TABLA DE CONTENIDO

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 DESCRIPTIÓN DEL PROYECTO</td>
<td>3.40</td>
</tr>
<tr>
<td>3.1 LOCALIZACIÓN</td>
<td>3.43</td>
</tr>
<tr>
<td>3.1.1 Áreas de explotación</td>
<td>3.49</td>
</tr>
<tr>
<td>3.1.2 Áreas de beneficio y transformación de minerales</td>
<td>3.50</td>
</tr>
<tr>
<td>3.1.3 Áreas para manejo de material sobrante</td>
<td>3.51</td>
</tr>
<tr>
<td>3.1.4 Áreas de soporte minero</td>
<td>3.52</td>
</tr>
<tr>
<td>3.2 CARACTERÍSTICAS DEL PROYECTO</td>
<td>3.54</td>
</tr>
<tr>
<td>3.2.1 Infraestructura existente</td>
<td>3.54</td>
</tr>
<tr>
<td>3.2.2 Resultados de exploración geológica</td>
<td>3.70</td>
</tr>
<tr>
<td>3.2.3 Fases y actividades del Proyecto</td>
<td>3.99</td>
</tr>
<tr>
<td>3.3 DISEÑO DEL PROYECTO</td>
<td>3.109</td>
</tr>
<tr>
<td>3.3.1 Características técnicas del proyecto</td>
<td>3.109</td>
</tr>
<tr>
<td>3.3.2 Áreas de explotación</td>
<td>3.110</td>
</tr>
<tr>
<td>3.3.3 Áreas de beneficio y transformación de minerales</td>
<td>3.112</td>
</tr>
<tr>
<td>3.3.4 Material sobrante del proceso minero</td>
<td>3.113</td>
</tr>
<tr>
<td>3.3.5 Áreas para manejo de material sobrante</td>
<td>3.118</td>
</tr>
<tr>
<td>3.3.6 Instalaciones de soporte minero</td>
<td>3.119</td>
</tr>
<tr>
<td>3.3.7 Diseño y planteamiento de la explotación</td>
<td>3.145</td>
</tr>
<tr>
<td>3.3.8 Construcción y montaje</td>
<td>3.389</td>
</tr>
<tr>
<td>3.4 BENEFICIO Y TRANSFORMACIÓN DE MINERALES</td>
<td>3.531</td>
</tr>
<tr>
<td>3.4.1 Operaciones unitarias implementadas en el procesamiento de minerales</td>
<td>3.533</td>
</tr>
<tr>
<td>3.4.2 Alternativas para el manejo de relaves</td>
<td>3.558</td>
</tr>
<tr>
<td>3.4.3 Alternativas de manejo de relaves filtrados (ubicaciones potenciales)</td>
<td>3.560</td>
</tr>
<tr>
<td>3.4.4 Descripción de Depósito de pirita</td>
<td>3.563</td>
</tr>
<tr>
<td>3.4.5 Alternativas de transporte de los relaves</td>
<td>3.563</td>
</tr>
<tr>
<td>3.4.6 Análisis geotécnico de pilas de lixiviación</td>
<td>3.566</td>
</tr>
</tbody>
</table>
3.4.7 Porcentaje de producción de minerales ... 3.566
3.5 INSUMOS DEL PROYECTO .. 3.566
3.5.1 Materiales de construcción .. 3.566
3.5.2 Aceites, grasas, disolventes y otros ... 3.568
3.5.3 Sistemas y fuentes de generación de energía y combustibles 3.575
3.5.4 Consumo de reactivos e insumos químicos en el proceso minero 3.581
3.5.5 Explosivos ... 3.587
3.5.6 Requerimientos de combustible ... 3.592
3.5.7 Otros insumos .. 3.594
3.5.8 Material sobrante .. 3.595
3.6 INFRAESTRUCTURA Y SERVICIOS INTERCEPTADOS POR EL PROYECTO ... 3.598
3.6.1 Infraestructura de redes y servicios ... 3.598
3.6.2 Manejo y disposición de sobrantes ... 3.598
3.6.3 Residuos peligrosos y no peligrosos ... 3.708
3.6.4 Producción y costos del Proyecto ... 3.712
3.6.5 Cronograma del Proyecto .. 3.718
3.6.6 Organización del Proyecto ... 3.723
LISTA DE ANEXOS

Anexo_3_1_PuentesExistentes
Anexo_3_2_Refracción_sismica
Anexo_3_3_Desarrollo_accesos_mina
Anexo_3_4_Modelo_hidrogeológico_numerico
Anexo_3_5_Redes_servicos_mina
Anexo_3_6_Estudio_Vibraciones
Anexo_3_7_Iluminación
Anexo_3_8_Logueo_geotecnico
Anexo_3_9A_Anexo_geotecnico
Anexo_3_9B_Anexo_geotecnico_probab_falla
Anexo_3_10_Redes_servicios
Anexo_3_11_Balance_de_aguas
Anexo_3_12_Transporte producto_final
Anexo_3_13_Estudio_transito
Anexo_3_14_Analisis_manejo_relaves
Anexo_3_15_Hojas_seguridad
Anexo_3_16_Ensayos_radiactividad_IPEN
Anexo_3_17_Deposito_relaves_secos_Plan_manejo
Anexo_3_18_Deposito_relaves_secos_Manejo_agua
Anexo_3_19_Analisis_riesgo_sismico
Anexo_3_20_Deposito_relaves_secos_Diseño
Anexo_Planos_Diseno
LISTA DE TABLAS

Tabla 3.1	Delimitación de áreas de intervención ... 3.49
Tabla 3.2	Áreas de explotación .. 3.49
Tabla 3.3	Áreas de beneficio y transformación de minerales .. 3.50
Tabla 3.4	Áreas para manejo de material sobrante ... 3.51
Tabla 3.5	Áreas de soporte minero .. 3.52
Tabla 3.6	Obras de drenaje mayores existentes en la vía Puente Iglesias – Palermo 3.58
Tabla 3.7	Características de las vías existentes en la zona baja del Proyecto 3.63
Tabla 3.8	Resumen de características de las vías de acceso a la zona alta del proyecto 3.64
Tabla 3.9	Infraestructura productiva las inmediaciones del Proyecto .. 3.66
Tabla 3.10	Infraestructura social- Centros educativos y recreación en el área del Proyecto 3.67
Tabla 3.11	Infraestructura social – canchas, casetas comunales y otros .. 3.68
Tabla 3.12	Infraestructura social – Puentes .. 3.69
Tabla 3.13	Concentraciones de Cu y Au de los sondeos realizados en el año 2015 3.75
Tabla 3.14	Diagrama paragenético generalizado de Nuevo Chaquiro ... 3.85
Tabla 3.15	Declaración de recursos minerales .. 3.87
Tabla 3.16	Reservas .. 3.88
Tabla 3.17	Producción anual de mineral y estéril .. 3.88
Tabla 3.18	Producción mineral (kt) .. 3.89
Tabla 3.19	Actividades de la etapa de construcción y montaje .. 3.102
Tabla 3.20	Actividades de la etapa de operación .. 3.104
Tabla 3.21	Tipos de cierre y descripción .. 3.106
Tabla 3.22	Actividades de la etapa de abandono y cierre .. 3.108
Tabla 3.23	Concentraciones de elementos según producto de la planta de beneficio 3.116
Tabla 3.24	Consultores participantes en los diseños de la explotación .. 3.145
Tabla 3.25	Total Desarrollos Horizontales ... 3.150
Tabla 3.26	Total Desarrollos verticales .. 3.155
Tabla 3.27 Total de roca extraída ... 3.155
Tabla 3.28 Dimensiones de los perfiles de desarrollo 3.160
Tabla 3.29 Cantidad de explosivos y accesorios para desarrollo 3.167
Tabla 3.30 Cantidad de explosivos y accesorios para desarrollo (Cont) 3.167
Tabla 3.31 Configuración de barrenos de Anillos de transición 3.168
Tabla 3.32 Configuración de barrenos de Anillos de plena producción 3.168
Tabla 3.33 Configuración de barrenos de Anillos de alta y baja Socavación 3.169
Tabla 3.34 Cantidad de explosivos y accesorios para HSN 3.171
Tabla 3.35 Factor de potencia de explosivos para HSN 3.172
Tabla 3.36 Tiempo de permanencia, de acuerdo con el valor de la temperatura efectiva ... 3.173
Tabla 3.37 Asignación de Equipos Diesel ... 3.177
Tabla 3.38 Estimación del flujo de aire principal para tres niveles de producción y dos niveles de desarrollo .. 3.178
Tabla 3.39 Cantidad de aire fresco para la flota de Diesel, trituradora, banda transportadora, piques de transferencia, otros servicios mineros 3.179
Tabla 3.40 Dimensiones equivalentes para perfiles de desarrollo 3.183
Tabla 3.41 Longitud de los pernos de acuerdo con el método Q-Barton 3.185
Tabla 3.42 Soporte preliminar: Intrusivo/ Tobas con alteración sericítica 3.185
Tabla 3.43 Soporte preliminar: Intrusivo/ Tobas con alteración Clorita-Sericita 3.185
Tabla 3.44 Soporte preliminar: Intrusivo/ Tobas con alteración potásica 3.186
Tabla 3.45 Soporte preliminar: Fortificación definida en el Estudio Conceptual 2016 ... 3.186
Tabla 3.46 Tabla Secuencia de minado – Producción y desarrollos 3.194
Tabla 3.47 Tabla de áreas (ha) de avance de áreas de las obras en superficie (zona en la montaña y zona en el valle) ... 3.206
Tabla 3.48 Ilustración de la composición de la flota para movimiento de tierras 3.211
Tabla 3.49 Lista de equipos móviles .. 3.213
Tabla 3.50 Especificaciones del equipo de cargue interno 3.219
Tabla 3.51 Especificaciones de diseño de las bandas transportadoras 3.222
Tabla 3.52 Segmentos del circuito de drenaje de aguas subterráneas 3.223
Tabla 3.53 Fases de instalación de la estación de bombeo 3.227
Tabla 3.54 Cronograma de construcción .. 3.229
Tabla 3.55 Resultados luminotécnicos de contaminación lumínica........... 3.236
Tabla 3.56 Calculo de la contaminación lumínica por zonas.................... 3.236
Tabla 3.57 Cálculo del flujo intruso.. 3.237
Tabla 3.58 Perforaciones utilizadas para el logueo geotécnico............... 3.241
Tabla 3.59 Resultados de Resistencia a la compresión uniaxial de acuerdo con la litología y tipo de alteración.......................... 3.246
Tabla 3.60 Propiedades elásticas registradas de acuerdo con la litología y tipo de alteración... 3.246
Tabla 3.61 Resultados de ensayos de Compresión triaxial....................... 3.246
Tabla 3.62 Resultados de ensayos de Tracción indirecta de acuerdo con la litología y tipo de alteración... 3.247
Tabla 3.63 Características de las discontinuidades 3.247
Tabla 3.64 Resultados ensayo de corte directo.................................... 3.247
Tabla 3.65 Distribución de esfuerzos in situ PORCE III – Proyecto Minera de Cobre Quebradona.. 3.249
Tabla 3.66 Resumen de la magnitud y orientación de los esfuerzos........... 3.250
Tabla 3.67 Ángulos de subsidencia y parámetros de corrección para el macizo rocoso ... 3.256
Tabla 3.68 Resultados de ensayos de laboratorio de resistencia y deformabilidad de las rocas tipo, sobre el trazado del túnel de desarrollo proyectado (Fuente: 05-2299-02 Quebradona Sublevel Caving Mine, SRK Consulting 2018) ... 3.260
Tabla 3.69 Ensayos realizados en muestras del sondeo CAU83 localizadas en zonas de cobertura de menos de 300 m................................. 3.262
Tabla 3.70 Ensayos realizados en muestras del sondeo CAU83 localizadas en zonas de cobertura de más de 300 m................................. 3.262
Tabla 3.71 Parámetros de la roca intacta .. 3.266
Tabla 3.72 Resultados obtenidos para establecer los parámetros resistentes, calculados para el macizo rocoso conformado por la unidad litológica de las Tobas (Tmc). Túnel de desarrollo minero proyectado a cámara de trituración. Mina Quebradona, excavación D&B.. 3.267
Tabla 3.73 Resultados obtenidos para establecer los parámetros resistentes, calculados para el macizo rocoso conformado por la unidad litológica de las Tobas (Tmc). Túnel de desarrollo minero proyectado a cámara de trituración. Mina Quebradona, excavación con TBM........................... 3.267
Tabla 3.74 Valores medios de coeficiente de permeabilidad....................... 3.268
Tabla 3.75 Cuadro de definición de la variable ESR 3.274
Tabla 3.76 Parámetros de cálculo a emplear al aplicar el método de las Curvas Características ... 3.280
Tabla 3.77 Resumen de resultados de los análisis mediante curvas características. Túnel con tuneladora .. 3.280
Tabla 3.78 Resumen de resultados de los análisis mediante curvas características. Túnel NATM ... 3.281
Tabla 3.79 Rangos Ponderados de Riesgo ... 3.284
Tabla 3.80 Probabilidad de "squeezing" en la Unidad de Tobas 285
Tabla 3.81 Escenario previsto en la zonificación geotécnica de los túneles proyectados, Mina Quebradona .. 3.288
Tabla 3.82 Familias de discontinuidades para análisis 3.289
Tabla 3.83 Cuñas críticas asociadas con las discontinuidades principales 3.289
Tabla 3.84 Propiedades de cálculo asignadas a los pernos 3.290
Tabla 3.85 Factor de Seguridad obtenido en las cuñas cinemáticamente inestables, al aplicar sostenimiento ST-II y ST-III 3.291
Tabla 3.86 Sostenimientos recomendados .. 3.292
Tabla 3.87 Características de los anillos colocados en algunos túneles relevantes ... 3.294
Tabla 3.88 Propiedades del Shotcrete .. 3.302
Tabla 3.89 Propiedades marcos metálicos ... 3.303
Tabla 3.90 Propiedades pernos .. 3.303
Tabla 3.91 Fases de cálculo. Pozo de ventilación 3.305
Tabla 3.92 Fases de cálculo. Túnel de acceso ejecutado con perforación y voladura .. 3.305
Tabla 3.93 Fases de cálculo. Túnel de acceso ejecutado con TBM 3.305
Tabla 3.94 Fases de cálculo. Caverna de trituración 3.306
Tabla 3.95 Resumen resultados. Fase final. Modelo Numérico. Pique de ventilación (RMR=50, Profundidad máxima 529m) 3.306
Tabla 3.96 Resumen resultados. Fase final. Modelo Numérico. Túnel de acceso ejecutado con perforación y voladura (Zona de falla RMR=20, Zona próxima a falla RMR=30 y Zona alejada a falla RMR=50. Máxima cobertera 907 m) ... 3.308
Tabla 3.97 Resumen resultados. Fase final. Modelo Numérico. Túnel acceso ejecutado con TBM (Zona de falla RMR=20, Zona próxima a falla RMR=30 y Zona alejada a falla RMR=50. Máxima cobertera 1030 m) 3.311
Tabla 3.98 Resumen resultados. Fase final. Modelo Numérico. Caverna de trituración (RMR=70, Máxima cobertera 1100m) .. 3.313

Tabla 3.99 Resumen resultados. Fase final. Análisis probabilístico. Túnel de acceso ejecutado con perforación y voladura (Zona de falla RMR=20, Zona próxima a falla RMR=30 y Zona alejada a falla RMR=50. Máxima cobertera 907 m) .. 3.316

Tabla 3.100 Desplazamientos con diferentes valores de desviación típica en la clave y en los hastiales para el túnel de acceso ejecutado mediante perforación y voladura __ 3.317

Tabla 3.101 Resumen resultados. Fase final. Análisis probabilístico. Caverna de trituración (RMR=70 y máxima cobertera 1100 m). ... 3.317

Tabla 3.102 Desplazamientos con diferentes valores de desviación típica en la clave y en los hastiales para la caverna de trituración .. 3.318

Tabla 3.103 Resumen resultados. Fase final. Análisis probabilístico. Pozo de ventilación (RMR=50 y máxima profundidad 529 m) .. 3.318

Tabla 3.104 Desplazamientos con diferentes valores de desviación típica en tres puntos clave del pozo de ventilación ... 3.319

Tabla 3.105 Información sobre capacidad de los depósitos del Proyecto 3.325

Tabla 3.106 eudo-aceleraciones adoptadas para los análisis de estabilidad ..3.330

Tabla 3.107 Tipos de soporte a considerar en diseño .. 3.331

Tabla 3.108 Capacidad de carga asumida en cimentaciones superficiales, estado límite de servicio (Tomada de CCPA, C10.6.2.6.1-1) .. 3.332

Tabla 3.109 Investigación ejecutada- trincheras ... 3.335

Tabla 3.110 Investigación ejecutada, perforación a rotación 3.335

Tabla 3.111 Resumen de pozos y pruebas de campo .. 3.337

Tabla 3.112 Resultados de ensayos de percusión (SPT) 3.338

Tabla 3.113 Resultados de ensayos de densidad in situ 3.339

Tabla 3.114 Resultados ensayos de clasificación granulométrica 3.339

Tabla 3.115 Resultados ensayos de corte directo en suelo 3.342

Tabla 3.116 Resultados de consolidación en suelos 3.343

Tabla 3.117 Resultados del ensayo de compresión triaxial en suelos 3.344

Tabla 3.118 Resultados de ensayos de carga puntual en roca 3.344

Tabla 3.119 Resultados ensayos de carga puntual en roca 3.345

Tabla 3.120 Resultados de los ensayos de corte directo en roca 3.346

Tabla 3.121 Líneas de refracción sísmica ... 3.347
Tabla 3.122 Resumen de resultados de corte directo y triaxial3.349
Tabla 3.123 Parámetros utilizados para evaluar la sección de talud de corte 3.352
Tabla 3.124 Parámetros de diseño para terraplén ..3.359
Tabla 3.125 Requisitos mínimos para materiales de terraplenes (INVIAS 220-13) ...3.361
Tabla 3.126 Parámetros de diseño para ZODMEs de material de lleno3.370
Tabla 3.127 Resultados análisis de estabilidad de los ZODMES3.370
Tabla 3.128 Resultado de los análisis de estabilidad de los depósitos temporales ...3.373
Tabla 3.129 Requerimientos mínimos de los materiales de lleno3.381
Tabla 3.130 Resumen de propiedades mecánicas3.382
Tabla 3.131 Parámetros geomecánicos utilizados en el modelo3.385
Tabla 3.132 Factores de seguridad de los taludes3.386
Tabla 3.133 Comportamiento infiltraciones ..3.388
Tabla 3.134 Plataformas para obras civiles zona baja del Proyecto (Zona superficial en el valle) ..3.391
Tabla 3.135 Plataformas para obras civiles zona alta del proyecto (zona superficial sobre la montaña) ...3.392
Tabla 3.136 Volumen estimado de cortes y llenos para plataformas zona baja del proyecto (zona superficial en el valle)3.393
Tabla 3.137 Volumen estimado de corte y lleno para plataformas zona alta del proyecto (zona superficial sobre la montaña)3.394
Tabla 3.138 Equipos Principales – Circuito de Trituración Primaria3.400
Tabla 3.139 Equipos Principales – Manejo de Mineral hacia Pila de Mineral Grueso ...3.401
Tabla 3.140 Equipos Principales – Pila de Mineral Grueso y Reclamo3.401
Tabla 3.141 Equipos Principales – Circuito de Trituración y Tamizado Secundario ..3.401
Tabla 3.142 Equipos Principales – Circuito de HPGR y Tamizado Terciario (en Húmedo) ...3.401
Tabla 3.143 Equipos Principales – Circuito de Molienda3.402
Tabla 3.144 Equipos Principales – Circuito de Flotación Flash3.402
Tabla 3.145 Equipos Principales – Circuito de Flotación Rougher de Cobre......3.402
Tabla 3.146 Equipos Principales – Circuito de Remolienda de Cobre3.402
Tabla 3.147 Equipos Principales – Circuito de Flotación de Limpiezas de Cobre3.403
Tabla 3.148 Equipos Principales – Espesamiento y Filtración de Concentrados
Tabla 3.149 Equipos Principales – Almacenamiento y Despacho de Concentrados
Tabla 3.150 Equipos Principales – Flotación de Pirita
Tabla 3.151 Equipos Principales – Espesamiento, Filtración y Transporte de Relaves
Tabla 3.152 Equipos Principales – Preparación de Reactivos
Tabla 3.153 Equipos Principales – Servicios de Planta
Tabla 3.154 Fuentes de ruido principales – Circuito de Trituración y Tamizado Secundario
Tabla 3.155 Fuentes de ruido principales – Circuito de HPGR y Tamizado Terciario (en Húmedo)
Tabla 3.156 Fuentes de ruido principales – Circuito de Molienda
Tabla 3.157 Fuentes de ruido principales – Circuito de Flotación Flash
Tabla 3.158 Fuentes de ruido principales – Circuito de Flotación Rougher de Cobre
Tabla 3.159 Fuentes de ruido principales – Circuito de Remolienda de Cobre
Tabla 3.160 Fuentes de ruido principales – Espesamiento y Filtración de Concentrados
Tabla 3.161 Fuentes de ruido principales – Espesamiento, Filtración y Transporte de Relaves
Tabla 3.162 Fuentes de ruido principales – Servicios de Planta
Tabla 3.163 Consumos máximos de materiales explosivos
Tabla 3.164 Distribución de almacenamiento de materiales explosivos
Tabla 3.165 Radios de seguridad del polvorín de construcción
Tabla 3.166 Distribución de almacenamiento de material explosivo en etapa de operación
Tabla 3.167 Radios de seguridad para polvorín etapa de explotación
Tabla 3.168 Resumen de aspectos ambientales para producción de emulsiones
Tabla 3.169 Especificaciones para la oficina principal del Proyecto
Tabla 3.170 Especificaciones para el taller de mantenimiento
Tabla 3.171 Instalaciones subterráneas
Tabla 3.172 Especificaciones del laboratorio, bodega de geología y otras estructuras
Tabla 3.173 Especificaciones para las instalaciones de formación e inducción.......................... 3.428
Tabla 3.174 Especificaciones de la estación de combustible ... 3.436
Tabla 3.175 Componentes y especificaciones del Campamento ... 3.437
Tabla 3.176 Espacio mínimo requerido para el comedor superficial 3.441
Tabla 3.177 Espacio mínimo requerido para el centro médico ... 3.442
Tabla 3.178 Especificaciones para la portería ... 3.443
Tabla 3.179 Instalaciones subterráneas .. 3.444
Tabla 3.180 Estimación del caudal de agua para uso doméstico en construcción (parte baja) .. 3.453
Tabla 3.181 Estimación caudal de agua para uso doméstico en operación (parte baja) 3.454
Tabla 3.182 Estimación caudal de agua para uso doméstico en cierre (parte baja) 3.454
Tabla 3.183 Estimación caudal de agua para uso no doméstico en construcción (parte baja) .. 3.454
Tabla 3.184 Estimación caudal de agua para uso no doméstico en construcción (parte alta) .. 3.455
Tabla 3.185 Demanda de agua para uso no doméstico. Fase de operación (parte baja) 3.455
Tabla 3.186 Estimación caudal de agua para uso no doméstico en cierre (parte baja) 3.456
Tabla 3.187 Resumen de captaciones y usos del recurso solicitado en concesión 3.456
Tabla 3.188 Horas estimadas de bombeo desde el río Cauca hacia el proyecto 3.457
Tabla 3.189 Características de los equipos de captación construcción año 1 3.458
Tabla 3.190 Características de los equipos de captación construcción y operación 3.460
Tabla 3.191 Características principales de los equipos de las estaciones de bombeo 3.461
Tabla 3.192 Requerimientos de tratamiento de agua no doméstica para la etapa de construcción .. 3.462
Tabla 3.193 Requerimientos de tratamiento de agua no doméstica para la etapa de Operación .. 3.463
Tabla 3.194 Resumen de las plantas de tratamiento .. 3.463
Tabla 3.195 Zonas generadoras de aguas residuales domésticas para vertimiento 3.465
Tabla 3.196 Zonas generadoras de vertimientos de agua no doméstica y sistemas de tratamiento. Etapa de construcción .. 3.467
Tabla 3.197 Zonas generadoras de vertimientos de agua no doméstica y sistemas de tratamiento. Etapa de operación .. 3.468
Tabla 3.198 Zonas generadoras de vertimientos de agua no doméstica y sistemas de tratamiento. Etapa de cierre ... 3.469
Tabla 3.199 Resumen de vertimientos de tipo doméstico y no doméstico, durante las etapas de construcción, operación y cierre .. 3.469
Tabla 3.200 Caudal de diseño de la PTARD para construcción, operación y cierre ... 3.470
Tabla 3.201 Características básicas del proceso aerobio .. 3.471
Tabla 3.202 Caudales afluentes máximos ... 3.477
Tabla 3.203 Resumen de sistemas de tratamiento aguas residuales no domésticas ... 3.481
Tabla 3.204 Almacenamiento de agua para el control de incendios 3.486
Tabla 3.205 Consumo de energía de la mina ... 3.489
Tabla 3.206 Elementos asociados al transporte terrestre en relación con el proyecto .. 3.492
Tabla 3.207 Sumario de criterios de diseño para el transporte de mercancías 3.492
Tabla 3.208 Datos sobre las condiciones para el camionaje 3.495
Tabla 3.209 Línea de ruta y distancias ... 3.495
Tabla 3.210 Ciclo estimado para el camión, de la mina al puerto 3.495
Tabla 3.211 Resumen del diseño de la operación de camiones 3.496
Tabla 3.212 Estimados para la flota de transporte ... 3.496
Tabla 3.213 Contenedores en puerto .. 3.497
Tabla 3.214 Contenedores para concentrado ... 3.498
Tabla 3.215 Longitud de ampliación para vías existentes .. 3.504
Tabla 3.216 TPD en los diferentes puntos de aforo .. 3.507
Tabla 3.217 Volumen estimado de corte y lleno para vías zona baja del proyecto (accesos existentes) ... 3.507
Tabla 3.218 Vías para construcción (parte baja) .. 3.512
Tabla 3.219 Vías para operación (parte baja) ... 3.513
Tabla 3.220 Vías en la zona superficial sobre la montaña (parte alta) 3.514
Tabla 3.221 Criterios de diseño vías para construcción .. 3.515
<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.222</td>
<td>Criterios de diseño vías operación</td>
<td>3.516</td>
</tr>
<tr>
<td>3.223</td>
<td>Volumen estimado de corte y lleno para vías zona baja del proyecto</td>
<td>3.518</td>
</tr>
<tr>
<td>3.224</td>
<td>Volumen estimado de corte y lleno para vías zona alta del proyecto</td>
<td>3.519</td>
</tr>
<tr>
<td>3.225</td>
<td>Crecientes de diseño (años) asociadas a los tipos de obras de drenaje propuestos</td>
<td>3.519</td>
</tr>
<tr>
<td>3.226</td>
<td>Obras de cruce menores típicas</td>
<td>3.519</td>
</tr>
<tr>
<td>3.227</td>
<td>Obras de drenaje para las vías y plataformas</td>
<td>3.520</td>
</tr>
<tr>
<td>3.228</td>
<td>Cantidades resumidas de las obras de drenaje</td>
<td>3.521</td>
</tr>
<tr>
<td>3.229</td>
<td>Identificación de las obras de cruce de cuerpos de agua asociados a las vías del proyecto</td>
<td>3.522</td>
</tr>
<tr>
<td>3.230</td>
<td>Procesos para el beneficio y transformación de minerales</td>
<td>3.533</td>
</tr>
<tr>
<td>3.231</td>
<td>Principales parámetros estimados de diseño de la planta de beneficio del Proyecto</td>
<td>3.534</td>
</tr>
<tr>
<td>3.232</td>
<td>Balance de masa general – Área de trituración primario subterráneo y transferencia de mineral hacia superficie</td>
<td>3.536</td>
</tr>
<tr>
<td>3.233</td>
<td>Balance de masa general – Área de trituración secundaria</td>
<td>3.537</td>
</tr>
<tr>
<td>3.234</td>
<td>Balance de masa general – Área de HPGR</td>
<td>3.539</td>
</tr>
<tr>
<td>3.235</td>
<td>Balance de masa general – Área de Molienda y Flotación Flash</td>
<td>3.541</td>
</tr>
<tr>
<td>3.236</td>
<td>Balance de masa general – Área de Flotación Rougher y Scavenger de Cobre</td>
<td>3.543</td>
</tr>
<tr>
<td>3.237</td>
<td>Balance de masa general – Área de Remolienda de Cobre</td>
<td>3.545</td>
</tr>
<tr>
<td>3.238</td>
<td>Balance de masa general – Área de Flotación Limpieza de Cobre</td>
<td>3.547</td>
</tr>
<tr>
<td>3.239</td>
<td>Balance de masa general – Área de Espesamiento y Filtración de Concentrado</td>
<td>3.549</td>
</tr>
<tr>
<td>3.240</td>
<td>Balance de masa general – Área de Almacenamiento y Despacho de Concentrados</td>
<td>3.551</td>
</tr>
<tr>
<td>3.241</td>
<td>Balance de masa general – Área de Flotación Rougher de Pirita</td>
<td>3.551</td>
</tr>
<tr>
<td>3.242</td>
<td>Balance de masa general – Área de Espesamiento, Filtrado y Transporte de Relaves filtrados inertes</td>
<td>3.554</td>
</tr>
<tr>
<td>3.243</td>
<td>Balance de masa general – Área de Espesamiento, Filtrado y Transporte de relaves con piritita</td>
<td>3.555</td>
</tr>
<tr>
<td>3.244</td>
<td>Balance de Agua de Planta de beneficio</td>
<td>3.556</td>
</tr>
<tr>
<td>3.245</td>
<td>Balance de agua simplificado planta de beneficio</td>
<td>3.556</td>
</tr>
</tbody>
</table>
Tabla 3.246 Recuperaciones metalúrgicas globales estimadas 3.566
Tabla 3.247 Cantidades de material de fuentes externas necesarias para el Proyecto .. 3.568
Tabla 3.248 Cálculo demanda pico de energía para construcción 3.575
Tabla 3.249 Cálculo demanda de energía para operación 3.579
Tabla 3.250 Listado de Subestaciones eléctricas .. 3.580
Tabla 3.251 Listado de cargas por subestación ... 3.580
Tabla 3.252 Consumo estimado de Cal .. 3.582
Tabla 3.253 Consumo Estimado de Colector de Cobre 3.582
Tabla 3.254 Consumo Estimado de Promotor ... 3.583
Tabla 3.255 Consumo Estimado de Colector de Pirita 3.583
Tabla 3.256 Consumo estimado de espumante .. 3.584
Tabla 3.257 Consumo estimado de flocculante .. 3.585
Tabla 3.258 Consumo estimado de depresor de pirita 3.586
Tabla 3.259 Consumo estimado de dispersante .. 3.586
Tabla 3.260 Parámetros de perforación para voladuras de desarrollo 3.587
Tabla 3.261 Factores de carga para labores de desarrollo 3.587
Tabla 3.262 Explosivos y accesorios para perfiles de desarrollo 3.588
Tabla 3.263 Parámetros de perforación para voladuras de producción 3.588
Tabla 3.264 Definición de los diseños para SLC ... 3.588
Tabla 3.265 Factores de carga por parada .. 3.588
Tabla 3.266 Consumo de explosivos por diseño ... 3.589
Tabla 3.267 Consumo de explosivos y accesorios para voladuras de desarrollo 3.589
Tabla 3.268 Consumo de explosivos y accesorios para voladuras de producción .. 3.590
Tabla 3.269 Consumo de combustible durante la etapa de construcción 3.592
Tabla 3.270 Consumo de combustible de la flota minera. Etapa de operación 3.593
Tabla 3.271 Total de material requerido ... 3.594
Tabla 3.272 Total de bombas requeridas ... 3.594
Tabla 3.273 Insumos para sostenimiento de mina ... 3.595
Tabla 3.274 Consumo de Medios de Molienda .. 3.595
Tabla 3.275 Cantidades estimadas de material sobrante de obras superficiales 3.596
Tabla 3.276 Origen y destino de materiales sobrantes en cada etapa del Proyecto

Tabla 3.277 Capacidad de los ZODMEs y pila de suelo. Zona baja del Proyecto

Tabla 3.278 Origen - destino del material a depositar de las vías para construcción y operación

Tabla 3.279 Origen – destino del material a depositar de las plataformas y obras para construcción y operación

Tabla 3.280 Capacidad depósito temporal

Tabla 3.281 Capacidad de los ZODMEs proyectados zona alta del Proyecto

Tabla 3.282 Origen - destino del material a depositar de la vía zona alta del Proyecto

Tabla 3.283 Origen – destino del material a depositar plataformas y obras zona alta del Proyecto

Tabla 3.284 Análisis de roca total (n: 272)

Tabla 3.285 Concentración elementos metálicos más importantes en Nuevo Chaquiro (Muestras con alteración hidrotermal. N=33.696)

Tabla 3.286 Concentración elementos metálicos más importantes en zona túnel (Muestras con alteración hidrotermal. N=8)

Tabla 3.287 Concentración elementos metálicos más importantes en zona infraestructura (Muestras sin alteración hidrotermal. N=39)

Tabla 3.288 Evaluación de radionucleidos emisores de rayos Gamma en material de proceso (concentrado, relave con pirita, relave inerte)

Tabla 3.289 Potencial de generación de ácido de materiales a disponer

Tabla 3.290 Plan de mina y plan de producción de la planta

Tabla 3.291 Criterios para el diseño los contrafuertes y los depósitos

Tabla 3.292 Porcentaje de área emplazada por el TMF en cada predio

Tabla 3.293 Resumen del plan de llenado del depósito de relaves filtrados (TMF)

