Test fleet data gathering for AI training of future Level 5 autonomous vehicle

The global automotive industry advances rapidly toward fully autonomous (Level 5) vehicles. Today, many competing data gathering fleets of vehicles are logging millions of km on the roads of the world in order to amass the data required to feed and train the AI that will enable full vehicle autonomy. The detection accuracy and the size of the dataset demanded by those safety-critical training systems is very high, as is the bandwidth, performance, and reliability of the high-speed links providing the data collecting backbone of these vehicles.

Description of the application

The data gathering systems used in those vehicles are expected to operate flawlessly irrespective of weather conditions, visibility, or road surface in order to improve data quality and accuracy.

Training a roadworthy algorithm

Neural networks need to be trained on representative datasets that include examples of all possible driving, weather, and situational conditions to ensure reliable, flawless operation of the future self-driving vehicles.

Gathering data

In order to amass as much driving environment data as possible, a typical data-gathering vehicle setup consists of a multitude of sensors including cameras, radar and lidar, giving the vehicle 360-degree data gathering capability. In practice this translates into petabytes of training data being shuttled from sensors, to computer, to storage over the vehicle’s high-speed, high-bandwidth data collection networks.

Obviously, the exact instrumentation details of specific manufacturers or suppliers are not in the public domain. But one can reasonably assume that the amount of data generated and the speed at which it is generated demand a very robust and high-bandwidth system.

High bandwidth needs call for optical

The data collection network and computing systems of these vehicles are expected to:

- Connect LIDAR and radars.
- Connect high-resolution cameras.
- Provide centralized processing power and storage.
- Operate in harsh environments.

Optical technology is the only way to ensure rugged, reliable, high-bandwidth data collection.

Eliminating the network bottleneck

By offering much higher speed that what is available with copper interconnects, optic fiber data links remove the bottleneck in the data collection network and enable high-quality uncompressed data to be stored in the vehicle.
LightVISION VM with LightSNAP interface

The LightVISION™ VM is a screw-in, robust, industrial and RoHS optical module with LightSNAP interface that answers all the requirements of high bandwidth data gathering application.

The LightVISION VM acts like a QSFP+ but offers reduced dimensions and power consumption, industrial temperature range, multiple board mounting options, and board mount and edge mount capability. This optical module will outclass QSFP+ on multiple front and it is backed by Reflex Photonics proven reliability and rugged design.

LightSNAP adds a standard MPO pluggable optical interface to the LightVISION VM optical module. This combination allows a standard MPO cable to be plugged into the optical module and also mounted on the face-plate of a box or line-card.

By removing bottlenecks in the data path, the optical link is the ideal backbone of a data gathering system.

Benefits of using Reflex Photonics’ industrial LightVISION VM

- Bandwidth from 50G (4 TX or 4 RX lane) to 150G (12 TX or 12 RX lane)
- Lightweight and easy to integrate optical cable
- Multimode 850 nm wavelength laser
- Standard MPO parallel fiber connector. Available in commercial (0°C to 70°C) and industrial (−40°C to 100°C) grade temperature ranges.
- Suitable for harsh environment and automotive applications
- Standard MTP/MPO cable connection
- RoHS, robust, screw-in board-mounted optical module with reduced footprint
- Low power consumption: <100 mW per lane
- Over 100 m reach on OM3 ribbon fiber