA MCHB and NHTSA
 - Really smart people
- Working to develop a national database
- Establish reliable & performance-based outcome measures
- Measure EMS quality of care
MEASURING QUALITY IN EMS

• 2003

• Created data dictionary of 400 elements
KEEP IT SIMPLE

If you can figure out just one thing each year, that's pretty good
TWO THINGS YOU MIGHT WANT TO LOOK AT

What happens when

• You put on mechanical CPR devices
• Blind-insertion Supraglottic Airways
TWO GOOD CASE STUDIES

Five-fold way to EMS problem-solving

• Identify a problem
• Throw something at it
• Close our eyes
• Hope it gets better
• Don’t bother to check and see if it actually works
MECHANICAL CPR

The reason these came about

- CPR hard to do well
 - Many of us have gone to highly choreographed ‘pit crew’ CPR
- Studies demonstrate no benefit
 - Mechanical CPR versus manual CPR (when its done well)
- Many systems have chosen to use these devices
 - Especially to ensure high quality CPR & provider safety
 - Patient ‘packaging’ and transport
Optimizing ‘time on chest’ (CCF) is good and pauses are bad

- Goal is to decrease both the frequency and length of pauses
- 30-minute resuscitation (1800 seconds)
- Use a 10-second pause as your baseline
- Pause just once > 15 seconds (0.8% of your entire 1800 second resuscitation)
- Survival decreases by about 50%
CPR ANALYTICS

65 y/o female witnessed cardiac arrest
CPR ANALYTICS

65 y/o female witnessed cardiac arrest
Focus on placement of the device (LUCAS)

Measure the transition from
- Stop manual CPR to placement of mechanical CPR device

Compressions from qCPR “puck”

PCI channel records movement of the chest to verify CPR

9:23:42 Stop CPR
qCPR "puck" removed for LUCAS placement

Compressions resume

Defibrillation

CPR resumes @ 9:24:23
40-second interruption in CPR
STUDY

- May 1, 2015 – July 17, 2015 – 117 worked cardiac arrests
 - 43 had Lucas placement
- July 17 – Training Session on proper Lucas placement
- July 18, 2015 – October 15, 2015 – 173 worked cardiac arrests
 - 46 had Lucas placement
RESULTS

- Statistically significant decrease in median time to LUCAS placement post-intervention

P = 0.0004
ONGOING RESULTS

• Percent of Lucas placements < 10-seconds
SO WHAT ABOUT BLIND INSERTION DEVICES?

Why we moved to them

• Literature demonstrates a 25% rate of unrecognized misplaced endotracheal tubes

• Direct laryngoscopic endotracheal intubation during CPR
 • Decreases CCF or % time-on-chest
 • Increases the length of pauses
Phases of ventilation:
A-B: beginning of exhalation
B-C: expiratory upstroke
C-D: alveolar plateau
D-E: inspiratory downstroke
E-A: inspiration
D: end-tidal CO2

http://airwayeducation.homestead.com/Capnography.html
FLAT-LINE (ETCO2 = 0)
March 1 – September 30, 2015

- 340 King tube placements
- 1 without detailed data
 - 328: 1-attempt
 - 10: 2-attempts
 - 3-attempts

339-cases for analysis

- Cardiac Arrest, 315, 93%
- Breathing Problem, 9, 3%
- Chest Pain, 2, 1%
- Drowning, 1, 0%
- Unconscious, 1, 0%
- AMS, 1, 0%
- Trauma, 11, 3%
- Other, 25, 7%
RESULTS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>76.47%</td>
<td>72.92%</td>
<td>84.48%</td>
<td>76.36%</td>
<td>83.33%</td>
<td>77.19%</td>
<td>85.37%</td>
</tr>
<tr>
<td>Subjective</td>
<td>96.08%</td>
<td>93.75%</td>
<td>93.10%</td>
<td>87.27%</td>
<td>83.87%</td>
<td>95.08%</td>
<td>90.48%</td>
</tr>
<tr>
<td>n</td>
<td>51</td>
<td>48</td>
<td>58</td>
<td>55</td>
<td>31</td>
<td>61</td>
<td>42</td>
</tr>
</tbody>
</table>
RESULTS

Out of total 339 King placements

• Misplaced (ETCO2 = 0) in 19.4%
• Unrecognized in 13.9%
WHAT’S GOING ON

- Flatline EtCO2
- EtCO2 device clog
ONGOING RESULTS

King Airway

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>76.47%</td>
<td>72.92%</td>
<td>84.48%</td>
<td>76.36%</td>
<td>73.33%</td>
<td>77.19%</td>
<td>85.37%</td>
<td>88.10%</td>
<td>93.94%</td>
<td>88.37%</td>
<td>100.00%</td>
</tr>
<tr>
<td>Subjective</td>
<td>96.08%</td>
<td>93.75%</td>
<td>93.10%</td>
<td>87.27%</td>
<td>83.87%</td>
<td>95.08%</td>
<td>90.48%</td>
<td>100.00%</td>
<td>97.06%</td>
<td>95.56%</td>
<td>100.00%</td>
</tr>
<tr>
<td>n</td>
<td>51</td>
<td>48</td>
<td>58</td>
<td>55</td>
<td>31</td>
<td>61</td>
<td>42</td>
<td>42</td>
<td>34</td>
<td>45</td>
<td>8</td>
</tr>
</tbody>
</table>
WHAT’S A MISPLACED KING ANYWAY?

Oropharyngeal balloon

Hyoid

Ventilatory opening

Trachea

Optimal position above hyoid bone

Position distal (caudal) to hyoid bone

• There are simple things you can measure that make a difference
• Assume nothing until you measure it
• Should we be embarrassed by these results?
 • At least we have the tools and processes in place to look and to make things better
 • Instead of just hoping we’re doing a good job or
 • In the words of Dr. Julette Saussy “putting out a lot of feel good gibberish”
 • But here’s the thing: If you think you’re a whole lot better than anyone else…just remember
WE ARE ALL D.C.