Tabla 3.294 Resumen del plan de llenado del depósito de pirita

Tabla 3.295 Capacidad de los sedimentadores del TMF

Tabla 3.296 Capacidad de los sedimentadores de las ZODMEs

Tabla 3.297 Capacidad de las pozas colectoras - Depósito de pirita norte

Tabla 3.298 Criterios de diseño

Tabla 3.299 Preparación de la fundación- Espesores de coluvión a remover

Tabla 3.300 Parámetros de Resistencia
Tabla 3.301 Niveles de agua en el área del TMF ... 3.658
Tabla 3.302 Casos analizados para el Contrafuerte Norte del TMF 3.665
Tabla 3.303 Resultados del análisis de estabilidad para el Contrafuerte Norte 3.665
Tabla 3.304 Casos Analizados para el Contrafuerte Sur 3.665
Tabla 3.305 Resultados del Análisis de Estabilidad para el Contrafuerte Sur . 3.665
Tabla 3.306 Casos Analizados para el TMF .. 3.666
Tabla 3.307 Resultados del Análisis de Estabilidad para el TMF 3.666
Tabla 3.308 Casos analizados para los bancos del TMF 3.666
Tabla 3.309 Resultados del análisis de estabilidad para los bancos del TMF . 3.666
Tabla 3.310 Casos analizados para los contrafuertes del depósito de pirita ... 3.667
Tabla 3.311 Resultados del análisis de estabilidad para los contrafuertes del depósito de pirita ... 3.667
Tabla 3.312 Resultados del análisis de estabilidad para el depósito de pirita . 3.667
Tabla 3.313 Resumen grado de estabilidad y riesgo de inestabilidad 3.669
Tabla 3.314 Clasificación de Presas (CDA, 2013) 3.669
Tabla 3.315 Resumen grado de estabilidad y riesgo de inestabilidad 3.671
Tabla 3.316 Avenida de diseño y Movimiento sísmico sugeridos (CDA, 2013) 3.671
Tabla 3.317 Datos Meteorológicos para el Proyecto 3.672
Tabla 3.318 Resumen propiedades perfil de suelo en el área del TMF 3.673
Tabla 3.319 Aceleración Pico del terreno TMF Quebradona (PGA) obtenidas Análisis Probabilístico ... 3.674
Tabla 3.320 Resultados análisis Determinístico y Terremoto Máximo Creíble (MCE) ... 3.674
Tabla 3.321 Criterios de Diseño para el sistema de Drenes del TMF 3.680
Tabla 3.322 Estimación de la escorrentía del dren 3.681
Tabla 3.323 Parámetros de diseño usados en el diseño de los drenes y área mínima de drenaje ... 3.683
Tabla 3.324 Zonas homogéneas y restricciones de usos 3.707
Tabla 3.325 Residuos sólidos generados en la mina para las diferentes etapas 3.708
Tabla 3.326 Áreas donde se generan residuos de construcción 3.709
Tabla 3.327 Volumen total de residuos generados por la construcción de las edificaciones de la mina - Etapa de construcción 3.710
Tabla 3.328 Producción de mineral ... 3.712
Tabla 3.329 Relación de mineral/m³ de material removido 3.712
Tabla 3.330 Inversiones de capital requeridas .. 3.713
Tabla 3.331 Costos de operación .. 3.716
Tabla 3.332 Costos de estabilización de áreas intervenidas (miles de US$) ... 3.716
Tabla 3.333 Costos de operación .. 3.717
Tabla 3.334 Costos totales estimados del cierre (miles de US$) 3.717
Tabla 3.335 Costos de cierre según actividades (miles de US$) 3.717
Tabla 3.336 Costos de cierre discriminados por obras (miles de US$) 3.718
Tabla 3.337 Cronograma de actividades de construcción del Proyecto 3.719
Tabla 3.338 Cronograma de actividades de cierre progresivo, cierre y pos cierre ... 3.721
Tabla 3.339 Ejemplo de funciones por niveles ... 3.723
Tabla 3.340 Actividades de construcción de infraestructura y montaje de equipos .. 3.728
Tabla 3.341 Actividades Preliminares .. 3.729
Tabla 3.342 Actividades de extracción .. 3.729
Tabla 3.343 Actividades de beneficiamiento y transformación 3.730
Tabla 3.344 Actividades de deposición de arenas ... 3.730
Tabla 3.345 Actividades de abandono y cierre .. 3.731
Tabla 3.346 Actividades de postcierre .. 3.731
Tabla 3.347 Pronóstico de personal para el desarrollo del proyecto 3.731
Tabla 3.348 Proyección de personal calificado por disciplina durante la fase de construcción y montaje ... 3.731
<table>
<thead>
<tr>
<th>Figura</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Localización del contrato de concesión 5881</td>
<td>3.42</td>
</tr>
<tr>
<td>3.2</td>
<td>Localización general del proyecto</td>
<td>3.44</td>
</tr>
<tr>
<td>3.3</td>
<td>Localización de áreas de intervención y actividad minera</td>
<td>3.45</td>
</tr>
<tr>
<td>3.4</td>
<td>Zona superficial sobre la montaña. Vista en planta</td>
<td>3.47</td>
</tr>
<tr>
<td>3.5</td>
<td>Zona superficial en el valle – Parte baja</td>
<td>3.48</td>
</tr>
<tr>
<td>3.6</td>
<td>Zonas de deformación asociadas a la Subsidenicia</td>
<td>3.50</td>
</tr>
<tr>
<td>3.7</td>
<td>Infraestructura existente</td>
<td>3.55</td>
</tr>
<tr>
<td>3.8</td>
<td>Vista en planta vía Puente Iglesias - Palermo</td>
<td>3.57</td>
</tr>
<tr>
<td>3.9</td>
<td>Vista en planta vía San Antonio</td>
<td>3.60</td>
</tr>
<tr>
<td>3.10</td>
<td>Vista en planta acceso La Mancha</td>
<td>3.62</td>
</tr>
<tr>
<td>3.11</td>
<td>Vista en planta vía Palo Cabildo y vía Galilea (por Finca Galilea)</td>
<td>3.65</td>
</tr>
<tr>
<td>3.12</td>
<td>Alteraciones mineralógicas en el distrito Quebradona (2010)</td>
<td>3.73</td>
</tr>
<tr>
<td>3.13</td>
<td>Perforaciones preliminares para caracterizar el depósito Nuevo Chaquiro</td>
<td>3.74</td>
</tr>
<tr>
<td>3.14</td>
<td>Esquema de diques cuarzodioríticos ascendiendo cerca de la superficie</td>
<td>3.74</td>
</tr>
<tr>
<td>3.15</td>
<td>Arreglo espacial de los diques cuarzodioríticos del depósito Nuevo Chaquiro</td>
<td>3.77</td>
</tr>
<tr>
<td>3.16</td>
<td>Contacto discordante entre la Formación Amagá y los depósitos de vertiente</td>
<td>3.78</td>
</tr>
<tr>
<td>3.17</td>
<td>Vetillas densas típicas de Au en el stockwork</td>
<td>3.80</td>
</tr>
<tr>
<td>3.18</td>
<td>Grano de Au dentro de la calcopirita – CHA – 032 a 840,3 m</td>
<td>3.80</td>
</tr>
<tr>
<td>3.19</td>
<td>Perforaciones en la zona de alta ley (14 % Cu)</td>
<td>3.81</td>
</tr>
<tr>
<td>3.20</td>
<td>Testigo de perforación con venas de cuarzo, calcopirita y pirita en la zona de alta ley de la cúpula</td>
<td>3.82</td>
</tr>
<tr>
<td>3.21</td>
<td>Cuarzodiorita temprana en la zona de Alta ley</td>
<td>3.82</td>
</tr>
<tr>
<td>3.22</td>
<td>Zona de alta ley con concentraciones de Cu de 0,6%</td>
<td>3.83</td>
</tr>
<tr>
<td>3.23</td>
<td>Zona de baja ley con concentraciones de 0,45% de Cu</td>
<td>3.84</td>
</tr>
<tr>
<td>3.24</td>
<td>Alteraciones de Nuevo Chaquiro</td>
<td>3.84</td>
</tr>
<tr>
<td>3.25</td>
<td>TM 5881 vs DMI</td>
<td>3.86</td>
</tr>
</tbody>
</table>
Figura 3.26 Polígono para exploración adicional ... 3.87
Figura 3.27 Producción anual de mineral y estéril ... 3.89
Figura 3.28 Mapa geotectónico de Colombia ... 3.91
Figura 3.29 Reconstrucción tectónica esquemática del occidente colombiano 3.92
Figura 3.30 Reconstrucción tectónica esquemática del occidente colombiano representada en secciones transversales ... 3.92
Figura 3.31 Mapa de geología regional de la zona de estudio. En rojo el área aproximada de trabajo ... 3.93
Figura 3.32 Geología local en la zona del depósito Nuevo Chaquiro (a partir de cartografía 1:25:000) ... 3.94
Figura 3.33 Tobas de ceniza con alteración previsiva moderada .. 3.95
Figura 3.34 Diorita intramineral ... 3.96
Figura 3.35 Diorita tardía obtenida a partir de testigos de perforación 3.97
Figura 3.36 Cuarzodiorita temprana .. 3.97
Figura 3.37 Cuarzodiorita intramineral .. 3.98
Figura 3.38 Mapa de isopiezas ... 3.99
Figura 3.39 Etapas de desarrollo del Proyecto minero .. 3.100
Figura 3.40 Etapas del Proyecto minero ... 3.101
Figura 3.41 Cronograma de Construcción y montaje ... 3.102
Figura 3.42 Cronograma de la etapa post-cierre .. 3.109
Figura 3.43 Diseño del proyecto minero ... 3.110
Figura 3.44 Vista en Planta de las áreas de explotación (subterráneas) 3.111
Figura 3.45 Vistas en Norte-Sur y Oeste-Este de áreas de explotación (subterráneas) .. 3.112
Figura 3.46 Vista en planta y perfil de los accesos al área de explotación 3.112
Figura 3.47 Ubicación de la Planta de beneficio ... 3.113
Figura 3.48 Ubicación de depósito de relaves filtrados ... 3.114
Figura 3.49 Localización depósito temporal de estériles ... 3.119
Figura 3.50 Localización Depósito de Pirita ... 3.120
Figura 3.51 Instalaciones de soporte .. 3.121
Figura 3.52 Esquema de las propuestas de ejecución de acceso a Cámara de trituración y zona superior del yacimiento para preparación y desarrollo del yacimiento SLC .. 3.123
Figura 3.53 Bloque diagrama del emplazamiento del yacimiento, y accesos a mina para preparación y desarrollos de Hundimiento por subniveles 3.123
Figura 3.54 Técnica de arranque mecánico con micropilotes 3.124
Figura 3.55 Sección de 10mx10m P&V, prevista para los primeros metros 3.125
Figura 3.56 Ejemplo de un plan de tiro .. 3.128
Figura 3.57 Esquema de perforación y carga de la voladura 3.129
Figura 3.58 Carga de un plan de tiro ya perforado 3.130
Figura 3.59 Ventilación de un túnel mediante manga de ventilación 3.131
Figura 3.60 Esquema de sostenimiento mediante Shotcrete por vía húmeda . 3.132
Figura 3.61 Esquema de ejecución de apernado 3.134
Figura 3.62 Esquema de colocación de marcos mediante plataforma elevadora 3.135
Figura 3.63 Paraguas de micropilotes en el embocuille de un túnel, y esquema de bloque diagrama... 3.136
Figura 3.64 Introducción del micropilote en el taladro perforado 3.136
Figura 3.65 Armadura y relleno ... 3.137
Figura 3.66 Entronque de galería de conexión con túnel principal 3.137
Figura 3.67 Sección longitudinal de la caverna de trituración 3.140
Figura 3.68 Definición geométrica de los pozos de ventilación 3.141
Figura 3.69 Definición geométrica de los Piques de transferencia 3.141
Figura 3.70 Proceso del Raise Boring (Atlas Copco) 3.142
Figura 3.71 Perforación del sondeo piloto ... 3.143
Figura 3.72 Proceso de escariado Convencional Raise Boring 3.144
Figura 3.73 Ruta de transporte de sitio de mina al puerto de Buenaventura ... 3.145
Figura 3.74 Vistas Perfil y en Planta de los dominios 0,45%Cu y 0,6%Cu 3.146
Figura 3.75 Ilustración del método de extracción de hundimiento por subniveles (SLC) ... 3.148
Figura 3.76 Ciclo de operaciones unitarias, método de perforación y voladura para desarrollos verticales ... 3.149
Figura 3.77 Jumbo de dos brazos (Sandvik DD422) 3.151
Figura 3.78 Equipo para cargar explosivos normet charme 16110 B 3.151
Figura 3.79 Equipos para cargue y transporte. Cargador lh621 y camión lh633i3.152
Figura 3.80 Equipo para desabombe de tipo bti - rms 18 3.153
Figura 3.81 Equipo para concreto lanzado Normet hilmec sf 605 3.154
Figura 3.82 Equipo para instalación de pernos sandvick ds411 .. 3.154
Figura 3.83 Secuencia de Arranque: Perforación, Carga de Explosivo, Voladura y Cargue de Mineral o Esteril ... 3.157
Figura 3.84 Diseños de Voladura de producción para Hundimiento por subniveles .. 3.157
Figura 3.85 Cargue y transporte de mineral .. 3.158
Figura 3.86 Nivel de transferencia ... 3.159
Figura 3.87 Diagrama de perforación del Perfil E1 .. 3.161
Figura 3.88 Diagrama de perforación del Perfil D4 .. 3.161
Figura 3.89 Diagrama de perforación del Perfil D3 .. 3.162
Figura 3.90 Diagrama de perforación del Perfil F1 .. 3.162
Figura 3.91 Diagrama de perforación del Perfil F2 .. 3.163
Figura 3.92 Diagrama de perforación del Perfil D2 .. 3.163
Figura 3.93 Diagrama de perforación del Perfil D1 .. 3.164
Figura 3.94 Diagrama de perforación del Perfil C1 .. 3.164
Figura 3.95 Diagrama de perforación del Perfil C2 .. 3.165
Figura 3.96 Diagrama de perforación del Perfil B1 .. 3.165
Figura 3.97 Diagrama de perforación del Perfil A1 .. 3.166
Figura 3.98 Diagrama de perforación del Perfil F3 .. 3.166
Figura 3.99 Diagrama de distribución de energía para Anillos de transición ... 3.168
Figura 3.100 Diagrama de distribución de energía para anillo de producción . 3.169
Figura 3.101 Diagrama de distribución de energía para los anillos de socavación Alto ... 3.170
Figura 3.102 Diagrama de distribución de energía para los anillos de socavación bajo ... 3.171
Figura 3.103 Gráfico psicrométrico (P = 80 kPa): Regulación colombiana del estrés térmico ... 3.173
Figura 3.104 Estrategia de ventilación, fase 1 ... 3.174
Figura 3.105 Primera cámara subterránea de ventiladores, un pozo de extracción de aire viciado y uno de aire fresco hacia la superficie 3.175
Figura 3.106 Cronología de requerimiento de aire fresco con aumento de la flota de camiones ... 3.175
Figura 3.107 Modelo de ventilación para la LoM ... 3.178
Figura 3.108 Propuesta de disposición de ventiladores ... 3.179
Figura 3.109 Regulación internacional y colombiana. Mínimos y máximos nominales y contaminantes individuales ... 3.180
Figura 3.110 Nivel de producción 1207 .. 3.180
Figura 3.111 Nivel de producción 1262 .. 3.181
Figura 3.112 Nivel de desarrollo 1180 .. 3.182
Figura 3.113 Estimación del sostenimiento de Roca (Barton, 1974) - Lit / Alt:
Intrusivo-Toba / Sericita .. 3.183
Figura 3.114 Estimación del sostenimiento de Roca (Barton, 1974) - Lit / Alt:
Intrusivo-Toba / Clorita-Sericita .. 3.184
Figura 3.115 Estimación del sostenimiento de Roca (Barton, 1974) - Lit / Alt:
Intrusivo-Toba / Potasica ... 3.184
Figura 3.117 Diseño geométrico de la mina. Espaciamiento y subniveles 3.188
Figura 3.118 Diseño geométrico de la mina. Excavaciones de soporte 3.189
Figura 3.119 Diseño geométrico de la mina. Rampa, galerías y piques 3.190
Figura 3.120 Distribución de galerías de arranque (vista lateral y sección)..... 3.190
Figura 3.121 Distribución de arranque (vista en planta) 3.191
Figura 3.122 Distribución de niveles en la secuencia de extracción............ 3.192
Figura 3.123 Esquema de túneles de acceso al cuerpo mineralizado y a la trituradora subterránea ... 3.193
Figura 3.124 Año 1 (Construcción). Mina Subterránea 3.193
Figura 3.125 Año 2 (Construcción). Mina Subterránea 3.197
Figura 3.126 Año 3 (Construcción). Mina Subterránea 3.198
Figura 3.127 Año 4 (Construcción). Mina Subterránea 3.199
Figura 3.128 Año 1 (Operación). Mina Subterránea .. 3.200
Figura 3.129 Año 2 (Operación). Mina Subterránea .. 3.200
Figura 3.130 Año 3 (Operación). Mina Subterránea .. 3.201
Figura 3.133 Año 10 (Operación). Mina Subterránea 3.203
Figura 3.134 Año 15 (Operación). Mina Subterránea 3.204
Figura 3.135 Año 20 (Operación). Mina Subterránea 3.204
Figura 3.136 Año 21 (Operación). Mina Subterránea 3.205
Figura 3.137 Duración de la explotación ... 3.210
Figura 3.138 Tipos de equipos principales para la operación minera 3.214
Figura 3.139 Sistema de manejo de material – Piques de traspaso de mineral,
 Nivel de transferencia, trituradora y banda transportadora 3.217
Figura 3.140 Nivel de Transferencia de Mineral 1152 ... 3.217
Figura 3.141 Trituradora Giratoria y Estación de Transferencia 3.220
Figura 3.142 Transporte de material mineral a superficie 3.222
Figura 3.143 Sistema de bandas transportadoras - Perfil 3.224
Figura 3.144 Sistema de bandas transportadoras – Planta y perfil 3.225
Figura 3.145 Sistema de drenaje de aguas subterráneas para la etapa de
 construcción y montaje .. 3.226
Figura 3.146 Sistema de drenaje de aguas subterráneas para la etapa de
 operación .. 3.227
Figura 3.147 Sistema de drenaje de aguas crudas ... 3.228
Figura 3.148 Sistema de iluminación exterior. Área integrada de operaciones
 (AIO) .. 3.231
Figura 3.149 Sistema de iluminación exterior. Área Campamento 3.231
Figura 3.150 Sistema de iluminación exterior. Área Planta de beneficio 3.232
Figura 3.151 Huella de iluminación en el área del proyecto año 2016 3.232
Figura 3.152 Huella de iluminación en el área del proyecto año 2018 3.233
Figura 3.153 Esquema general de las distintas direcciones de emisión en la
 generación de contaminación lumínica .. 3.233
Figura 3.154 Cálculo contaminación lumínica. – RETILAP cap. 575.3 3.235
Figura 3.155 Hoja datos luminaria ... 3.235
Figura 3.156 Espacio sin iluminación entre luminarias .. 3.237
Figura 3.157 Render planta de beneficio .. 3.238
Figura 3.158 Render portería .. 3.239
Figura 3.159 Render campamento .. 3.239
Figura 3.160 Render AIO .. 3.240
Figura 3.161 Área de influencia luminaria individual ... 3.241
Figura 3.162 Localización de los pozos ... 3.242
Figura 3.163 Perfil de la zona de exploración ... 3.243
Figura 3.164 Distribución del Índice de calidad de la roca- RQD % 3.244
Figura 3.165 Distribución de la Frecuencia de Fracturas por Metro- FF/m...... 3.245
Figura 3.166 Distribución de la Resistencia Estimada en Campo- FES 3.245
Figura 3.167 Muestras preparadas para ensayos de laboratorio 3.247
Figura 3.168 Relación entre la Rugosidad (JRC) y el Ángulo de Fricción 3.248
Figura 3.169 Mapa tectónico general del norte de Sur América.................... 3.249
Figura 3.170 Representación estereográfica de la orientación de los esfuerzos in situ calculados para el Proyecto Porce III y los estimados para el Proyecto 3.250
Figura 3.171 Orientación principal de esfuerzos para el Proyecto en superposición con los reportados para el proyecto Porce III.................. 3.251
Figura 3.172 Representación especial de los esfuerzos obtenidos de los ensayos de laboratorio ... 3.251
Figura 3.173 Distribución del esfuerzo principal vs profundidad.................. 3.252
Figura 3.174 Distribución del esfuerzo principal vs profundidad.................. 3.253
Figura 3.175 Perfil representativo de la distribución espacial de clasificación del macizo Rocoso... 3.253
Figura 3.176 Vista en planta de la distribución espacial de clasificación del macizo Rocoso... 3.254
Figura 3.177 Representación de la hundibilidad para el nivel 1675; Laubscher 1990 ... 3.255
Figura 3.178 Perfil representativo de la zona de subsidencia en función de la clasificación del macizo Rocoso .. 3.256
Figura 3.179 Perfil representativo de la zona de subsidencia 3.257
Figura 3.180 Vista en planta de la zona de subsidencia evaluada en el modelo numérico ... 3.258
Figura 3.181 Vista isométrica del volumen modelado.................................. 3.258
Figura 3.182 Vista en planta de los factores de seguridad en la zona de subsidencia, la línea naranja delimita los Factores de Seguridad mayores a 2.0 (FOS>2.0)... 3.259
Figura 3.183 Planta y perfil del trazado del túnel de desarrollo proyectado..... 3.261
Figura 3.184 Gráfica de la relación densidad aparente-resistencia a compresión simple de la unidad Tobas... 3.264
Figura 3.185 Gráfica de ajuste de roca intacta de la Unidad de Tobas, para profundidad de menos de 350 m ... 3.264
Figura 3.186 Gráfica de ajuste de roca intacta de la Unidad de Tobas, para profundidad de más de 350 m ... 3.265
Figura 3.187 Gráfica de la relación entre el módulo de Young y la resistencia a compresión simple de la Unidad Tobas ... 3.265
Figura 3.188 Valores bibliográficos de la constante mi, para roca intacta, según grupos de rocas (Hoek et al, 1996) ... 3.266
Figura 3.189 Estimación del caudal de infiltración a los túneles de acceso proyectados ... 3.269
Figura 3.190 Perfil geotécnico Túnel de acceso a cámara de trituración 3.270
Figura 3.191 Perfil geotécnico Túnel de acceso a parte alta del yacimiento (Socavación) .. 3.271
Figura 3.192 Equivalencia entre el RMR y el Q (Barton y Bieniawski. RMR and Q – Setting récords, T&T, feb.2008) ... 3.273
Figura 3.193 Cuadro de sostenimiento en función del índice Q (NGI, 2015)... 3.275
Figura 3.194 Reducción sísmica del valor de Q para obtener un aumento del 25 % en la presión de sostenimiento ... 3.276
Figura 3.195 Longitudes de pase y tiempos de estabilidad sin soporte (Bieniawski, 1989) .. 3.277
Figura 3.196 Esquema de una sección longitudinal del avance del túnel 3.277
Figura 3.197 Representación de las distintas curvas en un gráfico p, vs u, 3.278
Figura 3.198 Distintas opciones a la hora de elegir el sostenimiento 3.279
Figura 3.199 Diagrama de Contorno concentración de polos correspondientes a los datos de discontinuidades en el sondeo 077 y 079, a nivel del túnel proyectado a la zona alta del yacimiento ... 3.288
Figura 3.200 Cuñas formadas por la combinación J1J2J4 3.290
Figura 3.201 Sostenimiento ST-II, cuñas 2, 4 y 7, para la combinación J1-J2-J43.291
Figura 3.202 Geometrías básicas de anillos de dovelas 3.293
Figura 3.203 Modelo de Cálculo. Pique de ventilación. Fase 1 3.296
Figura 3.204 Modelo de Cálculo. Detalle pique de ventilación. Fase 1 3.297
Figura 3.205 Modelo de Cálculo. Detalle pique de ventilación. Fase 2 (sondeo)3.297
Figura 3.206 Modelo de Cálculo. Detalle pique de ventilación. Fase 5 (excavación en fase intermedia) ... 3.298
Figura 3.207 Modelo de Cálculo. Pique de ventilación. Fase 10 (final) 3.298
Figura 3.208 Modelo de Cálculo. Túnel de acceso ejecutado con perforación y voladura .. 3.299
Figura 3.209 Modelo de Cálculo. Túnel de acceso ejecutado con TBM 3.299
Figura 3.210 Modelo de Cálculo. Caverna de trituración 3.300
Figura 3.241 Localización general de taludes analizados ... 3.353
Figura 3.242 Perfil de suelo corte de mayor altura vía construcción 2 3.354
Figura 3.243 Análisis estático para estabilidad de bancos FS=1,5……………… 3.354
Figura 3.244 Análisis seudoestático para estabilidad de bancos FS=1,1……… 3.355
Figura 3.245 Análisis en condición de nivel freático alto FS=1,4………………… 3.355
Figura 3.246 Análisis estático, talud geometría 1H:1V con tratamiento, FS=1,53.356
Figura 3.247 Análisis seudoestático, talud geometría 1H:1V con tratamiento
FS=1,1 .. 3.357
Figura 3.248 Análisis en condición de lluvia intensa, geometría 1H:1V.
Tratamiento, FS=1,3 .. 3.357
Figura 3.249 Perfil de suelo corte de mayor altura vía construcción 2 3.359
Figura 3.250 Análisis estático terraplén geometría 2H:1V. FS=1,6……………… 3.360
Figura 3.251 Análisis seudo estático terraplén geometría 2H:1V 3.360
Figura 3.252 Secciones de análisis en la plataforma del portal...................... 3.362
Figura 3.253 Análisis estático talud frontal, corte 1H:1V con tratamiento.
FS=1,5 ... 3.363
Figura 3.254 Análisis seudoestático talud frontal, corte 1H:1V tratamiento.
FS=1,1 ... 3.363
Figura 3.255 Análisis lluvia intensa, corte 1H:1V con tratamiento. FS=1,3…….. 3.364
Figura 3.256 Análisis estático, corte 1H:1V con tratamiento. FS=1,5…………… 3.365
Figura 3.257 Análisis seudoestático, corte 1H:1V tratamiento. FS=1,1.......... 3.365
Figura 3.258 Análisis lluvia intensa, corte 1H:1V, tratamiento. FS=1,2......... 3.366
Figura 3.259 Análisis estático, corte 1H:1V con tratamiento. FS=1,5…………… 3.367
Figura 3.260 Análisis seudoestático, corte 1H:1V tratamiento. FS=1,1......... 3.367
Figura 3.261 Análisis lluvia intensa, corte 1H:1V, tratamiento. FS=1,2......... 3.368
Figura 3.262 ZODMES A (izquierda) y B (derecha) con secciones de análisis 3.369
Figura 3.263 ZODMEs C (izquierda) y D-E-F (derecha) con secciones de
análisis .. 3.369
Figura 3.264 Análisis de estabilidad condición estática ZODME C, FS=2,0…. 3.371
Figura 3.265 Análisis de estabilidad condición seudoestática ZODME C,
FS=1,3 ... 3.371
Figura 3.266 Análisis estático depósito temporal estériles. FS=1,7.............. 3.374
Figura 3.267 Análisis estático depósito temporal estériles. FS=1,1.............. 3.374
Figura 3.268 Sección de análisis de la Pila de Suelo .. 3.375
Figura 3.269 Análisis estático Pila de suelo. FS=1,6 .. 3.376
Figura 3.270 Análisis seudoestático Pila de suelo. FS=1,1 3.376
Figura 3.271 Secciones de la plataforma planta de beneficio para análisis de estabilidad ... 3.377
Figura 3.272 Análisis estático Plataforma Planta de beneficio Sección 5 F.S:1,53.378
Figura 3.273 Análisis seudoestático Planta de beneficio Sección 5, FS=1,1...3.378
Figura 3.274 Análisis estático Plataforma Planta de beneficio Sección 6, FS=1,5 ... 3.379
Figura 3.275 Análisis seudoestático Planta de beneficio Sección 6, FS=1,1...3.379
Figura 3.276 Esquema general de las obras y localización de los sedimentadores ... 3.383
Figura 3.277 Configuración espacial de los sedimentadores .. 3.384
Figura 3.278 Escenarios de excavación de los sedimentadores .. 3.384
Figura 3.279 Sección típica de los sedimentadores .. 3.385
Figura 3.280 Factores de seguridad caso estático (fin de construcción) 3.386
Figura 3.281 Factor de seguridad seudo-estático, (fin de construcción) 3.387
Figura 3.282 Factor de seguridad estático, etapa de Operación .. 3.387
Figura 3.283 Factores de seguridad obtenidos, etapa de Operación seudo-estático ... 3.388
Figura 3.284 Estimación de infiltraciones (a) Sin impermeabilización, (b) Con membrana impermeable ... 3.389
Figura 3.285 Configuración de la estación de trituración .. 3.391
Figura 3.286 Distribución General de la Planta de Beneficio .. 3.395
Figura 3.287 Pila de Almacenamiento de Mineral Grueso .. 3.396
Figura 3.288 Edificio de Molienda y Flotación Flash .. 3.398
Figura 3.289 Flotación, Remolienda y Espesamiento de Concentrado .. 3.399
Figura 3.290 Espesadores de Relaves ... 3.400
Figura 3.291 Localización de áreas de polvorín. Etapa de construcción 3.413
Figura 3.292 Distribución del polvorín. Etapa de construcción .. 3.414
Figura 3.293 Ubicación de polvorín durante la etapa de operación .. 3.416
Figura 3.294 Plataforma polvorín de operación, Planta de emulsión y materias primas ... 3.417
Figura 3.295 Polvorín durante etapa de operación .. 3.418
Figura 3.296 Esquema 3D de planta modular para producir emulsiones ... 3.419
Figura 3.297 Diseño de patio para materias primas .. 3.420
Figura 3.298 Diseño del Área integrada de operaciones –AIO- 3.427
Figura 3.299 Áreas auxiliares multipropósito en la zona superficial en el valle 3.429
Figura 3.300 Área auxiliar multipropósito en la zona superficial sobre la montaña ... 3.430
Figura 3.301 Localización de la planta de trituración y concreto 3.433
Figura 3.302 Vista en planta de la estación de combustible .. 3.435
Figura 3.303 Planta general del campamento .. 3.440
Figura 3.304 Instalaciones subterráneas .. 3.446
Figura 3.305 Bodega subterránea de mina ... 3.449
Figura 3.306 Oficinas subterráneas ... 3.450
Figura 3.307 Diseño de comedor subterráneo ... 3.451
Figura 3.308 Diagrama del polvorín subterráneo ... 3.452
Figura 3.309 Capatación barcaza flotante ... 3.458
Figura 3.310 Planta general de la captación y desarenador 3.459
Figura 3.311 Sección longitudinal captación y desarenador 3.460
Figura 3.312 Estación de bombeo - Planta ... 3.461
Figura 3.313 Localización PTARD .. 3.466
Figura 3.314 PTARND2 y PTARND4. Trampa de grasas aguas residuales no domésticas AIO .. 3.473
Figura 3.315 Detalle típico Oil Skimmer .. 3.474
Figura 3.316 Planta típica de sedimentador. Planta de concretos 3.476
Figura 3.317 Sección típica sedimentador. Planta de concretos 3.477
Figura 3.318 Canal escalonado para descarga y niveles en el río Cauca ARD3.482
Figura 3.319 Canal escalonado para descarga y niveles en el río Cauca ARnD3.483
Figura 3.320 Dimensiones y localización de los pozos de ventilación 3.490
Figura 3.321 Sistema de desagüe de la mina .. 3.491
Figura 3.322 Contenedor ISO de concentrado ... 3.497
Figura 3.323 Contenedor rotativo tipo ISO .. 3.498
Figura 3.324 Revolver de RAM – 4100 series ... 3.499
Figura 3.325 Gestión de contenedores para carga en puerto 3.499
Figura 3.326 Grúa de puerto levanta el contenedor y lo ubica en el buque 3.500
Figura 3.327 Sistema de empañamiento activado .. 3.500
Figura 3.328 Contenedor vaciado en la bodega del buque utilizando el Revolver ... 3.501
Figura 3.329 Gestión de contenedores esparcidos de Revolver y grúa de puerto ... 3.501
Figura 3.330 Contenedor vacío ubicado en la cubierta y aspirado 3.502
Figura 3.331 La máquina elevadora ubica el contenedor en el tráiler 3.502
Figura 3.332 Tractor/tráiler con contenedor vacío sale hacia el área de apilamiento ... 3.503
Figura 3.333 Aspecto de los puntos de conteo ... 3.506
Figura 3.334 Ubicación de los puntos de conteo .. 3.506
Figura 3.335 Sección típica vías construcción ... 3.515
Figura 3.336 Sección típica de la vía a las zonas de captación y descarga ... 3.516
Figura 3.337 Sección típica vías de operación con ancho de calzada 5,60 m 3.517
Figura 3.338 Sección típica vías de operación con ancho de calzada 7,20 m 3.517
Figura 3.339 Sección típica vías de operación con ancho de calzada 8,60 m 3.518
Figura 3.340 Sección típica de la vía con ancho de calzada 5,00 m 3.518
Figura 3.341 Vista en plata de localización del puente 3.526
Figura 3.342 Perfil Longitudinal por el eje del puente 3.526
Figura 3.343 Sección transversal del puente .. 3.527
Figura 3.344 Sección transversal de las vigas postensadas 3.528
Figura 3.345 Trazado de cables de preesfuerzo en las vigas postensadas 3.528
Figura 3.346 Verificación de envolvente de tensiones de las vigas postensadas en las condiciones de servicio ... 3.529
Figura 3.347 Esquema de la estructura del Estribo 1 (Muro Tipo bandeja) 3.530
Figura 3.348 Esquema de la estructura del Estribo 2 (muro Tipo bandeja) 3.530
Figura 3.349 Diagrama de flujo general para la Planta de beneficio del Proyecto3.532
Figura 3.350 Diagrama de flujo básico – Área de trituración primaria en subterráneo y transferencia de mineral hacia superficie 3.536
Figura 3.351 Diagrama de flujo básico – Área de trituración secundaria....... 3.537
Figura 3.352 Diagrama de flujo básico – Área de HPGR 3.539
Figura 3.353 Diagrama de flujo básico – Área de Molienda y Flotación Flash 3.541
Figura 3.354 Diagrama de flujo básico – Área de Flotación Rougher y Scavenger de Cobre... 3.542
Figura 3.355 Diagrama de flujo básico – Área de Remolienda de Cobre 3.545
Figura 3.356 Diagrama de flujo básico – Área de Flotación de Limpieza de Cobre ... 3.546
Figura 3.357 Diagrama de flujo básico – Área de Espesamiento y Filtración de Concentrado de Cu ... 3.549
Figura 3.358 Diagrama de flujo básico – Área de Almacenamiento y Despacho de Concentrados .. 3.550
Figura 3.359 Diagrama de flujo básico – Área de Flotación Rougher de Pirita 3.552
Figura 3.360 Diagrama de flujo básico – Área de Espesamiento, Filtrado y Transporte de Relaves filtrados inbertes ... 3.553
Figura 3.360 Diagrama de flujo básico – Área de Espesamiento, Filtrado y Transporte de Pirita ... 3.555
Figura 3.362 Esquema simplificado de balance de agua de planta de beneficiode minerales ... 3.557
Figura 3.363 Ubicaciones potenciales para la instalación de manejo de relaves 3.562
Figura 3.364 Modelo 3D de apilamientos ... 3.565
Figura 3.365 Posible ubicación de generadores durante constructcion 3.576
Figura 3.366 Metodología aplicada en el estudio ... 3.591
Figura 3.367 Sección típica cuneta en piedra pegada .. 3.612
Figura 3.368 Secciones típicas cunetas en suelo - cemento .. 3.613
Figura 3.369 Sección canal escalonado en concreto .. 3.614
Figura 3.370 Sección transversal filtro primario .. 3.615
Figura 3.371 Sección transversal filtro secundario .. 3.616
Figura 3.372 Vista en planta del área de manejo de relaves .. 3.617
Figura 3.373 Modelo de elevación del área de disposición de relaves filtrados 3.627
Figura 3.374 Ubicación del TMF respecto a los predios .. 3.628
Figura 3.375 Curva de llenado del depósito de relaves filtrados (TMF) 3.631
Figura 3.376 Curva de crecimiento del depósito de pirita .. 3.632
Figura 3.377 Plano General Manejo de Aguas .. 3.636
Figura 3.378 Manejo de Aguas TMF .. 3.638
Figura 3.379 Sedimentadores 2 y 5 - Contrafuerte Norte .. 3.640
Figura 3.380 Sedimentador 7 - Contrafuerte Sur .. 3.641
Figura 3.381 Drenajes superficiales y subsuperficiales en ZODMEs 3.642
Figura 3.382 Canal Norte.. 3.645
Figura 3.383 Canal Sur ... 3.646
Figura 3.384 Estructura de derivación .. 3.647
Figura 3.385 Obra desviación subsidencia Año Operación 4 3.649
Figura 3.386 Obra desviación subsidencia Operación Intermedia (Año 10).... 3.650
Figura 3.387 Obra desviación subsidencia Operación Final 3.651
Figura 3.388 Vista en planta del depósito de pirita.................................. 3.653
Figura 3.389 Detalle del encapsulamiento del depósito de pirita............... 3.654
Figura 3.390 Criterio susceptibilidad a la licuación Seed et al (2003)........ 3.657
Figura 3.391 Ubicación de las secciones de análisis para el depósito de relaves filtrados .. 3.660
Figura 3.392 Ubicación de las secciones de análisis para el depósito de pirita 3.661
Figura 3.393 Secciones Estabilidad TMF - Sección A-A 3.662
Figura 3.394 Secciones Estabilidad TMF - Sección B-B 3.662
Figura 3.395 Secciones Estabilidad TMF - Sección C-C 3.663
Figura 3.396 Secciones de estabilidad TMF – Sección típica bancos TMF..... 3.663
Figura 3.397 Secciones estabilidad Depósito Pirita - Sección D-D 3.664
Figura 3.398 Secciones estabilidad Depósito Pirita - Sección E-E............... 3.664
Figura 3.399 Asentamientos Inducidos por sismo para el TMF según Swisgoold (2013) .. 3.668
Figura 3.400 Rasgos morfológicos que enmarcan el área de estudio 3.672
Figura 3.401 Sección transversal esquemática que ilustra las principales características tectónicas y los hipocentros históricos de los eventos sísmicos 3.674
Figura 3.402 Eventos Históricos que rodean el área del proyecto dentro de un radio de 500 km... 3.675
Figura 3.403 Contrafuerte Norte – Vista en Planta.................................. 3.676
Figura 3.404 Contrafuerte Sur – Vista en Planta..................................... 3.677
Figura 3.405 Depósito de Pirita – Vista en Planta 3.678
Figura 3.406 Sección típica del Dren ... 3.680
Figura 3.407 Vista en Planta del TMF.. 3.684
Figura 3.408 TMF – Sección A-A .. 3.684
Figura 3.409 TMF – Sección B-B ... 3.685
Figura 3.410 TMF – Sección C-C ... 3.685
Figura 3.411 TMF – Sección D-D ... 3.685
Figura 3.412 Vista en planta de Drenajes del TMF 3.686
Figura 3.413 Sección típica del Dren. ... 3.686
Figura 3.414 Sistema hídrico .. 3.689
Figura 3.415 Esquema planta desarrollo del proyecto por etapas............ 3.690
Figura 3.416 Tecnología de transformación de energía cinética en eléctrica
 (vortex bladeless) ... 3.691
Figura 3.417 Ubicación y distribución de vortex bladeless 3.691
Figura 3.418 Esquema funcional esferas solares (bera.ray1.0) 3.692
Figura 3.419 Paneles de las esferas solares (bera.ray1.0) 3.692
Figura 3.420 comparación de un módulo fotovoltaico convencional y un Micro-
 track .. 3.693
Figura 3.421 Árboles de esferas solares ... 3.693
Figura 3.422 Ubicación y distribución conceptual de las esferas solares 3.694
Figura 3.423 Esquema de elementos arquitectónicos como límite geográfico 3.695
Figura 3.424 Esquema *módulo aldea ... 3.695
Figura 3.425 Módulo aldea .. 3.696
Figura 3.426 Planta detalle Zodme c ubicación de la aldea en la meseta del
 zodme .. 3.696
Figura 3.427 Avistamiento o mirador ... 3.697
Figura 3.428 Módulo de avistamiento /mirador 3.697
Figura 3.429 Esquema módulo albergue de especies vegetales* 3.698
Figura 3.430 Módulo talud .. 3.698
Figura 3.431 Módulo talud .. 3.699
Figura 3.432 Configuración esperada de la infraestructura en la zona del Cauca
durante el proceso de operación en año 10 (Vista desde la Soledad) 3.700
Figura 3.433 Configuración esperada de la infraestructura en la zona del Cauca
en el cierre del Proyecto (Vista desde la Soledad) 3.700
Figura 3.434 Configuración esperada de la infraestructura durante el proceso de
 operación en año 10 (Vista desde Marsella) .. 3.701
Figura 3.435 Configuración esperada de la infraestructura en la zona del Cauca
en el cierre del Proyecto (Vista desde Marsella) 3.701
Figura 3.436 Configuración esperada de la infraestructura en la zona del Valle
durante la operación en el año 10 (vista desde la vía La Pintada – Puente
 Iglesias) .. 3.702
Figura 3.437 Configuración esperada de la infraestructura en la zona del Cauca en el cierre del Proyecto (vista desde la vía La Pintada – Puente Iglesias). 3.703

Figura 3.438 Configuraciones esperadas de la infraestructura en la zona del Cauca durante el proceso de operación en el año 10 y en el cierre del proyecto (vista desde La Oculta, en este punto no se ve el Proyecto en ninguna de sus fases) .. 3.703

Figura 3.439 Configuraciones esperadas de la infraestructura en la zona del Cauca durante el proceso de operación en el año 10 y en el cierre del Proyecto (vista desde Cauca Viejo, en este punto no se ve el proyecto en ninguna de sus fases) .. 3.704

Figura 3.440 Configuraciones esperadas de la infraestructura en la zona del Cauca durante el proceso de operación en el año 10 y en el cierre del proyecto (vista desde el mirador Brisas sobre la vía de acceso a Jericó, en este punto no se ve el proyecto en ninguna de sus fases) .. 3.704

Figura 3.441 Configuración esperada de la subsidencia durante el proceso del cierre del proyecto (vista desde cerro Salvador), el cambio obedece al reemplazo de pino por especies nativas ... 3.705

Figura 3.442 Configuraciones esperadas durante el proceso de operación y del cierre del proyecto (vista desde parque principal de Jericó, en este punto no se ve el proyecto en ninguna de sus fases) ... 3.705

Figura 3.443 Cierre Conceptual - Diseño General ... 3.706

Figura 3.444 Políticas de la organización ... 3.724

Figura 3.445 Estructura organizacional del proyecto – Implementación y operación ... 3.727
LISTA DE FOTOGRAFIAS

<table>
<thead>
<tr>
<th>Fotografía</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Vía Puente Iglesias - Palermo</td>
<td>3.58</td>
</tr>
<tr>
<td>3.2</td>
<td>Obras existentes en la vía de acceso 1</td>
<td>3.59</td>
</tr>
<tr>
<td>3.3</td>
<td>Obras existentes en la vía de acceso 2</td>
<td>3.59</td>
</tr>
<tr>
<td>3.4</td>
<td>Vía San Antonio</td>
<td>3.61</td>
</tr>
<tr>
<td>3.5</td>
<td>Vía La Mancha</td>
<td>3.63</td>
</tr>
<tr>
<td>3.6</td>
<td>Vía Palo Cabildo</td>
<td>3.65</td>
</tr>
<tr>
<td>3.7</td>
<td>Vía Galilea (por Finca Galilea)</td>
<td>3.66</td>
</tr>
<tr>
<td>3.8</td>
<td>Portal de túnel. Ejecución de falso e inicio de paraguas de micropilotes para el segundo portal</td>
<td>3.320</td>
</tr>
<tr>
<td>3.9</td>
<td>Trituradora móvil típica</td>
<td>3.432</td>
</tr>
<tr>
<td>3.10</td>
<td>Gestión de cubierta del montacargas</td>
<td>3.493</td>
</tr>
<tr>
<td>3.11</td>
<td>Proceso de cargado FEL</td>
<td>3.494</td>
</tr>
<tr>
<td>3.12</td>
<td>Cuneta piedra pegada en proceso de construcción</td>
<td>3.612</td>
</tr>
<tr>
<td>3.13</td>
<td>Cuneta en sacos de suelo-cemento en proceso de construcción</td>
<td>3.614</td>
</tr>
<tr>
<td>3.14</td>
<td>Zanjas drenantes previas a la instalación de filtros en área de ZODME</td>
<td>3.615</td>
</tr>
<tr>
<td>Símbolo</td>
<td>Unidad Descripción</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------------</td>
<td></td>
</tr>
<tr>
<td>$/a</td>
<td>Pesos Colombianos por año</td>
<td></td>
</tr>
<tr>
<td>$/t</td>
<td>Pesos Colombianos por tonelada</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Año</td>
<td></td>
</tr>
<tr>
<td>bar</td>
<td>Bar</td>
<td></td>
</tr>
<tr>
<td>BHP</td>
<td>Caballo de vapor</td>
<td></td>
</tr>
<tr>
<td>cd/m²</td>
<td>Candle por m²</td>
<td></td>
</tr>
<tr>
<td>cm</td>
<td>Centímetro</td>
<td></td>
</tr>
<tr>
<td>cm/s</td>
<td>Centímetro por segundo</td>
<td></td>
</tr>
<tr>
<td>cm³/t</td>
<td>Centímetro cúbico por tonelada</td>
<td></td>
</tr>
<tr>
<td>dB</td>
<td>Decibel</td>
<td></td>
</tr>
<tr>
<td>f/m</td>
<td>Fracturas por metro</td>
<td></td>
</tr>
<tr>
<td>FF/m</td>
<td>Fracturas por metro</td>
<td></td>
</tr>
<tr>
<td>g/cm³</td>
<td>Gramo por centímetro cúbico</td>
<td></td>
</tr>
<tr>
<td>g/l</td>
<td>Gramos por litro</td>
<td></td>
</tr>
<tr>
<td>g/t</td>
<td>Gramos por tonelada</td>
<td></td>
</tr>
<tr>
<td>gal/h</td>
<td>Galones por hora</td>
<td></td>
</tr>
<tr>
<td>gal/mes</td>
<td>Galones por mes</td>
<td></td>
</tr>
<tr>
<td>gal/min</td>
<td>Galones por minuto</td>
<td></td>
</tr>
<tr>
<td>gpm</td>
<td>Galones por minuto</td>
<td></td>
</tr>
<tr>
<td>ha</td>
<td>Hectárea</td>
<td></td>
</tr>
<tr>
<td>ha/a</td>
<td>Hectárea por año</td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>Prefijo que significa mil</td>
<td></td>
</tr>
<tr>
<td>kg/a</td>
<td>Kilogramo por año</td>
<td></td>
</tr>
<tr>
<td>kg/cm²</td>
<td>Kilogramo por centímetro cuadrado</td>
<td></td>
</tr>
<tr>
<td>kg/m³</td>
<td>Kilogramo por m³</td>
<td></td>
</tr>
<tr>
<td>km</td>
<td>Kilómetro</td>
<td></td>
</tr>
<tr>
<td>km²</td>
<td>Kilómetro cuadrado</td>
<td></td>
</tr>
<tr>
<td>kN/cm²</td>
<td>Kilo Newton por cm²</td>
<td></td>
</tr>
<tr>
<td>kN/m³</td>
<td>Kilo newton por metro cúbico</td>
<td></td>
</tr>
<tr>
<td>kOz</td>
<td>Kilo onza</td>
<td></td>
</tr>
<tr>
<td>kPa</td>
<td>Kilo Pascales</td>
<td></td>
</tr>
<tr>
<td>kt</td>
<td>Miles de toneladas</td>
<td></td>
</tr>
<tr>
<td>kW</td>
<td>Kilovatio</td>
<td></td>
</tr>
<tr>
<td>KVA</td>
<td>Kilovoltiamperio</td>
<td></td>
</tr>
<tr>
<td>kW</td>
<td>Kilovatio</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>Litro</td>
<td></td>
</tr>
<tr>
<td>l/a</td>
<td>Litro por año</td>
<td></td>
</tr>
<tr>
<td>l/hab/día</td>
<td>Litros por habitante por día</td>
<td></td>
</tr>
<tr>
<td>l/s</td>
<td>Litros por segundo</td>
<td></td>
</tr>
<tr>
<td>lx</td>
<td>Luxes</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>Metro lineal</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Prefijo que significa millón</td>
<td></td>
</tr>
<tr>
<td>m/h</td>
<td>Metro por hora</td>
<td></td>
</tr>
<tr>
<td>m/s</td>
<td>Metro por segundo</td>
<td></td>
</tr>
<tr>
<td>m³</td>
<td>Metro cúbico</td>
<td></td>
</tr>
<tr>
<td>m³/día</td>
<td>Metro cúbico por día</td>
<td></td>
</tr>
<tr>
<td>m³/h</td>
<td>Metro cúbico por hora</td>
<td></td>
</tr>
<tr>
<td>mca</td>
<td>Metros columna de agua</td>
<td></td>
</tr>
<tr>
<td>m³/s</td>
<td>Metro cúbico por segundo</td>
<td></td>
</tr>
<tr>
<td>m³/s/kW</td>
<td>Metro cúbico por segundo por kW</td>
<td></td>
</tr>
<tr>
<td>mg/l</td>
<td>Miligramos por litro</td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>Minuto</td>
<td></td>
</tr>
<tr>
<td>Símbolo</td>
<td>Significado</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>Milímetro</td>
<td></td>
</tr>
<tr>
<td>mm/s</td>
<td>Milímetro por segundo</td>
<td></td>
</tr>
<tr>
<td>MPa</td>
<td>Mega Pascales</td>
<td></td>
</tr>
<tr>
<td>ms</td>
<td>Milisegundo</td>
<td></td>
</tr>
<tr>
<td>msnm</td>
<td>Metros sobre el nivel del mar</td>
<td></td>
</tr>
<tr>
<td>Mt</td>
<td>Millones de toneladas</td>
<td></td>
</tr>
<tr>
<td>Mtpa</td>
<td>Millones de toneladas por año</td>
<td></td>
</tr>
<tr>
<td>MVA</td>
<td>Megavoltiamperio</td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td>Megawatio</td>
<td></td>
</tr>
<tr>
<td>MWh</td>
<td>Megavatio por hora</td>
<td></td>
</tr>
<tr>
<td>Nm</td>
<td>Newton metro</td>
<td></td>
</tr>
<tr>
<td>oz</td>
<td>Onza</td>
<td></td>
</tr>
<tr>
<td>oz/a</td>
<td>Onza por año</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td>Partes por millón</td>
<td></td>
</tr>
<tr>
<td>t/a</td>
<td>Tonelada por año</td>
<td></td>
</tr>
<tr>
<td>t/día</td>
<td>Tonelada por día</td>
<td></td>
</tr>
<tr>
<td>t/h</td>
<td>Tonelada por hora</td>
<td></td>
</tr>
<tr>
<td>t/m</td>
<td>Tonelada por metro</td>
<td></td>
</tr>
<tr>
<td>t/m³</td>
<td>Tonelada por metro cúbico</td>
<td></td>
</tr>
<tr>
<td>te</td>
<td>Temperatura efectiva</td>
<td></td>
</tr>
<tr>
<td>US$</td>
<td>Dólares de los Estados Unidos</td>
<td></td>
</tr>
<tr>
<td>US$/a</td>
<td>Dólares por año</td>
<td></td>
</tr>
<tr>
<td>US$/oz</td>
<td>Dólares por onza</td>
<td></td>
</tr>
<tr>
<td>US$/t</td>
<td>Dólares por tonelada</td>
<td></td>
</tr>
<tr>
<td>w/w</td>
<td>Peso a peso</td>
<td></td>
</tr>
<tr>
<td>yd³</td>
<td>Yarda cúbica</td>
<td></td>
</tr>
<tr>
<td>μm</td>
<td>Micrómetro</td>
<td></td>
</tr>
</tbody>
</table>
ABREVIATURAS

AGP Potencial de generación de drenaje ácido
ANI Agencia Nacional de Infraestructura
De Dimensión equivalente de la excavación
ESR Relación de soporte de la excavación (Excavation Support Ratio)
FOS Almacenamiento de Mineral Fino
HDPE High density polyethylene
HPGR Molino de rodillos de alta presión
LoM Vida útil de la mina (Life of mine)
NORM Material radioactivo de origen natural
OBE Sismo base de operaciones
P&V Perforación y voladura
PEAF Pozos de aire fresco
PGA Aceleración pico (Peak ground acceleration)
PPV Velocidad pico de partícula (Peak Particle Velocity)
PSAV Pozos de salida de aire viciado
PTAI Planta de tratamiento de agua industrial
PTAP Planta de tratamiento de agua potable
PTAR Planta de tratamiento de aguas residuales
PTARD Planta de tratamiento de aguas residuales domésticas
PTARND Planta de tratamiento de aguas residuales no domésticas
RQD Índice de calidad de la Roca
SIN Sistema Interconectado Nacional de Colombia
SLC Hundimiento por subniveles (Sublevel caving)
SPT Pruebas de penetración estándar
TBM Maquina tuneladora (Tunnel boring machine)
TMF Depósito de relaves filtrados(Tailing management facility)
UST Unidirectional Solidification Textures
vehículo LHD Vehículo cargador para minería subterránea (Load Haul Dump)
ZODME Zona de depósito de material estéril

GLOSARIO

Aguas ácidas: aguas que han tenido contacto con minerales sulfurados y que, mediante procesos de oxidación, pueden adquirir condiciones de acidez.

Área de subsidencia: cavidad que se genera en Proyecto Minera de Cobre Quebradona el terreno por hundimiento debido a la propagación hasta la superficie, de la fractura y derrumbamiento del techo de roca de la cavidad producida por la explotación subterránea del mineral. La subsidencia o el hundimiento es un proceso que se desarrolla a medida que avanza la explotación subterránea. El borde exterior puede contener sólo pequeñas grietas que se extienden y crecen a medida que se avanza hacia el interior, mientras que en el centro se presenta roca completamente fracturada. Para el se espera que esta área alcance un extensión de 72,83 ha.

Concentrado: material obtenido del proceso de beneficio del mineral que contiene sulfuros de cobre, oro y plata.

HPGR (High Pressure Grinding Rolls): Molino de rodillos de alta presión que, junto con la trituradora secundaria, conforma el proceso de trituración secundaria y molienda, del proceso de beneficio del mineral.

Hundimiento por subniveles (SLC): método de explotación de cuerpos subterráneos, basado en la perforación y voladura para fracturar el cuerpo.
mineralizado bajo condiciones controladas, comenzando en la parte superior del depósito y moviéndose secuencialmente hacia abajo a través de sub-niveles uniformes y horizontales. La infraestructura de apoyo (túneles y excavaciones de soporte) se ubica en la roca de caja circundante.

El mineral resultante de la voladura se extrae desde los puntos de extracción ubicados en los niveles de producción. Una vez el material es extraído, genera una cavidad la cual permite que la roca circundante se derrumbe y rellena el vacío que va dejando la extracción de mineral dentro de cada punto de extracción (Zona de subsidencia).

AGP (Potencial de generación de ácido): condición de un material (en este caso mineral), que, al entrar en contacto con el agua, puede generar lixiviados de carácter ácido.

Planta de neutralización: dispositivo diseñado para efectuar procesos de corrección del pH del agua ácida mediante reacciones químicas agregando CaO progresivamente hasta obtener el pH deseado.

Relaves filtrados inertes: materiales finos resultantes del proceso de producción del concentrado que han sido sometidos a extracción de los componentes sulfurados mediante flotación rougher de pirita con el fin de evitar la producción de drenajes ácidos en el sitio de disposición (Depósito de relaves filtrados, también llamado TMF). Estos materiales son sometidos a procesos de espesamiento y deshidratación hasta que su humedad sea la requerida.

Nota: otros términos técnicos mineros utilizados en este documento se basan en el Glosario técnico minero, emitido por el Ministerio de Minas y energía, en mayo 2015, atendiendo lo estipulado por la Ley 685 de agosto 17 de 2001, Código de Minas vigente, que en su Artículo 68 contempla la adopción de un glosario que contenga la “lista de definiciones y términos técnicos en materia minera que serán de obligatorio uso por los particulares y por las autoridades y funcionarios en la elaboración, presentación y expedición de documentos, solicitudes y providencias que se produzcan en las actuaciones reguladas por el Código”.
3 DESCRIPCIÓN DEL PROYECTO

El Proyecto Minera de Cobre Quebradona está localizado en el municipio de Jericó, a 104 km al suroeste de la ciudad de Medellín, en el departamento de Antioquia, amparado bajo el contrato de concesión minera está identificado con el Contrato Único de Concesión No.5881, el cual tiene un área total de 7.593 ha.

El municipio de Jericó pertenece al departamento de Antioquia, más específicamente a la región del suroeste. Se localiza a una distancia de 104 kilómetros de Medellín, y limita al norte con el municipio de Fredonia, al sur con Andes, al oeste con Tarso y Pueblorrico, y al este con Támesis. Su población asciende a los 12.857 habitantes (EIA, 2019), el 60% de la cual se asienta en la cabecera urbana del municipio.

La economía de Jericó se enmarca principalmente en los sectores primario y terciario. Las actividades del sector primario son especialmente la agricultura (cultivos de plátano, café, aguacate, gulupa, cardamomo, tomate de árbol y tomate de aliño), la minería, la ganadería, la silvicultura y la pesca. Siendo el sector manufacturero muy débil, con apenas cuatro negocios en producción.

Las actividades de comercio y servicios están asociadas al sector turístico y cultural el cual goza de reconocimiento a nivel local y regional, siendo una fuente generadora de empleo directo e indirecto.

Este sector de servicios se ve potenciado por proyectos de tipo vial en ejecución, tales como la Autopista Conexión Pacífico 2, el cual acerca a Jericó con la región del Valle del Cauca (y su puerto en el Pacífico), y próximamente, con el Túnel de El Toyo y los proyectos viales relacionados, que permitirán una mejor y más rápida conexión con el Urabá antioqueño y su oferta portuaria en desarrollo.

Recientemente, el mejoramiento de la conectividad vial está potenciando el desarrollo de un uso recreativo o residencial, en áreas del municipio aledañas al río Cauca.

De acuerdo con los estudios técnicos realizados a través de las actividades de exploración, en el título minero 5881 se encontró a 470 metros de profundidad en la vereda Quebradona un depósito mineral, denominado Nuevo Chaquiro, el cual se clasifica como un pórfido cuproaurífero ubicado en el cinturón del Cauca, cuya geología comprende un conglomerado de stocks del Mioceno y diques de diorita y cuarzodiorita que intruyen una secuencia subhorizontal de tobas a y rocas volcanoclásticas de composición andesítica.

Los estudios sociales, ambientales y de ingeniería que se han llevado a cabo en el Proyecto Quebradona se han centrado en definir la mejor opción para la la ubicación de la infraestructura y la óptima extracción de los recursos minerales disponibles generando el menor impacto social y ambiental posibles.
Los criterios utilizados para seleccionar las distintas opciones de minería se basaron en el estimativo de recursos potenciales obtenido en los estudios de ingeniería, a partir del cual Minera de cobre Quebradona S.A. optimizó los planes operacionales con base en estudios realizados por consultores nacionales e internacionales. Una vez definida la clasificación de recursos y habiendo actualizado algunos parámetros técnicos y económicos, se procedió a establecer el diseño óptimo de la mina, la ubicación y el diseño de la infraestructura y la preparación del plan minero definitivo.

De acuerdo con lo anterior, dada la profundidad del depósito mineral se ha definido que la explotación se hará de manera subterránea, a través del método de hundimiento por subniveles, se tendrá una trituración primaria al interior de la mina y a 1Km de profundidad, el material triturado será transportado mediante bandas transportadoras a través de uno de los túneles de aproximadamente 6 km de longitud, que permitirá entregar el mineral a la planta de beneficio ubicada en la superficie en la vereda Cauca, en el predio La Mancha. Los túneles mencionados, además de servir para el transporte de mineral, servirán de acceso a la zona del depósito para ser utilizados para el ingreso y egreso de personal, materiales y servicios que se requieren con motivo de la actividad minera subterránea.

La producción de la mina se estima en aproximadamente 6,2 millones de toneladas por año (Mtpa) de mineral con ley promedio de 1,20 % de cobre. Las reservas de los minerales aprovechables técnica y económicamente se estiman en 109 millones de toneladas (Mt) con leyes promedio de 1,21 % Cu, 0,66 g/t de Au y 7,05 g/t de Ag. El proyecto se desarrollará en cuatro fases: Construcción y montaje con una duración de 4 años, 21 años extracción, 3 años de cierre y 10 de post-cierre.

La intención del proyecto es explotar el recurso mineral a una tasa aproximada de 6,2 Mt de mineral por año, a través de la construcción de todas las instalaciones necesarias para procesar la mineralización de sulfuros por medio de un proceso de flotación para la recuperación de cobre-oro-plata y su posterior concentración.

Se ha proyectado que la producción anual promedio durante los primeros cinco años sea de 272.000 toneladas de concentrado. Durante los 21 años de producción de la mina se espera que la producción total del concentrado polimetalico sea de 4,9 Millones de toneladas con leyes proyectadas de 27,9% de ley de cobre, 9,99 g/t de oro y 115 g/t de plata. Las instalaciones mineras como los accesos a la mina, la planta de beneficio, el depósito de relaves filtrados, el Área Integrada de Operaciones (AIO), el campamento, el polvorín y las demás instalaciones de soporte se localizarán en la Vereda Cauca (municipio de Jericó).

Al final del proceso de beneficio se obtendrá un concentrado polimetalico con una humedad menor al 10% mayoritariamente de cobre (Cu), el cual se transportará por vía terrestre en tractocamiones convencionales y contenedores sellados hacia un puerto en Buenaventura (Océano Pacífico), y de allí por vía marítima a fundiciones en el exterior.

El contrato de concesión integrado Nº 5881 (véase la Figura 3.1) se inscribió en el Registro Nacional de Minería el 9 de diciembre de 2016, y debe implementarse en tres etapas: (i) exploración, (ii) construcción y montaje, y (iii) operación. Este contrato tiene una duración hasta el 8 de diciembre de 2037 y, de conformidad con la legislación
vigente y sus disposiciones, Minera de cobre Quebradona tiene el derecho de solicitar una extensión de hasta 30 años, la cual se deberá solicitar al menos dos años antes de la expiración del período operativo.

Figura 3.1 Localización del contrato de concesión 5881
Fuente: Minera de Cobre Quebradona, 2019

Esta extensión no es automática y la solicitud debe presentarse con nuevos estudios técnicos, económicos, ambientales y sociales que demuestren el estado de los recursos minerales. Las condiciones deberán ser negociadas con la Autoridad Minera para la extensión del contrato de concesión.

En este momento, el contrato de concesión Nº 5881 se encuentra en su tercer año de la fase de exploración el cual podrá ser prorrogado por dos años más a solicitud de Minera de Cobre Quebradona S.A.

En el área del título minero del Proyecto Quebradona no existe superposición de actividades mineras. El desarrollo de la infraestructura asociada con el Proyecto Quebradona, se realizará de acuerdo con lo establecido en el artículo 95 de la Ley 685 de 2001, el cual establece que “La explotación es el conjunto de operaciones que tienen por objeto la extracción o captación de los minerales yacentes en el suelo o subsuelo del área de la concesión, su acopio, su beneficio y el cierre y abandono de los montajes y de la infraestructura. El acopio y el beneficio pueden realizarse dentro o fuera de dicha área. (…)”.
En relación con las construcciones e instalaciones requeridas para la operación del proyecto minero, estas estarán ubicadas fuera del área del contrato de concesión minera, en cumplimiento y de conformidad con lo previsto en el artículo 92 de la ley 685 de 2001.

A continuación, se desarrolla el capítulo tres que describe la localización, las características, el diseño, los insumos y la infraestructura y otros aspectos asociados al Proyecto Quebradona.

Conforme a la figura anterior, la infraestructura del Proyecto quedará completamente en el municipio de Jericó, la cual ocupará el 3,2% de las las 19.300 ha, es decir, 610,68 ha entre el área para infraestructura en la vereda Cauca y la zona de la proyección en superficie del depósito en la vereda Quebradona.

3.1 LOCALIZACIÓN

El municipio de Jericó se localiza a 115 km de la ciudad de Medellín, en el departamento de Antioquia, y las facilidades mineras del Proyecto se ubican a 34,5 km por carretera desde la cabecera municipal de Jericó (véase la Figura 3.2).
El recorrido desde Medellín tarda unas 2 horas y 35 minutos aproximadamente, por las vías nacionales 25, 60 y 25B, pavimentadas en la totalidad del trayecto. Todas ellas están incluidas en el programa de mejoramiento de la infraestructura nacional llamado "Autopistas de La Prosperidad", que permitirá mejorar la interconexión del departamento de Antioquia con los puertos ubicados en los océanos Atlántico y Pacífico. Su construcción estará culminando hacia finales del año 2020, según la Agencia Nacional de Infraestructura (ANI).

De manera más específica, el proyecto se localiza en jurisdicción rural del municipio de Jericó, parcialmente en el corregimiento de Palocabildo y las veredas Quebradona, Vallecitos, La Soledad y Cauca (véase la Figura 3.3).
Figura 3.3 Localización de áreas de intervención y actividad minera
Fuente: Minera de Cobre Quebradona, 2019
En el corregimiento Palocabildo y las veredas Vallecitos y La Soledad no hay intervención superficial, ya que los túneles principales de acceso que conducen al yacimiento se ubican subterráneamente, a una profundidad aproximada entre 500 m en la zona cercana al depósito y 1.000 m en la zona de portales.

Actualmente, el acceso principal a la parte baja del proyecto (Zona Superficial en el valle) es una carretera pública que, en un trayecto de 3 km, conecta con el sitio denominado Puente Iglesias, ubicado sobre la Carretera Nacional 25B (La Pintada - Bolombolo).

En total, las zonas de intervención asociadas a las actividades mineras y de construcción abarcan 610,68 ha, las cuales se pueden distribuir en tres zonas, según su ubicación geográfica (véase la Figura 3.4 y Figura 3.5):

1. **Zona Superficial en el Valle**: incluye la planta y áreas de beneficio y transformación del mineral, los portales de acceso a los túneles, los ZODMEs, el depósito de relaves filtrados y demás instalaciones de soporte superficiales. Se ubica en la vereda Cauca.

2. **Zona Subterránea**: incluye el depósito de mineral, los túneles de acceso y las instalaciones de soporte subterráneas. Se ubica debajo de las veredas Quebradona, Palocabildo, Vallecitos, La Soledad, La Hermosa y Cauca.

3. **Zona Superficial sobre la Montaña**: incluye las entradas y salidas de los pozos de ventilación e instalaciones de soporte menores en la superficie sobre el techo del depósito mineral. Se ubica en la vereda Quebradona.
Figura 3.4 Zona superficial sobre la montaña. Vista en planta
Fuente: Integral, 2019
En la Figura 3.4 se muestra la localización del Proyecto minero en su parte alta, ilustrando tanto las obras en la Zona superficial sobre la montaña, como la proyección de la zona de subsidencia asociada al depósito mineral en profundidad.

Estas zonas, las cuales abarcan 610,68 ha de intervención, contienen todas las obras o componentes del Proyecto (véase la Tabla 3.1).

<table>
<thead>
<tr>
<th>Zona</th>
<th>Área (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona de subsidencia</td>
<td>72,82</td>
</tr>
<tr>
<td>Zona Superficial en el Valle</td>
<td>501,45</td>
</tr>
<tr>
<td>Zona Superficial sobre la Montaña</td>
<td>36,41</td>
</tr>
<tr>
<td>Total</td>
<td>610,68</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

3.1.1 Áreas de explotación

Como se ha mencionado la explotación del depósito mineral del Proyecto Quebradona será subterránea y, por tanto, no generará directamente áreas de intervención; sin embargo, sí tendrá asociadas afectaciones en superficie, en la denominada zona de subsidencia (arriba del depósito en la zona de la montaña).

Esta afectación en superficie consiste en un fenómeno de hundimiento paulatino en el área correspondiente al techo del depósito mineral que será explotado, la cual se desarrollará progresivamente durante la etapa de operación del Proyecto (21 años) (véase la Tabla 3.2).

<table>
<thead>
<tr>
<th>Obras</th>
<th>Área obra (ha) (ver Nota 1)</th>
<th>Área APF (ha) (ver Nota 2)</th>
<th>Área traslapada con otras obras (ha) (ver Nota 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona de subsidencia (sobre la montaña)</td>
<td>72,82</td>
<td>65,82</td>
<td>7,00</td>
</tr>
</tbody>
</table>

Notas:
Nota 1: Corresponde al área bruta ocupada por cada una de las obras requeridas en las etapas de construcción y operación. Estas áreas no deben totalizarse ya que existen superposiciones entre algunas de ellas.
Nota 2: Corresponde al área de intervención para efectos del aprovechamiento forestal. Está área se asigna a la obra que genera la primera intervención en el tiempo. Esta es la única área que puede ser sumada o totalizada debido a que no existe superposición con otras intervenciones en el tiempo.
Nota 3: Corresponde a la diferencia entre el área bruta de cada obra y el área de las obras que fueron intervenidas previamente por el aprovechamiento forestal.

Fuente: Integral, 2019

- Área de subsidencia

La Subsidencia es un proceso de carácter físico que se desarrolla en el tiempo definida como el hundimiento de la superficie del terreno con poco o ningún movimiento lateral. Dicho proceso se genera a partir de cavidades de origen natural o antrópicas que se desarrollan a profundidad, tiende a ser discontinua y asimétrica alrededor de la cavidad principal y está controlado por las estructuras geológicas, la calidad del macizo rocoso y los efectos topográficos. Las zona de subsidencia representa el límite externo en el cual se pueden medir las deformaciones superficiales. El borde exterior puede contener sólo pequeñas grietas y deformaciones que se extienden y crecen a medida que se avanza hacia el interior, mientras que en el centro se presentan los mayores desplazamientos y la roca completamente fracturada.
Debido al método de explotación (Hundimiento por subniveles) se estima que el fenómeno de subsidencia se genere de una forma lenta y progresiva, así mismo se preve que la perturbación del macizo se genere sólo dentro del perímetro de subsidencia y la zona de hundimiento (véase la Figura 3.6), se localice dentro de la misma en un rango entre el 40 y 50% de la zona de subsidencia y alcance una profundidad máxima de 365 m, aproximadamente. En este sentido el área afectada por el fenómeno de subsidencia será de 72,82 ha.

![Diagrama de Zonas de subsidencia](image)

Figura 3.6 Zonas de deformación asociadas a la Subsidencia
Fuente: Van As et al., 2003

3.1.2 Áreas de beneficio y transformación de minerales

Estas áreas estarán conformadas por la planta de beneficio con su respectivo sedimentador y la plataforma asociada. En la Tabla 3.3 se presenta un listado general de estas.

<table>
<thead>
<tr>
<th>Obras</th>
<th>Área obra (ha) (ver Nota 1)</th>
<th>Área APF (ha) (ver Nota 2)</th>
<th>Área traslapada con otras obras (ha) (ver Nota 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plataforma planta beneficio</td>
<td>28,92</td>
<td>26,05</td>
<td>2,87</td>
</tr>
<tr>
<td>Piscina emergencia</td>
<td>0,08</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Sedimentador planta beneficio</td>
<td>0,64</td>
<td>0,64</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Notas:

Nota 1: Corresponde al área bruta ocupada por cada una de las obras requeridas en las etapas de construcción y operación. Estas áreas no deben totalizarse ya que existen superposiciones entre algunas de ellas.
Nota 2: Corresponde al área de intervención para efectos del aprovechamiento forestal (APF). Está área se asigna a la obra que genera la primera intervención en el tiempo. Esta es la única área que puede ser sumada o totalizada debido a que no existe superposición con otras intervenciones en el tiempo.
Nota 3: Corresponde a la diferencia entre el área bruta de cada obra y el área de las obras que fueron intervenidas previamente por el aprovechamiento forestal.
Fuente: Integral, 2019

3.1.3 Áreas para manejo de material sobrante

De acuerdo con lo mostrado en los planos 0010368-03-MQC-VP-ZOD-010 al 0010368-03-MQC-VP-ZOD-070, durante la etapa de construcción se conformarán los ZODMEs A, B, C (en la parte baja), y D, E y F (en la parte alta), así como el depósito temporal de estériles y una pila de suelo (en la parte baja). A medida que avance la etapa de operación se construirá el depósito de relaves filtrados. También se consideran aquí los sedimentoadores asociados a cada una de las obras.

El listado completo de las áreas para manejo de estériles y relaves filtrados se presenta en la Tabla 3.4 y se detalla más adelante en el numeral 3.6.2 Manejo y disposición de sobrantes del presente capítulo.

Las áreas principales tendrán las siguientes características generales:

- Un depósito de relaves filtrados, con una capacidad total de 58,8 Mm3, y que ocupará un área de 160,23 ha. A este depósito se asocian los sedimentadores 2, 5 y 7 con un área de 2,67, 1,57 y 2,29 ha, así como los contrafuertes norte y sur (13,30 y 2,54, respectivamente).
- Seis ZODMEs con una capacidad total de 12,9 Mm3 y áreas de 15,49; 20,45; 38,78; 1,45; 0,80 y 0,78 ha.
- Un depósito temporal de estéril con una capacidad total de almacenamiento de 1,35 Mm3 y que ocupará un área aproximada de 11,30 ha. Este material será almacenado durante la construcción de los túneles, y será empleado mayoritariamente en la construcción del Contrafuerte norte, vías y mejoramiento de otras obras.
- Un depósito de pirita con una capacidad máxima de almacenamiento 6,17 Mm3, con un área de 32,66 ha. A estos depósitos se asocian cuatro pozas de recolección de infiltraciones de 1,23; 1,37; 0,48 y 0,48 ha cada una.

<table>
<thead>
<tr>
<th>Obras</th>
<th>Área obra (ha)</th>
<th>Área APF (ha)</th>
<th>Área traslapada con otras obras (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(ver Nota 1)</td>
<td>(ver Nota 2)</td>
<td>(ver Nota 3)</td>
</tr>
<tr>
<td>Contrafuerte 1 piritas</td>
<td>2,38</td>
<td>2,17</td>
<td>0,21</td>
</tr>
<tr>
<td>Contrafuerte 2 piritas</td>
<td>1,39</td>
<td>0,69</td>
<td>0,70</td>
</tr>
<tr>
<td>Contrafuerte norte</td>
<td>13,48</td>
<td>13,30</td>
<td>0,18</td>
</tr>
<tr>
<td>Contrafuerte sur</td>
<td>2,73</td>
<td>2,54</td>
<td>0,19</td>
</tr>
<tr>
<td>Depósito relaves filtrados</td>
<td>160,23</td>
<td>95,21</td>
<td>65,02</td>
</tr>
<tr>
<td>Depósito temporal estériles</td>
<td>11,30</td>
<td>11,23</td>
<td>0,07</td>
</tr>
<tr>
<td>Depósito piritas</td>
<td>32,66</td>
<td>19,77</td>
<td>12,89</td>
</tr>
<tr>
<td>ZODME A</td>
<td>15,49</td>
<td>15,49</td>
<td>0,00</td>
</tr>
<tr>
<td>ZODME B</td>
<td>20,45</td>
<td>20,45</td>
<td>0,00</td>
</tr>
<tr>
<td>ZODME C</td>
<td>38,78</td>
<td>38,78</td>
<td>0,00</td>
</tr>
</tbody>
</table>
Áreas de soporte minero

Se incluyeron en este grupo las áreas de los depósitos de acopio de los materiales provenientes de los cortes para construcción de vías, las plataformas, el campamento, las oficinas, el laboratorio, los sistemas de tratamiento de aguas, las vías internas, y demás instalaciones de soporte. En la Tabla 3.5 se presenta un listado de las áreas de soporte, las cuales se describirán en detalle más adelante.

Tabla 3.5 Áreas de soporte minero

<table>
<thead>
<tr>
<th>Instalaciones</th>
<th>Área obra (ha)</th>
<th>Área APF (ha)</th>
<th>Área traslapada con otras obras (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área auxiliar multipropósito sector Planta de Beneficio y Portales</td>
<td>18,22</td>
<td>18,22</td>
<td>0,00</td>
</tr>
<tr>
<td>Área auxiliar multipropósito sector Vía Principal y Redes de Servicios</td>
<td>40,67</td>
<td>40,67</td>
<td>0,00</td>
</tr>
<tr>
<td>Área auxiliar multipropósito sector Zodme C y Relaves</td>
<td>21,30</td>
<td>21,30</td>
<td>0,00</td>
</tr>
<tr>
<td>Área auxiliar multipropósito sector Zodmes, Vías y Contrafuertes</td>
<td>32,42</td>
<td>32,42</td>
<td>0,00</td>
</tr>
<tr>
<td>Área auxiliar multipropósito sector Zodmes, Vías y Pozos de Ventilación</td>
<td>25,65</td>
<td>25,65</td>
<td>0,00</td>
</tr>
<tr>
<td>AIO</td>
<td>1,75</td>
<td>0,00</td>
<td>1,75</td>
</tr>
<tr>
<td>Campamento</td>
<td>3,92</td>
<td>3,92</td>
<td>0,00</td>
</tr>
<tr>
<td>Canal aguas no contacto (Canal 1 a 12)</td>
<td>6,31</td>
<td>3,20</td>
<td>3,11</td>
</tr>
<tr>
<td>Canal norte</td>
<td>2,26</td>
<td>2,26</td>
<td>0,00</td>
</tr>
<tr>
<td>Canal sur</td>
<td>2,56</td>
<td>2,53</td>
<td>0,03</td>
</tr>
<tr>
<td>Captación</td>
<td>0,49</td>
<td>0,49</td>
<td>0,00</td>
</tr>
<tr>
<td>Cobertizo</td>
<td>0,02</td>
<td>0,02</td>
<td>0,00</td>
</tr>
<tr>
<td>Estación bombeo 1</td>
<td>0,01</td>
<td>0,01</td>
<td>0,00</td>
</tr>
<tr>
<td>Estación bombeo 2</td>
<td>0,01</td>
<td>0,01</td>
<td>0,00</td>
</tr>
<tr>
<td>Estación bombeo 3</td>
<td>0,01</td>
<td>0,01</td>
<td>0,00</td>
</tr>
<tr>
<td>Estación bombeo 4</td>
<td>0,01</td>
<td>0,01</td>
<td>0,00</td>
</tr>
<tr>
<td>Estación bombeo 5</td>
<td>0,01</td>
<td>0,01</td>
<td>0,00</td>
</tr>
<tr>
<td>Estación de combustible</td>
<td>0,28</td>
<td>0,00</td>
<td>0,28</td>
</tr>
<tr>
<td>Franjas (Franjas 1 a 13)</td>
<td>24,17</td>
<td>18,55</td>
<td>5,62</td>
</tr>
<tr>
<td>Franja de aducción</td>
<td>0,35</td>
<td>0,00</td>
<td>0,35</td>
</tr>
<tr>
<td>Laboratorio</td>
<td>0,68</td>
<td>0,00</td>
<td>0,68</td>
</tr>
<tr>
<td>Instalaciones</td>
<td>Área obra (ha)</td>
<td>Área APF (ha)</td>
<td>Área traslapada con otras obras (ha)</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>---------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Pila de suelo</td>
<td>12,58</td>
<td>12,58</td>
<td>0,00</td>
</tr>
<tr>
<td>Planta concreto</td>
<td>0,64</td>
<td>0,00</td>
<td>0,64</td>
</tr>
<tr>
<td>Plataforma explosivos planta de emulsión</td>
<td>1,42</td>
<td>1,22</td>
<td>0,20</td>
</tr>
<tr>
<td>Plataforma relaves filtrados</td>
<td>0,40</td>
<td>0,32</td>
<td>0,08</td>
</tr>
<tr>
<td>Plataforma 1</td>
<td>0,42</td>
<td>0,29</td>
<td>0,13</td>
</tr>
<tr>
<td>Plataforma 2</td>
<td>5,14</td>
<td>5,14</td>
<td>0,00</td>
</tr>
<tr>
<td>Plataforma 3</td>
<td>0,07</td>
<td>0,07</td>
<td>0,00</td>
</tr>
<tr>
<td>Plataforma 4</td>
<td>5,04</td>
<td>4,95</td>
<td>0,09</td>
</tr>
<tr>
<td>Plataforma 5</td>
<td>0,36</td>
<td>0,34</td>
<td>0,02</td>
</tr>
<tr>
<td>Plataforma 6</td>
<td>0,96</td>
<td>0,96</td>
<td>0,00</td>
</tr>
<tr>
<td>Plataforma 7</td>
<td>0,10</td>
<td>0,10</td>
<td>0,00</td>
</tr>
<tr>
<td>Plataforma 8</td>
<td>0,44</td>
<td>0,44</td>
<td>0,00</td>
</tr>
<tr>
<td>Plataforma 9</td>
<td>1,26</td>
<td>1,18</td>
<td>0,08</td>
</tr>
<tr>
<td>Plataforma A</td>
<td>1,47</td>
<td>1,47</td>
<td>0,00</td>
</tr>
<tr>
<td>Plataforma AIO</td>
<td>31,40</td>
<td>22,45</td>
<td>8,95</td>
</tr>
<tr>
<td>Plataforma B</td>
<td>0,46</td>
<td>0,46</td>
<td>0,00</td>
</tr>
<tr>
<td>Plataforma C</td>
<td>0,61</td>
<td>0,61</td>
<td>0,00</td>
</tr>
<tr>
<td>Plataforma D</td>
<td>0,53</td>
<td>0,53</td>
<td>0,00</td>
</tr>
<tr>
<td>Plataforma piritas</td>
<td>0,27</td>
<td>0,27</td>
<td>0,00</td>
</tr>
<tr>
<td>Plataforma portería</td>
<td>2,24</td>
<td>2,14</td>
<td>0,10</td>
</tr>
<tr>
<td>Plataforma túneles</td>
<td>1,44</td>
<td>1,44</td>
<td>0,00</td>
</tr>
<tr>
<td>Polvorín Construcción</td>
<td>0,03</td>
<td>0,03</td>
<td>0,00</td>
</tr>
<tr>
<td>Poza colectora 1</td>
<td>1,23</td>
<td>1,23</td>
<td>0,00</td>
</tr>
<tr>
<td>Poza colectora 2</td>
<td>1,37</td>
<td>0,47</td>
<td>0,90</td>
</tr>
<tr>
<td>Poza colectora 3 (4)</td>
<td>0,48</td>
<td>0,00</td>
<td>0,48</td>
</tr>
<tr>
<td>Poza colectora 3A (4)</td>
<td>0,48</td>
<td>0,00</td>
<td>0,48</td>
</tr>
<tr>
<td>Poza colectora 4 (4)</td>
<td>0,48</td>
<td>0,00</td>
<td>0,48</td>
</tr>
<tr>
<td>Poza colectora 4A (4)</td>
<td>0,48</td>
<td>0,00</td>
<td>0,48</td>
</tr>
<tr>
<td>Pozo ventilación #1</td>
<td>0,01</td>
<td>0,00</td>
<td>0,01</td>
</tr>
<tr>
<td>Pozo ventilación #2</td>
<td>0,01</td>
<td>0,00</td>
<td>0,01</td>
</tr>
<tr>
<td>Pozo ventilación #3</td>
<td>0,01</td>
<td>0,00</td>
<td>0,01</td>
</tr>
<tr>
<td>Pozo ventilación #4</td>
<td>0,01</td>
<td>0,00</td>
<td>0,01</td>
</tr>
<tr>
<td>PTAI</td>
<td>0,48</td>
<td>0,48</td>
<td>0,00</td>
</tr>
<tr>
<td>PTAP</td>
<td>0,52</td>
<td>0,52</td>
<td>0,00</td>
</tr>
<tr>
<td>PTARD</td>
<td>0,12</td>
<td>0,12</td>
<td>0,00</td>
</tr>
<tr>
<td>PTARDN1</td>
<td>0,69</td>
<td>0,69</td>
<td>0,00</td>
</tr>
<tr>
<td>PTARDN2(5)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PTARDN3(5)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PTARDN4(5)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>PTARDN5(5)</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Sedimentador 1</td>
<td>2,05</td>
<td>2,05</td>
<td>0,00</td>
</tr>
<tr>
<td>Sedimentador 2</td>
<td>2,67</td>
<td>2,67</td>
<td>0,00</td>
</tr>
<tr>
<td>Sedimentador 3</td>
<td>0,96</td>
<td>0,96</td>
<td>0,00</td>
</tr>
<tr>
<td>Sedimentador 4</td>
<td>0,51</td>
<td>0,51</td>
<td>0,00</td>
</tr>
<tr>
<td>Sedimentador 5</td>
<td>1,57</td>
<td>1,57</td>
<td>0,00</td>
</tr>
<tr>
<td>Sedimentador 6</td>
<td>1,30</td>
<td>1,30</td>
<td>0,00</td>
</tr>
<tr>
<td>Sedimentador 7</td>
<td>2,29</td>
<td>2,20</td>
<td>0,09</td>
</tr>
<tr>
<td>Tanques agua cruda</td>
<td>0,37</td>
<td>0,37</td>
<td>0,00</td>
</tr>
<tr>
<td>Tubería HDPE (1 a 7)</td>
<td>4,49</td>
<td>0,42</td>
<td>4,07</td>
</tr>
<tr>
<td>Vía campamento - planta</td>
<td>1,33</td>
<td>1,31</td>
<td>0,02</td>
</tr>
</tbody>
</table>
Instalaciones

<table>
<thead>
<tr>
<th></th>
<th>Área obra (ha)</th>
<th>Área APF (ha)</th>
<th>Área traslapada con otras obras (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vía canal norte</td>
<td>1,12</td>
<td>1,06</td>
<td>0,06</td>
</tr>
<tr>
<td>Vía Captación</td>
<td>0,40</td>
<td>0,10</td>
<td>0,30</td>
</tr>
<tr>
<td>Vía construcción 1</td>
<td>4,78</td>
<td>4,66</td>
<td>0,12</td>
</tr>
<tr>
<td>Vía construcción 2</td>
<td>1,68</td>
<td>1,64</td>
<td>0,04</td>
</tr>
<tr>
<td>Vía construcción 3</td>
<td>1,04</td>
<td>0,23</td>
<td>0,81</td>
</tr>
<tr>
<td>Vía construcción 4</td>
<td>4,58</td>
<td>4,47</td>
<td>0,11</td>
</tr>
<tr>
<td>Vía construcción 5</td>
<td>1,79</td>
<td>1,78</td>
<td>0,01</td>
</tr>
<tr>
<td>Vía construcción 6</td>
<td>0,41</td>
<td>0,31</td>
<td>0,10</td>
</tr>
<tr>
<td>Vía construcción 7</td>
<td>4,21</td>
<td>4,19</td>
<td>0,02</td>
</tr>
<tr>
<td>Vía construcción 8</td>
<td>0,18</td>
<td>0,17</td>
<td>0,01</td>
</tr>
<tr>
<td>Vía construcción 9</td>
<td>0,15</td>
<td>0,11</td>
<td>0,04</td>
</tr>
<tr>
<td>Vía conexión plataformas</td>
<td>1,46</td>
<td>1,35</td>
<td>0,11</td>
</tr>
<tr>
<td>Vía de acceso</td>
<td>3,29</td>
<td>3,28</td>
<td>0,01</td>
</tr>
<tr>
<td>Vía depósito relaves filtrados</td>
<td>10,50</td>
<td>10,16</td>
<td>0,34</td>
</tr>
<tr>
<td>Vía depósito Pirta</td>
<td>1,21</td>
<td>0,86</td>
<td>0,35</td>
</tr>
<tr>
<td>Vía plataforma C</td>
<td>0,76</td>
<td>0,70</td>
<td>0,06</td>
</tr>
<tr>
<td>Vía plataforma D</td>
<td>0,48</td>
<td>0,48</td>
<td>0,00</td>
</tr>
<tr>
<td>Vía portales</td>
<td>2,61</td>
<td>2,57</td>
<td>0,04</td>
</tr>
<tr>
<td>Vía principal</td>
<td>7,70</td>
<td>7,28</td>
<td>0,42</td>
</tr>
</tbody>
</table>

Notas:

Nota 1: Corresponde al área bruta ocupada por cada una de las obras requeridas en las etapas de construcción y operación. Estas áreas no deben totalizarse ya que existen superposiciones entre algunas de ellas.

Nota 2: Corresponde al área de intervención para efectos del aprovechamiento forestal. Está área se asigna a la obra que genera la primera intervención en el tiempo. Esta es la única área que puede ser sumada o totalizada debido a que no existe superposición con otras intervenciones en el tiempo.

Nota 3: Corresponde a la diferencia entre el área bruta de cada obra y el área de las obras que fueron intervenidas previamente por el aprovechamiento forestal.

Nota 4: La Poza colectora 3 y 4 cambian de nombre a Poza colectora 3A y 4A, en el año 15 de operación.

Nota 5: Las PTARND2 a PTARND5 no tienen área asociada porque consisten en pequeños sedimentadores y trampas de grasas que tratan caudales menores. El área no es cartografiable y, por lo tanto, se manejaron como puntos.

Fuente: Integral, 2019

3.2 CARACTERÍSTICAS DEL PROYECTO

A continuación, se describirán las principales características técnicas del proyecto, en sus diferentes etapas. En el numeral 3.2.1 se identifica la infraestructura existente, en tanto que en el numeral 3.2.2 se presenta un resumen de los resultados de la exploración geológica del yacimiento, y, finalmente, en el numeral 3.2.3 se relacionan las fases y actividades del proyecto.

3.2.1 Infraestructura existente

La infraestructura existente en el área del Proyecto está asociada principalmente a las vías, a la infraestructura social y/o productiva y otra infraestructura de servicios (véase la Figura 3.7 y el mapa MQC-INT-EIA-DESC-03-INFRA).
3.2.1.1 Vías existentes zona baja del proyecto

En el área del Proyecto existen algunos carreterables privados que se encuentran dentro de los predios conocidos como San Antonio, La Mancha, Candelaria y Peñalinda, todas ellas construidas en afirmado sin otro tipo de superficie de rodadura.

Estas vías servirán de acceso temporal al Proyecto durante la etapa de construcción mientras se construye la vía de acceso definitiva, a través de un predio privado adquirido por Minera de Cobre Quebradona S.A.

3.2.1.1.1 Concesión Pacífico 2

El proyecto Conexión Pacífico 2 se localiza en Antioquia y junto con las conexiones Pacífico 1 y 3, tiene como objeto conectar los centros de insumos y producción del norte del país con Antioquia, la zona cafetera, el Valle del Cauca y el Pacífico colombiano. Esta vía hace parte del primer grupo de concesiones viales de cuarta Generación de las denominadas Autopistas de la Prosperidad.
Esta concesión tiene una longitud total de 96,5 km, y su construcción comprende 37 km en doblecalzada, 3 km de calzada sencilla, 2,5 km de túneles y 54 km de rehabilitación.

3.2.1.1.2 Vía terciaria Puente Iglesias - Palermo

Esta es una vía terciaria administrada por la Gobernación de Antioquia y que comunica las fincas de la vereda Cauca, de Jericó, con la concesión Pacífico 2. Así mismo, es una alternativa para el corregimiento de Palermo, perteneciente al municipio de Támesis, aunque la comunicación principal de este corregimiento se da con la cabecera municipal, por una vía pavimentada. En la Figura 3.8 se observa el trazado en planta de esta vía y en la Fotografía 3.1 se observa su estado actual.
Esta vía tiene una longitud cercana a los 20 km entre Puente Iglesias al centro poblado de Palermo, con ancho aproximado de 5,0 m (incluyendo cunetas) y carpeta de rodadura en afirmado que se encuentra en condiciones aceptables. La vía, para su categoría, tiene una velocidad de operación de 30 km/h y una pendiente longitudinal promedio de 10%.
Fotografía 3.1 Vía Puente Iglesias - Palermo
Fuente: Integral, 2019

En la vía Puente Iglesias-Palermo, por donde entrarán los primeros equipos de construcción, se encuentran algunas tuberías de concreto con diámetros entre 0,60 m y 0,90 m de diámetro, y algunos pontones con estribos en piedra pegada, sin signos de erosión importantes. Los drenajes de las vías internas de los predios La Mancha y San Antonio están constituidos por algunas tuberías en concreto, con diámetros entre 0,60 m y 0,90 m, y en muchos sitios de estas vías el agua de escorrentía cruza sobre la calzada (véase la Fotografía 3.2 y Fotografía 3.3).

Las obras de drenaje mayores existentes en la vía Puente Iglesias – Palermo, se presentan en la Tabla 3.6.

<table>
<thead>
<tr>
<th>Estructura existente</th>
<th>Luz (m)</th>
<th>Altura (m)</th>
<th>Ancho (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puente con muros en concreto ciclópeo y losa maciza</td>
<td>6</td>
<td></td>
<td>4,33</td>
</tr>
<tr>
<td>Puente con muros en concreto ciclópeo y losa maciza</td>
<td>3,68</td>
<td>2,5</td>
<td>5,7</td>
</tr>
<tr>
<td>Puente con muros en concreto ciclópeo y losa maciza</td>
<td>5,3</td>
<td>2,7</td>
<td>3,9</td>
</tr>
<tr>
<td>Puente con muros en piedra pegada y tablero con vigas</td>
<td>7,86</td>
<td>4,1</td>
<td>4</td>
</tr>
<tr>
<td>Alcantarilla de cajón en concreto ciclópeo</td>
<td>2,7</td>
<td>2,7</td>
<td>10</td>
</tr>
<tr>
<td>Alcantarilla de cajón en concreto ciclópeo</td>
<td>2,5</td>
<td>2,5</td>
<td>5,7</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

Las obras de drenaje menores que evacuan las cunetas de la vía no se presentan estas son alcantarillas circulares con diámetros variables entre 0,6 m y 0,9 m, con tubos en concreto.
3.2.1.3 Acceso San Antonio

La vía denominada San Antonio, corresponde a una vía privada de acceso a la hacienda San Antonio que se desprende de la vía Puente Iglesias - Palermo con una longitud aproximada de 3,6 km, pendientes mayores al 12%, ancho de sección transversal variable entre 3 y 4 metros y superficie de rodadura en afirmado en malas condiciones. A lo largo de la vía no se presentan obras de drenaje. Por las características geométricas la velocidad de operación es inferior a 20 km/h. En la Figura 3.9 se presenta el trazado actual de la vía y en la Fotografía 3.4 se observa el estado actual.
Figura 3.9 Vista en planta vía San Antonio
Fuente: Integral, 2019
3.2.1.4 Acceso La Mancha

La vía denominada La Mancha, corresponde a una vía privada de acceso a la finca La Mancha que se desprende de la vía Puente Iglesias – Palermo, con una longitud aproximada de 1,3 km, pendientes mayores al 12%, ancho de sección transversal variable entre 3 y 4 metros, y superficie de rodadura en afirmado, en condiciones aceptables. Por las características geométricas la velocidad de operación es inferior a 20 km/h. En la Figura 3.10 se presenta la vista en planta de la Vía La Mancha y en la Fotografía 3.5 se observa el estado actual de dicha vía.
Figura 3.10 Vista en planta acceso La Mancha
Fuente: Integral, 2019
Esta vía no presenta obras de drenaje visibles, y en múltiples lugares el agua de escorrentía pasa sobre la vía.

3.2.1.1.5 Vía Peñalinda

La vía Peñalinda, corresponde a una vía privada de acceso al predio Peñalinda y a su vez permite el ingreso al predio Candelaria; se desprende de la vía Puente Iglesias - Palermo con una longitud aproximada de 2,3 km (dentro del predio), pendientes mayores al 12%, ancho de sección transversal variable entre 3 y 4 metros y superficie de rodadura en afirmado en condiciones aceptables. Esta vía no presenta obras de drenaje visibles, y en múltiples lugares el agua de escorrentía pasa sobre la vía.

3.2.1.1.6 Vía Candelaria

La vía Candelaria es la continuación de la vía Peñalinda mencionada antes, presentando las mismas características. Este acceso permite el ingreso a la zona alta del predio y además comunica con los accesos internos del predio Asturias, el cual está fuera de la zona del Proyecto. Presenta una longitud de 2,3 km dentro del predio Candelaria.

- Síntesis de las vías existentes

En la Tabla 3.7 se presenta un resumen de las características más relevantes de las vías existentes de la zona baja del proyecto.

Tabla 3.7 Características de las vías existentes en la zona baja del Proyecto

<table>
<thead>
<tr>
<th>Vía Existe</th>
<th>Categoría de vía</th>
<th>Longitud (km)</th>
<th>Ancho de banca (m)</th>
<th>Estado de la vía</th>
<th>Origen</th>
<th>Destino</th>
<th>Superficie de rodadura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concesión Pacífico II</td>
<td>Primaria</td>
<td>48</td>
<td>10,8</td>
<td>Excelente</td>
<td>La Pintada</td>
<td>Bolombolo</td>
<td>Pavimentada</td>
</tr>
<tr>
<td>Vía Puente Iglesias - Palermo</td>
<td>Terciaria</td>
<td>20</td>
<td>5,0</td>
<td>Bueno</td>
<td>Puente Iglesias</td>
<td>Palermo</td>
<td>Afirmado</td>
</tr>
<tr>
<td>Vía San Antonio</td>
<td>Privada</td>
<td>3,6</td>
<td>3,0 a 4,0</td>
<td>Malo</td>
<td>Vía Puente Iglesias</td>
<td>Finca San</td>
<td>Afirmado</td>
</tr>
</tbody>
</table>
En el numeral 3.3.8.2.2 Infraestructura de transporte (Corredores existentes), se describen las intervenciones que será necesario realizar en las vías de la zona baja del proyecto.

3.2.1.2 Vías existentes zona alta del Proyecto

Para acceder a la parte alta del proyecto se debe tomar la vía secundaria entre la ruta nacional 25B-01 (Concesión Pacifico II) y la cabecera del municipio de Jericó, la cual cuenta con una longitud de 21 km y ancho de calzada de aproximadamente 7,50 m en pavimento flexible. Esta es una vía típica de montaña, se encuentra en buen estado, y presenta obras de drenaje adecuadas a lo largo de todo su alineamiento.

Desde la cabecera municipal de Jericó existen dos opciones para desplazarse hacia el área de intervención ubicada en la parte alta del proyecto (zona superficial sobre la montaña): tomar la vía del corregimiento de Palo Cabildo o la vía Galilea, que pasa por la denominada zona industrial de Jericó y por El Edén. Estas dos últimas vías son de tipo terciario, con longitudes entre 12 km y 13 km, ancho de calzada variable entre 3,5 m y 5,0 m y superficie de rodamiento variable entre afirmado y placa huella. En la Tabla 3.8 se indican algunas de las características de estas vías.

En la Figura 3.11 se muestran las vías mencionadas para llegar al proyecto en la parte alta y en la Fotografía 3.6 y en la Fotografía 3.7 su estado actual.

Tabla 3.8 Resumen de características de las vías de acceso a la zona alta del proyecto

<table>
<thead>
<tr>
<th>Alternativa</th>
<th>Categoría</th>
<th>Longitud (km)</th>
<th>Ancho de banca (m)</th>
<th>Superficie de rodamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vía por Palo Cabildo</td>
<td>Terciaria</td>
<td>12</td>
<td>3,5 a 5,0</td>
<td>Afirmado y Placa huella</td>
</tr>
<tr>
<td>Vía por Galilea</td>
<td>Terciaria</td>
<td>13</td>
<td>3,5 a 5,0</td>
<td>Afirmado y Placa huella</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

El Proyecto no realizará ningún tipo de intervención sobre estas vías, con excepción de un mantenimiento mínimo rutinario, ya que los equipos y materiales que ingresarán a la zona alta pueden ser transportados en vehículos convencionales tales como camiones y tracto –camiones (hasta 52 t), los cuales no tienen restricciones para transitar por estos corredores viales.
Figura 3.11 Vista en planta vía Palo Cabildo y vía Galilea (por Finca Galilea)
Fuente: Integral, 2019

Fotografía 3.6 Vía Palo Cabildo
Fuente: Integral, 2019
3.2.1.3 Infraestructura social y/o productiva

En la Tabla 3.9 se relaciona la infraestructura social asociada al componente productivo, en inmediaciones del Proyecto.

En el municipio de Jericó, para la atención en salud, se cuenta con el Hospital San Rafael, dos consultorios médicos particulares, cinco consultorios odontológicos particulares y un laboratorio particular. En tanto que para las zonas rurales se desplaza el equipo de Atención Primaria en Salud, el vacunador y el equipo de Salud pública.

En la Tabla 3.10 se relacionan las instituciones educativas y algunas otras infraestructuras sociales presentes en las veredas del área del Proyecto.

Tabla 3.9 Infraestructura productiva las inmediaciones del Proyecto

<table>
<thead>
<tr>
<th>Comunidad</th>
<th>Corregimiento</th>
<th>Vereda La Soledad</th>
<th>Vereda Quebradona</th>
<th>Vereda Vallecitos</th>
<th>Vereda La Hermosa</th>
<th>Vereda Cauca*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Despulpadoras</td>
<td>160</td>
<td>70</td>
<td>80</td>
<td>74</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>Tostadoras</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Marquesinas</td>
<td>40</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Silos</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Galpones</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Porquerizas</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Estanques</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>90</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bombas</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tanque vinagrador</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tractores</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Invernaderos</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Guadañas</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019 *: de la vereda Cauca se pudo registrar infraestructura en los dos predios en donde se emplazará el Proyecto: Bariloche (una báscula, un corral, cinco bebederos, seis salderos), y el predio La Mancha (siete corrales)
Tabla 3.10 Infraestructura social- Centros educativos y recreación en el área del Proyecto

<table>
<thead>
<tr>
<th>Equipamiento</th>
<th>Tipo de equipamiento</th>
<th>Coordenada este</th>
<th>Coordenada norte</th>
<th>Vereda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hotel Portón Plaza</td>
<td>Administración y seguridad</td>
<td>1.142.953,57</td>
<td>1.132.391,20</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Parqueadero La Bastilla</td>
<td>Administración y seguridad</td>
<td>1.143.076,75</td>
<td>1.132.267,34</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>IE Nocturno</td>
<td>Centro educativo</td>
<td>1.142.892,74</td>
<td>1.132.240,21</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Bomba Zeus</td>
<td>Comercialización y abasto</td>
<td>1.143.778,14</td>
<td>1.132.296,45</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>IPS Aldea del piedras</td>
<td>Hospital, centro de salud, puesto de salud</td>
<td>1.143.066,34</td>
<td>1.132.406,66</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Hogar Centro día</td>
<td>Infraestructura comunitaria</td>
<td>1.142.761,79</td>
<td>1.132.095,20</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Hogar Infantil Rondín</td>
<td>Infraestructura comunitaria</td>
<td>1.143.036,28</td>
<td>1.132.621,20</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Oficina de instrumentos públicos</td>
<td>Infraestructura de servicios públicos</td>
<td>1.142.862,77</td>
<td>1.132.328,66</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Matadero municipal</td>
<td>Comercialización y abasto</td>
<td>1.143.275,33</td>
<td>1.132.103,82</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Hotel L. Casona</td>
<td>Administración y seguridad</td>
<td>1.143.045,34</td>
<td>1.132.405,24</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Alcaldía municipal</td>
<td>Infraestructura comunitaria</td>
<td>1.142.976,26</td>
<td>1.132.259,87</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Hogar juvenil campesino</td>
<td>Infraestructura comunitaria</td>
<td>1.142.511,66</td>
<td>1.131.796,55</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Escuela anexa a la normal</td>
<td>Infraestructura comunitaria</td>
<td>1.142.985,87</td>
<td>1.132.651,90</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Hotel Jericó</td>
<td>Administración y seguridad</td>
<td>1.143.085,21</td>
<td>1.132.316,44</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Hospital San Rafael</td>
<td>Hospital, centro de salud, puesto de salud</td>
<td>1.142.839,80</td>
<td>1.132.054,06</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Hotel rio Piedras</td>
<td>Administración y seguridad</td>
<td>1.143.043,55</td>
<td>1.132.279,05</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Hotel Casa grande</td>
<td>Administración y seguridad</td>
<td>1.143.056,33</td>
<td>1.132.229,73</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Normal Superior</td>
<td>Centro educativo</td>
<td>1.142.919,51</td>
<td>1.132.573,15</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Escuela Madre Laura</td>
<td>Centro educativo</td>
<td>1.143.017,16</td>
<td>1.132.738,15</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>EDATEL</td>
<td>Infraestructura de servicios públicos</td>
<td>1.142.906,04</td>
<td>1.132.285,78</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Hotel El Bohio</td>
<td>Administración y seguridad</td>
<td>1.142.944,66</td>
<td>1.132.188,16</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>IE IDEM San Jose</td>
<td>Centro educativo</td>
<td>1.142.406,72</td>
<td>1.131.821,63</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Planta de tratamiento</td>
<td>Infraestructura de servicios públicos</td>
<td>1.142.685,01</td>
<td>1.132.479,95</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Comando de policía</td>
<td>Administración y seguridad</td>
<td>1.143.112,71</td>
<td>1.132.178,43</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Fonda La Pista</td>
<td>Comercialización y abasto</td>
<td>1.144.669,92</td>
<td>1.132.126,60</td>
<td>Vereda La Pista</td>
</tr>
<tr>
<td>Cancha La Viña</td>
<td>Escenario deportivo</td>
<td>1.146.449,60</td>
<td>1.131.208,30</td>
<td>Vereda La Viña</td>
</tr>
<tr>
<td>Escuela La Viña</td>
<td>Centro educativo</td>
<td>1.146.453,56</td>
<td>1.131.221,03</td>
<td>Vereda La Viña</td>
</tr>
<tr>
<td>Columpio Puente Iglesias</td>
<td>Escenario recreativo</td>
<td>1.151.477,51</td>
<td>1.136.885,01</td>
<td>Puente Iglesias</td>
</tr>
<tr>
<td>Cancha Puente Iglesias</td>
<td>Escenario deportivo</td>
<td>1.151.457,79</td>
<td>1.136.886,07</td>
<td>Puente Iglesias</td>
</tr>
<tr>
<td>Escuela Puente Iglesias</td>
<td>Centro educativo</td>
<td>1.151.451,34</td>
<td>1.136.896,57</td>
<td>Puente Iglesias</td>
</tr>
<tr>
<td>Cancha</td>
<td>Escenario deportivo</td>
<td>1.145.234,35</td>
<td>1.131.701,48</td>
<td>Palenque</td>
</tr>
<tr>
<td>Columpios</td>
<td>Escenario recreativo</td>
<td>1.145.251,85</td>
<td>1.131.703,96</td>
<td>Palenque</td>
</tr>
<tr>
<td>Escuela Palenque</td>
<td>Centro educativo</td>
<td>1.145.228,41</td>
<td>1.131.684,65</td>
<td>Palenque</td>
</tr>
<tr>
<td>Salón Los Patios</td>
<td>Infraestructura comunitaria</td>
<td>1.144.254,58</td>
<td>1.132.081,73</td>
<td>La Pista</td>
</tr>
<tr>
<td>Columpios La Viña</td>
<td>Escenario recreativo</td>
<td>1.146.440,30</td>
<td>1.131.206,51</td>
<td>La Viña</td>
</tr>
<tr>
<td>Columpios La Pista</td>
<td>Escenario recreativo</td>
<td>1.144.895,27</td>
<td>1.132.843,02</td>
<td>La Pista</td>
</tr>
<tr>
<td>Caseta Buga</td>
<td>Infraestructura comunitaria</td>
<td>1.146.141,46</td>
<td>1.130.797,20</td>
<td>Buga</td>
</tr>
<tr>
<td>Cancha Buga</td>
<td>Escenario deportivo</td>
<td>1.146.132,62</td>
<td>1.130.787,67</td>
<td>Buga</td>
</tr>
<tr>
<td>Caseta Palenque</td>
<td>Infraestructura comunitaria</td>
<td>1.145.250,59</td>
<td>1.131.817,89</td>
<td>Palenque</td>
</tr>
<tr>
<td>Hotel Santa María La Pista</td>
<td>Administración y seguridad</td>
<td>1.144.631,94</td>
<td>1.132.120,43</td>
<td>La Pista</td>
</tr>
<tr>
<td>Esc. La Sorga</td>
<td>Centro educativo</td>
<td>1.147.489,32</td>
<td>1.136.492,89</td>
<td>Cauca</td>
</tr>
<tr>
<td>CER Palenquito</td>
<td>Centro educativo</td>
<td>1.146.141,85</td>
<td>1.132.193,35</td>
<td>Palenque</td>
</tr>
<tr>
<td>CER Luis Emilio Bermúdez</td>
<td>Centro educativo</td>
<td>1.149.193,58</td>
<td>1.131.579,95</td>
<td>La Hermosa</td>
</tr>
<tr>
<td>Transmisores Voz del Suroeste</td>
<td>Infraestructura comunitaria</td>
<td>1.144.195,49</td>
<td>1.132.141,57</td>
<td>La Pista</td>
</tr>
<tr>
<td>Equipamiento</td>
<td>Tipo de equipamiento</td>
<td>Coordenada este</td>
<td>Coordenada norte</td>
<td>Vereda</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Esc. José Gómez Montoya</td>
<td>Centro educativo</td>
<td>1.146.437,58</td>
<td>1.131.211,25</td>
<td>Palenque</td>
</tr>
<tr>
<td>Esc. José María Ospina</td>
<td>Centro educativo</td>
<td>1.144.192,04</td>
<td>1.132.090,85</td>
<td>La Pista</td>
</tr>
<tr>
<td>CER Avelino Marín Bedoya Quebradona</td>
<td>Centro educativo</td>
<td>1.146.930,29</td>
<td>1.129.122,10</td>
<td>Quebradona</td>
</tr>
<tr>
<td>CER Palenque</td>
<td>Centro educativo</td>
<td>1.145.239,14</td>
<td>1.131.686,05</td>
<td>Palenque</td>
</tr>
<tr>
<td>IE Rural Francisco de Asís</td>
<td>Centro educativo</td>
<td>1.148.474,12</td>
<td>1.129.956,31</td>
<td>Palocabildo</td>
</tr>
<tr>
<td>CER Carlos Alberto Villa</td>
<td>Centro educativo</td>
<td>1.150.241,23</td>
<td>1.129.968,36</td>
<td>Vallecitos</td>
</tr>
<tr>
<td>CER La Soledad</td>
<td>Centro educativo</td>
<td>1.150.707,29</td>
<td>1.131.255,22</td>
<td>La Soledad</td>
</tr>
<tr>
<td>Teatro</td>
<td>Escenario recreativo</td>
<td>1.143.015,75</td>
<td>1.132.443,27</td>
<td>Cabecera Jericó</td>
</tr>
<tr>
<td>Escuela Quebrarriba</td>
<td>Centro educativo</td>
<td>1.146.916,86</td>
<td>1.129.122,74</td>
<td>Quebradona</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

Durante los estudios realizados se identificó que en la vereda La Soledad existe un sitio turístico denominado El Mirador de La Soledad, desde donde se puede divisar el río Cauca. Allí se practican actividades recreativas como el vuelo en parapente, estimándose que, en promedio, es visitado por unas 240 personas anualmente.

En la Tabla 3.11 se relaciona la infraestructura social en las veredas relacionadas con el Proyecto.

Tabla 3.11 Infraestructura social – canchas, casetas comunales y otros

<table>
<thead>
<tr>
<th>Localidad</th>
<th>Cancha de fútbol/ micro/ unidad deportiva</th>
<th>Parque infantil</th>
<th>Estaderos</th>
<th>Caseta comunual</th>
<th>Ecoteatro</th>
<th>Iglesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Soledad</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vallecitos</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Quebradona</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>La Hermosa</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Palocabildo</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019 * La vereda Cauca no presenta infraestructura social porque consta de un conjunto de predios dedicados a ganadería bovina (leche y carne) y porcina, así como de parcelas de recreo y dos instalaciones hoteleras.

Entre la infraestructura social de interés para el proyecto se incluyen los puentes existentes en las vías que servirán de acceso temporal al proyecto. En el caso de la zona superficial en el valle (parte baja) se estima que la vía existente a Palermo solo será utilizada para el ingreso de los equipos necesarios para la apertura de las vías internas (cargadores, volquetas), y mientras se construyen el puente sobre la vía existente a Palermo, así como la vía de acceso desde Pacífico 2, la cual atenderá todo el tráfico vehicular del Proyecto. En la zona superficial sobre la montaña (parte alta), las vías existentes serán utilizadas para el ingreso de los equipos de perforación, así como de maquinaria para la apertura de vías internas del proyecto.

En todos los casos se tiene previsto el reforzamiento temporal de las estructuras relacionadas en la Tabla 3.12 con el fin de garantizar el paso seguro de los equipos sin afectar la estructura existente.
Tabla 3.12 Infraestructura social – Puentes

<table>
<thead>
<tr>
<th>Nº Estructura</th>
<th>Vía referencia</th>
<th>Sistema estructural</th>
<th>Longitud [m]</th>
<th>Ancho [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZONA BAJA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puente 01</td>
<td>Vía Palermo</td>
<td>Losa en concreto reforzado</td>
<td>6,00</td>
<td>4,30</td>
</tr>
<tr>
<td>Puente 02</td>
<td>Vía Palermo</td>
<td>Losa en concreto reforzado</td>
<td>3,68</td>
<td>5,70</td>
</tr>
<tr>
<td>Puente 03</td>
<td>Vía Palermo</td>
<td>Losa en concreto reforzado</td>
<td>5,30</td>
<td>3,90</td>
</tr>
<tr>
<td>Puente 04</td>
<td>Vía Palermo</td>
<td>Vigas y losa en concreto reforzado</td>
<td>7,86</td>
<td>4,00</td>
</tr>
<tr>
<td>Puente 05</td>
<td>Vía Palermo</td>
<td>Losa en concreto reforzado</td>
<td>2,70</td>
<td>9,50</td>
</tr>
<tr>
<td>Puente 06</td>
<td>Vía Palermo</td>
<td>Box culvert en concreto reforzado</td>
<td>5,70</td>
<td>3,50</td>
</tr>
<tr>
<td>ZONA ALTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puente 01</td>
<td>Vía Palo Cabildo</td>
<td>Vigas y losa de concreto reforzado</td>
<td>20,37</td>
<td>5,12</td>
</tr>
<tr>
<td>Puente 02</td>
<td>Vía Palo Cabildo</td>
<td>Vigas y losa de concreto reforzado</td>
<td>9,87</td>
<td>5,00</td>
</tr>
<tr>
<td>Puente 03</td>
<td>Vía Palo Cabildo</td>
<td>Vigas y losa de concreto reforzado</td>
<td>7,93</td>
<td>5,10</td>
</tr>
<tr>
<td>Puente 04</td>
<td>Vía Galilea</td>
<td>Vigas y losa de concreto reforzado</td>
<td>7,30</td>
<td>5,00</td>
</tr>
<tr>
<td>Puente 05</td>
<td>Vía Galilea</td>
<td>Vigas y losa de concreto reforzado</td>
<td>8,00</td>
<td>3,50</td>
</tr>
<tr>
<td>Puente 06</td>
<td>Vía Galilea</td>
<td>Losa de concreto reforzado</td>
<td>4,80</td>
<td>5,70</td>
</tr>
<tr>
<td>Puente 07</td>
<td>Vía Galilea</td>
<td>Vigas y losa de concreto reforzado</td>
<td>8,10</td>
<td>4,62</td>
</tr>
<tr>
<td>Puente 08</td>
<td>Vía Galilea</td>
<td>Vigas y losa de concreto reforzado</td>
<td>10,80</td>
<td>8,80</td>
</tr>
<tr>
<td>Puente 09</td>
<td>Vía Galilea</td>
<td>Vigas y losa de concreto reforzado</td>
<td>8,10</td>
<td>5,00</td>
</tr>
<tr>
<td>Puente 10</td>
<td>Vía Galilea</td>
<td>Vigas y losa de concreto reforzado</td>
<td>11,00</td>
<td>6,30</td>
</tr>
<tr>
<td>Puente 11</td>
<td>Vía Galilea</td>
<td>Losa de concreto reforzado</td>
<td>8,50</td>
<td>5,00</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019 Nota: El estado actual de los puentes relacionados en la tabla anterior se describe en el Anexo_3_1_PuentesExistentes (INTEGRAL. 2019).

3.2.1.4 Redes de energía y centrales hidroeléctricas

Actualmente, el área del Proyecto se abastece de energía por Empresas Públicas de Medellín –EPM- a través de redes en media tensión pertenecientes a las subestaciones de Jericó y de Támesis. En exploración la energía requerida fue utilizada de estas redes.

El Proyecto está ubicado cerca de varias centrales hidroeléctricas como Río Piedras (20 MW) y Agua Fresca (7 MW), y de líneas de transmisión de alto voltaje (en un radio de distancia de una distancia de 50 km), todos integrados al Sistema de Transmisión Nacional de Colombia (STN), facilitando el suministro de energía para las etapas de construcción y operación del Proyecto.

3.2.1.5 Puertos y aeropuertos para el servicio del Proyecto

Existen varios puertos disponibles para el servicio del Proyecto, a los cuales se accede por vía terrestre. En el Océano Atlántico se ubican los puertos de Sociedad Portuaria de Santa Marta (Santa Marta a 840 km), Puerto de Barranquilla, Palermo y Compas (Barranquilla a 784 km), Contecar, Sociedad Portuaria Regional de Cartagena, Mamonal y El Bosque (Cartagena a 707 km), y Compas Tolú (Tolú a 584 km). En el Océano Pacífico se ubican el Puerto de Agua Dulce y la Sociedad portuaria regional de Buenaventura (Buenaventura a 405 km).

Este último puerto se considera el más conveniente para el despacho del concentrado mineral, ya que tiene capacidad para manejar contenedores y mercancías a granel, posee un sistema adecuado de vías y es atendido por varias compañías de transporte por camión. Buenaventura está conectada actualmente por ferrocarril con el municipio de Zarzal, aunque el sistema requiere una rehabilitación profunda. Entre Zarzal y La
Felisa existe un tramo de ferrocarril que aún no está activo y que demanda reparaciones a gran escala, en tanto que entre La Felisa y la zona del Proyecto existe una vía pavimentada en buen estado que está siendo ampliada como parte del programa de mejoramiento de infraestructura vial nacional mencionado. En este sentido el Proyecto usará la infraestructura vial de Colombia para transportar el concentrado desde las instalaciones de Minera de Cobre Quebradona hasta el puerto de Buenaventura.

Finalmente, los aeropuertos internacionales que sirven al Proyecto son el José María Córdova de Rionegro (MDE) y El Dorado en Bogotá (BOG). Adicionalmente, el aeropuerto Enrique Olaya Herrera de Medellín (EOH) presta servicios regionales y ofrece conexiones nacionales e internacionales.

3.2.2 Resultados de exploración geológica

El descubrimiento del depósito Nuevo Chaquiro fue el fruto de trabajos de campo como mapeos y muestreos (sedimentos de corriente, suelos y rocas) y geofísica (magnetometría, radiometría, polarización inducida IP y resistividad). Estas actividades fueron determinantes en la obtención de la localización de las anomalías más importantes que fueron objeto de campañas de perforación en etapas posteriores.

La exploración en la región del río Cauca se inició a mediados de la década de 1990, concentrada en antiguas labores de minería en vetas y yacimientos aluviales. AngloGold Ashanti realizó, en el año 2004, los primeros programas geoquímicos regionales. Se identificaron potenciales mineralizaciones en el pórfido de cobre y oro, entre las cuales se incluyó el distrito Quebradona. Un trabajo posterior identificó una zona de 1.300 x 1.000 m sobre la quebrada Quebradona e Higuerrilos, con una alteración serícita fuerte y un “stockwork” de oxido de hierro con inclusiones locales de cuarzo, posteriormente se encontró que esta zona está superyaciendo el cuerpo mineral Nuevo Chaquiro que luego fuera descubierto a mayor profundidad.

En estas primeras etapas se recolectaron cerca de 4,200 muestras incluyendo sedimentos de corriente, suelos y roca.

Minera de Cobre Quebradona definió el área de estudio como Distrito Quebradona, y en él se observaron otros prospectos minerales como Aurora, La Sola, Tenedor e Isabela.

Las perforaciones iniciales tuvieron en cuenta las anomalías más importantes entre las cuales se destacaron Aurora, La Sola, Tenedor, Isabela y Chaquiro que fueron objeto de los primeros 15,000 metros de sondajes arrojando resultados preliminares positivos, pero con tamaños debajo de las expectativas de la compañía.

Durante el año 2010 el foco de la exploración se volcó hacia el blanco denominado Chaquiro, pero mirando su potencial profundo con el modelo de un depósito tipo pórfido de Cobre. El resultado de esta exploración fue positivo y para el 2013 ya se pudo delinear el cuerpo principal que en los años siguientes sustenta los estudios más avanzados del Proyecto.

El depósito luego de su descubrimiento se encuadra dentro de un depósito polimetálico tipo pórfido de cobre y oro, con contenidos asociados también de plata y molibdeno.
3.2.2.1 Características del yacimiento obtenidas en la fase de exploración

El depósito mineral Nuevo Chaquiro se asocia a un pórfido de cobre y oro ubicado en el cinturón del Cauca. Las condiciones geológicas se definen por una serie de stocks del Mioceno y diques dioríticos y cuarzodioríticos que intruyen una secuencia subhorizontal de rocas volcánicas y y volcanoclásticas de composición andesítica.

Comprende dos cuerpos intrusivos en profundidad, los que son foco de alteración y mineralización del depósito Nuevo Chaquiro. El intrusivo cuarzodiorítico se encuentra muy mineralizado y el diorítico con menos intensidad de alteración y llamado intra minerali. Existe un sistema bien zonificado de alteración formado por ensambles potásicos, cálculo – potásicos y propilíticos tempranos, superpuestos por una alteración de sericita – clorita de baja temperatura y una capa cuarzo – sericítica que se extiende desde superficie hasta unos 400 m de profundidad.

La mineralización del depósito presenta una orientación E – W que sugiere la extensión en esta dirección; con respecto al buzamiento regional, las configuraciones sugieren una secuencia subhorizontal. Cuando el buzamiento puede ser medido en núcleo tiende a mostrar una orientación NE – NW con inclinaciones de bajo angulo (típicamente < 15° al E).

Estructuralmente, el sistema de fallas del depósito asemeja una red general con el yacimiento principal cortado por una serie de fallas subparalelas con tendencia E–SE (100° - 115°) y en algunos lugares desplazadas por fallas posteriores N10° – 15°E. El conjunto de fallas E – SE suele tener persistentes en la horizontales de 375 a 850 m.

Con el propósito de obtener información para los posibles emplazamientos de infraestructura, en el año 2016 se llevó a cabo un trabajo geológico estructural basado en interpretación de fotografías aéreas. Dicho trabajo cubrió una extensión regional de 250 km². El análisis del conjunto de fallas regionales definió lineamientos morfológicos en direcciones N70°W, N40°W, N10°W y N80°E – N50°E y que coincidieron con los datos anteriormente interpretados.

En resumen, aunque la cartografía de campo y el estudio detallado de los núcleos de perforación revelaron la presencia de zonas de brechas con una persistencia y extensión vertical significativos, hasta la fecha no hay evidencia de desplazamiento significativo en ninguna de estas zonas y no se observaron fallas exclusivamente pre-minerales.

3.2.2.2 Descripción labores de investigación superficial y subterránea

La exploración en la región del río Cauca se inició a mediados de la década de 1990, concentrada en antiguas labores de minería en vetas y yacimientos aluviales. AngloGold Ashanti realizó, en el año 2004, los primeros programas geoquímicos regionales. Se identificaron potenciales mineralizaciones en el pórfido de cobre y oro, entre las cuales se incluyó el distrito Quebradona. Un trabajo posterior identificó una zona de 1.300 x 1.000 m sobre la quebrada Quebradona e Higuerillos, con una alteración sericítica fuerte y un “stockwork” de óxido de hierro con inclusiones locales de cuarzo, posteriormente se encontró que esta zona está suprayaciendo el cuerpo mineral Nuevo Chaquiro que luego fuera descubierto a mayor profundidad.
Minera de Cobre Quebradona definió el área de estudio como Distrito Quebradona, y en él se observaron otros prospectos minerales como Aurora, La Sola, Tenedor e Isabela. Sin embargo, los trabajos de campo preliminares sugirieron que tales depósitos eran muy pequeños o muy profundos (como el caso de Chaquiro) para poder generar un caso positivo de mina. Estudios posteriores revelaron el potencial profundo del depósito Nuevo Chaquiro y su posibilidad de explotación subterránea.

3.2.2.2.1 Exploración directa

En el año 2006, se constituyó la alianza entre AngloGold Ashanti y B2Gold Corporation, que incluyó el Distrito Quebradona como área de prospección / exploración. Entre los años 2006 y 2008, B2Gold perforó 13.319 m en el Distrito Quebradona, con 1.987 m distribuidos en cinco perforaciones que se ubicaron en Chaquiro y el resto en los otros blancos de exploración. En el año 2009, B2Gold identificó un potencial de 1 Moz equivalentes en Aurora, considerado muy pequeño para avanzar en el desarrollo de una mina futura.

Posteriormente, B2Gold decidió no continuar la exploración en el Distrito Quebradona y como consecuencia, AngloGold Ashanti comienza a operar el proyecto. En el año 2010, AngloGold Ashanti perforó el área Chaquiro (ahora llamado Nuevo Chaquiro) con dos objetivos:

- Un pórfido profundo centrado en un área de “stockwork” vetilloso con correspondencia a una alta anomalía magnética (Minera de cobre Quebradona S.A., 2018).

En la Figura 3.12 se observan las alteraciones mineralógicas definidas por AngloGold Ashanti en el año 2010 en el Distrito Quebradona, y en la Figura 3.13 se marcan las perforaciones preliminares ejecutadas por AngloGold Ashanti en el depósito Nuevo Chaquiro, mostrando en color verde oscuro las anomalías magnéticas profundas proyectadas en superficie.
Figura 3.12 Alteraciones mineralógicas en el distrito Quebradona (2010)
Fuente: Minera de Cobre Quebradona, 2019

Las perforaciones profundas encontraron una mineralización de Cu – Au con un centro ígneo intramineral, lo que permite definir una amplia zona con valores de 0,48 a 0,54 % de Cu y 0,18 a 0,31 g/t de Au. Además, se identifica una extensa zona de bajo contenido de minerales metálicos. Sin embargo, existía la preocupación de que los contenidos de metales encontrados fueran insuficientes para soportar una operación subterránea.

Trabajos de geofísica permitieron, en agosto del año 2013, el descubrimiento de una zona de alta ley en la perforación CHA – 39, alcanzando un intercepto de 248 m, con valores de 1,06 % de Cu y 0,44 g/t de Au. Igualmente, la perforación CHA-48, tiene un intercepto de 852 m con concentraciones de 1,19% de Cu y 0,61 g/t de Au. A partir del pozo CHA-048 se pudo delinear la zona de alta ley y se siguió en las campanas siguientes con del detallamiento y delimitación de estos sectores.

La campaña de perforación del año 2015 aportó detalles sobre la parte superior del depósito, allí se muestra continuidad del cuerpo intrusivo localizado en el ápice con zonas de alta ley correspondientes a los pozos ilustrados en la Tabla 3.13. Estas zonas ayudaron al entendimiento del deposito sin embargo no aportan gran porcentaje de mineral para el proceso por su bajo tonelaje por metro vertical. En la Figura 3.14 se observa una representación del ascenso de los diques cuarzodioríticos cercanos a la superficie.
Figura 3.13 Perforaciones preliminares para caracterizar el depósito Nuevo Chaquiuro
Fuente: Minera de Cobre Quebradona, 2019

Figura 3.14 Esquema de diques cuarzodioríticos ascendiendo cerca de la superficie
Fuente: Minera de Cobre Quebradona, 2019
Tabla 3.13 Concentraciones de Cu y Au de los sondeos realizados en el año 2015

<table>
<thead>
<tr>
<th>Pozo</th>
<th>Profundidad (m)</th>
<th>Concentración de Cu (%)</th>
<th>Concentración de Au (g/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHA - 66</td>
<td>568,5</td>
<td>1,28</td>
<td>0,82</td>
</tr>
<tr>
<td>CHA - 64</td>
<td>486,4</td>
<td>1,41</td>
<td>1,08</td>
</tr>
<tr>
<td>CHA - 68</td>
<td>595,4</td>
<td>1,5</td>
<td>0,72</td>
</tr>
<tr>
<td>CHA - 69</td>
<td>711</td>
<td>1,12</td>
<td>0,78</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

3.2.2.2 Exploración indirecta

Desde el año 2007 se han realizado en el área varios trabajos geofísicos que incluyen levantamientos aerotransportados de magnetometría, radiometría, métodos electromagnéticos (ZTEM) y un levantamiento de polarización inducida terrestre dipolo-dipolo.

Los trabajos de levantamiento aéreo magnetométrico y radiométrico cubrieron la totalidad del área del contrato de concesión minera y permitieron definir la zona como un potencial distrito minero. Los levantamientos fueron realizados en dos periodos a saber: el primero en 2007 con espaciamiento entre líneas de 200 m y altura de vuelo de 100 m sobre el nivel del terreno en un total de 1.320 kilómetros lineales; y el segundo en 2012 con espaciamiento entre líneas de 100 m y altura de vuelo de 66 m sobre el nivel del terreno, en un total de 1709 kilómetros lineales. Los resultados de este último levantamiento y los otros realizados hasta la fecha fueron de ayuda en la delimitación de las zonas de alteración hidrotermal asociados a las zonas mineralizadas mediante el uso de técnicas de Inversión 3D de los datos del campo magnético medido.

En el año 2012, se realizó un levantamiento aéreo electromagnético (ZTEM) más detallado, con distancia entre líneas de 300 m y una altura de vuelo promedio de 100 m sobre el nivel del terreno, en un total de 239 Km lineales. El objetivo de este levantamiento consistió en estudiar la distribución del comportamiento de la resistividad eléctrica hasta profundidades de 1.000 m y explorar su relación con las distintas unidades geológicas presentes en el área, así como la detección directa de las zonas mineralizadas. Los resultados de este método geofísico fueron de ayuda para entender el comportamiento de la mineralización en profundidad y su continuidad en el sentido aproximado Este-Oeste cubriendo varios de los títulos mineros en el sector de estudio.

3.2.2.3 Características físico-químicas de las rocas predominantes (útil y estéril)

Geológicamente, el depósito Nuevo Chaquiro corresponde a una secuencia volcanogénica del Mioceno. Está constituido por cenizas, tobas, aglomerados y andesitas. La secuencia es intruída por pequeños diques de diorita y cuarzodiorita. La intrusión ocurre por diferentes pulsos de diorita y en mayor proporción por cuarzodioritas de grano medio a fino que en su mayoría no afloran en superficie. Las rocas intrusivas se categorizan en preminerales, tempranas, intraminerales y tardías, de acuerdo con sus relaciones de corte, temporalidad y contenidos de Cu y Au. Se encuentra encuadrado en la Formación Combia, con hasta 600 m de espesor, con secuencias pobremente definidas de piroclastos, volcanoclastos y fluidos con edades entre 6 y 10 Ma (González, 2001).
González (1976), divide la Formación Combia en dos miembros: miembro inferior volcánico compuesto por aglomerados, tobas, flujos de basaltos y diques andesíticos, y miembro superior sedimentario, conformado por conglomerados, areniscas y lutitas de origen volcánico (González, 2001).

En los testigos de perforación se puede apreciar que la Formación Combia la conforman una serie de rocas tobáceas volcánicas y volcanoclásticas, predominantemente andesíticas. Además, comprende en orden de abundancia tobas de ceniza, lapillita, aglomerados y flujos de andesita. Las rocas se correlacionan con el miembro volcánico inferior de la Formación Combia. Los tipos de rocas individuales (de la Fm Combia) son bastante variables en distribución vertical y lateral, por lo que no ha sido posible correlacionarlos lateralmente para la construcción de columnas estratigráficas. Para el propósito del logueo de núcleos, se agrupan varios tipos de rocas en la Formación Combia como una sola unidad llamada “tobas”.

En el área de Nuevo Chaquiro, el buzamiento y la estratificación para diferentes unidades rocosas de la Formación Combia son típicamente subh ortoclinales, con rumbos locales en dirección NE y NW y buzamiento aproximado de 15° E. Este hallazgo es confirmado por la nueva campaña de perforación, pozos CHA – 77 y CHA – 79, registrando buzamientos de 6° a 12° este con rumbo NW.

De igual forma, el depósito Nuevo Chaquiro contiene múltiples intrusiones de cuarzodiorita a diorita, todas similares en apariencia, tamaño de grano, litología gruesa y desarrollo porfídico. Son rocas de grano medio a fino, equigranulares a pórfidos débiles con una relación de fenocristales a matriz del orden de 80:20. Dichos intrusivos comprenden un stock de 300 m de diámetro y diques.

La alteración desarrolla un sistema de pórfido bien zonificado con alteración de diferentes temperaturas. Se presentan conjuntos propilíticos, hasta sericíticos, cloríticos, potásicos y cálcico – potásicos. La mineralización de alta ley de Cu y Au (>0,6 % de Cu) está asociada con venas de cuarzo del tipo A y B bien desarrolladas en la cúpula de cuarzodiorita temprana, persistiendo sobre un intervalo vertical de 500 m y un stockwork que contiene del 10% del volumen de roca.

En la Figura 3.15 se muestra el arreglo espacial de los diques cuarzodioríticos en el depósito Nuevo Chaquiro, comprendiendo un cuerpo cilíndrico de 80 a 120 m de ancho.

El contacto entre la cuarzodiorita intraminerar y la temprana constituye un límite importante de la mineralización de alta ley y es el foco de futuros programas de perforación de relleno para definir los límites más externos del depósito. Las cuarzodioritas tardías solo están definidas por una malla de pozos muy espaciada y, en consecuencia, sus márgenes no están bien delimitadas.

El depósito Nuevo Chaquiro se centra en un stock compuesto de cuarzodioritas que incluyen por lo menos cuatro clases de cuerpos intrusivos. La mineralización más fuerte se asocia con la mineralización temprana. Los demás cuerpos mineralizados muestran una mineralización moderada que se asocia a la geometría y definen la extensión de la zona de menor ley (0,45%) de Cu. Los estilos de mineralización son típicos de un sistema de pórfido telescopico de Cu, donde la alteración potásica y el...
desarrollo de venas de cuarzo del stockwork han sido sobreimpuestas por alteraciones sericíticas – cloríticas en gran parte de las dioritas y una extensa sábana cuarzo – sericítica que se extiende hacia la parte superior de las rocas encajantes.

Figura 3.15 Arreglo espacial de los diques cuarzodioríticos del depósito Nuevo Chaquiro
Fuente: Minera de Cobre Quebradona, 2019

Trabajos de mapeo y estudio de suelos realizados en el sector de la Vereda Cauca, además del área donde se ubica la infraestructura del Proyecto, interceptaron una secuencia de arcillas de color café – rojizas a ocre – rojizas de composición pelítica entremezclada con areniscas y limolitas que varían de finas a gruesas, con facies aluviales de alta energía y depósitos de conglomerados y clastos pertenecientes a la Formación Combia.

De esta forma, la sucesión de sedimentos comprende arcillolitas y limolitas con presencia de concrecciones calcáreas de laminación continua plana y areniscas de matriz arcillosa y cemento calcáreo. Algunos sedimentos del tipo conglomerático están presentes como brechas sedimentarias.

Las rocas sedimentarias se asocian a la Formación Amagá, de edad terciaria, en contacto discordante y subyaciendo a la Formación Combia. Sobre estas dos unidades suprayace un depósito de vertiente de edad cuaternaria. La Figura 3.16 contiene información geológica integrada, se muestra la ubicación de las perforaciones y el contacto geológico entre la Formación Amagá y los depósitos de vertiente.
De acuerdo con la investigación geotécnica en los depósitos de vertiente se tiene un espesor variable hasta los 110 m en la zona de mayor acumulación, cerca de los conos de deyección. En general, el espesor medio es de 28 m, asociado con fragmentos subangulosos a subredondeados de brecha volcánica y tobas de cristales, por lo general frescos, de color gris a gris verdoso y parches de óxidos soportados por una matriz heterogénea que va desde arcilla de color café hasta areniscas finas de color café.

3.2.2.4 Descripción de minerales o componentes del suelo susceptibles de ser liberados por la actividad minera

La descripción de los minerales y componentes del suelo se presenta en el capítulo 5, numeral 5.1.1.3.2. geoquímica de la Formación Combia, donde se describen los componentes de roca presentes en las unidades que componen esta formación (toba y Diques-Rocas Intrusivas). Para evaluar la susceptibilidad de los minerales que pueden ser liberados por la actividad minera, se realizaron ensayos estáticos y cinéticos donde se determina el potencial de lixiviación de metales descrito en el capítulo 5 numeral 5.1.1.3.7 Metales susceptibles a lixiviarse.

Para tener una visión general de los minerales susceptibles de liberación, se deberá consultar el capítulo 5, numeral 5.1.1.3 geoquímica del yacimiento, en el cual se presenta la descripción de ensayos, selección de muestras y resultados para la evaluación general de Potencial de Drenaje ácido en la roca encajante y unidades intrusivas (toba-Dique), así como en las diferentes zonas de desarrollo del Proyecto (Depósito, túnel, rampas, pozos de ventilación, infraestructura subterránea, área de SLC, y zonas de hundimiento).
3.2.2.5 Tamaño, forma, posición y características mineralógicas del yacimiento

Se definen a continuación las principales alteraciones, así como también de los minerales presentes en cada una de ellas.

La alteración potásica del depósito Nuevo Chaquiro, comprende biotita – magnetita, feldespato potásico y feldespato, secundarios con o sin venas de cuarzo asociadas, venas del stockwork con calcopirita, pirita, molibdenita asociadas con la mineralización económica.

La alteración cálcica – potásica se caracteriza por la presencia de biotita secundaria menor con actinolita y/o epidota, con presencia o no de venas de cuarzo en el stockwork. Este tipo de alteración tiene mineralización de Cu – Au de moderada a baja. Ocurre en las partes más calientes y profundas del sistema en donde las condiciones no fueron ideales para la precipitación del Au y el Cu. Los ensambles de epidota – clorita – carbonato no están mineralizados.

La alteración clorita – sericita comprende clorita, sericita y pirita y ocurre en zonas laterales y de profundidad intermedia. La sericita y pirita con intensidad fuerte y distribución penetrante hacia la parte superior del sistema y la superficie.

Los contenidos de Cu y Au se correlacionan bien con la intensidad de las venas tempranas, por lo general del tipo A, que corresponden a venas sinuosas de cuarzo con bajo contenido de magnetita – calcopirita y con venas del tipo B, que son rectas de cuarzo vítreo con suturas centrales de calcopirita – pirita (véase la Figura 3.17).

Los principales minerales del depósito Nuevo Chaquiro son calcopirita y molibdenita, aunque se han observado localmente trazas de bornita y cubanita en cantidades menores al 0,1 % en volumen. Otros sulfuros incluyen pirita y cantidades menores de pirrotita en intervalos específicos. El Au y la Ag correlacionan bien con el Cu y por analogía con otros depósitos se cree que ocurren dentro de la calcopirita, lo que fue comprobado con los últimos estudios geo metalúrgicos. Como muestra de ello se puede ver un ejemplo de un grano de Au en calcopirita (CHA – 032 a una profundidad de 840,3 m), como se observa en la Figura 3.18.

La calcopirita está presente, por lo general, como finas venillas y diseminaciones granulares finas o dentro de las venas de cuarzo con alteración potásica. En alteraciones cálcico–potásicas se presentan en menor grado y algunas veces como zonas de sulfuros masivos de espesor métrico dentro de la cúpula. La molibdenita aparece como venillas sin otros sulfuros y como inclusiones en venillas de cuarzo (sulfuros de etapas tempranas).

La zona de alta ley está compuesta por la cúpula con 1,4 % de Cu y por cuarzodiorita temprana de muy alto grado y se extiende desde la cota 1.950 hasta la cota 1.300. La Figura 3.19 muestra en amarillo la zona de alta ley y en rojo diseminado la zona de cuarzodiorita temprana. Nótese que la zona de alta ley corresponde principalmente al cuerpo intrusivo y una menor porción a las tobas y la cuarzodiorita intramineral.
Figura 3.17 Vetillas densas típicas de Au en el stockwork
Fuente: Sillitoe, 2000

Figura 3.18 Grano de Au dentro de la calcopirita – CHA – 032 a 840,3 m
Fuente: Minera de Cobre Quebradona, 2019
El contacto entre las tobas y el techo de la intrusión de cuarzodiorita temprana se caracteriza por un área intensa de venas y pórfido masivo que contiene hasta 80% de volumen del cuarzo masivo y en bandas, un 5% en volumen de calcopirita, como mezcla, fracturas, finas venillas y diseminados. En la Figura 3.20 se observan los testigos de perforación con venas de cuarzo y calcopirita en la zona de la cúpula.

El cuarzo aparece granular y de grano grueso. El ensamblaje potásico (biotita – magnetita) ha sido sobreimpuesto en algunos casos por una alteración de clorita – sericita de intensidad variable al tiempo que la magnetita ha sido agotada por la sobreimpresión. La zona de cúpula alberga los mayores contenidos de Cu – Au en el depósito mostrando un espesor vertical de hasta 60 m.

Desde un punto de vista geofísico, la cúpula tiene valores de susceptibilidad magnética bajos y valores de cargabilidad altos que probablemente corresponden a la presencia de cuarzo masivo y sulfuros con mínima magnetita. Además, se observan texturas de solidificación unidireccional (Unidirectional Solidification Textures – UST’s), venas y nido de pegmatitas de grano grueso en la vecindad general a los 1.700 de elevación, siendo indicadores típicos de una cúpula en un sistema pórfido (Seedorff, et al., 2005).

Figura 3.19 Perforaciones en la zona de alta ley (14 % Cu)
Fuente: Minera de Cobre Quebradona, 2019
Figura 3.20 Testigo de perforación con venas de cuarzo, calcopirita y pirita en la zona de alta ley de la cúpula
Fuente: Minera de Cobre Quebradona, 2019

Debajo de la cúpula se encuentra la cuarzodiorita temprana con contenidos de Cu del orden de 1,4 %. Esta zona se caracteriza por tener una alteración potásica moderada a fuerte con venillas de los tipos A y B. La mineralización presente es calcopirita, magnetita, venas de calcopirita – pirita y venillas finas de calcopirita diseminada. En la Figura 3.21 se observa la cuarzodiorita temprana en la zona de alta ley.

Figura 3.21 Cuarzodiorita temprana en la zona de Alta ley
Fuente: Minera de Cobre Quebradona, 2019

La zona de alta ley con concentraciones de Cu del 0,6 % se presenta en la porción central del depósito, rodeada por cuarzodiorita temprana, tobas mineralizadas y...
cuarzodiorita intramineral. En esta zona se presenta alta concentración de venillas tipos A y B con magnetita, pirita, pirita – calcopirita y algunas zonas con calcopirita diseminada. En la Figura 3.22 se observan las zonas de alta ley de Cu.

La zona de baja ley, de concentración de 0,45 % de Cu, cubre la mayor parte de la cuarzodiorita intramineral y se extiende hasta la cota 1.000, como se observa en la Figura 3.23.

De esta forma, en la Figura 3.24 se observan las alteraciones mineralógicas del depósito Nuevo Chaquiño, donde se muestran afloramientos dispersos en algunos drenajes en la zona. Además, en la Tabla 3.14 se muestra el diagrama paragenético general del depósito Nuevo Chaquiño.

![Figura 3.22 Zona de alta ley con concentraciones de Cu de 0,6%](image)

Fuente: Minera de Cobre Quebradona, 2019
Figura 3.23
Zona de baja ley con concentraciones de 0,45% de Cu
Fuente: Minera de Cobre Quebradona, 2019

Figura 3.24
Alteraciones de Nuevo Chaquiro
Fuente: Minera de Cobre Quebradona, 2019
Tabla 3.14 Diagrama paragenético generalizado de Nuevo Chaquiro

Mineral	Temprano												
-----------------	----------												
	Alta T - progrado	Media T - retrógrado											
	Potásica	Potásico-Cálcica	Propilítica	Clorita-Sericita	Sercita	Argilica							
Actinolita													
Molibdenita													
Cuarzo													
Biotita													
Magnetita													
Anhidrita													
Epidota													
Pirrotita													
Clacopirita													
Pirita													
Feldespato de K													
Clorita													
Bornita													
Cubanita													
Sercita													
Calcita													
Ilita/Esmectita													
Turmalina													
Esfalerita													
Galena													
Arsenopirita													
Pirofilita													
Marcasita													
Estibnita													
Arsénico Nativo													

Fuente: Minera de Cobre Quebradona, 2019

3.2.2.6 Minera de Cobre Quebradona y su relación con el Distrito de Manejo Integrado Cuchilla Jardín Támesis

Después de otorgado a la empresa el contrato de concesión 5881, por la Secretaría de Minas del Departamento de Antioquia, la Corporación Autónoma Regional de Antioquia CORANTIOQUIA, mediante acuerdo No. 316 de 2009 creó el Distrito de Manejo Integrado (DMI) de los Recursos Naturales Renovables Cuchilla Jardín-Támesis. Así mismo, mediante acuerdo 384 de 2011 se realinderó y adoptó el Plan Integral de Manejo de dicho distrito, el cual hasta la fecha de presentación del instrumento técnico minero (PTO), presenta un traslape parcial con el contrato de concesión de Minera de Cobre Quebradona.

En virtud del compromiso ambiental de la compañía y del valor corporativo relacionado con la protección del medio ambiente y los recursos naturales, el proyecto ha dispuesto devolver a la Autoridad minera, el área del título minero 5881 que se encuentra superpuesta con el Polígono del Distrito de manejo Integrado de los recursos naturales renovables “Cuchilla jardín – Támesis”; es decir, de las 7.593 ha del Título minero se devolverán 2.622 ha, que corresponden al 34,5% del polígono inicial del mencionado título minero, como se ilustra en la Figura 3.25.
Conforme lo anterior y toda vez que, en virtud del Programa de Trabajos y Obras presentado, se tomó la decisión de no desarrollar actividades mineras en dicha área restringida y de especial protección ambiental. Por ello se realizó la entrega a la autoridad minera a través del PTO utilizando el mecanismo de devolución de área de la porción del título minero integrado 5881 respecto del cual el DMI se superpone.

3.2.2.7 Exploración adicional

De conformidad con lo previsto en el artículo 82 del Código de Minas, Minera de Cobre Quebradona está en la obligación de delimitar y devolver al finalizar la etapa de exploración, las áreas del título minero respecto de las cuales no se efectuarán trabajos de: i) explotación, ii) construcción, iii) transporte interno, iv) servicios de apoyo y obras de carácter ambiental y las demás que no se retengan por el concesionario minero para adelantar actividades de exploración adicional y las que el concesionario retenga por razones de seguridad en relación con el Proyecto minero.

Según lo dispuesto en el código de minas (art. 83), se considera como zona de exploración adicional el área no incluida dentro de las obras necesarias para el beneficio, transporte interno, servicios de apoyo y obras de carácter ambiental.

Este plan contempla la ejecución de un programa complementario durante seis meses, que incluirá el reprocesamiento o reinterpretación de la geofísica para identificar...
nuevas zonas prospectables donde posteriormente se realizarán mapeos de detalle y muestreo de suelos y rocas, conducentes a la identificación de nuevos blancos (véase la Figura 3.26). Es de resaltar que estas actividades no representan demanda de recursos naturales, dado que la información se recolecta por métodos indirectos y tomas de muestras en superficie.

Minera de Cobre Quebradona, presentará un plan de perforación posterior y realizará las modificaciones correspondientes al Programa de Trabajos y Obras y solicitará la modificación de la respectiva licencia ambiental.

Figura 3.26 Polígono para exploración adicional
Fuente: Minera de Cobre Quebradona, 2019

3.2.2.8 Tipo o clase de reservas

El modelo de recursos de Minera de Cobre Quebradona fue desarrollado entre los años 2015 y 2016, y actualizado a finales de 2018.

Las variables modeladas fueron los contenidos de Cu, Au, Ag, Mo, As y densidad específica. Los resultados de la modelación de recursos se muestran en la Tabla 3.15.

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Mena (Mt)</th>
<th>Cu (%)</th>
<th>Au (g/t)</th>
<th>Ag (g/t)</th>
<th>Mo (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicados</td>
<td>256</td>
<td>0,86</td>
<td>0,45</td>
<td>5,40</td>
<td>145,44</td>
</tr>
<tr>
<td>Inferidos</td>
<td>343</td>
<td>0,47</td>
<td>0,22</td>
<td>3,46</td>
<td>130,14</td>
</tr>
<tr>
<td></td>
<td>599</td>
<td>0,64</td>
<td>0,31</td>
<td>4,29</td>
<td>136,67</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019. Mt: millones de toneladas; ppm: partes por millón
A continuación, en la Tabla 3.16 se muestran las reservas minerales que en el 100 % corresponden a reservas probables.

Tabla 3.16 Reservas

<table>
<thead>
<tr>
<th>Reservas</th>
<th>Toneladas (t)*</th>
<th>Cu (%)</th>
<th>Au (g/t)</th>
<th>Cu contenido (t)</th>
<th>Au contenido (Oz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probadas</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Probables</td>
<td>109.667.606</td>
<td>1.21%</td>
<td>0.66</td>
<td>1.323.609</td>
<td>2.342.215</td>
</tr>
<tr>
<td>Total</td>
<td>109.667.606</td>
<td>1.21%</td>
<td>0.66</td>
<td>1.323.609</td>
<td>2.342.215</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019 *: T: toneladas; g/t: gramos por tonelada; Oz: onzas

3.2.2.9 Cuantificación de volúmenes de reservas mineras, producción anual proyectada y vida probable del proyecto

En resumen, durante los 25 años de vida útil de la mina (Construcción y Operación), se producirán 124,3 Mt, a razón de 6,2 Mtpa de mineral con contenido promedio de 1,20% de Cu, 0,65 g/t de Au y 6,98 g/t de Ag. El Proyecto minero, de acuerdo con lo establecido en el Contrato de Concesión otorgado por el Estado Colombiano, comprende un lapso de cuatro años (4) de Exploración, cuatro (4) años de Construcción, veintiún (21) años de Explotación, tres (3) años de Abandono y cierre, y diez (10) años de poscierre.

En el Año 3 (de construcción) se inicia la producción de mineral con 147 kt provenientes de actividades de desarrollo, y a partir del Año 4 (de construcción) se iniciará la socavación inicial necesaria para el funcionamiento del método de explotación, logrando un total de 3,076 kt en dicho año. A partir de ese año la producción seguirá creciendo hasta lograr un máximo de 6,268 kt en el Año 16, estabilizándose luego alrededor de 6,0 Mtpa y descendiendo para cerrar con 2,884 kt en el Año 21 (de operación).

Por su parte, el material estéril se obtiene durante los tres primeros años del Proyecto como resultado del desarrollo de los tuneles de acceso a la mina, período hasta el cual se habrá removido el 66 % del estéril total que producirá la mina. A partir de este año, el estéril producido se mantendrá alrededor de 55 kt anuales.

La Tabla 3.17 y la Figura 3.27 muestran los valores anuales de mineral y estéril que se espera producir en los 25 años de vida útil de la mina.

Tabla 3.17 Producción anual de mineral y estéril

<table>
<thead>
<tr>
<th>Año</th>
<th>Mineral (t)</th>
<th>Estéril (kt)</th>
<th>Total material movido (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Desarrollo</td>
<td>Producción</td>
<td>Total</td>
</tr>
<tr>
<td>Año 1 (construcción)</td>
<td>-</td>
<td>-</td>
<td>998</td>
</tr>
<tr>
<td>Año 2</td>
<td>-</td>
<td>-</td>
<td>1.630</td>
</tr>
<tr>
<td>Año 3</td>
<td>147</td>
<td>-</td>
<td>147</td>
</tr>
<tr>
<td>Año 4</td>
<td>931</td>
<td>2.145</td>
<td>3.076</td>
</tr>
<tr>
<td>Año 1 (operación)</td>
<td>716</td>
<td>4.010</td>
<td>4.725</td>
</tr>
<tr>
<td>Año 2</td>
<td>572</td>
<td>5.027</td>
<td>5.599</td>
</tr>
<tr>
<td>Año 3</td>
<td>578</td>
<td>5.272</td>
<td>5.850</td>
</tr>
<tr>
<td>Año 4</td>
<td>567</td>
<td>5.474</td>
<td>6.041</td>
</tr>
<tr>
<td>Año 5</td>
<td>385</td>
<td>5.487</td>
<td>5.873</td>
</tr>
<tr>
<td>Año 6</td>
<td>331</td>
<td>5.482</td>
<td>5.813</td>
</tr>
<tr>
<td>Año 7</td>
<td>222</td>
<td>5.840</td>
<td>6.062</td>
</tr>
<tr>
<td>Año 8</td>
<td>289</td>
<td>5.852</td>
<td>6.141</td>
</tr>
<tr>
<td>Año 9</td>
<td>298</td>
<td>5.874</td>
<td>6.172</td>
</tr>
</tbody>
</table>

Estudio de Impacto Ambiental: I-0010371-MQC-EIA-V1-FA
Noviembre, 2019
<table>
<thead>
<tr>
<th>Año</th>
<th>Desarrollo (kt)</th>
<th>Producción (kt)</th>
<th>Total (kt)</th>
<th>Estéril (kt)</th>
<th>Total material movido (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Año 10</td>
<td>295</td>
<td>5.855</td>
<td>6.150</td>
<td>67</td>
<td>6.217</td>
</tr>
<tr>
<td>Año 11</td>
<td>317</td>
<td>5.859</td>
<td>6.175</td>
<td>45</td>
<td>6.221</td>
</tr>
<tr>
<td>Año 12</td>
<td>594</td>
<td>5.674</td>
<td>6.268</td>
<td>49</td>
<td>6.318</td>
</tr>
<tr>
<td>Año 13</td>
<td>576</td>
<td>5.600</td>
<td>6.176</td>
<td>41</td>
<td>6.217</td>
</tr>
<tr>
<td>Año 14</td>
<td>571</td>
<td>5.518</td>
<td>6.089</td>
<td>46</td>
<td>6.135</td>
</tr>
<tr>
<td>Año 15</td>
<td>548</td>
<td>5.549</td>
<td>6.097</td>
<td>35</td>
<td>6.132</td>
</tr>
<tr>
<td>Año 16</td>
<td>450</td>
<td>5.502</td>
<td>5.952</td>
<td>90</td>
<td>6.042</td>
</tr>
<tr>
<td>Año 17</td>
<td>559</td>
<td>5.521</td>
<td>6.080</td>
<td>75</td>
<td>6.155</td>
</tr>
<tr>
<td>Año 18</td>
<td>551</td>
<td>4.963</td>
<td>5.514</td>
<td>26</td>
<td>5.539</td>
</tr>
<tr>
<td>Año 19</td>
<td>528</td>
<td>5.184</td>
<td>5.712</td>
<td>-</td>
<td>5.712</td>
</tr>
<tr>
<td>Año 20</td>
<td>13</td>
<td>5.740</td>
<td>5.754</td>
<td>-</td>
<td>5.754</td>
</tr>
<tr>
<td>Año 21</td>
<td>-</td>
<td>2.884</td>
<td>2.884</td>
<td>-</td>
<td>2.884</td>
</tr>
<tr>
<td>Total</td>
<td>10.038</td>
<td>114.313</td>
<td>124.351</td>
<td>5.720</td>
<td>130.071</td>
</tr>
</tbody>
</table>

Max 931 5.874 6.268 1.799 6.318

Fuente: Minera de Cobre Quebradona, 2019. kt: miles de toneladas; t: tonelada

Figura 3.27 Producción anual de mineral y estéril

Fuente: Minera de Cobre Quebradona, 2019

El material estéril (5.72 Mt) representa en promedio el 4.4 % del total material minado en operación, produciéndose el 66 % de este en los primeros tres años de la vida del proyecto (véase la Tabla 3.18).

Tabla 3.18 Producción mineral (kt)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>U</th>
<th>Quinquenio 1</th>
<th>Quinquenio 2-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral de desarrollos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kt</td>
<td>10.038</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mineral de producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kt</td>
<td>114.313</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total de mineral</td>
<td>Kt</td>
<td>124.351</td>
<td>-</td>
</tr>
<tr>
<td>Material estéril</td>
<td>Kt</td>
<td>5.720</td>
<td>998</td>
</tr>
<tr>
<td>Total minado material</td>
<td>kt</td>
<td>130.071</td>
<td>998</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019. *: (C): Construcción; (O): operación

Estudio de Impacto Ambiental I-0010371-MQC-EIA-V1-FA
Noviembre, 2019 3.89
3.2.2.10 **Cuantificación de volúmenes de sobrantes a remover, incluyendo la ganga o mena**

En la Tabla 3.18 se relacionan los volúmenes de mineral, así como de estériles que serán removidos durante la etapa de operación de la mina.

3.2.2.11 **Balance de masas de elementos químicos que coexisten con los metales de interés económico**

En el numeral 3.3.4 Material sobrante del proceso minero, se presenta el balance de masa de todos los elementos, incluyendo los elementos NORM -los cuales se encuentran en trazas- por tipo de producto generado en la planta de beneficio, ya sea concentrado, relaves con pirita o relaves filtrados inertes, en fase sólida. Estos porcentajes se estimaron a partir de balance de masas de elementos obtenido mediante pruebas metalúrgicas.

En el numeral 3.6.2.3.3 se presenta un resumen de los resultados de las pruebas cinéticas y dinámicas que analizaron las litologías dominantes, los rangos de concentración de azufre y las zonas espaciales/elevadas de operación. Las muestras se analizaron para parámetros estándar de contabilidad ácido-base (ABA) como el azufre (total y sulfato), el carbono (total y orgánico), el pH de pasta y el pH de NAG (Generación de Ácido Neto) con análisis de la solución final.

El análisis detallado se presenta en el capítulo 5 Caracterización del área de influencia, de este documento.

3.2.2.12 **Modelo predictivo de subproductos. Concentrados mineralógicos de interés**

Cuando el proyecto Minera de Cobre Quebradona entre en marcha, producirá un concentrado con contenidos de Au y Ag. El proceso de beneficio producirá una cola de flotación resultante de un proceso mecánico, que se almacenará en el depósito de relaves filtrados, ubicado a un costado de la planta.

No está previsto producir otro concentrado mineralógico de interés distinto del mencionado.

3.2.2.13 **Cartografía geológica del área (Litología y estructura)**

La cordillera de los Andes de Colombia tiene una historia tectónica compleja. Como resultado de la interacción de la Placa de Nazca hacia el sur, la Placa del Caribe hacia el norte y el bloque central Chocó – Panamá con la Placa Suramericana hacia el este, como se observa en la Figura 3.28. El Sistema de Fallas de Romeral (SFR) es la mayor característica tectónica en Colombia, con una longitud total del orden de 700 km (Pulido, 2003). En general, el SFR es un conjunto de fallas subparalelas con rocas oceánicas hacia el oeste separadas de las rocas continentales hacia el este (Paris, Machette, Dart, & Haller, 2000).
De acuerdo con la evolución tectónica de esta área en el norte de los Andes, las diferentes etapas y ángulos de subducción, permitieron las condiciones para el debilitamiento de la litosfera que luego la hacen susceptible a deformaciones. En el margen continental se muestran zonas de suturas y sistemas de fallas mayores en tanto que el SFR se muestra como una falla de hundimiento hacia el E – SE y los terrenos oceánicos acrecentados en la cordillera Occidental localizados debajo del SFR tendrían movimiento transpesional. En la Figura 3.29 se muestra la reconstrucción tectónica del occidente colombiano.
En la zona de estudio, el SFR cambia la orientación de NNE a NWW. De igual forma, el sentido de movimiento del SFR cambia de siniestro ladera hacia el borde y diestro lateral hacia el sur (Ego, Sébrier, & Yepes, 1995). Este cambio produce el efecto de abrir el espacio que subsecuentemente ha sido llenado con las intrusiones mineralizadas. El SFR tiene un significado particular para el depósito Nuevo Chaquiro, ya que forma el límite oriental de la cuenca separada que contiene el distrito minero como se muestra en la Figura 3.30.

El lineamiento de Arma presenta una importancia estructural, con dirección NW y entrecruza el cinturón. Este es una estructura normal oblicua con dirección N40°W, siniestro – lateral, con un alineamiento notable de 40 km de longitud que controla el río Arma y localmente el río Cauca en el sector de La Pintada. Este arreglo estructural facilita el levantamiento de cuerpos intrusivos en la secuencia volcanoclástica de la Formación Combia sin alcanzar la superficie y, a pesar del proceso erosivo llevado a cabo durante largo tiempo, el depósito Nuevo Chaquiro fue preservado en profundidad caracterizando un depósito ciego. En la Figura 3.31 se muestra la geología regional de la zona de estudio.
Según la información regional, se lleva a cabo el trabajo de mapeo y exploración del depósito Nuevo Chaquiro, teniendo en cuenta ubicación, descripción de afloramientos y muestreo de rocas y suelos que generan información litológica y geológica. En la Figura 3.32 se muestra la geología local del depósito Nuevo Chaquiro.
A continuación, se describen las principales litologías que aparecen en el área, algunas de las cuales no afloran en el sitio. Pero son importantes en la evolución mineralógica y geológica compilada en el examen de los testigos de perforación.

3.2.2.13.1 Tobas

Constituyen la unidad con la más amplia distribución en la zona y agrupan un conjunto litológico no diferenciado dentro del complejo volcánico efusivo. En la mina de Cobre Quebradona, se diferencian dos grupos y se las denomina informalmente como tobas de ceniza y cristalinas y lapillita (tobas de fragmentos cristalizados). Las tobas de ceniza y cristalinas son de espesor variable, color negro a café oscuro, con cristales de no más de 2 mm. De composición básica a intermedia con 5% de cuarzo hialino en promedio. Presenta estructuras planas paralelas y onduladas inclinadas que las diferencian de las unidades cristalinas intrusivas. Entre las unidades volcánicas efusivas son reconocidas como las más reactivas y favorables a la precipitación de flujos hidrotermales. Sobre este tipo de rocas se describen las alteraciones hidrotermales más fuertes, también las mayores concentraciones de pirita, calcopirita y moliibdenita. Dadas las condiciones estratigráficas de la zona, no ha sido posible establecer correlaciones estratigráficas en el área del depósito. En la Figura 3.33 se muestran las tobas de ceniza con alteración potásica previsiva moderada.
La toba de lapilli (toba de fragmentos cristalizados), corresponde a estratos métricos que contienen compuestos piroclásticos con tamaño entre 2 y 64 mm; además fragmentos volcánicos líticos angulares, pumita y fragmentos líticos y cristalinos intrusivos de plagioclasa, cuarzo, biotita y hornblenda. Por lo general, presenta dos tamaños de grano, simulando la textura de un pórfido, lo que lo hace difícil diferenciarlo entre las dioritas y cuarzdioritas. La matriz es microcristalina y en ocasiones criptocristalina, de textura fluida microcítica y traquítica. La alteración y mineralización son variables, dependen de la unidad ígnea adyacente y la profundidad del nivel de deposición. Es menos reactiva a efectos metasomáticos en comparación con las tobas de ceniza, posiblemente debido a la mineralogía ácida, menores cantidades de hierro y granulometría bimodal con menos porosidad.

3.2.2.13.2 Aglomerados y Andesitas

Agrupa todas las rocas con fragmentos piroclásticos mayores de 64 mm. Los aglomerados son heterogéneos en composición, textura y localización. Por lo general, intercalados entre tobas de ceniza y lapilli. En zonas superficiales, muestra anillos de turmalina de reactividad alrededor de líticos y permiten ensambles de alteración diferentes en clastos y matriz. La alteración y mineralización depende de la ubicación de la anomalía en relación con intrusivos.

Las andesitas son basálticas, de color oscuro con cristalización fina, masiva, comúnmente presenta vacuolas rellenas con carbonatos o sílice. Tienen una fuerte respuesta magnética debido al alto contenido de magnetita (entre 5% a 10%).

3.2.2.13.3 Diorita

Se clasifica esta roca en tres grupos diferentes de manera informal, el primero una diorita temprana, corresponde a cuerpos tabulares entre 30 y 50 m de espesor medido en testigos de perforación. Microscópicamente se pueden identificar dos clases de diorita: una porfirítica de cristales gruesos y de cristales finos a medios. Macroscópicamente se caracteriza por su textura porfídica, con fenocristales de...
plagioclasas y en menor proporción de anfíbol en una matriz de plagioclasa fina a muy fina, con una relación 20:80 de matriz a fenocristales. La principal alteración es potásica de biotita con distribución pervasiva, alta densidad de venas principalmente del tipo A y B, con mineralización de calcopirita y molibdenita diseminadas.

El segundo grupo corresponde a la diorita intramineral, relacionada con cuerpos tabulares con espesor variable entre 2 y 50 m y corresponden a dioritas de cristal medio a fino, equigranular, con relación 20:80 de matriz a cristales. Las rocas son de color gris a café grisáceo claro. La alteración potásica débil es selectiva (la biotita reemplaza los minerales ferromagnesianos). La alteración clorita – sericita está sobreimpresa como halos y parches, la densidad de venas decrece en comparación con las dioritas tempranas y las venas principales son del tipo A y D. La mineralización es por lo general de calcopirita y molibdenita diseminadas con inclusiones de venas tipo A. Este grupo de rocas tiene una localización extensa en el área del proyecto y la mayoría de sus contactos están relacionados con tobas.

Desde el punto de vista geoquímico existen dos tipos de dioritas intraminerales: la más común es alta en contenido de cobre y molibdeno, pero bajo en concentraciones de oro, y la otra presenta altos contenidos de cobre y oro (200 – 500 ppm), pero bajas concentraciones de molibdeno. En la Figura 3.34 se observa la diorita intramineral.

![Figura 3.34 Diorita intramineral](Fuente: Minera de Cobre Quebradona, 2018)

El tercer grupo corresponde la diorita tardía. Son cuerpos tabulares con espesor variable entre 1 y 34 m. Formado por dioritas de cristales medio y textura equigranular. Su principal alteración es débil, propilítica pervasiva, con venas de baja densidad y bajo contenido de cobre y valores de oro y molibdeno cerca de los niveles más profundos. En la Figura 3.35 se observa la diorita tardía.
3.2.2.13.4 Cuarzodiorita

La cuarzodiorita es dividida en dos grupos de manera informal, cuarzodiorita temprana, esta es unidad con cristales de tamaño medio, de color gris verdoso. Compuesta por plagioclasa (40 – 50%), cuarzo (10 – 15%), biotita (10 – 20%), hornblenda (5 – 10%) y magnetita (5%). Macroscópicamente tiene textura de pórfido con fenocristales de plagioclasa y matriz microcítica de cuarzo, plagioclasa, biotita y hornblenda. Sus principales alteraciones son actinolíticas y potásicas. Se caracteriza por altos valores de cobre y densidad alta de venillas de los tipos A, B y M, con mineralización de pirita y calcopirita (véase la Figura 3.36).

La cuarzodiorita intramineral corresponde a rocas con diques de varios centímetros a metros con tamaño de cristal de fino a grueso, de color gris a gris oscuro. Compuesta de plagioclasa (40%), cuarzo (15 – 20%), biotita (10 – 20%), hornblenda (10 – 15%) y a menudo magnetita (5%). Macroscópicamente es una roca equigranular de textura
fanerítica, euhedral a subhedral. Microscópicamente tiene la textura de una plagioclase con fenocristales. La principal alteración es actinolita pervasiva, sin embargo, presenta alteración potásica, subordinada con biotita y magnetita secundarias. Esta roca también presenta alteración clorítica menos intensa. La mineralización es de tipo A y B con minerales diseminados de calcopirita y pirita. Algunas venas presentan trazas de molibdeno al igual que carbonatos con esfalerita y galena. Estas rocas intruyen las tobas y producen zonas de contacto abruptas. Además, se encuentra rodeando las cuarzodioritas tempranas ubicadas en el centro del proyecto y también se observan localizadas al este y sur de la zona central de diques. En la Figura 3.37 se muestra la roca anteriormente descrita.

Figura 3.37 Cuarzodiorita intraminer
Fuente: Minera de Cobre Quebradona, 2018

3.2.2.14 Cartografía de actividades de exploración para determinar dinámica de aguas subterráneas antes de la explotación minera

Los estudios hidrogeológicos llevados a cabo en el área del proyecto utilizaron algunas de las perforaciones de la exploración geológica del área, y se complementaron con otras específicas para la instalación de piezómetros y ejecución de pruebas hidráulicas, ubicadas como se ilustra en la Figura 3.38.

El rango de valores presentado muestra intervalos aproximados de 130 m en las variaciones de los niveles piezométricos replicable en toda la zona, indicando un gradiente hidráulico moderado, acorde con el comportamiento topográfico. Las zonas de más alto nivel piezométrico (colores azules), coinciden con mayor altura sobre el nivel del mar y las unidades geomorfológicas de mayor contraste en la zona. Las secciones localizadas sobre el sector Quebradona y Cauca del área de estudio, marcan tres sentidos en el decrecimiento de los niveles piezométricos, los cuales son correlacionales con las unidades de menor altura, topografía más plana y dirección de los drenajes superficiales.
Por otra parte, las zonas de menor nivel piezométrico están ubicadas principalmente en el NE y NW de la zona de estudio, alcanzando profundidades en la zona de hasta 744 msnm. Cabe resaltar que la incertidumbre más alta se da hacia el SE del sector Cauca, pues la densidad de datos en dicha área es nula. Para el caso específico de la zona de estudio las líneas de flujo locales poseen un comportamiento bifurcado, el cual tiene dos tendencias marcadas: a fluir desde el centro y sureste de la zona, hacia el noroeste (NW en dirección al río Piedras) y noreste (NE en dirección al río Cauca).

El método de interpolación muestra claramente que las tres direcciones de flujo preferenciales definidas en la Figura 3.38 siguen un comportamiento estrechamente ligado al movimiento del agua superficial y subsuperficial, aportando al flujo del río Cauca sobre la margen noreste del área de estudio.

3.2.3 Fases y actividades del Proyecto

Durante las primeras fases de desarrollo del Proyecto se adelantaron trabajos de recolección e interpretación de información de antiguas labores mineras en la región del río Cauca que condujeron a solicitar al Gobierno Nacional el título minero del área de interés.

Figura 3.38 Mapa de isopiezas

Fuente: Minera de Cobre Quebradona, 2019
A continuación, se formalizó el Contrato de Concesión y se adelantaron los trabajos de perforación exploratoria, de perforación detallada y consecuente evaluación técnico-financiera.

Actualmente el Proyecto se encuentra en Exploración. En esta fase se recolectaron muestras de suelo, perforaciones de geología, geotecnia e hidrogeología, y datos de línea base en general, y se concluyeron los estudios necesarios para radicar ante las autoridades mineras y ambientales a través del Programa de Trabajos y Obras (PTO) y el Estudio de Impacto Ambiental (EIA), respectivamente.

Una vez obtenidas las licencias minera y ambiental, se procederá con la etapa de Construcción y montaje (4 años), donde todas las infraestructuras de superficie y subsuelo quedarán listas para la segura operación, para posteriormente continuar con las etapas de Operación y explotación (21 años), Abandono y Cierre (tres años), y Poscierre (10 años). En la Figura 3.39 se presentan, de manera esquemática, las diferentes etapas del Proyecto.

La Figura 3.40 ilustra las actividades que se desarrollarán en las distintas fases del Proyecto minero. La etapa de operación se divide en varias subetapas porque involucra gran cantidad de operaciones.

La duración y secuencia de las etapas que se ilustran en la Figura 3.41, se describen a continuación.
3.2.3.1 Construcción y montaje

En la primera etapa, que tiene una duración de cuatro años a partir de la obtención de la Licencia Ambiental, se llevarán a cabo las actividades relacionadas con la adquisición de los predios y servidumbres. Esta etapa también consiste en el desarrollo de actividades de exploración adicional, la preparación de los terrenos para la construcción de las obras civiles, la construcción y operación de vías y el montaje de estructuras de soporte y construcción de obras civiles necesarias para el desarrollo de la siguiente etapa.

Durante la etapa de construcción se completarán las obras tempranas, vías de acceso, se excavarán los túneles de acceso, se construirá la infraestructura subterránea para el inicio de la excavación, la planta de trituración subterránea, la banda transportadora de mineral a superficie, la planta de beneficio, talleres, campamento, pozos de ventilación y demás instalaciones superficiales de soporte a la operación. A continuación, se presenta el Cronograma de la etapa de construcción y montaje (véase la Figura 3.41).
Figura 3.41 Cronograma de Construcción y montaje
Fuente: Minera de Cobre Quebradona, 2019

En la etapa de construcción se realizarán estudios y relacionamientos con la comunidad, con el fin de identificar, gestionar y hacer cumplir los requisitos legales y otros requerimientos que suscriba la organización. Además, en esta etapa se realizará el montaje de todos los equipos y sistemas requeridos para el procesamiento del mineral y para el manejo de material sobrante y de residuos sólidos y líquidos, y se llevarán a cabo todas las actividades constructivas, previas a la explotación minera, necesarias para la ejecución del Proyecto. Entre las labores a desarrollar se encuentran construcción de vías, construcción de campamento, construcción y montaje de la planta de beneficio. Para la construcción se consolidaron las actividades de acuerdo con la Tabla 3.19.

Tabla 3.19 Actividades de la etapa de construcción y montaje

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adquisición de predios y/o servidumbres</td>
<td>Proceso de negociación y adquisición de predios y servidumbres en el área del Proyecto y traslado de población.</td>
</tr>
<tr>
<td>Contratación mano de obra, bienes y servicios</td>
<td>Proceso de vinculación y contratación de personal, bienes y servicios necesarios para la etapa constructiva.</td>
</tr>
<tr>
<td>Desmonte</td>
<td>Retiro de la cobertura vegetal para todas las actividades constructivas. Incluye depósito de relaves filtrados, los depósitos, las vías, los portales, etc.</td>
</tr>
<tr>
<td>Descapote</td>
<td>Retiro del suelo orgánico, previo al desarrollo de las actividades de construcción.</td>
</tr>
<tr>
<td>Uso de materiales de construcción disponibles en obra y en fuentes externas al proyecto</td>
<td>Uso de materiales sobrantes de las excavaciones, con características litológicas o estructurales particulares, para las actividades de construcción de terraplenes, afirmados, pavimentos y concretos en obra. Así mismo, la compra de materiales de construcción en fuentes externas al proyecto, que cuenten con Licencia ambiental aprobada.</td>
</tr>
<tr>
<td>Almacenamiento de materiales, insumos y residuos</td>
<td>Incluye repuestos, residuos, combustibles, sustancias químicas y los demás insumos asociados a la construcción del proyecto.</td>
</tr>
<tr>
<td>Operación de casinos, oficinas y Campamento</td>
<td>Almacenamiento de residuos, sustancias químicas y los demás insumos asociados a la operación de instalaciones de soporte y a la operación de...</td>
</tr>
<tr>
<td>Actividad</td>
<td>Definición</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Operación y mantenimiento de maquinaria y equipo de construcción</td>
<td>Operación de cualquier maquinaria y/o equipo, estático o móvil dentro de las instalaciones mineras, incluye el movimiento de la maquinaria durante su operación o la simple operación de la misma.</td>
</tr>
<tr>
<td>Transporte y acarreos</td>
<td>Cargue, transporte y descargue en superficie de agregados, material proveniente de la excavación, material proveniente de la remoción de la cobertura vegetal y suelo orgánico, así como también transporte de maquinaria y equipos, insumos, residuos de construcción y productos químicos entre otros. Se incluye además el transporte del personal de la obra tanto en las vías del proyecto como en las vías existentes.</td>
</tr>
<tr>
<td>Adecuación, operación y mantenimiento de zonas de depósito y plataformas</td>
<td>Construcción de obras de arte, sistemas de drenaje y adecuación de sitios para la disposición de material proveniente de las excavaciones, suelo orgánico, desmonte, escombros, etc. y cimentaciones del depósito de relaves filtrados.</td>
</tr>
<tr>
<td>Construcción, operación y mantenimiento de obras civiles</td>
<td>Construcción de edificaciones e infraestructura, preparación de concretos y agregados, construcción de obra negra y obra blanca, obras de drenaje y señalización, construcción de sistemas de captación, bombeo, potabilización y distribución de agua. Aplica para las instalaciones temporales y definitivas como: almacenes, campamento, talleres, bodegas, planta de beneficio, polvorín, sistemas de tratamiento de agua potable y aguas residuales, entre otras obras civiles.</td>
</tr>
<tr>
<td>Construcción, operación y mantenimiento de vías</td>
<td>Instalación de sub-base, base, pavimento asfáltico o concreto, construcción de obras de arte y señalización.</td>
</tr>
<tr>
<td>Construcción de obras hidráulicas</td>
<td>Construcción de obras de drenaje, presas para los sedimentadores, canales colectores norte y sur, etc. Incluye actividades de compactación de los terraplenes.</td>
</tr>
<tr>
<td>Construcción y operación de estaciones de servicio</td>
<td>Construcción y operación de estaciones para el almacenamiento y suministro de combustibles.</td>
</tr>
<tr>
<td>Construcción de túneles (método convencional perforación y voladura)</td>
<td>Incluye la construcción de túneles y obras subterráneas mediante perforación y voladuras, extracción de materiales, revestimiento de concreto en los portales, tratamiento y vertimientos de agua contactada proveniente del túnel.</td>
</tr>
<tr>
<td>Construcción de túneles (método tuneladora TBM)</td>
<td>Incluye la construcción de túneles mediante Tuneladora (TBM), extracción de materiales y tratamiento y vertimientos de agua contactada proveniente del túnel.</td>
</tr>
<tr>
<td>Construcción de pozos de ventilación</td>
<td>Construcción de pozos de ventilación mediante raise boring.</td>
</tr>
<tr>
<td>Pre-minería</td>
<td>Consiste en la extracción de mineral que resulta de la actividad de desarrollo de mina, durante la etapa de construcción y montaje. El mineral extraído debe someterse a trituración primaria y ser almacenado temporalmente en superficie, para su tratamiento posterior; cuando comience la etapa de operación.</td>
</tr>
<tr>
<td>Operación depósitos de mineral</td>
<td>Descargue, disposición y esparcimiento del material en depósitos temporales de mineral. El sitio de almacenamiento temporal para este mineral será el Depósito Piritá.</td>
</tr>
<tr>
<td>Operación depósitos de estéril</td>
<td>Descargue y disposición de estéril asociado al avance del túnel y pozos de ventilación. El material estéril será destinado al Depósito Temporal de Estériles o Depósito Piritá (en caso de ser un material AGP).</td>
</tr>
<tr>
<td>Montaje de estructuras, ventilación, equipos, sistemas eléctricos e instrumentalización</td>
<td>Recepción, almacenamiento e instalación de los equipos de procesamiento del mineral. Incluye taller de ensamble, construcción de estaciones de servicio, construcción de estructuras metálicas, construcción de redes de servicios de agua, energía, ventilación y productos químicos del proceso.</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019
3.2.3.2 Operación

La segunda etapa del Proyecto, que tiene una duración de 21 años, es la etapa de operación propiamente dicha, en la cual se extraerá el mineral, se beneficiará en la planta y se hará el manejo de los relaves filtrados. Si bien, este proceso se describirá detalladamente más adelante (numeral 3.4 Beneficio y transformación de minerales), es importante explicar que los relaves son los sobrantes de los procesos mineros de concentración de minerales. Tradicionalmente los relaves constituyen una mezcla de arenas y agua. Sin embargo, para este Proyecto se contempla el diseño de relaves filtrados, con una etapa de filtrado para extracción del agua, por lo tanto, los relaves finales corresponderán a unas arenas secas.

La etapa de operación comprenderá la preparación de los frentes de trabajo, la excavación del mineral y del material estéril utilizando perforación y voladuras, el corte de estos materiales y su descargue en los puntos de traspaso y posterior transporte a la planta subterránea de trituración, la trituración primaria del material mineral, transporte a superficie, trituración secundaria, flotación, carga y transporte a puerto y manejo de relaves filtrados.

Dada la cantidad y el tipo de actividades que se ejecutarán durante la etapa de operación, estas fueron clasificadas en diferentes fases del proceso. La fase de actividades preliminares incluye actividades que se consideran transversales en toda la operación mineral, es decir, no son exclusivas de un momento, sino que se desarrollan durante toda la vida de la mina. En la fase de extracción se encuentran las actividades relacionadas con el proceso de explotación y procesamiento de los minerales, así como las actividades orientadas a la preparación y el desarrollo de las áreas de los depósitos de mineral.

La fase de beneficio y transformación comprende todas las actividades del proceso detrituración, molienda, clasificación, concentración y otras operaciones a los que se somete el mineral extraído para su uso o transformación. La transformación por su parte es el conjunto de operaciones fisicoquímicas o metalúrgicas a que se somete un mineral después de ser beneficiado, para obtener un primer producto comercial utilizable por la industria y el consumidor. En el caso concreto del Proyecto Quebradona el proceso estará enfocado esencialmente al beneficio de cobre, por cuanto el resultado del proceso en ningún momento es un producto diferente no identificable con el mineral en su estado natural.

La fase de almacenamiento de relaves incluye la actividad para la disposición del material resultante de las operaciones de beneficio. En la Tabla 3.20 se presentan todas las actividades de la etapa de operación discriminadas según su fase.

Tabla 3.20 Actividades de la etapa de operación

<table>
<thead>
<tr>
<th>Fase</th>
<th>Actividad</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividades preliminares</td>
<td>Contratación mano de obra, bienes y servicios</td>
<td>Proceso de vinculación y contratación de personal, bienes y servicios necesario para la etapa de operación.</td>
</tr>
<tr>
<td></td>
<td>Recepción y almacenamiento de materiales, insumos y residuos</td>
<td>Incluye insumos, repuestos, residuos peligrosos, sustancias químicas y los demás insumos asociados a la operación del proyecto.</td>
</tr>
<tr>
<td></td>
<td>Operación de casinos</td>
<td>Disposición de residuos sólidos y la operación de sistema</td>
</tr>
<tr>
<td>Fase</td>
<td>Actividad</td>
<td>Definición</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>de tratamiento de agua (abastecimiento y vertimiento)</td>
<td></td>
</tr>
<tr>
<td>Operación y mantenimiento de maquinaria y equipos</td>
<td>Operación y desarrollo de actividades preventivas para el adecuado funcionamiento de la maquinaria y el equipo requeridos en la fase de operación: limpieza, cambio de aceite, lubricación, entre otros.</td>
<td></td>
</tr>
<tr>
<td>Transporte y acarreos</td>
<td>Incluye transporte de los explosivos desde el sitio de almacenamiento hasta el túnel y sitio de explotación, transporte de maquinaria e insumos para el proceso minero y transporte de personal tanto en las vías del proyecto como en las vías existentes.</td>
<td></td>
</tr>
<tr>
<td>Operación de estaciones de servicio</td>
<td>Operación de estaciones para el almacenamiento y suministro de combustibles.</td>
<td></td>
</tr>
<tr>
<td>Operación y mantenimiento de obras hidráulicas</td>
<td>Se refiere a la operación y mantenimiento de diques, canales y demás obras hidráulicas.</td>
<td></td>
</tr>
<tr>
<td>Aislamiento de la zona de subsidencia</td>
<td>Instalación de encerramiento para evitar tránsito de fauna terrestre y personas en el área de subsidencia durante y después de las operaciones mineras.</td>
<td></td>
</tr>
<tr>
<td>Extracción</td>
<td>Extracción de mineral</td>
<td>Incluye la realización de las siguientes actividades unitarias, relacionadas con el método de extracción hundimiento por subniveles: perforación de pozos de producción, voladuras, ventilación, cargue y transporte al punto de vaciado y descarga en el pique de traspaso.</td>
</tr>
<tr>
<td>Trituración primaria</td>
<td>Incluye el transporte de mineral desde los piques de traspaso a la tolva de carga de la trituradora primaria, y trituración del material. Esta actividad se desarrolla de manera subterránea.</td>
<td></td>
</tr>
<tr>
<td>Transporte de mineral y/o estéril a superficie</td>
<td>Corresponde al transporte de mineral y/o estéril triturado, desde la descarga de la trituradora hasta la superficie, mediante bandas transportadoras.</td>
<td></td>
</tr>
<tr>
<td>Adecuación y mantenimiento de vías en superficie</td>
<td>Adecuación de vías mineras por medio de perfilado y nivelación en aquellos sectores que lo requiera. Inspección de obras de arte, retiro de obstrucciones y rehabilitación de las que se encuentren en mal estado. Mantenimiento de señalización.</td>
<td></td>
</tr>
<tr>
<td>Preparación y distribución de insumos químicos para el proceso</td>
<td>Preparación de los insumos para el proceso de beneficio y transformación, así como su distribución a las distintas áreas.</td>
<td></td>
</tr>
<tr>
<td>Trituración secundaria en superficie</td>
<td>Cargue y transporte del mineral desde el depósito temporal (acopiado en la etapa de construcción y montaje), la descarga del material desde la trituración primaria (subterránea), trituración, transporte en banda del mineral triturado en superficie hacia el molino HPGR.</td>
<td></td>
</tr>
<tr>
<td>Circuito de trituración de alta presión</td>
<td>Recibe el material de la trituración secundaria, se apila para su posterior molienda y circuito de clasificación (zaranda en seco y húmedo) para ser enviado al proceso de flotación y/o almacenamiento para reprocesso.</td>
<td></td>
</tr>
<tr>
<td>Molienda</td>
<td>Clasificación gravimétrica y molienda fina en molino de bolas.</td>
<td></td>
</tr>
<tr>
<td>Flotación</td>
<td>Adición de reactivos, flotación, recirculación, bombeo, clasificación por tamaño, alimentación de la remolienda para el posterior filtrado del concentrado.</td>
<td></td>
</tr>
<tr>
<td>Generación de concentrado</td>
<td>Elaboración del concentrado como producto final del proceso minero para su posterior comercialización</td>
<td></td>
</tr>
</tbody>
</table>
Fase | **Actividad** | **Definición**
---|---|---
Almacenamiento de relaves filtrados inertes | Disposición de relaves filtrados inertes | Acarreo, dispersión y compactación de relaves filtrados inertes y la disposición selectiva del relave con pirita.

Fuente: Minera de Cobre Quebradona, 2019

3.2.3 Abandono, cierre y postcierre

En la etapa de abandono, cierre y postcierre, que tiene una duración de 13 años, se realizarán las labores de restauración, rehabilitación y desmantelamiento de la infraestructura utilizada en la etapa anterior para el beneficio del mineral. En esta etapa, se preparará el terreno para una nueva actividad o uso, incluyendo la de protección ambiental y la integración armónica con el paisaje circundante.

En este período se realizarán las actividades propuestas en el plan de cierre para las áreas de exploración y operación. Al término de las operaciones estas actividades buscan que las áreas intervenidas y las construcciones remanentes sean desmanteladas y cerradas cumpliendo los requerimientos legales, los valores y políticas de la compañía y las mejores prácticas de negocio identificadas.

De manera más específica, este plan identifica las medidas y actividades necesarias para que:

i) Las áreas y construcciones abandonadas queden en una condición segura y estable y se minimicen los impactos adversos para la comunidad local y el medio ambiente;

ii) En el postcierre de las operaciones se maximice el uso de la tierra y se provean de manera sostenible beneficios para sus propietarios y para la comunidad local;

iii) Aseguren que el plan de cierre esté alineado con los planes operacionales en el curso de la vida de la mina.

Las actividades contempladas para el cierre del proyecto se agrupan en cuatro momentos (o tipos de cierre), que comprenden el manejo de las estructuras e instalaciones superficiales y subterráneas, las cuales se describen a continuación (véase la Tabla 3.21).

Tabla 3.21 Tipos de cierre y descripción

<table>
<thead>
<tr>
<th>Tipo de cierre</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cierre temporal</td>
<td>El cierre temporal permite proteger la infraestructura de manera que esta pueda volver a ser utilizada una vez cese la paralización de operaciones. Si bien no se contempla que algún componente sea clausurado temporalmente, si esta situación tiene lugar, se procederá a implementar medidas para resguardar la salud pública, la seguridad y las condiciones ambientales en el período de parálisis. El cierre temporal podrá durar hasta un año; si al cabo de este no se han reincorporado los espacios, se pasará a evaluar la situación y decidir sobre un cierre permanente. Por lo demás, en temporadas de cierre temporal se seguirán adelantando labores de vigilancia, mantenimiento y monitoreo de accesos restringidos, se socializará sobre las causas y restricciones derivadas del cierre, se guardarán equipamientos, se harán revisiones al perímetro de forma periódica, y se mantendrán sistemas de soporte vital en las instalaciones.</td>
</tr>
<tr>
<td>Tipo de cierre</td>
<td>Descripción</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Cierre progresivo</td>
<td>El cierre progresivo consiste en actividades de rehabilitación y recuperación que se adelantarán cuando un área del proyecto sea liberada. Se dará de forma simultánea a la operación de la mina, e incluirá medidas de cierre para la gestión de materiales (ZODMEs, Acopio temporal de suelo y Plía de suelo), y el Depósito de relaves filtrados. Así, se llevarán a cabo, según el caso, labores de desmantelamiento de estructuras y equipamientos, posterior a evaluación sobre la utilidad de los insumos para otras operaciones mineras. También se dará paso a la demolición y disposición final de acuerdo con el Plan de Manejo de Residuos Sólidos aprobado; medidas para asegurar la estabilidad física, química e hidrológica del terreno, y reformas morfológicas y paisajísticas sobre el mismo, lo cual incluye revegetación y adecuación de las condiciones para la rehabilitación del ecosistema. Todo esto, en conjunto con una estrategia de comunicación constante con la comunidad del área de influencia.</td>
</tr>
<tr>
<td>Cierre final</td>
<td>El cierre final incluye actividades de rehabilitación y restauración que tendrán lugar sobre los componentes del Proyecto Quebradona una vez hayan concluido su vida útil. El cierre final se acomete cuando todas las labores asociadas hayan cumplido su objetivo según criterio de la autoridad competente. Los componentes contemplados en el cierre final incluyen instalaciones y equipos móviles de la mina (túneles, plataformas-portales y pozos de ventilación); áreas para el manejo de materiales, la planta de beneficio, y la infraestructura e instalaciones en terreno (el área integrada de operaciones, el almacén de explosivos, la entrada, las vías de acceso en el terreno, las redes de distribución de agua, laboratorios, instalaciones de geologías y estaciones de combustible), al igual que las redes de distribución eléctrica, áreas de manejo de residuos y la planta de concreto. El proceso consiste en el desmantelamiento y remoción de infraestructura y equipos, así como desmonte de todas las redes para suministro hídrico y eléctrico, asegurando que la disposición de residuos se adelante siguiendo las indicaciones del Plan de Manejo de Residuos Sólidos. De igual forma, se procederá a demoler estructuras, lo que también comprende las bases de concreto y soportes una vez vinculados al funcionamiento del proyecto. Se proyecta que el proceso de cierre tenga como resultado el establecimiento de pastos limpios y naturales, los cuales pueden ser utilizados por la población del área de influencia una vez se aseguren las condiciones para su uso. Esto tendrá origen en las medidas de reconformación paisajística y morfológica, al igual que el proceso de revegetalización que comprende esta etapa.</td>
</tr>
<tr>
<td>Mantenimiento y monitoreo post-cierre</td>
<td>Las actividades posteriores al cierre se adelantan para asegurar la efectividad de las medidas de estabilización física y geoquímica practicadas sobre el sitio del proyecto, velando por la rehabilitación y restauración de las condiciones ecosistémicas deseadas y el cumplimiento de los objetivos de cierre. Esta etapa se desarrollará durante los 10 años posteriores a la clausura, hasta que las condiciones esperadas se hayan garantizado. Las actividades de monitoreo incluyen la evaluación de las condiciones físicas del terreno, realizada de forma periódica para verificar la efectividad de las medidas aplicadas; también se estimará la efectividad de las medidas aplicadas sobre el componente geofísico, para evitar la presencia de drenaje ácido y monitorear la calidad del agua. Revisiones periódicas serán aplicadas, de igual manera, sobre el componente hidrológico, el proceso de revegetación y los aspectos sociales involucrados en el proceso. Por su parte, las labores de mantenimiento, adelantadas según se identifique en los procesos de monitoreo, incluirá mantenimiento de los componentes físico, químico, hidrológico y biológico del terreno en rehabilitación.</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

Para este Proyecto, las actividades de cierre y abandono tienen una duración de tres años, mientras que las actividades de postcierre y monitoreo tienen una duración de 10 años posteriores al cierre, para un total de 13 años.

Las actividades que se ejecutarán durante la etapa de abandono, cierre y postcierre se definen en la Tabla 3.22, y se describen en detalle en el Capítulo 10 Planes y programas, en el numeral 10.1.4 Plan de cierre, de este documento.
<table>
<thead>
<tr>
<th>Facilidad</th>
<th>Control</th>
<th>Monitoreo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mina</td>
<td>Túnel • Portales de cierre (tapón hidráulico). • Señalización • Infraestructura subterránea y desmantelamiento de equipos. • Tratamiento pasivo ARD Zona de subsidencia • Enriquecimiento forestal de bosques de galería y pastos boscosos. • Conservacion bosque fragmentado • Explotación del uso forestal en plantaciones de pino. • Reforestación en la plantación de pinos con coberturas naturales como núcleos de dispersión.</td>
<td>Control geotécnico. Muestreo físicoquímico</td>
</tr>
<tr>
<td>Depósitos</td>
<td>• Compactación • Suavizado de pendientes (Instalación de suelo y revegetalización) • Delimitación y señalización</td>
<td></td>
</tr>
<tr>
<td>Caminos, facilidades auxiliares y campamentos</td>
<td>• Cierre de accesos • Desenergización de facilidades • Desmantelamiento de infraestructura</td>
<td></td>
</tr>
<tr>
<td>Planta</td>
<td>• Desmantelamiento de instalaciones, edificios, equipos y maquinaria. • Desenergizar las instalaciones • Cierre de acceso • Rehabilitación de taludes (cobertura de suelo y revegetalización). • Delimitación y señalización. • Eliminación de suministros y repuestos. • Eliminación y eliminación de residuos industriales, domésticos y peligrosos. • Remoción de escobros • Eliminación definitiva y estable de residuos mineros. • Adecuación para uso posterior de líneas eléctricas y sistema de saneamiento básico.</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

En la Figura 3.42 se indica el cronograma anual de actividades de post-cierre (PC).
3.3 DISEÑO DEL PROYECTO

3.3.1 Características técnicas del proyecto

El Proyecto Quebradona producirá alrededor de 6,2 Mtpa de mineral durante 21 años utilizando el método de Hundimiento por subniveles (SLC, por sus siglas en inglés). La mina estará equipada con una estación subterránea de trituración primaria que entregará el material triturado a la planta de beneficio en superficie (en la zona del Valle). El transporte de material se realizará a través de una banda transportadora de aproximadamente 6 km de longitud ubicada en el túnel principal de transporte.

La planta de beneficio comprende un circuito de trituración secundaria, un circuito de molienda, un circuito de flotación flash, flotación convencional y remolienda, espesadores, filtros, bandas transportadoras, subestaciones eléctricas, compresores, sopladores, y pozas de emergencia.

Los materiales finos (relaves) resultantes del proceso de producción se someten a procesos de espesamiento y filtración hasta lograr un nivel de humedad que asegure la estabilidad del depósito de relaves filtrados. Con el fin de garantizar tal nivel de humedad, de ser necesario, se implementarán métodos complementarios de reducción de humedad, como secado o mezcla con materiales cementantes aglutinantes (ej: cementos, cementos zeolíticos, cal).

A estos materiales se les extraen componentes sulfurados mediante flotación rougher de pirita con el fin de evitar la producción de drenajes ácidos en el sitio de disposición.

El conjunto de mina y planta funcionará 365 días al año, 24 horas al día con turnos de 8 horas. Todos los equipos están diseñados para operar en ambientes de alta exposición al polvo abrasivo, alta presión, lluvia y sol.

La planta de beneficio estará en capacidad de procesar 6,2 Mtpa de mineral para producir concentrado durante 21 años. En la Figura 3.43 se presenta el diseño del Proyecto en la zona superficial en el valle.
3.3.2 Áreas de explotación

Las áreas de explotación minera corresponden a la zona del depósito mineral denominado Nuevo Chaquiro. El depósito Nuevo Chaquiro es el cuerpo mineralizado del cual se obtiene el 100 % de la producción de mineral que se explota mediante método de Hundimiento por Sub-niveles. De acuerdo con el plan minero este depósito se explotará durante 21 años.

El área de explotación subterránea comienza aproximadamente a los 470 metros bajo la superficie, extendiéndose otros 577 metros verticales que se alcanzan al final de la
etapa de explotación, partiendo de una cota máxima de 1.702 msnm y llegando a una cota mínima de 1.125 msnm.

En la Figura 3.44 se muestra una vista en planta y en la Figura 3.45 dos cortes representativos que ilustran la dimensión del componente. En resumen, la envolvente del área de explotación subterránea ocupa en su parte superior un área de 323 m x 300 m (9,69 ha) y en su parte inferior de 316 m x 450 m (14,22 ha).

El área de explotación considera un total de 124 Mt de mineral y 5,72 Mt de estéril como aporte de los desarrollos de los túneles de acceso, pozos de ventilación, rampas de acceso y otras excavaciones subterráneas requeridas tales como la estación de trituración, talleres y oficinas.

El total de desarrollos subterráneos laterales alcanza los 180 km, además de 9,1 km de desarrollos verticales que se ejecutarán durante la vida del proyecto (véase la Figura 3.46).

En el numeral 3.3.7.8 Secuencia de explotación, se ilustran y describen en detalle las obras que se ejecutarán en cada uno de los años de avance del desarrollo y explotación de la mina.

![Figura 3.44 Vista en Planta de las áreas de explotación (subterráneas)](image)

Fuente: Minera de Cobre Quebradona, 2019
Figura 3.45 Vistas en Norte-Sur y Oeste-Este de áreas de explotación (subterráneas)
Fuente: Minera de Cobre Quebradona, 2019

Figura 3.46 Vista en planta y perfil de los accesos al área de explotación
Fuente: Minera de Cobre Quebradona, 2019

3.3.3 Áreas de beneficio y transformación de minerales

La planta de beneficio de Quebradona estará ubicada en la finca La Mancha, a la altura de la vereda Cauca, como se puede observar en la Figura 3.47. Este sitio se determinó teniendo en cuenta la localización del portal del túnel de acceso, la alineación de la banda transportadora y la topografía del terreno. Sin embargo, otros aspectos tales como la menor cantidad de movimientos de tierra posible y la distancia al depósito de relaves filtrados también fueron tenidos en cuenta.
La planta de beneficio tendrá un área de 28,85 ha (incluye toda la plataforma asociada), y se describe en detalle en el numeral 3.3.8.1.1. de este capítulo (véase el Anexo Planos_Diseno_Planta).

3.3.4 Material sobrante del proceso minero

El material que ingresará a planta será mineral de Sulfuros de cobre principalmente, donde, mediante procesos de trituración, conminución y flotación, se obtendrá un concentrado de alto grado con contenidos de oro y plata, y proporciones menores de otros elementos. Los relaves de la planta de beneficio serán filtrados y transportados al depósito de relaves filtrados, donde, por su forma de depositación, existen dos fases: una fase sólida la cual queda confinada en dicho depósito, y una fase de baja humedad que también se mantiene en el depósito, con un sistema de drenaje y colección.

Los relaves filtrados inertes se depositarán al interior del área dispuesta para el efecto (véase la Figura 3.48). Los relaves con pirita serán dispuestos en el depósito de pirita, en una celda confinada con revestimiento de polietileno de alta densidad (HDPE), para

Figura 3.47 Ubicación de la Planta de beneficio
Fuente: Minería de Cobre Quebradona, 2019
evitar que entren en contacto con los relaves filtrados inertes (relaves filtrados), los cuales son dispuestos de forma encapsulada. Esta es una práctica mundial de excelentes resultados para manejo de la pirita, que es el súlfuro más abundante que existe en la tierra.

Figura 3.48 Ubicación de depósito de relaves filtrados
Fuente: Minera de Cobre Quebradona, 2019

Tanto el depósito de pirita como el depósito de relaves filtrados inertes tienen sistemas de drenaje y colección independientes. El agua del drenaje del depósito de pirita tiene potencial de generación de ácido y será tratada, previo a su descarga al río Cauca, en la planta de neutralización (PTARND1). El agua del drenaje del depósito de relaves filtrados inertes pasará por los sedimentadores y será descargada al río Cauca.
Dicho lo anterior, los elementos que ingresan a la planta con los sílfuros ligados a la mineralización de cobre, oro y plata, salen con los relaves filtrados inertes y, en menor medida, con los relaves con pirita; y se almacenarán como material sobrante en el depósito de relaves filtrados y en el depósito de pirita, respectivamente, sin cambios en su forma u ocurrencia aparte de ser físicamente molidos.

La Tabla 3.23 presenta las proporciones de todos los elementos, incluyendo los elementos NORM -los cuales se encuentran en trazas- por tipo de producto generado en la planta de beneficio, ya sea concentrado, relaves con pirita y relaves filtrados inertes, en fase sólida, además del balance de masas de elementos. La estimación de estos elementos proviene de las pruebas metalúrgicas.
Tabla 3.23 Concentraciones de elementos según producto de la planta de beneficio

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Unidades</th>
<th>Composición media</th>
<th>Material procesado (Mton)</th>
<th>Relaves con Pirita</th>
<th>Relaves filtrados</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Alimentación planta</td>
<td>Concentrado de Cu</td>
<td>Relaves con Pirita</td>
<td>Relaves filtrados</td>
</tr>
<tr>
<td>Al</td>
<td>%</td>
<td>5.73</td>
<td>0.63</td>
<td>0.75</td>
<td>5.72</td>
</tr>
<tr>
<td>Ca</td>
<td>%</td>
<td>1.43</td>
<td>0.16</td>
<td>0.19</td>
<td>1.43</td>
</tr>
<tr>
<td>Cu</td>
<td>%</td>
<td>1.2</td>
<td>27.9</td>
<td>0.26</td>
<td>0.03</td>
</tr>
<tr>
<td>Fe</td>
<td>%</td>
<td>7.07</td>
<td>27.8</td>
<td>22.8</td>
<td>3.45</td>
</tr>
<tr>
<td>K</td>
<td>%</td>
<td>2.99</td>
<td>0.33</td>
<td>0.39</td>
<td>2.99</td>
</tr>
<tr>
<td>Mg</td>
<td>%</td>
<td>0.84</td>
<td>0.09</td>
<td>0.11</td>
<td>0.84</td>
</tr>
<tr>
<td>Na</td>
<td>%</td>
<td>0.94</td>
<td>0.1</td>
<td>0.12</td>
<td>0.93</td>
</tr>
<tr>
<td>S</td>
<td>%</td>
<td>3.97</td>
<td>31.3</td>
<td>21.6</td>
<td>0.11</td>
</tr>
<tr>
<td>Si</td>
<td>%</td>
<td>34.1</td>
<td>2</td>
<td>4.4</td>
<td>34.10</td>
</tr>
<tr>
<td>Au</td>
<td>ppm</td>
<td>0.65</td>
<td>9.99</td>
<td>1.59</td>
<td>0.11</td>
</tr>
<tr>
<td>Ag</td>
<td>ppm</td>
<td>6.98</td>
<td>115</td>
<td>43.5</td>
<td>1.61</td>
</tr>
<tr>
<td>As</td>
<td>ppm</td>
<td>65</td>
<td>170</td>
<td>463</td>
<td>8.00</td>
</tr>
<tr>
<td>Ba</td>
<td>ppm</td>
<td>516</td>
<td>57</td>
<td>67</td>
<td>516</td>
</tr>
<tr>
<td>Be</td>
<td>ppm</td>
<td>0.55</td>
<td>0.06</td>
<td>0.1</td>
<td>0.50</td>
</tr>
<tr>
<td>Bi</td>
<td>ppm</td>
<td>0.89</td>
<td>2.5</td>
<td>0.1</td>
<td>0.90</td>
</tr>
<tr>
<td>Cd</td>
<td>ppm</td>
<td>2.82</td>
<td>2</td>
<td>0.4</td>
<td>2.80</td>
</tr>
<tr>
<td>Ce</td>
<td>ppm</td>
<td>8.64</td>
<td>0.95</td>
<td>1.1</td>
<td>8.60</td>
</tr>
<tr>
<td>Co</td>
<td>ppm</td>
<td>19.8</td>
<td>2</td>
<td>2.6</td>
<td>19.80</td>
</tr>
<tr>
<td>Cr</td>
<td>ppm</td>
<td>14.2</td>
<td>1.57</td>
<td>1.9</td>
<td>14.20</td>
</tr>
<tr>
<td>Cs</td>
<td>ppm</td>
<td>1.93</td>
<td>0.21</td>
<td>0.3</td>
<td>1.90</td>
</tr>
<tr>
<td>Ga</td>
<td>ppm</td>
<td>17.3</td>
<td>1.91</td>
<td>2.3</td>
<td>17.30</td>
</tr>
<tr>
<td>Ge</td>
<td>ppm</td>
<td>0.13</td>
<td>0.01</td>
<td>0</td>
<td>0.10</td>
</tr>
<tr>
<td>Hf</td>
<td>ppm</td>
<td>0.12</td>
<td>0.01</td>
<td>0</td>
<td>0.10</td>
</tr>
<tr>
<td>Hg</td>
<td>ppm</td>
<td>0.05</td>
<td>1.5</td>
<td>0</td>
<td>0.10</td>
</tr>
<tr>
<td>In</td>
<td>ppm</td>
<td>0.53</td>
<td>0.06</td>
<td>0.1</td>
<td>0.50</td>
</tr>
<tr>
<td>La</td>
<td>ppm</td>
<td>4.04</td>
<td>0.44</td>
<td>0.5</td>
<td>4.00</td>
</tr>
<tr>
<td>Li</td>
<td>ppm</td>
<td>10.1</td>
<td>1.11</td>
<td>1.3</td>
<td>10.10</td>
</tr>
<tr>
<td>Mn</td>
<td>ppm</td>
<td>292</td>
<td>32</td>
<td>38</td>
<td>292</td>
</tr>
<tr>
<td>Mo</td>
<td>ppm</td>
<td>142</td>
<td>177</td>
<td>29</td>
<td>7.00</td>
</tr>
<tr>
<td>Nb</td>
<td>ppm</td>
<td>2.6</td>
<td>0.29</td>
<td>0.3</td>
<td>2.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Unidades</th>
<th>Concentrado de Cu</th>
<th>Relaves con Pirita</th>
<th>Relaves filtrados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>Mton</td>
<td>0.03</td>
<td>0.10</td>
<td>6.05</td>
</tr>
<tr>
<td>Ca</td>
<td>Mton</td>
<td>0.01</td>
<td>0.03</td>
<td>1.51</td>
</tr>
<tr>
<td>Cu</td>
<td>Mton</td>
<td>1.37</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>Fe</td>
<td>Mton</td>
<td>1.36</td>
<td>3.09</td>
<td>3.65</td>
</tr>
<tr>
<td>K</td>
<td>Mton</td>
<td>0.02</td>
<td>0.05</td>
<td>3.16</td>
</tr>
<tr>
<td>Mg</td>
<td>Mton</td>
<td>0.004</td>
<td>0.01</td>
<td>0.89</td>
</tr>
<tr>
<td>Na</td>
<td>Mton</td>
<td>0.005</td>
<td>0.02</td>
<td>0.98</td>
</tr>
<tr>
<td>S</td>
<td>Mton</td>
<td>1.54</td>
<td>2.93</td>
<td>0.12</td>
</tr>
<tr>
<td>Si</td>
<td>Mton</td>
<td>0.10</td>
<td>0.60</td>
<td>36.08</td>
</tr>
<tr>
<td>Au</td>
<td>kton</td>
<td>0.05</td>
<td>0.02</td>
<td>0.12</td>
</tr>
<tr>
<td>Ag</td>
<td>kton</td>
<td>0.56</td>
<td>0.06</td>
<td>1.70</td>
</tr>
<tr>
<td>As</td>
<td>kton</td>
<td>0.83</td>
<td>6.28</td>
<td>0.11</td>
</tr>
<tr>
<td>Ba</td>
<td>kton</td>
<td>0.28</td>
<td>0.91</td>
<td>546</td>
</tr>
<tr>
<td>Be</td>
<td>kton</td>
<td>0.0003</td>
<td>0.001</td>
<td>0.53</td>
</tr>
<tr>
<td>Bi</td>
<td>kton</td>
<td>0.01</td>
<td>0.001</td>
<td>0.95</td>
</tr>
<tr>
<td>Cd</td>
<td>kton</td>
<td>0.01</td>
<td>0.01</td>
<td>2.96</td>
</tr>
<tr>
<td>Ce</td>
<td>kton</td>
<td>0.005</td>
<td>0.01</td>
<td>9.10</td>
</tr>
<tr>
<td>Co</td>
<td>kton</td>
<td>0.01</td>
<td>0.04</td>
<td>20.95</td>
</tr>
<tr>
<td>Cr</td>
<td>kton</td>
<td>0.01</td>
<td>0.03</td>
<td>15.03</td>
</tr>
<tr>
<td>Cs</td>
<td>kton</td>
<td>0.001</td>
<td>0.004</td>
<td>2.01</td>
</tr>
<tr>
<td>Ga</td>
<td>kton</td>
<td>0.01</td>
<td>0.03</td>
<td>18.31</td>
</tr>
<tr>
<td>Ge</td>
<td>kton</td>
<td>0.00005</td>
<td>0</td>
<td>0.11</td>
</tr>
<tr>
<td>Hf</td>
<td>kton</td>
<td>0.00005</td>
<td>0</td>
<td>0.11</td>
</tr>
<tr>
<td>Hg</td>
<td>kton</td>
<td>0.01</td>
<td>0</td>
<td>0.11</td>
</tr>
<tr>
<td>In</td>
<td>kton</td>
<td>0.0003</td>
<td>0.0014</td>
<td>0.53</td>
</tr>
<tr>
<td>La</td>
<td>kton</td>
<td>0.0022</td>
<td>0.01</td>
<td>4.23</td>
</tr>
<tr>
<td>Li</td>
<td>kton</td>
<td>0.01</td>
<td>0.02</td>
<td>10.69</td>
</tr>
<tr>
<td>Mn</td>
<td>kton</td>
<td>0.16</td>
<td>0.02</td>
<td>309</td>
</tr>
<tr>
<td>Mo</td>
<td>kton</td>
<td>8.70</td>
<td>0.39</td>
<td>7.41</td>
</tr>
<tr>
<td>Nb</td>
<td>kton</td>
<td>0.001</td>
<td>0.004</td>
<td>2.75</td>
</tr>
</tbody>
</table>
Composición media

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Alimentación planta¹</th>
<th>Concentrado de Cu²</th>
<th>Relaves con Pirita³</th>
<th>Relaves filtrados³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>5.46 ppm</td>
<td>1</td>
<td>0.7</td>
<td>5.50 ppm</td>
</tr>
<tr>
<td>P</td>
<td>756 ppm</td>
<td>25</td>
<td>99</td>
<td>756 ppm</td>
</tr>
<tr>
<td>Pb</td>
<td>37.5 ppm</td>
<td>20</td>
<td>4.9</td>
<td>37.5 ppm</td>
</tr>
<tr>
<td>Rb</td>
<td>73.6 ppm</td>
<td>8.09</td>
<td>9.6</td>
<td>73.5 ppm</td>
</tr>
<tr>
<td>Re</td>
<td>0.09 ppm</td>
<td>0.01</td>
<td>0</td>
<td>0.10 ppm</td>
</tr>
<tr>
<td>Sb</td>
<td>4.75 ppm</td>
<td>2.5</td>
<td>0.6</td>
<td>4.80 ppm</td>
</tr>
<tr>
<td>Sc</td>
<td>10.9 ppm</td>
<td>1.2</td>
<td>1.4</td>
<td>10.90 ppm</td>
</tr>
<tr>
<td>Se</td>
<td>7.5 ppm</td>
<td>2.5</td>
<td>1</td>
<td>7.50 ppm</td>
</tr>
<tr>
<td>Sn</td>
<td>3.8 ppm</td>
<td>0.42</td>
<td>0.5</td>
<td>3.80 ppm</td>
</tr>
<tr>
<td>Sr</td>
<td>217 ppm</td>
<td>23.61</td>
<td>28.2</td>
<td>216 ppm</td>
</tr>
<tr>
<td>Te</td>
<td>0.2 ppm</td>
<td>0.02</td>
<td>0</td>
<td>0.20 ppm</td>
</tr>
<tr>
<td>Th</td>
<td>0.22 ppm</td>
<td>2.5</td>
<td>2</td>
<td>0.20 ppm</td>
</tr>
<tr>
<td>Ti</td>
<td>2253 ppm</td>
<td>248</td>
<td>294</td>
<td>2251 ppm</td>
</tr>
<tr>
<td>U</td>
<td>0.31 ppm</td>
<td>0.03</td>
<td>0</td>
<td>0.30 ppm</td>
</tr>
<tr>
<td>V</td>
<td>98.7 ppm</td>
<td>11</td>
<td>13</td>
<td>98.60 ppm</td>
</tr>
<tr>
<td>W</td>
<td>1.05 ppm</td>
<td>0.12</td>
<td>0.1</td>
<td>1.10 ppm</td>
</tr>
<tr>
<td>Y</td>
<td>7.37 ppm</td>
<td>0.81</td>
<td>1</td>
<td>7.40 ppm</td>
</tr>
<tr>
<td>Zr</td>
<td>2.44 ppm</td>
<td>0.27</td>
<td>0.3</td>
<td>2.40 ppm</td>
</tr>
<tr>
<td>Zn</td>
<td>388 ppm</td>
<td>590</td>
<td>51</td>
<td>387.70 ppm</td>
</tr>
</tbody>
</table>

¹ Promedio de 4500 interceptos de perforaciones de exploración representando el depósito mineral.
² Promedio calculado de un compósito de 30% toba y 70% diorita.
³ Promedio calculado de tres muestras de ensayos metalúrgicos representando el mineral de períodos seleccionados durante la vida de la mina.
⁴ Calculado como una concentración promedio de los relaves multiplicado por el material procesado.
⁵ Los valores en cursiva indican los elementos para los cuales el análisis estuvo por debajo del límite de detección del método utilizado. Se ha asumido la composición media del límite de detección para estos casos.

Material procesado de Cu y Relaves

<table>
<thead>
<tr>
<th>Material procesado de Cu (Mton)⁵</th>
<th>Relaves con Pirita</th>
<th>Relaves filtrados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni kton 0.005</td>
<td>0.01</td>
<td>5.82</td>
</tr>
<tr>
<td>P kton 0.12</td>
<td>1.34</td>
<td>799.97</td>
</tr>
<tr>
<td>Pb kton 0.10</td>
<td>0.07</td>
<td>39.68</td>
</tr>
<tr>
<td>Rb kton 0.04</td>
<td>0.13</td>
<td>77.78</td>
</tr>
<tr>
<td>Re kton 0.00005</td>
<td>0</td>
<td>0.11</td>
</tr>
<tr>
<td>Sb kton 0.01</td>
<td>0.01</td>
<td>5.08</td>
</tr>
<tr>
<td>Sc kton 0.01</td>
<td>0.02</td>
<td>11.53</td>
</tr>
<tr>
<td>Se kton 0.01</td>
<td>0.01</td>
<td>7.94</td>
</tr>
<tr>
<td>Sn kton 0.002</td>
<td>0.01</td>
<td>4.02</td>
</tr>
<tr>
<td>Sr kton 0.12</td>
<td>0.38</td>
<td>228.56</td>
</tr>
<tr>
<td>Ta kton 0.0001</td>
<td>0</td>
<td>0.21</td>
</tr>
<tr>
<td>Te kton 0.01</td>
<td>0.03</td>
<td>0.21</td>
</tr>
<tr>
<td>Th kton 0.001</td>
<td>0.00</td>
<td>2.12</td>
</tr>
<tr>
<td>Ti kton 1.22</td>
<td>3.99</td>
<td>2382</td>
</tr>
<tr>
<td>Ti kton 0.0004</td>
<td>0.001</td>
<td>0.85</td>
</tr>
<tr>
<td>U kton 0.0001</td>
<td>0</td>
<td>0.32</td>
</tr>
<tr>
<td>V kton 0.05</td>
<td>0.18</td>
<td>104.34</td>
</tr>
<tr>
<td>W kton 0.001</td>
<td>0.001</td>
<td>1.16</td>
</tr>
<tr>
<td>Y kton 0.004</td>
<td>0.01</td>
<td>7.83</td>
</tr>
<tr>
<td>Zr kton 0.001</td>
<td>0.004</td>
<td>2.54</td>
</tr>
<tr>
<td>Zn kton 2.90</td>
<td>0.69</td>
<td>410.25</td>
</tr>
</tbody>
</table>

¹ LOM: vida de la mina

Fuente: Minera de Cobre Quebradona, 2019
En los numerales 3.6.2.3.2 Caracterización geoquímica de los sitios de disposición y 3.6.2.3.3 Pruebas estáticas y cinéticas, se describen los análisis de caracterización geoquímica de los materiales resultantes de la explotación del yacimiento.

Minera de cobre Quebradona S.A continuará su investigación en pro de mejorar continuamente su desempeño ambiental, en virtud de lo anterior, seguirá sus investigaciones en función de encontrar potenciales usos, tanto para los relaves filtrados inertes como para los de pirita, dado que representa la oportunidad de generar un subproducto que reduzca los costos financieros de su manejo, tratamiento y disposición basados en las oportunidades de mercado.

3.3.5 Áreas para manejo de material sobrante

- **Depósito temporal de estériles**

Para el manejo de los materiales sobrantes (estériles) de las obras mineras subterráneas, que se desarrollarán en simultáneo durante la fase de construcción del proyecto, se tiene previsto un Depósito temporal de estériles, con un área de 11,30 ha, y una capacidad estimada de 1.350.000 m3, cuyas características se indican en el numeral 3.6.2.2.4.

Los sobrantes estériles provenientes de la construcción de los túneles, rampas y galerías subterráneas se extraerán y transportarán hasta superficie a través de bandas transportadoras y volquetas de acarreo para ser finalmente almacenados en el denominado depósito temporal de estériles, localizado dentro del depósito de relaves, en la zona donde posteriormente se adecuará el depósito de pirita. La localización del Depósito temporal de estériles se ilustra en la Figura 3.49.
Para los sobrantes estériles considerados PAG, provenientes de la construcción de los túneles, galerías y desarrollos productivos de la mina; serán transportados a superficie por el mismo sistema de bandas y volquetas, y serán depositados en el depósito de pirita (véase la Figura 3.50).

3.3.6 Instalaciones de soporte minero

El Proyecto contempla la construcción y adecuación de instalaciones de soporte, relacionadas en la Tabla 3.5, las cuales se ilustran en la Figura 3.51. La descripción detallada de las instalaciones de soporte minero se desarrolla en el numeral 3.3.8.1 (véase el mapa MQC-INT-EIA-DESC-03-AREA).
Figura 3.50 Localización Depósito de Pirita
Fuente: Golder, 2019
3.3.6.1 Túneles de acceso a la mina y de transporte

Con el fin de acceder al yacimiento desde los portales de acceso (ubicados en el valle del Río Cauca, a aproximadamente 6,0 km del cuerpo de mineral del Proyecto) se iniciará con la construcción de dos túneles paralelos (Norte y Sur), los cuales tendrán una separación de 50 m aproximadamente.

Estos conducirán a un sistema de túneles que permitirán acceder hasta la parte alta del depósito mineral (para desarrollar el Nivel de Socavación) y también a la parte baja para instalar la infraestructura de trituración al interior de la mina.

De acuerdo con los análisis realizados, sobre estabilidad y ubicación relativa de la planta de beneficio, se ubicaron los portales en el predio La Mancha.

Para los túneles se proponen dos métodos de construcción: método convencional mediante perforación y voladura (P&V) y método por medios mecánicos con tuneladora TBM, del tipo doble escudo universal híbrido. Ello atendiendo a las ventajas que presenta cada uno de los métodos de excavación en cuanto a adaptabilidad al tipo de...
roca, pendientes, y ratios de avance, buscando garantía en la optimización de los tiempos de ejecución y seguridad de la obra.

Se tendrá un túnel Sur constituido por dos segmentos; uno semihorizontal (gradiente 0,5%) construido con P&V, y otro inclinado (gradiente 10%) construido con TBM. El segmento con P&V tendrá una longitud de 5,5 km y una sección de 6x6 m, y conectará con la trituradora primaria.

El segmento con TBM tendrá una longitud de 5,4 km y una pendiente del 10 %, con un diámetro interior de excavación de 9 m, el cual llegará a la parte alta del yacimiento, para permitir trabajos correspondientes a la preparación y desarrollo de la mina.

La derivación del túnel excavado con perforación y voladura, a partir del túnel realizado con TBM (en el túnel Sur), contará con una estación de transferencia, para acoplar el sistema de evacuación del material excavado, haciendo uso del sistema de transporte propio por cinta de la TBM; y de igual forma, aprovechando el sistema de vagones para introducir los materiales necesarios para avanzar en el frente del túnel construido con perforación y voladura (P&V).

El túnel Norte se plantea construir con P&V de 5,5 km de longitud, que va hasta la cámara de trituración (túnel Norte), a una pendiente de 0,5 % y con sección de 6x6 m. Este será un túnel paralelo (gemelo) al túnel Sur que llega a la trituradora, y estarán conectados cada 150 m por galerías, las cuales favorecerán las condiciones de ventilación y permitirán desviar la circulación en caso de ser necesario.

Transcurridos 1,8 Km del avance de este túnel, se iniciaría la construcción de una rampa, que conectará con la parte superior del yacimiento, el cual se construirá con el mismo método constructivo (P&V), a una pendiente de 14,5 %, y 6x6 m de sección de excavación.

A continuación, se esquematizan las alternativas propuestas de acceso al yacimiento, con el fin de facilitar la preparación y desarrollo al método de minería de Hundimiento por subniveles (véase la Figura 3.52).
Figura 3.52 Esquema de las propuestas de ejecución de acceso a Cámaras de trituración y zona superior del yacimiento para preparación y desarrollo del yacimiento

Fuente: Minera de Cobre Quebradona, 2019

Los túneles de acceso a la mina conectan la parte superior del yacimiento (Nivel 1.675m) con el nivel de la estación de carga de la cinta/faja transportadora a nivel de la cota 1.125 m; mediante seis piques de transferencia de mineral, los cuales tienen un diámetro de 3 m.

Los túneles mencionados, además de servir para el transporte de mineral, servirán de acceso a la zona del depósito para ser utilizados para el ingreso y egreso de personal, materiales y servicios que se requieren con motivo de la actividad minera subterránea (véase la Figura 3.53).

Figura 3.53 Bloque diagrama del emplazamiento del yacimiento, y accesos a mina para preparación y desarrollos de Hundimiento por subniveles

Fuente: Minera de Cobre Quebradona, 2019
3.3.6.1.1 Configuración de los túneles

En este apartado se describen las principales características de cada una de las secciones que componen los túneles de acceso a la mina, los cuales permitirán posteriormente las actividades de preparación, desarrollo y explotación. Estas son:

- Sección inicial: esta sección está proyectada para cubrir una longitud de 0,3 km lineales a una sección de 10x10 m, el método de excavación será mediante P&V. Esta sección permitirá obtener una mayor superficie y área útil que permite optimizar el sostenimiento de la porción inicial del túnel, y facilita el acople de la TBM. Para los metros iniciales que se encuentran emplazados en zona de depósito de vertiente, se aplicará la técnica de arranque mecánico con micropilotes (véase la Figura 3.54).

- Túneles y galerías en Perforación y voladura (P&V) de 6 x 6 m:
 - Por el Túnel Sur de acceso a la cámara de trituración, Túnel ejecutado con P&V de 5,5 Km de longitud a una pendiente de 0,5%.
 - Por el Túnel Norte de acceso a la cámara de trituración, Túnel ejecutado con P&V de 5,5 km de longitud a una pendiente del 0,5%.
 - Por Túnel Norte de acceso a parte alta del yacimiento, con 4,0 km de longitud en pendiente del 14,5 %.
 - Los túneles en perforación y voladura (P&V) dispondrán de galerías de conexión de similar sección (6x6 m), para favorecer las condiciones de ventilación, así como permitir la desviación de circulación cuando sea necesario. Adicionalmente, dispondrá de nichos de parqueo para facilitar los procesos de ejecución de avance, en lo que tiene que ver con el tráfico de desescombro y acceso a los frentes de los diferentes equipos.

Figura 3.54 Técnica de arranque mecánico con micropilotes
Fuente: Subterra, 2019
- **Sección TBM**: permitirá el acceso a la zona alta del yacimiento, para iniciar trabajos de preparación, desarrollo y explotación del yacimiento. Túnel a excavar mediante TBM, con 5,4 Km de longitud en sección de 9 m de Ø, y pendiente al 10%.

A continuación, se presenta una breve descripción de cada una de estas secciones.

3.3.6.1.1.1 Sección inicial

Esta sección de 300 m, que se ubica al inicio de los dos túneles, se construirá mediante técnicas de excavación convencional P&V, y arranque mecánico en zonas de baja calidad geomecánica.

El arranque mecánico se realizará por fases, primero se excavará la parte superior del túnel (fase de avance), y luego una segunda parte, correspondiente a la parte inferior (fase de destroza), y en las que así lo precise, una tercera correspondiente a la solera o piso (contrabóveda). El diseño de la sección se muestra en la Figura 3.55.

![Figura 3.55 Sección de 10mx10m P&V, prevista para los primeros metros](Fuente: Subterra, 2019)

Como puede apreciarse este túnel posee unas dimensiones considerables, con una sección de excavación de unos 90 m². El método constructivo propuesto, basado en la aplicación de métodos convencionales, define un esquema de ejecución en fases: avance, destroza y contra bóveda, que cierra la sección estructuralmente por su parte inferior.

A continuación, se exponen brevemente diversos aspectos relacionados con la excavación de cada una de estas fases:

1. **AVANCE**: también denominada calota, es la mitad superior de la sección del túnel (zona de bóveda). La sección de excavación de esta fase tiene una altura aproximada desde clave de 6,5 m, suficiente para la correcta movilidad de la maquinaria necesaria.
En principio, se ejecutará esta fase de avance en pases sucesivos hasta alcanzar la longitud final del túnel.

2. DESTROZA: es la mitad inferior de la sección del túnel. Esta fase se comenzará a excavar cuando se haya finalizado el túnel en sección de avance. Si apareciesen problemas geotécnicos, la excavación de la destroza se podrá subdividir en bataches o módulos de avance. En principio parece razonable que esta se ejecute en dos fases, en primer lugar, se excavará una mitad de la sección, se sostendrá su hastial, para, a continuación, excavar la otra mitad y sostener el hastial restante. Otra posibilidad será excavar la zona central de la destroza y, posteriormente, excavar las zonas laterales sosteniendo sus respectivos hastiales. Las excavaciones en varias fases reducen al máximo la sección de excavación y, por lo tanto, aumentan la estabilidad.

Ejecutando en simultáneo la excavación del avance con la destroza implica complicaciones en la ejecución, construcción de rampas provisionales para el tránsito de la maquinaria, interferencias entre la producción de los dos frentes, sobredimensionar la instalación de ventilación de obra, etc.

3. CONTRABÓVEDA, excavada bajo la destroza. Esta operación es norma de buena práctica habitual para mejorar la estabilidad geotécnica, constituyendo ésta la tercera fase. Al atravesar terrenos de mala calidad geotécnica, las tensiones horizontales son mayores que las verticales, por lo que se requiere dar continuidad a dichas tensiones entre hastiales a través de la contrabóveda. Al igual que la destroza, la contrabóveda se realizará en dos fases, primero se excava una mitad sosteniendo su hastial y, en una segunda fase, se excava la otra mitad colocando el sostenimiento del hastial restante.

Una vez que se excaven los primeros 300 m de este túnel, está previsto que el terreno sea un macizo rocoso formado por tobas de calidad geomecánica suficiente para que los grippers o zapatas de la TBM puedan apoyarse en él, transmitiendo la reacción suficiente para el inicio de la excavación.

Debido al espesor de la cuña para el guiado de la tuneladora y a las necesarias tolerancias, la altura de excavación de este tramo es de 10,63 m; en lugar de los 9,91m del tramo construido con tuneladora.

3.3.6.1.1.2 Sección construida con el método de Perforación y voladura (P&V)

Tomando en consideración las dimensiones de la sección de los túneles construidos con P&V, esta se excavará a sección completa basándose su proceso constructivo en el Nuevo Método Austriaco (NATM).

El sistema de perforación y voladura para la excavación de túneles es una técnica convencional que se utiliza con gran profusión debido a las numerosas ventajas que presenta frente a los procedimientos mecanizados como son su versatilidad en cuanto a tipos de roca y secciones de excavación, adaptabilidad a otros trabajos, movilidad de los equipos y reducida inversión inicial.

En rocas competentes los túneles con sección de excavación inferior a 100 m² se pueden excavar a sección completa o en un solo paso. La excavación por fases se utiliza para la apertura de grandes secciones donde la sección resulta demasiado grande para ser cubierta por el equipo de perforación o cuando las características
geomecánicas de las rocas no permiten la excavación a sección completa. Considerando las características del macizo rocoso y las dimensiones de la sección, con una altura máxima de excavación, 6 m, se ha previsto excavar el túnel a sección completa.

El ciclo básico de excavación mediante perforación y voladura se compone de las siguientes operaciones:

- Perforación.
- Carga de los barrenos con explosivo.
- Disparo de la carga.
- Evacuación de humos y ventilación.
- Saneo de los hastiales y bóveda.
- Carga y transporte de desescombro.
- Ejecución del sostenimiento.
- Replanteo de la nueva voladura.

3.3.6.1.1.2.1 Perforación

- Explosivos y plan de tiro

El esquema de tiro es la disposición en el frente del túnel de los taladros que se van a perforar, la carga de explosivo que se va a introducir en cada uno y el orden en que se va a hacer detonar cada barreno.

Antes del inicio de los trabajos de excavación se presentarán los esquemas de tiro que prevén utilizar. El plan de tiro inicial podrá ser modificado en función de la experiencia adquirida durante la ejecución de la obra, previa aprobación de la Dirección de Obra, por escrito.

El plan de tiro deberá analizar en particular:

- Tipos y características técnicas de los explosivos previstos.
- Esquema del cuelo y contracuelo empleado.
- Reparto de las cargas de barrenos.
- Diámetro y longitud de los barrenos.
- Distancia entre barrenos.
- Retardos y micro-retardos previstos.
- Medidas de seguridad adoptadas.
- Cargas instantáneas y cargas totales.

La elección de un explosivo determinado se basa en los siguientes parámetros: potencia explosiva, velocidad de detonación, densidad de encartuchado, resistencia al agua, sensibilidad/aptitud a la propagación y humos.
Las voladuras en túneles y galerías se caracterizan por no disponer inicialmente de ninguna superficie libre de salida, salvo el propio frente de ataque.

El principio de ejecución se basa en crear un hueco libre con los barrenos del cuele y contracuele hacia el cual rompen las cargas restantes de la sección. Dicho hueco tiene generalmente una superficie de 1 a 2 m2.

Posteriormente, se efectuarán las voladuras de destroza para finalmente ejecutar los barrenos de contorno que son los que establecen la forma final de la perforación del túnel y se disponen con un reducido espaciamiento y orientados hacia el interior del macizo para dejar hueco a las perforadoras en el emboquille y avance de cada pega. En cuanto a la posición del cuele ésta influye en la proyección y fragmentación del escombro y también en el número de barrenos. De las tres posiciones: en rincón, centrada inferior y centrada superior, se elige normalmente esta última, ya que se evita la caída libre del material, el perfil del escombro es más tendido, menos compacto y mejor fragmentado.

En la Figura 3.56 se muestra un esquema de un plan de tiro.

![Figura 3.56 Ejemplo de un plan de tiro](Fuente: Minera de Cobre Quebradona, 2019)

Cuando se efectúan cueles de barrenos paralelos las primeras cargas detonadas son las que se encuentran más próximas a los barrenos vacíos. La roca fragmentada por la acción de los primeros barrenos se proyecta lateralmente hacia el pequeño volumen de hueco disponible. El tiempo de retardo entre barrenos consecutivos debe ser tal que permita que los fragmentos de roca procedentes sean expulsados de las zonas de cuele.

- **Recomendaciones de ejecución**

Las cargas preformadas, se harán por personal especializado, en los lugares previstos para ello. De esta forma, se asegura que el plan de tiro se cumple según el croquis de cada voladura proyectada, el cual será supervisado por el responsable del tajo en ese momento. Con esta forma de actuación, se consigue mayor seguridad en el manejo de...
los explosivos, pues los tiempos de carga se reducen, al precisarse únicamente la introducción de los tubos de plástico con la carga y cebada en fondo para cada barreno.

Las voladuras se cargarán según el plan de tiro en cada zona. En él se reflejará la secuencia de los tiros y la carga de cada uno de ellos.

- **Replanteo y perforación de barrenos**

Siguiendo el plan de tiro establecido en el proyecto, el topógrafo sitúa el contorno de los puntos a barrenar y la posición de los barrenos más importantes como son los de contorno, los de cuello y los de contracuello. Para el caso de jumbos robotizados se procede a introducir la posición de los barrenos en el ordenador de a bordo de la máquina.

Con un jumbo se perforan los barrenos en el frente del túnel siguiendo las pautas marcadas por el topógrafo. Los barrenos de contorno o de perfil deberán ser rigurosamente paralelos y equidistantes.

La perforación se realizará con un jumbo hidráulico con dos brazos. Esta máquina está equipada en cada brazo con un sistema de paralelismo automático de perforación, lo que permite una buena ejecución, asegurando la correcta dirección de los taladros, propiedad muy importante para el correcto resultado de las voladuras y sobre todo para el acabado de la galería, obteniéndose un buen perfilado de la sección a través de los tiros de recorte. Cada brazo de perforación tendrá instalado un martillo perforador. En la Figura 3.57 se muestra un esquema de perforación de los barrenos y carga de la voladura.

Figura 3.57 Esquema de perforación y carga de la voladura

Fuente: Minera de Cobre Quebradona, 2019

Los martillos hidráulicos se clasifican de acuerdo con la potencia generada por su mecanismo de impacto: Esta potencia da una idea del rendimiento del equipo pues a mayor número de kW le corresponde normalmente mayor velocidad de penetración. Las características medias de los martillos hidráulicos son las siguientes:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión hidráulica (MPa)</td>
<td>14-25</td>
</tr>
<tr>
<td>Potencia de impacto (kW)</td>
<td>6-40</td>
</tr>
<tr>
<td>Frecuencia de golpeo (GOLPES/MIN)</td>
<td>1.000-6.000</td>
</tr>
<tr>
<td>Velocidad de rotación (R/MIN)</td>
<td>0-500</td>
</tr>
<tr>
<td>Par máximo (Nm)</td>
<td>100-2.000</td>
</tr>
</tbody>
</table>
3.3.6.1.2.2 Carga de los barrenos con explosivo y detonación de la carga

Los barrenos se rellenan con la emulsión o los cartuchos de explosivo cuando sea el caso. Esta acción es llevada a cabo por el artillero usando una plataforma elevadora para cargar los barrenos más elevados (véase la Figura 3.58). Finalmente se procede a su retacado.

Una vez colocados todos los explosivos en su correspondiente barreno se conectan entre ellos usando cordón detonante y finalmente se conectan al detonador.

Los cordones detonantes pueden provocar distintos retardos en la explosión consiguiendo así la correcta secuencia de disparo.

![Imagen de carga de un plan de tiro ya perforado](image)

Figura 3.58 Carga de un plan de tiro ya perforado
Fuente: Minera de Cobre Quebradona, 2019

3.3.6.1.2.3 Evacuación de humos y ventilación

Debido a las explosiones ejecutadas en el interior del túnel, tras la detonación habrá una gran presencia de polvo, debido a la roca, y de gases producidos por los explosivos, por lo que es preciso ventilar y esperar a que esta presencia de gases y polvo disminuya para poder reanudar los trabajos en el frente del túnel. La ventilación durante la construcción tiene por objeto poner en el frente aire limpio que asegure unas buenas condiciones de salubridad para el trabajo de las personas.

La ventilación se realiza a través de la manga de ventilación del túnel, constituida por un tejido textil de poliéster revestido con PVC a través de la que se insufla aire mediante un ventilador. En la zona de emboquille se deberá prever una superficie para la implantación de los equipos (véase la Figura 3.59).

El sistema de ventilación debe satisfacer los requerimientos mineros. Para calcular el volumen de aire a aportar por los ventiladores se tendrán en cuenta las potencias de los motores diésel utilizados y el número de personas en el frente.
3.3.6.1.2.4 Saneo de los hastiales y bóveda

Una vez que la presencia de polvo y gases es tal que no hace peligrosa la entrada en el túnel, el perímetro del túnel (hastiales y bóveda) se hace seguro removiendo las rocas sueltas. El balde del cargador se emplea para raspar el frente y las paredes del túnel, mientras que las rocas sueltas se pueden remover con desabombe adicional realizado con el equipo de perforación.

3.3.6.1.2.5 Carga y transporte de desescombro

La retirada del material excavado se realizará mediante palas cargadoras y camiones de perfil bajo. Las operaciones de desescombro se componen de un ciclo que se puede dividir en tres fases:

- Acopio y carga
- Retirada del material del frente
- Transporte definitivo a botadero

Es fundamental realizar estas operaciones con la máxima rapidez para que el frente del túnel se encuentre libre de todo obstáculo, para que las operaciones de perforación puedan proseguir. Para ello se ha de retirar rápidamente el escombro, por ejemplo, a depósitos provisionales, para que, ya teniendo el frente libre, el escombro sea trasladado al depósito definitivo.

Considerando la longitud del túnel, así como las dimensiones de la sección de excavación se estima que los medios utilizados para las operaciones de desescombro deberán ser del tipo montados sobre neumáticos. Para alcanzar un transporte rentable y eficaz es indispensable construir una pista de rodadura en condiciones adecuadas para que los equipos alcancen las velocidades óptimas que son capaces de dar e impedir el deterioro de los neumáticos. Así mismo, se dispondrán de nichos de parqueo cada 150 m que permitirán a los equipos realizar maniobras.
3.3.6.1.2.6 Ejecución de sostenimientos

Una vez terminado el ciclo de excavación se procede a aplicar el sostenimiento diseñado. Los distintos sostenimientos propuestos para los túneles en el presente proyecto están formados por los siguientes elementos:

- **Concreto lanzado (Shotcrete)**

La colocación del concreto lanzado se realizará con robots de gunitado, con el objeto de conseguir una mayor regularización a la capa de concreto y mucha más seguridad y limpieza durante la operación, tal y como se muestra en la Figura 3.60.

El concreto será lanzado por vía húmeda y se realizará con personal especializado en esta labor, ya que factores como la distancia de la boquilla al terreno, la uniformidad de la capa, etc., tienen gran importancia y solo personal entrenado puede conseguir una buena calidad de ejecución.

![Figura 3.60 Esquema de sostenimiento mediante Shotcrete por vía húmeda](Fuente: Minera de Cobre Quebradona, 2019)

Algunas de las recomendaciones de trabajo se enumeran a continuación:

- Proyectar el concreto en ángulo recto con el soporte.
- La distancia óptima de proyección es de 1,0-1,5 m.
- En vía húmeda el rebote aumenta a medida que aumenta la distancia al soporte y se desvía el ángulo de proyección de la perpendicular.

Como se ha comentado anteriormente uno de los agentes más importantes del proceso es el operario del robot de gunitado, que operará del siguiente modo:

- Comprobación del estado de las mangueras de proyección, para ello las mangueras se conectan al compresor y se comprueba con el manómetro si la presión es superior a la normal, en cuyo caso las mangueras estarían sucias y deberán limpiarse, doblando, torciéndolas y/o golpeándolas ligeramente con un martillo, volviendo a dar aire y expulsando así el material.
- Conectar las mangueras formando el menor número posible de curvas y a ser posible ningún rizo, para ello las uniones de manguera se asegurarán adecuadamente.
- Comprobar la salida del aditivo y el funcionamiento de las bombas. Esta operación se realizará quitando la tobera de la boquilla y desatráncando si es preciso los eyectores de aditivo. Esta operación se deberá realizar con la boquilla hacia abajo para prevenir que la corriente de aditivo no vuelva hacia atrás por la manguera.

- Estando funcionando el aditivo se daría entrada al aire comprimido exclusivamente, con lo cual se examina el abanico que forma la pistola, viendo inmediatamente si existe algún fallo de suministro en los eyectores, para lo cual, detectado este, se solucionaría limpiando o cambiando la boquilla. Si el abanico fuera débil, es indicativo de que no hay suficiente presión de aire, en cuyo caso se deberá incrementar la misma. Una vez finalizado este paso el operador estaría preparado para comenzar a trabajar.

Tras estos pasos se efectuará una proyección de aire y agua sobre la superficie a proyectar con el fin de humedecer la misma.

La manguera está ahora conectada con la boquilla y el robot, y la proyección puede comenzar. El operador mantendrá la boquilla orientada hacia abajo en espera del suministro de la mezcla. Cuando la mezcla llegue regulará rápidamente el suministro y dirigirá el chorro hacia la superficie a revestir.

En caso de cualquier irregularidad en el suministro de la mezcla el operador debe dirigir la boquilla fuera de la superficie de trabajo hasta que la alimentación se normalice.

Al terminar el trabajo se deberán limpiar perfectamente las mangueras y la máquina. Cuando la proyección es vertical, las mangueras deben vaciarse antes de parar el trabajo puesto que si no es así la mezcla caerá al fondo al quedar sin presión y no será posible removerla.

- **Pernos de anclaje**

El pernado es una técnica de sostenimiento que consiste en introducir barras de acero, en este caso tubular, en taladros perforados en el terreno, solidarizándolos con este mediante procedimientos mecánicos, bombeando agua a alta presión, para aumentar su resistencia; o bien solidarizándolos con resinas o lechada de cemento, los pernos son barras corrugadas.

Los elementos básicos del apernado son:

- Barras de anclaje.
- Sistema de anclaje.
- Placas de reparto (se usan para crear un apoyo superficial local alrededor de la zona del cuello del barreno y sirven para transferir el desplazamiento de la masa rocosa al perno).

La perforación se realiza con el mismo jumbo empleado en la perforación de barrenos y para colocar los pernos se empleará una plataforma elevadora capaz de cubrir cómodamente cualquier altura de la sección. En la Figura 3.61 se muestra un ejemplo de ejecución del apernado.
Marcos

Los marcos metálicos constituyen un tipo de sostenimiento de tipo pesado, se trata de armazones metálicos que forman arcos o portales, colocados paralelos a los frentes de excavación con sus cuerdas paralelas también al contorno de excavación de modo que bloquean el terreno trabajando a flexo-compresión.

Para la colocación de marcos se seguirán las siguientes precauciones:

- La adecuada colocación de las piezas metálicas es fundamental en su comportamiento estructural. Los marcos tienen que quedar ortogonales al eje de la traza y siempre dentro del gálibo de sostenimiento.

- La capacidad resistente de un arco se puede decir que descansa sobre sus patas de modo que se deberá prestar especial tensión en la cimentación de estas. El apoyo de los marcos deberá estar totalmente saneado, con el fin de que el terreno ceda lo menos posible en estos puntos de transmisión de esfuerzos. El marco se rematará en la zona de cimentación mediante la soldadura de una chapa metálica que podrá ser plana o en U que asegure el reparto de la carga de cimentación.

- Los marcos se arriostrarán entre sí mediante elementos metálicos que irán soldados a las mismas con el objeto de asegurar la rigidez longitudinal del sostenimiento y evitar el vuelco de los arcos.

En la colocación de los marcos metálicos con concreto lanzado, el orden de colocación es generalmente:

- Excavación total de la sección y retirada del escombro.

- Proyección de una primera capa de concreto lanzado de sellado.

- Colocación del marco.

- Recubrimiento con concreto lanzado de todos los elementos de refuerzo, intentando dar al concreto, forma de contrabóveda en el espacio entre marcos.

En el caso de los marcos reticulados se deberá prestar especial cuidado en su almacenamiento con el objeto de evitar que se produzcan deformaciones que impidan
su uso o reduzcan sus prestaciones. También se debe cuidar especialmente el efecto sombra que se pueden generar en el concreto lanzado con la consecuente aparición de huecos en el hormigonado. Por ello, suele recomendarse que, como el frente puede hacer difícil el relleno, cuando se coloque el siguiente cuadro se proceda a realizar un repaso hacia atrás con el concreto lanzado.

Para la colocación de marcos se empleará una plataforma elevadora tal y como se muestra en la Figura 3.62.

![Figura 3.62 Esquema de colocación de marcos mediante plataforma elevadora](Fuente: Minera de Cobre Quebradona, 2019)

- **Paraguas de emboquillos y zonas geotécnicas singulares de baja calidad**

Antes de iniciar la excavación de los túneles, se ejecutará un presostenimiento del talud consistente en un paraguas de micropilotes; procedimiento que también se aplicará en aquellas zonas de baja calidad geomecánica como cruce de fallas. Con el objeto de garantizar la estabilidad del frente de excavación.

Un paraguas es un conjunto discreto de elementos lineales subhorizontales perforados en el terreno, armados e inyectados, que forman una prebóveda resistente envolvente de la cavidad a excavar, cuya misión es sostener el terreno existente por encima, así como minimizar las deformaciones de este.

Se distinguen cuatro fases principales en la instalación de paraguas de micropilotes:

- **Replanteo:** es una fase fundamental para la buena ejecución del paraguas. De no realizarse correctamente, los micropilotes pueden cruzarse en el espacio, terminar dentro de la sección del túnel a excavar, o cortarse entre sí debiendo abandonar el micropilote que corta a otro al producirse tal circunstancia. El sistema de replanteo debe ser preciso, fiable y fácil de realizar.

- **Perforación:** la perforación se llevará a cabo mediante rotopercusion con martillo de fondo.

- **Introducción de la armadura:** la armadura consiste en tubos de acero en los paraguas pesados.

En la Figura 3.63 se puede ver un paraguas de micropilotes pesado y su esquema.
En la Figura 3.64 se muestra un esquema de la introducción de un micropilote en el taladro perforado.

- Inyección: la lechada de cemento se inyecta por el interior del micropilote mediante un cabezal de inyección con llave de paso y testigo. La lechada recorre el interior del tubo hasta el fondo del taladro y retorna por el espacio libre entre el tubo y el taladro. Se obtura la boca del taladro, dejándose dos conductos, uno para la inyección y otro de purga y control de llenado.

El diámetro perforado, la armadura compuesta por el micropilote y el relleno a base de lechada de cemento tienen un aspecto como el que se ilustra en la Figura 3.65.
- **Entronques o comunicaciones entre galerías**

Para los entronques de las galerías de conexión con las rampas, en caso de tratarse de terrenos de baja calidad geotécnica se instalarán paraguas pesados de micropilotes como medida de refuerzo antes del inicio de la excavación; en caso contrario se procede con paraguas ligeros, conformados por bulones/pernos (véase la Figura 3.66).

Figura 3.66 Entronque de galería de conexión con túnel principal

Fuente: Minera de Cobre Quebradona, 2019
3.3.6.1.2.7 Instalaciones auxiliares
Adicionalmente a lo indicado en el apartado anterior, es necesario prever las instalaciones que se relacionan a continuación:
- Instalaciones generales.
- Red eléctrica.
- Red de aire comprimido.
- Red de ventilación.
- Red de agua.
- Red de desagüe.
- Depuración de aguas.
- Polvorines.

3.3.6.1.1.3 Sección a excavar con TBM
El Túnel Sur se construirá con un método combinado entre perforación y voladura y TBM. La sección de este túnel que conduce a la parte alta del depósito está prevista construirse con una TBM.

Esta TBM es un doble escudo, cuando la calidad geomecánica del macizo rocoso excavado es buena, permite ejecutar de manera simultánea la excavación y la colocación del sostenimiento, apoyándose en las zapatas (grippers). Sin embargo, cuando las condiciones del terreno son pobres, la TBM trabaja en modo escudo simple, apoyándose en el último anillo de dovelas colocado.

La peculiaridad de la TBM es que en los casos en los que la calidad del terreno permite apoyarse en las zapatas (grippers), el soporte de la obra subterránea es a base de sostenimiento convencional de pernos, concreto lanzado y marcos. Solo en terrenos malos se coloca el anillo de dovelas.

Frente al uso de la TBM, debe tenerse en cuenta que el desarrollo del Túnel Sur a través de este método estará sujeto a la disponibilidad de estos equipos en el mercado internacional, logística (transporte e importación al país) e impactos en el cronograma de construcción del Proyecto. En caso de no contar con la disponibilidad de la tuneladora, el túnel se construirá con el método tradicional de P&V.

3.3.6.1.1.3.1 Método constructivo con TBM
Para la correcta ejecución del túnel con máquina tuneladora, el proyecto del túnel debe garantizar una pendiente máxima de 4% cuando el escombro es retirado con vagones; permitiendo pendientes superiores al 10%, con adaptaciones especiales de la máquina, cuando la extracción del material se realiza a través de cinta; y radio mínimo 200-250m de tal forma que se permita el avance y la evacuación de material con plenas garantías.

La excavación del terreno se consigue por rotación y empuje de la cabeza de la tuneladora contra el terreno. En la cabeza hay instalados unos elementos cortadores (discos) que cortan el terreno por indentación, generándose así un escombro que es
recogido por unos cangilones ubicados en la periferia de la cabeza, los cuales descargan el material a una cinta transportadora o vagones, que evacúan el material al exterior.

De acuerdo con las características del material, se establecen las herramientas de corte que llevará la cabeza de corte; entre las herramientas de corte se tienen los cinceles y picas, típicas para materiales tipo suelo; los cortadores de disco propias para rocas y los copy cutters (tipo especial de disco de corte), que permiten que el diámetro de excavación sea superior al diámetro de la coraza metálica de la TBM, para que así se facilite su desplazamiento; y al ser los copy cutter retráctiles hidráulicamente, permiten ampliar el radio de excavación hasta un máximo del orden de 1/150 a 1/200 del diámetro del escudo, necesario para poder describir las curvas de los trazados, que pueden alcanzar radios inferiores a 400 m.

Una vez realizado el avance, en condición de terreno de baja calidad geotécnica, que exija la colocación de los anillos de dovelas, se retraen los gatos hidráulicos y se coloca el siguiente anillo; una vez colocado el nuevo anillo, se comienza el siguiente avance. En condición de un macizo rocoso de buena calidad, el apoyo se hace a través de las zapatas o grippers, que, presionado sobre el terreno, acodalan la máquina y ejercen sobre la cabeza de corte, la presión necesaria para la excavación.

Para el caso del Proyecto Quebradona, la fortificación y sostenimiento del túnel es esencialmente de naturaleza definitiva, por lo que no se contempla otros elementos de sostenimiento/soporte después de haber instalado el sostenimiento primario.

Para el desmontaje, una vez que la TBM alcance la parte final del túnel de acceso a la caverna de trituración, se realiza una pequeña cámara, ensanchando los últimos 40 m, por el método convencional. Desmontada la cabeza de corte, todo el tren del escudo y back-Up, deben ser tirados a través de la vía, hasta la zona del portal, para su desmonte.

3.3.6.2 Caverna de trituración

La caverna de trituración se construirá mediante P&V adecuando las fases de excavación a las dimensiones de la caverna que como pude apreciarse en la Figura 3.67, son de 13 m de anchura útil y una altura libre de 17,57 m.
De acuerdo con estas dimensiones, se recomienda que la caverna se ejecute en una primera sección en avance o calota de 6,5 m de altura, realizando posteriormente cuatro banqueos de unos 4 m cada uno en vertical.

3.3.6.3 **Infraestructura vertical**

3.3.6.3.1 **Pozos de ventilación**

Para garantizar el suministro de aire fresco y la salida de aire viciado, se ha previsto la necesidad de cuatro (4) pozos de ventilación de 6 m de diámetro útil; 2 pozos para suministro de aire limpio y 2 pozos para extracción de aire contaminado.

La totalidad de los cuatro (4) pozos de ventilación, serán ejecutados empleando medios mecánicos mediante el método Raise-Boring, basado en la excavación de un taladro piloto que posteriormente es escarificado, de abajo hacia arriba, con herramientas mecánicas, en su integridad, desescombrando por abajo, y una vez que la excavación está completada en su integridad, se procede a sostener y/o revestir el pozo. En la Figura 3.68 se muestra la sección de estos pozos.
3.3.6.3.2 Piques de transferencia

El Proyecto contempla seis (6) piques de transferencia, todos ellos de 3 m de diámetro útil.

La totalidad de estos piques se construirá mediante el método Raise-Boring, citado en el apartado anterior. En la Figura 3.69 se muestra la sección de estos piques.

3.3.6.3.3 Método constructivo con Raise Boring Convencional

El Raise Boring Convencional consiste en perforar (frecuentemente con tricono) un taladro piloto en sentido descendente hasta llegar al nivel inferior, para posteriormente acoplar una cabeza escariadora con el fin de ir ensanchando en sentido ascendente, hasta alcanzar el diámetro deseado (véase la Figura 3.70). Este método será aplicado para la construcción de los Pozos de ventilación y los pozos de transferencia.
Es un método muy seguro, eficiente y de buena relación coste/beneficio en rocas estables.

El diámetro, así como la longitud del pozo están limitados por la capacidad de carga de la sarta de perforación. La carga es dinámica y para su cálculo deben considerarse varios parámetros tales como: tensiones de tracción, de torsión y flexión; respuestas del equipo que van asociados a los parámetros resistentes y deformacionales de la roca perforada.

3.3.6.3.3.1 Características fundamentales del sistema

a) Necesidad de doble acceso.

b) Rango de diámetros 0,6 – 7 m

c) Longitudes hasta 1.200 m con potencias mayores a 600 KW.

3.3.6.3.3.2 Procedimiento de intervención

3.3.6.3.3.2.1 Preparación del emplazamiento

Establecido el lugar del emplazamiento será necesario realizar una solera de hormigón de área y espesor acorde a la longitud del pozo y tipo de máquina apropiada, que servirá para nivelar y anclar la máquina.

Será necesaria la conexión eléctrica y la instalación de aire comprimido y agua.

3.3.6.3.3.2.2 Perforación del taladro piloto

La realización del Conventional Raise Boring exige, en primer lugar, la perforación de un taladro piloto (véase la Figura 3.71), normalmente con una cabeza trícono, fijada...
sobre un estabilizadores que evitan la desviación de la sarta, y mantiene la uniformidad del diámetro de perforación durante todo el tramo. El avance se logra agregando barras a la sarta de perforación.

Este sondeo puede desviarse en mayor o menor medida dependiendo de la formación y tipo de roca (la presencia de fallas o discontinuidades en general, tenderá a provocar mayores desviaciones).

![Perforación del sondeo piloto](image)

Figura 3.71 Perforación del sondeo piloto
Fuente: Minera de Cobre Quebradona, 2019

3.3.6.3.2.3 Evacuación del detritus

El detritus producto de la perforación es barrido con agua a presión impulsada por bombas (también se suele utilizar aire), extrayéndolo por el espacio anular que queda entre la pared del pozo y la columna de las barras de perforación.

Un buen sistema de evacuación de detritus asegura una excavación eficaz. Esto es fundamental, ya que tras diversos estudios se ha demostrado que tener una capa de material excavado sobre la roca sana puede reducir la penetración de los útiles de corte en más de un 35%. En el proceso de limpieza, si hay pérdida / fugas de agua o aire, a veces es necesario pensar en la realización de “grouting” para asegurar la buena evacuación de los detritus.
3.3.6.3.2.4 Escariado al diámetro final

La operación de escariado comienza cuando se ha realizado el taladro piloto, perfilando adecuadamente el escariador y el tren de varillaje para evitar las desviaciones.

Normalmente la presión de empuje en la etapa de escariado es unas cinco veces mayor a la etapa de perforación piloto. El escariador avanza en ascenso (véase la Figura 3.72), excavando la roca por corte y cizalla, al diámetro final del pozo. El escombros se sacará por la galería inferior.

Debe preverse un sistema de recogida, decantación, bombeo y eventual reciclado del agua empleada en abatir el polvo generado por la cabeza escariadora.

![Proceso de escariado Convencional Raise Boring](image)

Figura 3.72 Proceso de escariado Convencional Raise Boring
Fuente: Minera de Cobre Quebradona, 2019

La carga operativa neta se escoge dependiendo del tipo de máquina, de la sarta de tubos y de las características de la roca. La velocidad del escariador se selecciona dependiendo del diámetro de la cabeza y la roca. Es preferible reducir las revoluciones antes que la carga del cortador, pero siempre por debajo de los máximos estipulados.

3.3.6.4 Sostenimientos recomendados

Los sostenimientos recomendados, se relacionan en la Tabla 3.86, tanto para P&V como para TBM, y se describen en el numeral 3.3.7.17.2.

3.3.6.5 Infraestructura para transporte del mineral hasta sitio de embarque

En cuanto a la infraestructura existente para movilizar el mineral hasta el sitio de embarque del mineral, tal como se ha mencionado, se utilizará el Puerto de Buenaventura. Este aspecto se ilustra en la Figura 3.73 y se describe en la sección 3.3.8.2.1. Infraestructura para el transporte del producto final (concentrado).
3.3.7 Diseño y planteamiento de la explotación

Los criterios de diseño y planteamiento de la explotación minera, aplicados en la selección del método de minería, se basaron en los estudios de ingeniería realizados internamente por Minera de Cobre Quebradona más el apoyo de consultores internacionales en áreas específicas de la ingeniería de minas, los cuales se detallan en la Tabla 3.24.

Tabla 3.24 Consultores participantes en los diseños de la explotación

<table>
<thead>
<tr>
<th>Empresa / Consultor</th>
<th>Área de soporte</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerGeotch</td>
<td>Modelamiento del flujo de materiales y análisis de geometrico para método de Hundimiento por Subniveles</td>
</tr>
<tr>
<td>Stratavision Pty Limited</td>
<td>Evaluación de Hundibilidad y determinación del Radio Hidráulico</td>
</tr>
</tbody>
</table>
Sistema y método de explotación

Los estudios de ingeniería de minas llevados a cabo en el Proyecto Quebradona se han centrado en definir la mejor opción para la extracción eficiente de los recursos minerales disponibles, al igual que en realizar los cálculos relacionados con la apertura de la mina, el desarrollo de la infraestructura y la determinación de los costos de operación y costos de capital.

Las características topográficas que se presentan en la zona donde se encuentra el proyecto, así como la profundidad donde se emplaza el depósito, condujeron a descartar la minería por tajo abierto y seleccionar el método de explotación subterráneo como una opción viable.

La geología permitió identificar claramente una distribución de tenores que se concentraba en un dominio de alto tenor de 0,60% de Cu de 186 Mt in situ, el que a su vez está rodeado por un halo de menor tenor, el cual fue identificado como el dominio de 0,45% Cu que contiene aproximadamente 538 Mt in situ (véase la Figura 3.74).

![Figura 3.74 Vistas Perfil y en Planta de los dominios 0,45%Cu y 0,6%Cu](image)

Fuente: Minera de Cobre Quebradona, 2019
La distribución vertical y concéntrica de los tenores, se manifiesta con mayor intensidad a partir de los 300 metros bajo la superficie, extendiéndose por más de 1.000 metros verticales. Esta distribución espacial permitió identificar la zona entre los niveles 1.700 y 1.125 como el objetivo a ser explotado. Dadas las condiciones favorables de selectividad que posee el depósito, la distribución de altos tenores dentro del mismo, sumado a las propiedades del mineral y de la roca de caja - favorables para el fracturamiento por flujos gravitacionales - hacen que este depósito sea apto de ser explotado por medio del Hundimiento por subniveles (SLC).

Respecto al método de Hundimiento por Subniveles (SLC), éste se aplica generalmente en cuerpos masivos verticales o sub-verticales, de grandes dimensiones, tanto en espesor como en su extensión vertical, similares al depósito Nuevo Chaquiró.

Este método se basa en el uso de la perforación y voladura para fracturar el cuerpo mineralizado bajo condiciones controladas, comenzando en la parte superior del depósito y moviéndose secuencialmente hacia abajo a través de sub-niveles uniformes y horizontales. La infraestructura de apoyo (túneles y excavaciones de soporte) se ubica en la roca de caja circundante.

El mineral resultante de la voladura se extrae desde los puntos de extracción ubicados en los niveles de producción. Una vez el material es extraído, genera una cavidad la cual permite que la roca circundante colapse y rellena el vacío que va dejando la extracción de mineral dentro de cada punto de extracción (véase la Figura 3.75). Este proceso repetitivo y continuo, permite que el fracturamiento se propague hasta la superficie, creando así una cavidad, lo que resulta en el hundimiento de la superficie sobre el área de la minería, efecto conocido como subsidencia. La propagación de las fracturas o adecuación de la roca caja supreyacente puede optimizarse mediante técnicas de preacondicionamiento.

Las operaciones de arranque, cargue y transporte del mineral se realizan a partir de estos subniveles en una secuencia descendente.

3.3.7.2 Operaciones unitarias

La fase de explotación del yacimiento Nuevo Chaquiró comprende la perforación y voladura tanto de estéril como de mineral, y el cargue a los sitios de recibo para el transporte interno.

El sistema de hundimiento por subniveles consta de tareas repetitivas (excavación de galerías, perforación de pozos profundos, barrenado y voladura, carga y transporte) que se realizan de forma independiente.

3.3.7.2.1 Preparación y Desarrollo Horizontal

Las labores de preparación comprenderán la construcción de las diferentes estructuras subterráneas necesarias para el acceso al cuerpo mineral, tránsito de personal y equipo minero, suministro de aire a todos los frentes de trabajo, bombeo, entrega de insumos, extracción de material estéril y mineral valioso, etc. La Tabla 3.25 muestra un total de 158,7 km de desarrollo horizontal subdividido en cada uno de los perfiles y sus secciones típicas (alto y ancho), sin tener en cuenta los túneles de acceso.
Figura 3.75 Ilustración del método de extracción de hundimiento por subniveles (SLC)
Fuente: Minera de Cobre Quebradona, 2019

Para el proyecto se ha considerado el método convencional de perforación y voladura para realizar obras de preparación y desarrollo minero. La ejecución de este método incluye la realización de las siguientes operaciones unitarias (véase la Figura 3.76):

a) Perforación
b) Cargue de explosivo
c) Voladura
d) Ventilación
e) Remoción y Transporte
f) Limpieza de Galería (Desabombe)
g) Concreto Proyectado (Shotcrete)
h) Anclaje de Roca
Figura 3.76 Ciclo de operaciones unitarias, método de perforación y voladura para desarrollos verticales
Fuente: Minera de Cobre Quebradona, 2019

3.3.7.2.1.1 Perforación

El propósito de la perforación es abrir en la roca huecos de forma circular llamados barrenos, que posteriormente serán rellenados con explosivos, para romper la roca.

Esta etapa se realizará de manera mecanizada con el uso de equipos móviles denominados Jumbos, provistos de brazos mecánicos sobre los cuales están montadas perforadoras hidráulicas. Para este caso se empleará un Jumbo de dos brazos, del tipo Sandvick DD422 (Véase la Figura 3.77).
Tabla 3.25 Total Desarrollos Horizontales

<table>
<thead>
<tr>
<th>Perfil</th>
<th>Descripción</th>
<th>Ancho (m)</th>
<th>Alto (m)</th>
<th>U</th>
<th>Total</th>
<th>Ano 1 (C)*</th>
<th>Ano 2 (C)</th>
<th>Ano 3 (C)</th>
<th>Ano 4 (C)</th>
<th>Ano 1 (O)</th>
<th>Ano 2-6 (O)</th>
<th>Ano 7-11 (O)</th>
<th>Ano 12-16 (O)</th>
<th>Ano 17-21 (O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfiles horizontales por tipo de perfil</td>
<td></td>
</tr>
<tr>
<td>Perfil B1</td>
<td>Sumideros</td>
<td>5</td>
<td>5</td>
<td>m</td>
<td>654</td>
<td>50</td>
<td>130</td>
<td>148</td>
<td>206</td>
<td>8</td>
<td>32</td>
<td>32</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Perfil C1</td>
<td>Galerías de ventilación, Galerías cabeceras</td>
<td>5,5</td>
<td>5,5</td>
<td>m</td>
<td>17.642</td>
<td>582</td>
<td>3.596</td>
<td>932</td>
<td>3.332</td>
<td>4.158</td>
<td>3.885</td>
<td>1.168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfil C2</td>
<td>Galerías de accesos a subniveles, piques de traspaso</td>
<td>5,5</td>
<td>6</td>
<td>m</td>
<td>10.659</td>
<td>2.686</td>
<td>2.857</td>
<td>579</td>
<td>1.231</td>
<td>1.467</td>
<td>1.507</td>
<td>332</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfil D3</td>
<td>Rampa de producción</td>
<td>6</td>
<td>6</td>
<td>m</td>
<td>11.271</td>
<td>628</td>
<td>6.703</td>
<td>90</td>
<td>100</td>
<td>125</td>
<td>123</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfil E1</td>
<td>Galerías de arranque o cruzadas</td>
<td>6,25</td>
<td>5</td>
<td>m</td>
<td>117.622</td>
<td>1.731</td>
<td>10.541</td>
<td>8.399</td>
<td>28.966</td>
<td>15.412</td>
<td>32.076</td>
<td>20.498</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfil F2</td>
<td>Excavación central cámaras de Trituración y Ventilación</td>
<td>7</td>
<td>7</td>
<td>m</td>
<td>319</td>
<td>93</td>
<td>226</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfil F3</td>
<td>Galería de ventilación principal</td>
<td>7</td>
<td>8</td>
<td>m</td>
<td>521</td>
<td>235</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfil G3</td>
<td>Ensanches</td>
<td>3</td>
<td>3</td>
<td>m</td>
<td>68</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019 *: (C): Construcción; (O): Operación
3.3.7.2.1.2 **Cargue de Explosivo**

Es una actividad que se realiza posterior a la perforación y consiste en cargar los barrenos con explosivos, en este caso el explosivo será tipo Emulsión a granel.

Esta actividad se prevé realizar con un equipo mecanizado, el cual consiste en una plataforma provista de una bomba que inyecta el explosivo al interior del barreno y que permite controlar la presión al interior de este, manteniendo a los operadores en una condición muy segura. El equipo considerado para esta actividad es de tipo Normet Charmec 16110 B (Véase Figura 3.78).

3.3.7.2.1.3 **Voladura**

La voladura de rocas es la última actividad que se realiza, normalmente al final del turno de trabajo. De acuerdo con los criterios de la mecánica de rotura, la voladura es un proceso tridimensional, en el cual las presiones generadas por explosivos confinados dentro de los barrenos perforados en la roca originan una zona de alta concentración de energía que produce dos efectos dinámicos: fragmentación y desplazamiento.
Una adecuada fragmentación es importante para facilitar la remoción y transporte del material del frente, de acuerdo con el tipo y las dimensiones de los cargadores y camiones disponibles. También tiene relación directa con el uso que se le dará al material, como es el caso del tamaño óptimo de alimentación a la trituradora; garantizando un proceso más eficiente con un menor consumo de energía.

3.3.7.2.1.4 Ventilación

La red de ventilación ha sido diseñada para cumplir con las regulaciones mineras de Colombia de acuerdo con el Reglamento de Seguridad en Labores Mineras Subterráneas, Decreto 1866 de 21 de septiembre de 2015.

En el apartado 3.3.7.5 se presenta en detalle el sistema de ventilación.

3.3.7.2.1.5 Remoción y Transporte

Esta etapa consiste en retirar el material volado del frente de desarrollo, cargarlo y transportarlo hasta su disposición final o lugar previsto, para un posterior procesamiento.

En el caso de MCQ, el material del desarrollo producido antes de la puesta en marcha de la trituradora subterránea y los piques de traspaso, será transportado en camiones hasta superficie para su posterior almacenamiento y/o procesamiento.

Una vez se tengan los piques de traspaso y la trituradora operando, todo el material (estéril y mineral) será transportado a superficie en la banda transportadora.

Los equipos previstos para esta actividad serán del tipo Sandvik TH633i para el transporte y el Sandvik LH621 para el cargue (véase la Figura 3.79).

Figura 3.79 Equipos para cargue y transporte. Cargador LH621 y camión LH633i
Fuente: Minera de Cobre Quebradona, 2019

3.3.7.2.1.6 Limpieza de Galería (Desabombe)

Para evitar y reducir accidentes por desprendimiento de rocas desde el techo de los túneles de desarrollo, se debe realizar el desabombe en el frente del túnel, para dejar una cara fresca y limpia para la fortificación.
Esta actividad se realizará con un equipo mecanizado del tipo BTI - RMS 18 (véase la Figura 3.80), el cual está provisto de un brazo articulado y de una herramienta de acero para realizar palanca y derrumbar las rocas remanentes de la voladura que se encuentran en el techo del túnel. Este equipo puede ser operado en forma remota manteniendo al operador del equipo bajo condiciones muy seguras.

![Equipo para desabombe de tipo BTI - RMS 18](image)

Figura 3.80 Equipo para desabombe de tipo bti - rms 18
Fuente: Minera de Cobre Quebradona, 2019

3.3.7.2.1.7 Concreto proyectado

El concreto proyectado se aplica por compresión neumática a través de un conducto y es lanzado a gran velocidad sobre las paredes y el techo del túnel. Esta proyección se realizará donde sea requerido o donde las condiciones del macizo rocoso ameriten una mayor fortificación con malla electrosoldada y posterior concreto lanzado.

Se prevé utilizar un equipo mecanizado de tipo Normet Hilmec SF 605 para proyectar el concreto (véase la Figura 3.81).

3.3.7.2.1.8 Anclaje de Roca

El anclaje de roca tiene como propósito reforzar las paredes del túnel cualquiera sea la condición, ya sea roca fresca o con revestimiento en concreto mediante el uso de pernos de roca.

En roca masiva o levemente fracturada y en rocas fracturadas, el papel principal de los pernos de roca es el control de la estabilidad de los bloques y cuñas rocosas potencialmente inestables.

Para realizar la instalación de los pernos y mallas electrosoldadas, se empleará un equipo de tipo Sandvik DS411 como el que se muestra en la Figura 3.82.
Las labores de preparación comprenderán el desarrollo de labores verticales que comprenden los pozos de ventilación, y piques de traspaso de materiales principalmente. La Tabla 3.26 muestra el total de 9,1 km de desarrollo vertical subdividido en cada uno de los perfiles y sus secciones típicas.
Tabla 3.26 Total Desarrollos verticales

<table>
<thead>
<tr>
<th>Perfil</th>
<th>Descripción</th>
<th>Ancho (m)</th>
<th>Alto (m)</th>
<th>Unidad</th>
<th>Total</th>
<th>Quinquenio 1</th>
<th>Quinquenio 2-5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Año 1 (C)</td>
<td>Año 2 (C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Año 3 (C)</td>
<td>Año 4 (O)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Año 5-6 (O)</td>
<td>Años 7-11 (O)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Años 12-16 (O)</td>
<td>Años 17-21 (O)</td>
</tr>
<tr>
<td>Perfil V1,8 (m)</td>
<td>Galerías de salida de emergencia; Escaleras, Cara libre</td>
<td>1,8 Ø</td>
<td>m</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfil V3,0 (m)</td>
<td>Pique de Traspaso</td>
<td>3.0 Ø</td>
<td>m</td>
<td>3.022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfil V3,5 (m)</td>
<td>Pozo de ventilación vertical</td>
<td>3.5 Ø</td>
<td>m</td>
<td>1.040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfil V5,0 (m)</td>
<td>Pozo de ventilación interno</td>
<td>4.5 Ø</td>
<td>m</td>
<td>2.099</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfil V6,5 (m)</td>
<td>Pozo de ventilación principal a superficie</td>
<td>6.0 Ø</td>
<td>m</td>
<td>1.376</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfil V6,5 (m)</td>
<td>Pozo de ventilación principal a superficie</td>
<td>6.0 Ø</td>
<td>m</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfil W4 (m)</td>
<td>Pozo ciego</td>
<td>4</td>
<td>4</td>
<td>m</td>
<td>1.100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019 *: (C): Construcción; (O): Operación

El Proyecto ha considerado el método de escariado (Raise Boring Convencional) el cual consiste en perforar (frecuentemente con tricono) un taladro piloto en sentido descendente hasta llegar al nivel inferior, para posteriormente acoplar una cabeza escariadora con el fin de ir ensanchando en sentido ascendente, hasta alcanzar el diámetro deseado (véase la Figura 3.70).

El diámetro, así como la longitud del pozo están limitados por la capacidad de carga de la sarta de perforación. La carga es dinámica y para su cálculo deben considerarse varios parámetros tales como: tensiones de tracción, de torsión y flexión; respuestas del equipo que van asociados a los parámetros resistentes y deformacionales de la roca perforada.

3.3.7.2.3 **Arranque**

Las operaciones de arranque se realizan a partir de los niveles de producción en una secuencia descendente. Tanto para la extracción de mineral como para el material de desecho de cada nivel de producción se utilizarán técnicas tradicionales de perforación y voladura, cargue y transporte.

Durante la vida de la mina se extraen un total de 130,1 Mt de roca, que corresponden a 5,72 Mt de material de desecho y 124,3 Mt de mineral, de los cuales 10,0 Mt se generan a partir del desarrollo de las galerías de arranque que atraviesen el cuerpo mineral, más el aporte de 114,3 Mt como arranque propiamente dicho, desde los niveles de producción (véase la Tabla 3.27).

La operación de arranque se inicia en el subnivel superior, en retroceso desde el límite más alejado o pendiente del cuerpo mineralizado hacia el límite yacente. Desde cada galería del subnivel se perforan tiros hacia arriba, según un diagrama en abanico que cubre toda la sección de roca de forma romboidal ubicada inmediatamente encima.

Tabla 3.27 Total de roca extraída

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Total</th>
<th>Quinquenio 1</th>
<th>Quinquenio 2-5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Año 1 (C)</td>
<td>Año 2 (O)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Año 3 (C)</td>
<td>Año 4 (O)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Años 2-6 (O)</td>
<td>Años 7-11 (O)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Años 12-16 (O)</td>
<td>Años 17-21 (O)</td>
</tr>
<tr>
<td>Mineral de desarrollos</td>
<td>Kt</td>
<td>10.038</td>
<td>147</td>
<td>931</td>
</tr>
<tr>
<td>Mineral de</td>
<td>Kt</td>
<td>114.313</td>
<td>2.145</td>
<td>4.010</td>
</tr>
</tbody>
</table>

Estudio de Impacto Ambiental
I-0010371-MQC-EIA-V1-FA
Noviembre, 2019
<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Total</th>
<th>Quinquenio 1</th>
<th>Quinquenio 2-5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Año 1</td>
<td>Año 2</td>
<td>Año 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(C)</td>
<td>(C)</td>
<td>(C)</td>
</tr>
<tr>
<td>producción</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total de mineral</td>
<td>Kt</td>
<td>124.351</td>
<td>147</td>
<td>3.076</td>
</tr>
<tr>
<td>Material esteril</td>
<td>Kt</td>
<td>5.720</td>
<td>998</td>
<td>1.630</td>
</tr>
<tr>
<td>Total material minado</td>
<td>Kt</td>
<td>130.071</td>
<td>998</td>
<td>1.630</td>
</tr>
</tbody>
</table>

*: (C): Construcción; (O): Operación
**: este material tiene potencial de generación de drenaje ácido (AGP), por tanto, será enviado al depósito de pirita.

Fuente: Minera de Cobre Quebradona, 2019

El Proyecto ha considerado el método convencional de perforación y voladura para realizar el arranque. La ejecución de este método incluye la realización de las siguientes operaciones unitarias (véase la Figura 3.83):

 a) Perforación
 b) Carga de Explosivo
 c) Voladura
 d) Carga y transporte de mineral
 e) Transporte Interno y Transferencia
 f) Trituración Interior Mina y transporte a superficie

3.3.7.2.3.1 Perforación ascendente

Para la etapa de producción se trabajará con cinco perforadoras de barreno largo, equipos diseñados especialmente para perforaciones verticales o inclinadas. La calidad de todos estos barrenos estará determinada por su diámetro, longitud, desviación y estabilidad. La perforación de producción se realizará de manera ascendente, y para esto se requerirá de un equipo tipo Jumbo Perforador de barrenos largos (tipo Sandvik DL 421 ó Sandvik DL431).

En los niveles de producción, los anillos de perforación ascendente estarán espaciados cada 2,6 m entre ellos. La longitud de los barrenos es variable pudiendo alcanzar hasta unos 31m. El diámetro de perforación se ubica en el rango de 50 a 90 mm, la inclinación de los barrenos dependerá de la geometría del depósito y las zonas de contacto con roca de caja, de forma de maximizar la recuperación minera y reducir la entrada de la dilución. En la Figura 3.84, se observan los cuatro diseños de los anillos de perforación para las zonas de socavación inicial (alto y bajo), anillos para la zona de transición entre producción y socavación inicial, que además permite el control de los contactos con la roca de caja, y anillos de producción plena. Se utilizan jumbos electrohidráulicos diseñados para perforación radial.

La perforación se realiza anticipadamente como una operación continua e independiente de la voladura.
Figura 3.83 Secuencia de Arranque: Perforación, Carga de Explosivo, Voladura y Cargue de Mineral o Esteril
Fuente: Atlas Copco, 2018

Figura 3.84 Diseños de Voladura de producción para Hundimiento por subniveles
Fuente: Minera de Cobre Quebradona, 2019
3.3.7.2.3.2 **Cargue de Explosivo**

Debido a la configuración vertical de los barrenos, el cargue de explosivo se debe realizar de manera vertical. El explosivo que se debe utilizar es del tipo emulsión bombeable gasificada para barrenos verticales (ej: Duoblast-V®), la cual posee la propiedad de adherirse a las paredes internas del barreno, y evitar el derrame por efecto de la gravedad.

Esta actividad se prevé realizar con un equipo mecanizado, el cual consiste en una plataforma provista de una bomba que inyecta el explosivo al interior del barreno y que permite controlar la presión al interior de este, manteniendo a los operadores en una condición segura. El equipo considerado para esta actividad es de tipo Normet Charmec 16110 B.

3.3.7.2.3.3 **Voladura**

Cada voladura involucra entre dos y cinco abanicos por galería, y espaciamiento o burden es de 2,6 m entre ellos. Como se mencionó en el numeral anterior, la longitud de los barrenos es variable pudiendo alcanzar hasta unos 31 m. El diámetro de perforación se ubica en el rango de 50 a 90 mm.

3.3.7.2.3.4 **Cargue y Transporte**

Una vez realizada la voladura, la extracción de material quebrado se carga en la frente por medio de un equipo tipo LHD de 14 - 25 t de capacidad, que pueden ser de propulsión Diesel o Eléctrico. El transporte se lleva a cabo con el equipo LHD, hasta la galería cabecera la cual comunica con los puntos de vaciado que están distribuidos en el perímetro del cuerpo mineral, como se aprecia en la Figura 3.85.

![Figura 3.85 Cargue y transporte de mineral](Fuente: Minera de Cobre Quebradona, 2019)

Los puntos de vaciado permiten la transferencia de mineral desde el nivel de producción, con el pique de traspaso de 3,0 m de diámetro que, mediante gravedad, transporta verticalmente el mineral hasta el nivel de transferencia y trituración ubicado en la parte baja del depósito.
3.3.7.2.4 **Transporte interno y Transferencia**

La roca rota descenderá a través de los piques de traspaso, para terminar en el nivel de transferencia de mineral principal ubicado en el nivel 1152,5. En este nivel, dos o un máximo de tres cargadores de 14 – 25 t de capacidad estarán dedicados a extraer el mineral desde el pique de traspaso, para luego transportar el mineral hasta el punto de alimentación de la trituración subterránea (véase la Figura 3.86).

![Vista en Planta Nivel](image1)

![Vista Isométrica](image2)

Figura 3.86 Nivel de transferencia
Fuente: Minera de Cobre Quebradona, 2019

3.3.7.2.5 **Trituración Interior Mina y transporte a superficie**

El punto de vaciado de mineral tendrá tres posiciones de volcado para los equipos LHD. Tres cargadores podrán descargarse simultáneamente.

Un alimentador de placas será instalado para retirar el material desde el buzón de descarga. Este alimentador estará equipado con un detector de metales con potencial de daño a la trituradora.

El material una vez triturado, será descargado directamente a una cinta de sacrificio mediante un chute de transferencia. Desde este punto, la roca triturada alimenta directamente un contenedor de gran capacidad ubicado debajo de la trituradora y este a su vez alimenta el sistema de banda trasportadora principal. Tanto el mineral triturado como el estéril se transportan una distancia de 6,1 km hasta la plataforma ubicada en superficie, cerca de la planta de beneficio. El mineral triturado, así como el material estéril con potencial de generación de drenaje ácido (AGP) se transportan por correas hacia la planta de beneficio.

El siguiente es un resumen de las principales características del sistema de trituración y transporte por banda:

3.3.7.2.5.1 Trituración Interior Mina

- Descarga directa por cargadores en el nivel producción o transferencia.
- Tres posiciones de vaciado.
- Material descargado se acumula en un buzón con detector de niveles.
Un alimentador de placas alimenta la trituradora primaria.

Trituradora primaria giratoria, con una capacidad de 6.200.000 tpa

Sistema de recolección de polvo en la trituradora y en los puntos de transferencia;

Supresión de polvo tipo niebla en el nivel de descarga.

3.3.7.2.5.2 Sistema de transporte por banda

Alimentador de placas se instala en la descarga de la trituradora primaria para recibir el material triturado.

Alimentador de placas transfiere el material triturado hasta la banda transportadora a través de una cinta de sacrificio.

Dos imanes autolimpiables instalados en la cinta de sacrificio: uno en la mitad y otro en la cabeza de la polea principal. Detector de metales instalado entre imanes.

Sistema de banda convencional de aproximadamente 6,0 km de longitud para trasportar el material hasta superficie en el valle.

3.3.7.3 Perforación y voladura de desarrollos

Para las estructuras de desarrollo de la mina se definieron doce diferentes perfiles, con barrenos de 2” de diámetro y 4 m de longitud. Además del diseño del patrón de voladuras se incluyó la cantidad de explosivo y accesorios requeridos y sus costos asociados. Las dimensiones de cada perfil se indican en la tabla siguiente:

<table>
<thead>
<tr>
<th>Perfil</th>
<th>Ancho (m)</th>
<th>Altura (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>6.25</td>
<td>5.00</td>
</tr>
<tr>
<td>D4</td>
<td>6.00</td>
<td>7.00</td>
</tr>
<tr>
<td>D3</td>
<td>6.00</td>
<td>6.00</td>
</tr>
<tr>
<td>F1</td>
<td>7.00</td>
<td>6.00</td>
</tr>
<tr>
<td>F2</td>
<td>7.00</td>
<td>7.00</td>
</tr>
<tr>
<td>D2</td>
<td>6.00</td>
<td>5.00</td>
</tr>
<tr>
<td>D1</td>
<td>6.00</td>
<td>4.75</td>
</tr>
<tr>
<td>C1</td>
<td>5.50</td>
<td>6.00</td>
</tr>
<tr>
<td>C2</td>
<td>5.50</td>
<td>5.50</td>
</tr>
<tr>
<td>B1</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>A1</td>
<td>4.50</td>
<td>4.50</td>
</tr>
<tr>
<td>F3</td>
<td>8.00</td>
<td>7.00</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

A continuación, se ilustran los diferentes perfiles con sus respectivos patrones de perforación, tipo y número de barrenos a perforar, longitud a perforar, volumen de roca a remover y coeficiente de perforación (véase la Figura 3.87 hasta la Figura 3.98).
3.161

Figura 3.87 Diagrama de perforación del Perfil E1
Fuente: Minera de Cobre Quebradona, 2019

Figura 3.88 Diagrama de perforación del Perfil D4
Fuente: Minera de Cobre Quebradona, 2019
Figura 3.89 Diagrama de perforación del Perfil D3
Fuente: Minera de Cobre Quebradona, 2019

Figura 3.90 Diagrama de perforación del Perfil F1
Fuente: Minera de Cobre Quebradona, 2019
Figura 3.91 Diagrama de perforación del Perfil F2
Fuente: Minera de Cobre Quebradona, 2019

Figura 3.92 Diagrama de perforación del Perfil D2
Fuente: Minera de Cobre Quebradona, 2019
Figura 3.93 Diagrama de perforación del Perfil D1
Fuente: Minera de Cobre Quebradona, 2019

Figura 3.94 Diagrama de perforación del Perfil C1
Fuente: Minera de Cobre Quebradona, 2019
Figura 3.95 Diagrama de perforación del Perfil C2
Fuente: Minera de Cobre Quebradona, 2019

Figura 3.96 Diagrama de perforación del Perfil B1
Fuente: Minera de Cobre Quebradona, 2019
Los explosivos y accesorios a utilizar en las voladuras de las obras de desarrollo se muestran a continuación. La Tabla 3.29 y la Tabla 3.30 incluyen las cantidades de explosivo a utilizar por tipo de perfil o sección.
Tabla 3.29 Cantidad de explosivos y accesorios para desarrollo

<table>
<thead>
<tr>
<th>Explosivos y Accesorios</th>
<th>Unidad</th>
<th>6,25 x 5,00</th>
<th>6,00 x 7,00</th>
<th>6,00 x 6,00</th>
<th>7,00 x 6,00</th>
<th>7,00 x 7,00</th>
<th>6,00 x 5,00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsión</td>
<td>kg</td>
<td>303,5</td>
<td>331,2</td>
<td>293,7</td>
<td>376,8</td>
<td>421,5</td>
<td>256,1</td>
</tr>
<tr>
<td>Booster (80 g)</td>
<td>#</td>
<td>66</td>
<td>75</td>
<td>65</td>
<td>78</td>
<td>89</td>
<td>56</td>
</tr>
<tr>
<td>Detonador non-el MS-LP</td>
<td>#</td>
<td>66</td>
<td>75</td>
<td>65</td>
<td>78</td>
<td>89</td>
<td>56</td>
</tr>
<tr>
<td>4.8 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-corte</td>
<td>kg</td>
<td>18,8</td>
<td>22,6</td>
<td>18,8</td>
<td>19,8</td>
<td>23,6</td>
<td>16</td>
</tr>
<tr>
<td>Cordón detonante</td>
<td>m</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Mecha de seguridad</td>
<td>m</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.30 Cantidad de explosivos y accesorios para desarrollo (Cont.)

<table>
<thead>
<tr>
<th>Explosivos and accesorios</th>
<th>Unidad</th>
<th>6,00 x 4,75</th>
<th>5,50 x 6,00</th>
<th>5,50 x 5,50</th>
<th>5,00 x 5,00</th>
<th>4,50 x 4,50</th>
<th>8,00 x 7,00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsión</td>
<td>kg</td>
<td>299</td>
<td>286,6</td>
<td>286,6</td>
<td>243,9</td>
<td>242</td>
<td>429</td>
</tr>
<tr>
<td>Booster (80 g)</td>
<td>#</td>
<td>55</td>
<td>63</td>
<td>63</td>
<td>57</td>
<td>52</td>
<td>90</td>
</tr>
<tr>
<td>Detonador non-el MS-LP</td>
<td>#</td>
<td>55</td>
<td>63</td>
<td>63</td>
<td>57</td>
<td>52</td>
<td>90</td>
</tr>
<tr>
<td>4.8 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-corte</td>
<td>kg</td>
<td>16,01</td>
<td>17,9</td>
<td>17,9</td>
<td>17</td>
<td>14,1</td>
<td>23,6</td>
</tr>
<tr>
<td>Cordón detonante</td>
<td>m</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Mecha de seguridad</td>
<td>m</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

3.7.7.4 Perforación y Voladura de producción

El diseño de la perforación y voladura se basan en un diseño de Hundimiento por Subniveles (SLC) típico que se utiliza de manera similar en las minas explotadas por el método Hundimiento por Subniveles: Carrapateena, Ernest Henry Telfer y Ridgeway. Las estimaciones conceptuales de perforación, voladuras y terreno de SLC fueron revisadas y evaluadas por SRK Consulting en conjunto con Enaex.

Típicamente, existen dos parámetros claves en la implementación del método de Hundimiento por subniveles: la altura de cada subnivel y el espaciamiento entre las galerías de carga de mineral. En el caso del Proyecto Quebradona estos valores son 27,5 m y 15 m, respectivamente.

Para el caso de los anillos de producción se consideraron cuatro diseños, a saber:

- **Caso A:** Anillo de alta transición (En el extremo izquierdo o derecho del cuerpo mineral)
- **Caso B:** Anillo de alta socavación
- **Caso C:** Anillo de plena producción
- **Caso D:** Anillo de baja socavación

La Figura 3.84 muestra la ubicación y dimensiones de los distintos anillos y la Tabla 3.31 muestra el número y composición de los barrenos propuestos para cada uno de los anillos mencionados.

a) **Anillo de transición**

En la Tabla 3.31 se observa la configuración de los barrenos del anillo de alta transición que garantiza una voladura adecuada.
Tabla 3.31 Configuración de barrenos de Anillos de transición

<table>
<thead>
<tr>
<th>Barreno, No</th>
<th>Anillo de transición</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Longitud (m)</td>
</tr>
<tr>
<td>1</td>
<td>10,4</td>
</tr>
<tr>
<td>2</td>
<td>22,1</td>
</tr>
<tr>
<td>3</td>
<td>25,5</td>
</tr>
<tr>
<td>4</td>
<td>31,0</td>
</tr>
<tr>
<td>5</td>
<td>31,0</td>
</tr>
<tr>
<td>6</td>
<td>21,8</td>
</tr>
<tr>
<td>7</td>
<td>22,1</td>
</tr>
<tr>
<td>8</td>
<td>10,4</td>
</tr>
<tr>
<td>Total</td>
<td>174,3</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

La distribución de energía resultante se observa en la Figura 3.99.

![Figura 3.99 Diagrama de distribución de energía para Anillos de transición](image)

Fuente: Minera de Cobre Quebradona, 2019

b) Anillo de Producción

La configuración de los barrenos del anillo de plena producción que garantiza una voladura adecuada se indica en la Tabla 3.32.

Tabla 3.32 Configuración de barrenos de Anillos de plena producción

<table>
<thead>
<tr>
<th>Barreno, No</th>
<th>Anillo de Producción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Longitud (m)</td>
</tr>
<tr>
<td>1</td>
<td>10,4</td>
</tr>
<tr>
<td>2</td>
<td>22,1</td>
</tr>
<tr>
<td>3</td>
<td>21,9</td>
</tr>
</tbody>
</table>
A continuación se muestra el diagrama de distribución de energía para los anillos de producción (véase la Figura 3.100).

c) Anillo de Socavación Alto y Bajo

Los dos anillos restantes, Alta y Baja socavación mostraron ser adecuados para obtener un resultado satisfactorio (véase la Figura 3.101 y la Figura 3.102).

<table>
<thead>
<tr>
<th>Barreno, No</th>
<th>Anillo de Socavación Alto</th>
<th>Anillo de Socavación Bajo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Longitud (m)</td>
<td>Retacado (m)</td>
</tr>
<tr>
<td>1</td>
<td>10,4</td>
<td>2,0</td>
</tr>
<tr>
<td>2</td>
<td>23,5</td>
<td>4,4</td>
</tr>
<tr>
<td>3</td>
<td>22,8</td>
<td>2,0</td>
</tr>
<tr>
<td>4</td>
<td>22,5</td>
<td>4,5</td>
</tr>
<tr>
<td>5</td>
<td>22,8</td>
<td>2,0</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019
Tabla 3.101

<table>
<thead>
<tr>
<th>Barreno, No</th>
<th>Anillo de Socavación Alto</th>
<th>Anillo de Socavación Bajo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Longitud (m)</td>
<td>Retacado (m)</td>
</tr>
<tr>
<td>6</td>
<td>23,5</td>
<td>4,4</td>
</tr>
<tr>
<td>7</td>
<td>10,4</td>
<td>2,0</td>
</tr>
<tr>
<td>Total</td>
<td>135,9</td>
<td>21,3</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Figura 3.101 Diagrama de distribución de energía para los anillos de socavación Alto

Fuente: Minera de Cobre Quebradona, 2019
Los explosivos y accesorios a utilizar en las voladuras de los anillos del HSN se muestran a continuación. La Tabla 3.34 muestra las cantidades de explosivo y los costos totales por anillo.

<table>
<thead>
<tr>
<th>Explosivos</th>
<th>Unidad</th>
<th>Caso A Anillo de alta transición</th>
<th>Caso B Anillo de alta socavación</th>
<th>Caso C Anillo de plena producción</th>
<th>Caso D Anillo de baja socavación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsión</td>
<td>kg</td>
<td>1.344,9</td>
<td>1.068,0</td>
<td>1.320,6</td>
<td>953,0</td>
</tr>
<tr>
<td>Reforzador (Booster)</td>
<td>#</td>
<td>15</td>
<td>12</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>Detonador non-el de 30,4 m</td>
<td>#</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Detonador non-el de 24,4 m</td>
<td>#</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Detonador non-el de 18,0 m</td>
<td>#</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Detonador non-el de 15,2 m</td>
<td>#</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Detonador non-el de 12,2 m</td>
<td>#</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cordón detonante</td>
<td>m</td>
<td>80</td>
<td>70</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>Mecha de seguridad</td>
<td>m</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Costos, US$/Anillo</td>
<td></td>
<td>$3.352</td>
<td>$2.670</td>
<td>$3.294</td>
<td>$2.402</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Otros elementos fundamentales en el diseño de la voladura son el Factor de potencia, el cual es un índice que permite evaluar el desempeño de la operación de voladuras. La siguiente tabla muestra los volúmenes a remover, la cantidad de emulsión y los factores de potencia para los principales anillos de HSN en el Proyecto. La Tabla 3.35 muestra el factor de potencia para cada anillo, junto con la sección y volumen a remover y la cantidad de explosivo requerido.
3.3.7.5 **Sistema de ventilación mina**

Las demandas de ventilación variarán según la etapa en la que se encuentre la mina. En este caso se han establecido tres etapas de ventilación, compuestas por las siguientes fases:

- **Fase 1** – Construcción del acceso a la mina,
- **Fase 2** - Aumento progresivo de la explotación con transporte de camiones, y
- **Fase 3** - Producción a máxima capacidad.

Los parámetros de diseño utilizados para la ventilación se obtuvieron de la regulación minera de Colombia (Decreto 1886 de 2015) con respecto a lo siguiente:

- **Material Particulado de Diesel (DPM)**

The volumen de aire requerido para diluir el material particulado producido por la combustión de los equipos Diesel, de acuerdo con la legislación colombiana es de 0.09 m3/s/kW.

- **NO$_2$**

 En la atmósfera de cualquier labor subterránea, los Valores Límites Permisibles (VLP) para el Dióxido de Nitrógeno es 0.2 ppm.

- **Temperatura efectiva y tiempo máximo de permanencia**

 La temperatura efectiva según el Artículo 7 del reglamento de minería de Colombia requiere que el "aire de respiración" cumpla el siguiente requerimiento: "el punto de rocío es 5,56 ºC por debajo de la temperatura ambiente a una presión de 1 atmósfera. La combinación de la temperatura efectiva se muestra en la Figura 3.103.

 El área verde representa las condiciones de temperatura y humedad en las que el personal puede trabajar un 100% sin estar expuesto a enfermedades relacionadas con el calor. Las áreas amarillas son donde se imponen restricciones de horas de trabajo y el área roja es donde no se permite ningún trabajo.

 A partir de la medida de la temperatura efectiva, se definen los tiempos de permanencia del personal en los frentes de trabajo, según la Tabla 3.36.

Tabla 3.35 Factor de potencia de explosivos para HSN

<table>
<thead>
<tr>
<th>Anillo</th>
<th>Sección (m3)</th>
<th>Volumen a remover (m3)</th>
<th>Emulsión (kg)</th>
<th>Factor de potencia (kg/m3)</th>
<th>Roca intrusiva</th>
<th>Tobas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alta transición</td>
<td>395</td>
<td>1.027,00</td>
<td>1.344,90</td>
<td>1,31</td>
<td>2,74</td>
<td>0,48</td>
</tr>
<tr>
<td>Alta socavación</td>
<td>307</td>
<td>798,20</td>
<td>1.068,10</td>
<td>1,34</td>
<td>2,74</td>
<td>0,49</td>
</tr>
<tr>
<td>Plena producción</td>
<td>383</td>
<td>995,80</td>
<td>1.320,60</td>
<td>1,33</td>
<td>2,74</td>
<td>0,48</td>
</tr>
<tr>
<td>Baja socavación</td>
<td>269</td>
<td>699,40</td>
<td>953,40</td>
<td>1,36</td>
<td>2,74</td>
<td>0,50</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019
Figura 3.103 Gráfico psicrométrico ($P = 80$ kPa): Regulación colombiana del estrés térmico
Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.36 Tiempo de permanencia, de acuerdo con el valor de la temperatura efectiva

<table>
<thead>
<tr>
<th>T ($°C$)</th>
<th>Tiempo de Permanencia (horas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Sin limitaciones</td>
</tr>
<tr>
<td>29</td>
<td>Seis (6)</td>
</tr>
<tr>
<td>30</td>
<td>Cuatro (4)</td>
</tr>
<tr>
<td>31</td>
<td>Dos (2)</td>
</tr>
<tr>
<td>32</td>
<td>Cero (0)</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

3.3.7.5.1 Fase 1 – Construcción del acceso a la mina

Antes de la instalación de la primera cámara de ventilación principal, se prevé que la ventilación tenga una entrada por el portal del túnel Norte, y una salida de aire viciado por el portal del túnel Sur. La mitad del aire fresco se utilizará para el desarrollo de los accesos a la parte superior de la mina, y el resto para los desarrollos de la parte inferior.

A medida que avance la construcción de los túneles se instalarán pozos de 3,5 m de diámetro a intervalos de 900 m, que servirán como conductos de transferencia de aire viciado, con flujo modulado por un regulador. Se instalará un ventilador de extracción de aire viciado en el portal; capaz de extraer 200 m^3/s de aire (véase la Figura 3.104).
El ancho mínimo del túnel de acceso a la mina tiene una sección de 6 m x 6 m. Se requiere para que la velocidad del aire no exceda los 6 m/s.

3.3.7.5.2 Fase 2 - Aumento progresivo de la explotación

El punto crítico para la ventilación se da cuando las actividades de desarrollo y de producción se llevan a cabo simultáneamente, durante el período de aumento progresivo de la explotación. La Figura 3.105 es una representación del primer desarrollo subterráneo con una cámara de ventilación, un pozo de extracción de aire viciado y un pozo de inyección de aire fresco.

Para satisfacer los requisitos de aire fresco para la flota de equipos mineros, se requiere un flujo de escape total de 827 m3/s, para un total de 4 a 8 camiones de entre el mes 3 del año 3 (Construcción) y mes 11 del año 3 (Construcción); después del inicio de la construcción de los accesos a la mina.

Para cumplir con el aumento progresivo de la producción entre el mes 11 del año 3 (Construcción) y el mes 9 del año 4 (Construcción), se requieren entre 8 y 25 camiones de transporte. Los requerimientos de aire fresco por periodo, debido al incremento de la flota de camiones se observa en la Figura 3.106.
Figura 3.105 Primera cámara subterránea de ventiladores, un pozo de extracción de aire viciado y uno de aire fresco hacia la superficie
Fuente: Minera de Cobre Quebradona, 2019

Cronología de requerimiento de aire fresco con el aumento de la flota de camiones

- 1x AFN SO 1500-2069-55 ventilador en el portal
- Punto de trabajo: 200 m³/s y 2.4 kPa
- Con este sistema de ventilación será suficiente hasta febrero del año 4.

Figura 3.106 Cronología de requerimiento de aire fresco con aumento de la flota de camiones
Fuente: Minera de Cobre Quebradona, 2019

Se requiere un total de 1.300 m³/s para dar servicio a la flota de camiones y se necesitarían cuatro pozos de 6 m de diámetro instalados (2 pozos de entrada de aire fresco -PEAF- y 2 pozos de salida de aire viciado -PSAV-), dos cámaras de ventilación principales instaladas, y los seis ventiladores principales en funcionamiento.
Se deben tener en cuenta las siguientes opciones:

- acelerar la instalación de los PEAF y PSAV a la superficie,
- limitar la flota de camiones de 60T, o
- instalar la banda transportadora temporalmente.

3.3.7.5.3 Fase 3 - Producción a máxima capacidad.

Los requerimientos de ventilación modelados para representar la producción de la mina a máxima capacidad (6,2 Mtpa de mineral), fueron:

- 3 niveles de producción (1290,1263 y 1235).
- 2 niveles de desarrollo (1207 y 1180).
- ubicaciones de infraestructura (trituradora, banda transportadora, almacén y taller)

La asignación para los equipos Diesel en la mina, durante este periodo se observa en la Tabla 3.37.
Tabla 3.37 Asignación de Equipos Diesel

Rampa + vías	Acceso	Pared	Cruzada 1	Cruzada 2	Cruzada 3	Cruzada 4	Cruzada 5	Cruzada 6	Cruzada 7	Cruzada 8	Cruzada 9	Cruzada 10	Cruzada 11	Cruzada 12	Cruzada 13	Cruzada 14	Cruzada 15	Cruzada 16	Cruzada 17	Cruzada 18	Cruzada 19	Cruzada 20	
1675																							
1592	Camiones 80%																						
1482	Camiones 80%																						
1290	Camiones 80%																						
1262	Camión cisterna (50%)																						
1235	Camión cisterna (50%)																						
1207	Motoniveladora (75%)																						
1180	LHD (80%)																						
1152	Camiones 80%																						
1125	Vibro compactador (30%)																						

Fuente: Minera de Cobre Quebradona, 2019
El flujo de aire principal estimado para los tres niveles de producción y dos niveles de desarrollo se muestra en la Tabla 3.38.

Tabla 3.38 Estimación del flujo de aire principal para tres niveles de producción y dos niveles de desarrollo

<table>
<thead>
<tr>
<th>Niveles de producción</th>
<th>Suministro de caudal (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1290</td>
<td>133</td>
</tr>
<tr>
<td>1262</td>
<td>198</td>
</tr>
<tr>
<td>1235</td>
<td>147</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Niveles de desarrollo</th>
<th>Suministro de caudal (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1207</td>
<td>99</td>
</tr>
<tr>
<td>1180</td>
<td>81</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

La ventilación modelada para la vida útil de la mina se muestra en la Figura 3.107. El aire fresco entra por los portales del Norte y Sur, y los dos pozos de aire (PEAF) desde la superficie. Luego, el flujo se distribuye a la rampa de producción, 3 niveles de producción, dos niveles de desarrollo y el nivel de transferencia de mineral 1152. El flujo de aire viciado se elimina por los pozos de salida de aire viciado (PSAV).

Un conjunto de ventiladores de extracción de aire viciado situados en dos cámaras subterráneas de ventilación; en el nivel de socavación (Nivel 1675), expulsa el aire a través de los pozos de extracción de aire viciado hasta la superficie.

La disposición de ventiladores propuesta sería similar a la Figura 3.108 y requeriría 8 m (ancho) x 8 m (alto) para los ventiladores AFNSO 1600-2335-54 de 3 x 2,34 m. Dos ventiladores funcionarían a capacidad máxima y uno estará en espera; como soporte del sistema.
La Tabla 3.39 relaciona la cantidad de aire fresco para la flota Diesel, banda transportadora, piques de transferencia, trituradora, otros servicios mineros y un margen de 20% para las fugas.

Tabla 3.39 Cantidad de aire fresco para la flota de Diesel, trituradora, banda transportadora, piques de transferencia, otros servicios mineros

<table>
<thead>
<tr>
<th></th>
<th>Estándar Nominal</th>
<th>Reg. Colombiana Nominal</th>
<th>Dilución de DPM Nominal</th>
<th>Dilución de calor Nominal</th>
<th>Dilución de gas (NO2) Nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flota Diesel (5 niveles + transferencia de mineral)</td>
<td>458 (0,06)</td>
<td>687 (0,09)</td>
<td>622 (0,081)</td>
<td>766 (0,1)</td>
<td>249 (0,03)</td>
</tr>
<tr>
<td>Trituradora</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>648 (0,085)</td>
</tr>
<tr>
<td>Banda transportadora</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>866 (0,11)</td>
</tr>
<tr>
<td>Piques de transferencia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>596 (0,078)</td>
</tr>
<tr>
<td>Servicios (almacén, taller)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>681 (0,09)</td>
</tr>
<tr>
<td>Corrección de fugas y densidad (20%)</td>
<td>136</td>
<td>181</td>
<td>168</td>
<td>197</td>
<td>94</td>
</tr>
<tr>
<td>Total</td>
<td>814</td>
<td>1088</td>
<td>1010</td>
<td>1183</td>
<td>563</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

El caudal de 1.088 m³/s es mayor que el requerido para la dilución de NO₂ (1.081 m³/s). La Figura 3.109 muestra los mínimos y máximos nominales requeridos por las regulaciones internacionales, la regulación de Colombia y los contaminantes individuales. La tasa de dilución de 0,09 m³/s/kW es más que suficiente para cumplir la regulación minera de Colombia.
Figura 3.109 Regulación internacional y colombiana. Mínimos y máximos nominales y contaminantes individuales
Fuente: Minera de Cobre Quebradona, 2019

Los diseños típicos de niveles de producción y desarrollo se muestran de la Figura 3.110 a la Figura 3.112.

Figura 3.110 Nivel de producción 1207
Fuente: Minera de Cobre Quebradona, 2019
3.3.7.6 Sostenimiento de Estructuras Subterráneas

Esta sección describe los resultados de aplicar el método empírico Q-Barton en el estimativo del soporte requerido por las distintas estructuras subterráneas. Este método ofrece recomendaciones preliminares y generales para la definición del soporte requerido en términos del patrón de pernado, espesor del concreto lanzado y longitud del soporte a ser instalado.
El sistema Q-Barton, desarrollado en 1974, relaciona el índice de calidad de la masa rocosa (Q) con la dimensión equivalente de la excavación (De), la cual es la relación entre la luz de la excavación y el índice llamado “Relación de soporte de la excavación” (Excavation Support Ratio, ESR). Este índice varía desde 0,8 para plantas nucleares subterráneas e instalaciones con alto tráfico de personal hasta 3-5 para excavaciones mineras temporales.

La Tabla 3.40 resume las dimensiones equivalentes para los distintos perfiles considerados en el Proyecto.
Tabla 3.40 Dimensiones equivalentes para perfiles de desarrollo

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Sección</th>
<th>ESR</th>
<th>D</th>
<th>De</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ancho (m)</td>
<td>Altura (m)</td>
<td>Min</td>
<td>Máx</td>
</tr>
<tr>
<td>Perfil A1</td>
<td>4,50</td>
<td>4,50</td>
<td>1,6</td>
<td>2,0</td>
</tr>
<tr>
<td>Perfil B1</td>
<td>5,00</td>
<td>5,00</td>
<td>1,6</td>
<td>2,0</td>
</tr>
<tr>
<td>Perfil C1</td>
<td>5,50</td>
<td>6,00</td>
<td>1,6</td>
<td>2,0</td>
</tr>
<tr>
<td>Perfil D1</td>
<td>6,00</td>
<td>4,75</td>
<td>1,6</td>
<td>2,0</td>
</tr>
<tr>
<td>Perfil E1</td>
<td>6,25</td>
<td>5,00</td>
<td>1,6</td>
<td>2,0</td>
</tr>
<tr>
<td>Perfil F1</td>
<td>7,00</td>
<td>6,00</td>
<td>1,6</td>
<td>2,0</td>
</tr>
<tr>
<td>Perfil F2</td>
<td>8,00</td>
<td>7,00</td>
<td>1,6</td>
<td>2,0</td>
</tr>
<tr>
<td>Perfil F3</td>
<td>7,00</td>
<td>7,00</td>
<td>1,6</td>
<td>2,0</td>
</tr>
<tr>
<td>Perfil C2</td>
<td>5,50</td>
<td>5,50</td>
<td>1,6</td>
<td>2,0</td>
</tr>
<tr>
<td>Perfil D2</td>
<td>6,00</td>
<td>5,00</td>
<td>1,6</td>
<td>2,0</td>
</tr>
<tr>
<td>Perfil D3</td>
<td>6,00</td>
<td>6,00</td>
<td>1,6</td>
<td>2,0</td>
</tr>
<tr>
<td>Perfil D4</td>
<td>6,00</td>
<td>7,00</td>
<td>1,6</td>
<td>2,0</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

A continuación se ilustran los resultados obtenidos para las unidades geotécnicas analizadas (véase la Figura 3.113 a la Figura 3.115).

Figura 3.113 Estimación del sostenimiento de Roca (Barton, 1974) - Lit / Alt: Intrusivo-Toba / Sericita

Fuente: Minera de Cobre Quebradona, 2019
Figura 3.114 Estimación del sostenimiento de Roca (Barton, 1974) - Lit / Alt: Intrusivo-Toba / Clorita-Sericita
Fuente: Minera de Cobre Quebradona, 2019

Figura 3.115 Estimación del sostenimiento de Roca (Barton, 1974) - Lit / Alt: Intrusivo-Toba / Potasica
Fuente: Minera de Cobre Quebradona, 2019
Con base en el análisis de Q-Barton se obtuvieron los siguientes valores para longitud de pernos:

Tabla 3.41 Longitud de los pernos de acuerdo con el método Q-Barton

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Sección</th>
<th>ESR</th>
<th>Longitud de perno (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ancho (m)</td>
<td>Altura (m)</td>
<td>D</td>
</tr>
<tr>
<td>Perfil A1</td>
<td>4,50</td>
<td>4,50</td>
<td>1,6</td>
</tr>
<tr>
<td>Perfil B1</td>
<td>5,00</td>
<td>5,00</td>
<td>1,6</td>
</tr>
<tr>
<td>Perfil C1</td>
<td>5,50</td>
<td>6,00</td>
<td>1,6</td>
</tr>
<tr>
<td>Perfil D1</td>
<td>6,00</td>
<td>4,75</td>
<td>1,6</td>
</tr>
<tr>
<td>Perfil E1</td>
<td>6,25</td>
<td>5,00</td>
<td>1,6</td>
</tr>
<tr>
<td>Perfil F1</td>
<td>7,00</td>
<td>6,00</td>
<td>1,6</td>
</tr>
<tr>
<td>Perfil F3</td>
<td>8,00</td>
<td>7,00</td>
<td>1,6</td>
</tr>
<tr>
<td>Perfil F2</td>
<td>7,00</td>
<td>7,00</td>
<td>1,6</td>
</tr>
<tr>
<td>Perfil C2</td>
<td>5,50</td>
<td>5,50</td>
<td>1,6</td>
</tr>
<tr>
<td>Perfil D2</td>
<td>6,00</td>
<td>5,00</td>
<td>1,6</td>
</tr>
<tr>
<td>Perfil D3</td>
<td>6,00</td>
<td>6,00</td>
<td>1,6</td>
</tr>
<tr>
<td>Perfil F4</td>
<td>6,00</td>
<td>7,00</td>
<td>1,6</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

A continuación, se muestran las tablas de soporte preliminar en función de la litología y la alteración que exhiba el terreno en el cual se desarrollará la excavación:

Tabla 3.42 Soporte preliminar: Intrusivo/ Tobas con alteración sericita

<table>
<thead>
<tr>
<th>Litología</th>
<th>Alteración</th>
<th>Sección</th>
<th>Q de Barton</th>
<th>Barton (1989)</th>
<th>Espesor promedio del concreto lanzado (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ancho (m)</td>
<td>Altura (m)</td>
<td>Mínimo</td>
<td>Máximo</td>
</tr>
<tr>
<td>Intrusivo</td>
<td>Sericita</td>
<td>4,50</td>
<td>4,50</td>
<td>1,3 x 1,3</td>
<td>1,5 x 1,5</td>
</tr>
<tr>
<td>jamin</td>
<td></td>
<td>5,00</td>
<td>5,00</td>
<td>1,3 x 1,3</td>
<td>1,5 x 1,5</td>
</tr>
<tr>
<td>intrusivo</td>
<td></td>
<td>5,50</td>
<td>6,00</td>
<td>1,3 x 1,3</td>
<td>1,5 x 1,5</td>
</tr>
<tr>
<td>tobas</td>
<td></td>
<td>5,50</td>
<td>5,50</td>
<td>1,3 x 1,3</td>
<td>1,5 x 1,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,00</td>
<td>4,75</td>
<td>1,3 x 1,3</td>
<td>1,5 x 1,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,00</td>
<td>6,00</td>
<td>1,3 x 1,3</td>
<td>1,5 x 1,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,00</td>
<td>6,00</td>
<td>1,3 x 1,3</td>
<td>1,5 x 1,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,00</td>
<td>7,00</td>
<td>1,3 x 1,3</td>
<td>1,5 x 1,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,00</td>
<td>7,00</td>
<td>1,3 x 1,3</td>
<td>1,5 x 1,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,00</td>
<td>6,00</td>
<td>1,3 x 1,3</td>
<td>1,5 x 1,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,00</td>
<td>7,00</td>
<td>1,3 x 1,3</td>
<td>1,5 x 1,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8,00</td>
<td>7,00</td>
<td>1,3 x 1,3</td>
<td>1,5 x 1,5</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.43 Soporte preliminar: Intrusivo/ Tobas con alteración Clorita-Sericita

<table>
<thead>
<tr>
<th>Litología</th>
<th>Alteración</th>
<th>Sección</th>
<th>Q de Barton</th>
<th>Barton (1989)</th>
<th>Espesor promedio del concreto lanzado (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ancho (m)</td>
<td>Altura (m)</td>
<td>Mínimo</td>
<td>Máximo</td>
</tr>
<tr>
<td>Intrusivo</td>
<td>Clorita</td>
<td>4,50</td>
<td>4,50</td>
<td>1,7 x 1,7</td>
<td>2,1 x 2,1</td>
</tr>
<tr>
<td>tobas</td>
<td>Sericita</td>
<td>5,00</td>
<td>5,00</td>
<td>1,7 x 1,7</td>
<td>2,1 x 2,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,50</td>
<td>6,00</td>
<td>1,7 x 1,7</td>
<td>2,1 x 2,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,50</td>
<td>5,50</td>
<td>1,7 x 1,7</td>
<td>2,1 x 2,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,00</td>
<td>4,75</td>
<td>1,7 x 1,7</td>
<td>2,1 x 2,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,00</td>
<td>5,00</td>
<td>1,7 x 1,7</td>
<td>2,1 x 2,1</td>
</tr>
</tbody>
</table>
Litología Alteración

Sección Q de Barton Barton (1989) Espesor promedio del concreto lanzado (mm)

<table>
<thead>
<tr>
<th>Ancho (m)</th>
<th>Altura (m)</th>
<th>Patrón</th>
<th>Longitud del perno (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mínimo</td>
<td>Mínimo</td>
<td>Máximo</td>
<td>Máximo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>6.00</td>
<td>1.7 x 1.7</td>
<td>2.1 x 2.1</td>
</tr>
<tr>
<td>6.00</td>
<td>7.00</td>
<td>1.7 x 1.7</td>
<td>2.1 x 2.1</td>
</tr>
<tr>
<td>6.25</td>
<td>5.00</td>
<td>1.7 x 1.7</td>
<td>2.1 x 2.1</td>
</tr>
<tr>
<td>7.00</td>
<td>6.00</td>
<td>1.7 x 1.7</td>
<td>2.1 x 2.1</td>
</tr>
<tr>
<td>7.00</td>
<td>7.00</td>
<td>1.7 x 1.7</td>
<td>2.1 x 2.1</td>
</tr>
<tr>
<td>8.00</td>
<td>7.00</td>
<td>1.7 x 1.7</td>
<td>2.1 x 2.1</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.44 Soporte preliminar: Intrusivo/ Tobas con alteración potásica

<table>
<thead>
<tr>
<th>Litología</th>
<th>Alteración</th>
<th>Sección Q de Barton Barton (1989) Espesor promedio del concreto lanzado (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intrusivo</td>
<td>Potásica</td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td>4.50</td>
<td>1.5 x 1.5</td>
</tr>
<tr>
<td>5.00</td>
<td>5.00</td>
<td>1.5 x 1.5</td>
</tr>
<tr>
<td>5.50</td>
<td>6.00</td>
<td>1.5 x 1.5</td>
</tr>
<tr>
<td>5.50</td>
<td>5.50</td>
<td>1.5 x 1.5</td>
</tr>
<tr>
<td>6.00</td>
<td>4.75</td>
<td>1.5 x 1.5</td>
</tr>
<tr>
<td>6.00</td>
<td>5.00</td>
<td>1.5 x 1.5</td>
</tr>
<tr>
<td>6.00</td>
<td>6.00</td>
<td>1.5 x 1.5</td>
</tr>
<tr>
<td>6.00</td>
<td>7.00</td>
<td>1.5 x 1.5</td>
</tr>
<tr>
<td>6.25</td>
<td>5.00</td>
<td>1.5 x 1.5</td>
</tr>
<tr>
<td>7.00</td>
<td>6.00</td>
<td>1.5 x 1.5</td>
</tr>
<tr>
<td>7.00</td>
<td>7.00</td>
<td>1.5 x 1.5</td>
</tr>
<tr>
<td>8.00</td>
<td>7.00</td>
<td>1.5 x 1.5</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

A continuación, se resumen los patrones de apernado y longitud de los pernos requeridos para cada perfil de desarrollo:

Tabla 3.45 Soporte preliminar: Fortificación definida en el Estudio Conceptual 2016

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Patrón del techo (m x m)</th>
<th>Patrón de la pared (m x m)</th>
<th>Longitud del perno (m)</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfíl A1</td>
<td>1.2 x 1.2</td>
<td>1.5 x 1.5</td>
<td>2.40</td>
<td>1.75</td>
</tr>
<tr>
<td>Perfíl B1</td>
<td>1.5 x 1.5</td>
<td>1.5 x 1.5</td>
<td>2.40</td>
<td>2.40</td>
</tr>
<tr>
<td>Perfíl C1</td>
<td>1.5 x 1.5</td>
<td>1.5 x 1.5</td>
<td>2.40</td>
<td>2.40</td>
</tr>
<tr>
<td>Perfíl D1</td>
<td>1.5 x 1.5</td>
<td>1.25 x 1.25</td>
<td>2.40</td>
<td>2.40</td>
</tr>
<tr>
<td>Perfíl E1</td>
<td>2.0 x 2.0</td>
<td>1.8 x 1.8</td>
<td>2.40</td>
<td>2.40</td>
</tr>
<tr>
<td>Perfíl F1</td>
<td>1.5 x 1.5</td>
<td>1.5 x 1.5</td>
<td>2.40</td>
<td>2.40</td>
</tr>
<tr>
<td>Perfíl F3</td>
<td>1.5 x 1.5</td>
<td>1.5 x 1.5</td>
<td>2.40</td>
<td>2.40</td>
</tr>
<tr>
<td>Perfíl F2</td>
<td>1.5 x 1.5</td>
<td>1.5 x 1.5</td>
<td>2.40</td>
<td>2.40</td>
</tr>
<tr>
<td>Perfíl C2</td>
<td>1.5 x 1.5</td>
<td>1.5 x 1.5</td>
<td>2.40</td>
<td>2.40</td>
</tr>
<tr>
<td>Perfíl D2</td>
<td>1.5 x 1.5</td>
<td>1.25 x 1.25</td>
<td>2.40</td>
<td>2.40</td>
</tr>
<tr>
<td>Perfíl D3</td>
<td>1.5 x 1.5</td>
<td>1.5 x 1.5</td>
<td>2.40</td>
<td>2.40</td>
</tr>
<tr>
<td>Perfíl D4</td>
<td>1.5 x 1.5</td>
<td>1.5 x 1.5</td>
<td>2.40</td>
<td>2.40</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

3.3.7.7 Diseño geométrico de la explotación

La Figura 3.116 muestra la zona de alto tenor grado y el dominio “> 0.6% Cu”. El análisis de esta distribución de leyes permite inferir que un posible punto de “inicio” para el diseño geométrico a través del método de Hundimiento por Sub niveles debería apuntar a la extracción.
entre los niveles 1.800 y 1.000. Sin embargo, existe una intrusión de materiales subeconómicos entre 950RL y 1400RL que debe evitarse en los diseños de la mina para reducir los efectos de dilución en la ley del mineral.

Para delimitar el cuerpo mineral, este es dividido por medio de sub-niveles que estarán separados verticalmente cada 27,5 m. En cada subnivel se desarrolla una red de galerías paralelas que cruzan transversalmente el cuerpo mineral, a distancias de 15 m y que luego son utilizadas para el arranque sistemático del mineral. Las galerías de un determinado subnivel se ubican entremedio y equidistantes de las galerías de los subniveles inmediatamente vecinos. De este modo, toda la sección mineralizada queda cubierta por una malla de galerías dispuestas en una configuración romboidal.

El diseño geométrico de la mina considera:

- Un total de 21 subniveles de producción
- Espaciamiento vertical de 27,5 metros entre subniveles
- Espaciamiento horizontal de 15 m entre galerías de arranque.

Este diseño geométrico de la mina busca, entre otras cosas, ajustarse a la continuidad de la mineralización, maximizar la recuperación minera y reducir el ingreso de la dilución (véase la Figura 3.117).

El material que queda por fuera del diseño minero es considerado como fuente principal para la dilución del mineral. Por definición, la dilución es el material que no se encuentra dentro del diseño original de la mina, pero que por las características del método de extracción, este material ingresa a través de los niveles de extracción, proveniente de niveles superiores previamente extraídos y también diluidos.
Tanto para la extracción de mineral como para el material de desecho de cada nivel de producción se utilizarán técnicas tradicionales de perforación y voladura para las actividades de desarrollo y producción.

En los niveles de producción, los anillos de perforación ascendente estarán espaciados cada 2,6 metros. Una vez realizada la voladura, la roca fragmentada se extraerá con cargadores de 14 t o 25 t que alimentarán el material a través de puntos de descarga que conectan con los piques de traspaso de mineral de 3,0 m de diámetro.

La roca quebrada descenderá a través del pique de traspaso, para terminar en el nivel de transferencia de mineral principal. Dos o un máximo de tres cargadores 14-25 t estarán dedicados a extraer el mineral desde el pique de traspaso, para luego transportar el mineral hasta el punto de alimentación de la trituradora subterránea. La roca triturada se alimenta directamente a un contenedor de gran capacidad ubicado directamente debajo de la trituradora. Finalmente, la roca triturada se descarga en la banda transportadora y se transfiere a la superficie del mineral para su procesamiento en la planta de beneficio.

El diseño de minería consta de los siguientes componentes clave (véase la Figura 3.118).

- Total de 180 Km de desarrollos laterales,
- Total de 9,1 km de desarrollos verticales,
- Dos portales de mina ubicados en la finca La Mancha,
- 21,2 km de túneles de acceso a la mina,
- 5,4 Km de túneles de acceso desarrollados con Tuneladora,
- 15,8 km de túneles de acceso desarrollados con Perforación y Voladura,
- 11,3 km de rampa de producción que conecta los niveles de producción entre sí,
- 117,6 Km de desarrollo transversal de galería de arranque,
- Una cámara de trituración principal,
- Cuatro pozos de ventilación principal (dos pozos dedicados para inyección de aire fresco y dos de extracción)
- Taller subterráneo,
- Polvorín de explosivos subterráneo,
- Seis piques de traspaso de mineral.
- Una estación de transferencia en el nivel 1152,5.

Desarrollos principales

Una rampa que comunica y permite el acceso a todos los subniveles. Existen galerías de cabecera en cada uno de los subniveles, emplazadas en la roca yacente, por lo general orientadas según el rumbo y siguiendo el contorno del cuerpo mineralizado. Galerías de arranque y extracción del mineral en todos los subniveles, según la disposición indicada previamente. Piques de traspaso que se conectan a todos los subniveles y que permiten la evacuación del mineral arrancado hacia un nivel de transferencia ubicado en la cota (véase la Figura 3.119).

Tanto el desarrollo como la producción se llevan a cabo continuamente en múltiples niveles y son repetitivos, lo que permite que las actividades se estandaricen y optimicen. Este método requiere una gran cantidad de desarrollo para mantener las tasas de producción (véase la Figura 3.120).
La longitud de las galerías de arranque es variable y depende del diseño minero el cual busca ajustarse a la continuidad de la mineralización en profundidad. La siguiente figura muestra...
cuatro secciones típicas en planta, donde las galerías de arranque varían entre 100 a 365 m de longitud, medidos de la chimenea inicial de arranque hasta la galería cabecera ubicada en el borde de la zona del depósito (véase la Figura 3.121).

La operación y la secuencia de extracción considera la operación simultánea de tres niveles de producción (el primero en su etapa final de extracción; el segundo, en plena etapa producida; y el tercero, recién iniciando el arranque) y dos niveles de desarrollo (Nivel de Desarrollo Superior, listo para iniciar extracción; Nivel de Desarrollo Inferior, iniciando labores de desarrollo) (véase la Figura 3.122).

Se establece una distancia de desacople de 25 m como mínimo entre los frentes de arranque de los niveles de producción, para garantizar que las actividades de perforación de producción en el nivel inferior no generen la socavación del piso del nivel superior.

Figura 3.121 Distribución de arranque (vista en planta)
Fuente: Minera de Cobre Quebradona, 2019
3.3.7.8 **Secuencia de la explotación**

A continuación, se presenta la secuencia de avance de la explotación del cuerpo mineral en la parte subterránea de la mina, y en el numeral siguiente se describe la secuencia de obras en superficie.

3.3.7.8.1 Avance subterráneo

Se estima que el Proyecto tendrá cuatro años de construcción de los accesos principales y obras de soporte, y 21 años que corresponderán a la etapa de operación (producción).

Para la secuencia de minado, tanto de producción como de desarrollos, en la Tabla 3.46 se dan los metros de desarrollos por periodo y los volúmenes de producción de mineral y estéril.

Durante los primeros años de construcción se desarrollarán los accesos a la parte superior del cuerpo mineralizado, y el acceso al sector de la trituradora subterránea, estos accesos corresponden a los Túneles Sur y Norte. El método constructivo, el diámetro, la inclinación y la longitud de cada tramo de túnel se pueden observar esquemáticamente en la Figura 3.123.

Año 1 (Construcción): Este será el primer año de la etapa de construcción y montaje. Se construirán los portales de acceso para los túneles norte y sur, para continuar con 300 m de desarrollo en ambos túneles a una sección de 10x10 m. De estos, los primeros metros horizontales se excavarán en material correspondiente al depósito de vertiente, y luego se continua con P&V.
Se desarrollarán 1,6 km lineales en cada uno de los túneles gemelos que se construyen con P&V y que permitirán el acceso a la cámara de trituración.

Se desarrollarán 3,15 km del túnel que se construirá con TBM y que dará acceso a la parte superior del yacimiento.

Durante este periodo se removerán 998 kt de estéril. El avance alcanzado en la construcción de los túneles se muestra en la Figura 3.124.
Tabla 3.46 Tabla Secuencia de minado – Producción y desarrollos

<table>
<thead>
<tr>
<th>Desección</th>
<th>Unidad</th>
<th>Total</th>
<th>Año 1 (C)</th>
<th>Año 2 (C)</th>
<th>Año 3 (C)</th>
<th>Año 4 (C)*</th>
<th>Año 1 (O)</th>
<th>Años 2-6 (O)</th>
<th>Años 7-11 (O)</th>
<th>Años 12-16 (O)</th>
<th>Años 17-21 (O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral de Desarrollos</td>
<td>Kt</td>
<td>10.038</td>
<td>-</td>
<td>-</td>
<td>147</td>
<td>931</td>
<td>716</td>
<td>2.433</td>
<td>1.421</td>
<td>2.738</td>
<td>1.651</td>
</tr>
<tr>
<td>Mineral de Producción</td>
<td>Kt</td>
<td>114.313</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.145</td>
<td>4.010</td>
<td>26.743</td>
<td>29.279</td>
<td>27.844</td>
<td>24.292</td>
</tr>
<tr>
<td>Total de Mineral</td>
<td>Kt</td>
<td>124.351</td>
<td>-</td>
<td>-</td>
<td>147</td>
<td>3.076</td>
<td>4.725</td>
<td>29.176</td>
<td>30.700</td>
<td>30.583</td>
<td>25.943</td>
</tr>
<tr>
<td>Materia Estéril</td>
<td>Kt</td>
<td>5.720</td>
<td>998</td>
<td>1.630</td>
<td>1.130</td>
<td>2201</td>
<td>291</td>
<td>282</td>
<td>261</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Total Material Minado</td>
<td>Kt</td>
<td>130.071</td>
<td>998</td>
<td>1.630</td>
<td>1.277</td>
<td>3.883</td>
<td>4.946</td>
<td>29.467</td>
<td>30.982</td>
<td>30.844</td>
<td>26.044</td>
</tr>
</tbody>
</table>

DESARROLLOS HORIZONTALES POR TIPO DE PERFIL

<table>
<thead>
<tr>
<th>PERFIL</th>
<th>DESCRIPCIÓN</th>
<th>ANCHO (m)</th>
<th>ALTO (m)</th>
<th>ARCO</th>
<th>UNIDAD</th>
<th>TOTAL</th>
<th>AÑO 1 (C)</th>
<th>AÑO 2 (C)</th>
<th>AÑO 3 (C)</th>
<th>AÑO 4 (C)*</th>
<th>AÑO 1 (O)</th>
<th>AÑOS 2-6 (O)</th>
<th>AÑOS 7-11 (O)</th>
<th>AÑOS 12-16 (O)</th>
<th>AÑOS 17-21 (O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Sumideros</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>m</td>
<td>654</td>
<td>50</td>
<td>130</td>
<td>148</td>
<td>206</td>
<td>8</td>
<td>32</td>
<td>32</td>
<td>48</td>
<td>-</td>
</tr>
<tr>
<td>C1</td>
<td>Galerías de ventilación, Galerías cabeceras</td>
<td>5,5</td>
<td>5,5</td>
<td>3,5</td>
<td>m</td>
<td>17.642</td>
<td>-</td>
<td>-</td>
<td>582</td>
<td>3.586</td>
<td>932</td>
<td>3.332</td>
<td>4.158</td>
<td>3.885</td>
<td>1.168</td>
</tr>
<tr>
<td>C2</td>
<td>Galerías de acceso a subniveles, piques de traspaso</td>
<td>5,5</td>
<td>6</td>
<td>3,5</td>
<td>m</td>
<td>10.659</td>
<td>-</td>
<td>-</td>
<td>2.686</td>
<td>2.857</td>
<td>579</td>
<td>1.231</td>
<td>1.467</td>
<td>1.507</td>
<td>332</td>
</tr>
<tr>
<td>D3</td>
<td>Rampas de producción</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>m</td>
<td>11.271</td>
<td>-</td>
<td>628</td>
<td>6.703</td>
<td>3.501</td>
<td>90</td>
<td>100</td>
<td>125</td>
<td>123</td>
<td>-</td>
</tr>
<tr>
<td>D3</td>
<td>Túnel Sur SEC 10x10</td>
<td>10</td>
<td>10</td>
<td></td>
<td>m</td>
<td>300</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D3</td>
<td>Túnel Sur SEC 6,0x6,0 @ 0,5%</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>m</td>
<td>5.570</td>
<td>1.612</td>
<td>3.958</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D3</td>
<td>Túnel Sur SEC 6,0x6,0 @ 14,5%</td>
<td>10</td>
<td>10</td>
<td></td>
<td>m</td>
<td>300</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Estudio de Impacto Ambiental
Noviembre, 2019

I-0010371-MQC-EIA-V1-FA
3.194
<table>
<thead>
<tr>
<th>Perfil</th>
<th>Descripción</th>
<th>Ancho (m)</th>
<th>Alto (m)</th>
<th>Arco</th>
<th>Unidad</th>
<th>Total</th>
<th>Año 1 (C)</th>
<th>Año 2 (C)</th>
<th>Año 3 (C)</th>
<th>Año 4 (C)*</th>
<th>Año 1 (O)</th>
<th>Años 2-6 (O)</th>
<th>Años 7-11 (O)</th>
<th>Años 12-16 (O)</th>
<th>Años 17-21 (O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfil D3 (m)</td>
<td>Túnel Norte SEC: 10x10</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>m</td>
<td>5.570</td>
<td>1.61</td>
<td>3.958</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Perfil D3 (m)</td>
<td>Túnel Norte (al nivel de socavación) @ 14,5%</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>m</td>
<td>4.070</td>
<td>112</td>
<td>3.958</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Perfil E1 (m)</td>
<td>Galerías de arranque o cruzadas</td>
<td>6,25</td>
<td>5</td>
<td>5,5</td>
<td>m</td>
<td>117.622</td>
<td>-</td>
<td>-</td>
<td>1.731</td>
<td>10.541</td>
<td>8.399</td>
<td>28.966</td>
<td>15.412</td>
<td>32.076</td>
<td>20.498</td>
</tr>
<tr>
<td>Perfil F2 (m)</td>
<td>Excavación central cámaras de trituración y ventilación</td>
<td>7</td>
<td>7</td>
<td>8,5</td>
<td>m</td>
<td>319</td>
<td>-</td>
<td>-</td>
<td>93</td>
<td>226</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Perfil F3 (m)</td>
<td>Galería de ventilación principal</td>
<td>7</td>
<td>8</td>
<td>m</td>
<td>521</td>
<td>-</td>
<td>-</td>
<td>235</td>
<td>286</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Perfil G3 (m)</td>
<td>Ensanches</td>
<td>3</td>
<td>3</td>
<td>m</td>
<td>68</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>68</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DESARROLLO TBM</td>
<td></td>
</tr>
<tr>
<td>Perfil TBM 9,0 (m)</td>
<td>Túnel Sur @ 10%</td>
<td>9 Ø</td>
<td>Redondo</td>
<td>m</td>
<td>5.400</td>
<td>3.150</td>
<td>2.250</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

DESARROLLOS VERTICALES POR TIPO DE PERFIL

<table>
<thead>
<tr>
<th>Perfil</th>
<th>Descripción</th>
<th>Ancho (m)</th>
<th>Alto (m)</th>
<th>Arco</th>
<th>Unidad</th>
<th>Total</th>
<th>Año 1 (C)</th>
<th>Año 2 (C)</th>
<th>Año 3 (C)</th>
<th>Año 4 (C)*</th>
<th>Año 1 (O)</th>
<th>Años 2-6 (O)</th>
<th>Años 7-11 (O)</th>
<th>Años 12-16 (O)</th>
<th>Años 17-21 (O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfil V1.8 (m)</td>
<td>Galerías de salida de emergencia: Escaleras, Cara libre</td>
<td>1.8 Ø</td>
<td>Redondo</td>
<td>m</td>
<td>79</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>79</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Perfil V3.0 (m)</td>
<td>Pique de traspaso</td>
<td>3.0 Ø</td>
<td>Redondo</td>
<td>m</td>
<td>3.022</td>
<td>-</td>
<td>-</td>
<td>1.847</td>
<td>893</td>
<td>-</td>
<td>282</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Perfil V3,5 (m)
- **Descripción**: Pique de traspaso
- **Ancho (m)**: 3,5 Ø
- **Alto (m)**: Redondo
- **Unidad**: m
- **Total**: 1.040
- **Año 1 (C)**: 169
- **Año 2 (C)**: 821
- **Año 3 (C)**: 49
- **Año 1 (O)**: -
- **Años 2-6 (O)**: -
- **Años 7-11 (O)**: -
- **Años 12-16 (O)**: -
- **Años 17-21 (O)**: -

Perfil V5,0 (m)
- **Descripción**: Pique de ventilación interno
- **Ancho (m)**: 4,5 Ø
- **Alto (m)**: Redondo
- **Unidad**: m
- **Total**: 2.099
- **Año 1 (C)**: -
- **Año 2 (C)**: 52
- **Año 3 (C)**: 509
- **Año 1 (O)**: 1.538
- **Años 2-6 (O)**: -
- **Años 7-11 (O)**: -
- **Años 12-16 (O)**: -
- **Años 17-21 (O)**: -

Perfil V6,0 (m)
- **Descripción**: Pozo de ventilación principal a superficie
- **Ancho (m)**: 6,0 Ø
- **Alto (m)**: Redondo
- **Unidad**: m
- **Total**: 1.376
- **Año 1 (C)**: 394
- **Año 2 (C)**: -
- **Año 3 (C)**: 414
- **Año 1 (O)**: 568
- **Años 2-6 (O)**: -
- **Años 7-11 (O)**: -
- **Años 12-16 (O)**: -
- **Años 17-21 (O)**: -

Perfil V6,5 (m) Exc
- **Descripción**: Pozo de ventilación principal a superficie
- **Ancho (m)**: 6,0 Ø
- **Alto (m)**: Redondo
- **Unidad**: m
- **Total**: 450
- **Año 1 (C)**: 450
- **Año 1 (O)**: -
- **Años 2-6 (O)**: -
- **Años 7-11 (O)**: -
- **Años 12-16 (O)**: -
- **Años 17-21 (O)**: -

Perfil W4 (m)
- **Descripción**: Pozo ciego
- **Ancho (m)**: 4
- **Alto (m)**: Cuadrado
- **Unidad**: m
- **Total**: 1.100
- **Año 1 (C)**: -
- **Año 2 (C)**: 137
- **Año 3 (C)**: 83
- **Años 2-6 (O)**: 220
- **Años 7-11 (O)**: 275
- **Años 12-16 (O)**: 248
- **Años 17-21 (O)**: 138

* (C): Construcción; (O): Operación

Fuente: Minera de Cobre Quebradona, 2019
Año 2 (Construcción): Durante este año de operaciones:

- Culmina el desarrollo de los túneles de acceso al nivel de socavación con TBM al 10% y P&V al 14,5%.
- Se inicia la construcción de galerías en la parte superior del depósito.
- Culminan los desarrollos de los túneles de acceso a la cámara de trituración primaria.
- Se finaliza la construcción de tres pozos verticales de ventilación, que conectan los túneles gemelos con el túnel P&V Mina.

Durante este periodo se removerán 1.630 kt de estéril. Las configuraciones de las obras realizadas hasta al término del período se observan en la Figura 3.125.

![Diagrama de Año 2 (Construcción)](image)

Figura 3.125 Año 2 (Construcción). Mina Subterránea
Fuente: Minera de Cobre Quebradona, 2019

Año 3 (Construcción): Durante el tercer año se seguirá avanzando con las obras de ventilación y preparación:

- En los niveles superiores continúan los desarrollos del nivel de socavación y se iniciarán las labores de construcción de la rampa de producción, hacia los niveles inferiores. Además, se iniciará la construcción de uno de los pozos de ventilación principal de 6 m de diámetro, y la cámara de ventilación principal.
- Paralelamente, en la parte inferior, se construye la cámara de trituración y se inician los trabajos de desarrollo del nivel de transferencia. En la Figura 3.126 se observa la configuración de las obras realizadas.

Durante este periodo se iniciará el desarrollo del nivel de Socavación, con la construcción de galerías de cabecera y de arranque o cruzadas. En este año se removerán 1.130 kt de estéril y
se producirán 147 kt de mineral; proveniente del desarrollo productivo. Estos materiales serán transportados y depositados en superficie; el estéril irá al Depósito Temporal de Estériles, y el mineral irá temporalmente a la zona del Depósito de Pirita.

Año 3 (Construcción): El tercer año será el último año de la etapa de construcción, y durante este periodo se realizarán dos nuevos pozos de ventilación de 6 m de diámetro, uno para entrada de aire fresco a la mina y otro para la salida de aire viciado; con longitudes de 454 m y 412 m respectivamente. También, se terminará de construir la rampa de producción, el nivel de transferencia y la cámara de trituración.

Para este mismo periodo se completará el desarrollo del nivel de socavación habilitando el comienzo del hundimiento (Nivel 1.647); el cual comprende un área de 64.000 m². En este periodo se habrá iniciado el desarrollo del nivel 1.620. Además, se construirán 3 piques de traspaso de mineral de 3 m de diámetro, que conectan el nivel 1.152 (Nivel de transferencia) con los niveles superiores, hasta el nivel de socavación. En paralelo, se avanzará en la construcción de otros dos piques de traspaso.

Para este periodo se removerán 807 kt de estéril y 3.076 kt de mineral. Estos materiales serán transportados y depositados en superficie; el estéril tendrá potencial de generación de drenaje ácido e irá al depósito de piritas junto con el mineral. La configuración de la mina al terminar el año 4 de construcción se observa en la Figura 3.127.
Año 1 (Operación): Este año será el primer año de operación, aquí se completará la construcción de los dos piques de traspaso desde el nivel 1.400 hasta el nivel de socavación, y se construirá un cuarto pozo de ventilación de 6 m de diámetro y 479 m de longitud, para entrada de aire fresco a la mina.

Durante este período finaliza el hundimiento del nivel de socavación, y se avanza en la explotación de los niveles 1.647 y 1.620, finaliza el desarrollo productivo del nivel 1592 y se inician los desarrollos del nivel 1565.

En este período, se remueven 220 kt de estéril y 4.725 kt de mineral. A partir de este periodo, el mineral será enviado directamente a la planta de beneficio. La configuración y profundidad alcanzada por la mina al terminar este período se observa en la Figura 3.128.

Año 2 (Operación): Durante este año se terminarán de explotar los niveles 1.647 y 1620. También, se iniciará la explotación de los niveles 1.592 y 1.565, y el desarrollo productivo del nivel 1.537 (Véase la Figura 3.129). Durante este período la producción de mineral será de 5.599 kt y se removerán 80 kt de estéril.
Figura 3.128 Año 1 (Operación). Mina Subterránea
Fuente: Minera de Cobre Quebradona, 2019

Figura 3.129 Año 2 (Operación). Mina Subterránea
Fuente: Minera de Cobre Quebradona, 2019
Año 3 (Operación): seguirá la explotación de los niveles 1.592 y 1.565, e iniciará la explotación del nivel 1.537 y el desarrollo del nivel 1.510. Figura 3.130 En este periodo, la producción de mineral será de 5.850 kt y se removerán 69 kt de estéril.

![Figura 3.130 Año 3 (Operación). Mina Subterránea](image)

Fuente: Minera de Cobre Quebradona, 2019

Año 4 (Operación): se tendrán en explotación los 1.592, 1.565 y 1.537, y los niveles 1.510 y 1.482 en desarrollo. El desarrollo productivo del nivel 1.510 incluye la terminación de las cruzadas y la creación de la cara libre, y para el nivel 1.482 la creación de las cruzadas (Véase la Figura 3.131). En este periodo la producción de mineral será de 6.041 kt y se removerán 67 kt de estéril.

Año 5 (Operación): estarán en operación los niveles 1.565, 1.537 y 1510. Además, se terminará el desarrollo productivo del nivel 1.482 con la creación de la cara libre y se iniciará el desarrollo del nivel 1.455 (Véase la Figura 3.132). Durante este periodo la producción de mineral será de 5.873 kt y se removerán 41 kt de estéril.
Figura 3.131 Año 4 (Operación). Mina Subterránea
Fuente: Minera de Cobre Quebradona, 2019

Año 6 a 10 (Operación): se estarán explotando los niveles 1.454, 1.427 y 1.400, y desarrollando el nivel 1.372. Adicionalmente, se creará un sexto pique de traspaso de mineral.
de 3 m de diámetro; que irá desde el nivel de trasferencia hasta el nivel 1.400 (Véase la Figura 3.133). En este año la producción de mineral será de 6.150 kt y se removerán 67 kt de estéril.

En el periodo comprendido desde el año 6 al 10 de operación la producción de mineral será de 30.338 kt y se removerán 270 kt de estéril, alcanzando un descenso vertical de 83 m, desde el nivel 1.455 al nivel 1.372.

Figura 3.133 Año 10 (Operación). Mina Subterránea
Fuente: Minera de Cobre Quebradona, 2019

Año 11 a 15 (Operación): En este año se explotarán los niveles 1.290 y 1.262, y desarrollará el nivel 1.235 (Véase la Figura 3.134). Durante este periodo, del año 11 al 15 (operación), la producción de mineral será de 6.097 kt y se removerán 35 kt de estéril.

En el periodo comprendido desde el año 11 al 15 (operación), la producción de mineral será de 30.806 kt y se removerán 217 kt de estéril, alcanzando un descenso vertical de 137 m, desde el nivel 1.372 al nivel 1.235.

Año 16 a 20 (Operación): se estarán explotando los niveles 1.152 y 1.125. Durante este año no se removerá estéril y se producirán 5.754 kt de mineral. Para el periodo comprendido desde el año 16 al 20 (operación), la producción de mineral será de 29.011 kt y se removerán 191 kt de estéril (véase la Figura 3.135).
Figura 3.134 Año 15 (Operación). Mina Subterránea
Fuente: Minera de Cobre Quebradona, 2019

Figura 3.135 Año 20 (Operación). Mina Subterránea
Fuente: Minera de Cobre Quebradona, 2019
Año 21 (Operación): será el último año de explotación de la mina; fin de la explotación de los niveles 1.152 y 1.125. En este periodo se producirán 2.884 kt de mineral y no se removerá estéril. La configuración final de la mina, una vez acabada la explotación, se observa en la Figura 3.136.

Figura 3.136 Año 21 (Operación). Mina Subterránea
Fuente: Minera de Cobre Quebradona, 2019

3.3.7.8.2 Avance en superficie

En cuanto a las áreas del avance de las diferentes obras en superficie, para los periodos señalados (años 1, 2, 3, 4, 5, 10, 15 y 20-21), se pueden consultar en la Tabla 3.47.
<table>
<thead>
<tr>
<th>Obra</th>
<th>Construcción</th>
<th>Operación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Año 1</td>
<td>Año 2</td>
</tr>
<tr>
<td>Área Auxiliar Multipropósito 1</td>
<td>18,22</td>
<td></td>
</tr>
<tr>
<td>Área Auxiliar Multipropósito 2</td>
<td>40,67</td>
<td></td>
</tr>
<tr>
<td>Área Auxiliar Multipropósito 3</td>
<td>21,30</td>
<td></td>
</tr>
<tr>
<td>Área Auxiliar Multipropósito 4</td>
<td>32,42</td>
<td></td>
</tr>
<tr>
<td>Área Auxiliar Multipropósito 5</td>
<td>25,65</td>
<td></td>
</tr>
<tr>
<td>AIO</td>
<td>1,60</td>
<td></td>
</tr>
<tr>
<td>Campamento</td>
<td>3,92</td>
<td></td>
</tr>
<tr>
<td>Canal no contacto 1</td>
<td>1,38</td>
<td></td>
</tr>
<tr>
<td>Canal no contacto 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canal no contacto 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canal no contacto 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canal no contacto 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canal no contacto 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canal no contacto 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canal no contacto 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canal no contacto 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canal no contacto 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canal no contacto 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canal no contacto 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canal Norte</td>
<td>1,62</td>
<td></td>
</tr>
<tr>
<td>Canal Sur</td>
<td>1,54</td>
<td></td>
</tr>
<tr>
<td>Captación</td>
<td>0,49</td>
<td></td>
</tr>
<tr>
<td>Cobertizo</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td>Contrafuerte Piritas</td>
<td>2,33</td>
<td></td>
</tr>
<tr>
<td>Contrafuerte Norte</td>
<td>13,30</td>
<td></td>
</tr>
<tr>
<td>Contrafuerte Sur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dep Relaves Filtr</td>
<td>14,77</td>
<td>8,27</td>
</tr>
<tr>
<td>Dep Temp Estériles</td>
<td>11,30</td>
<td></td>
</tr>
<tr>
<td>Depósito Piritas</td>
<td>5,18</td>
<td>3,35</td>
</tr>
<tr>
<td>Estación bombeo 1</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>Estación bombeo 2</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>Estación bombeo 3</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>Estación bombeo 4</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>Estación bombeo 5</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>Estación combustible</td>
<td>0,24</td>
<td></td>
</tr>
<tr>
<td>Obra</td>
<td>Construcción</td>
<td>Operación</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>Año 1</td>
<td>Año 2</td>
</tr>
<tr>
<td>Franja 1</td>
<td>12,33</td>
<td></td>
</tr>
<tr>
<td>Franja 10</td>
<td>0,18</td>
<td></td>
</tr>
<tr>
<td>Franja 11</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>Franja 13</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>Franja 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franja 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franja 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franja 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franja 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franja 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franja 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franja 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franja Aducción</td>
<td>0,34</td>
<td></td>
</tr>
<tr>
<td>Laboratorio</td>
<td>0,64</td>
<td></td>
</tr>
<tr>
<td>P. Planta Beneficio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pila de Suelo</td>
<td>12,58</td>
<td></td>
</tr>
<tr>
<td>Piscina Emergencia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plat. Explo-Emulsión</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plat. Relaves Filtr</td>
<td>0,32</td>
<td></td>
</tr>
<tr>
<td>Plataforma 1</td>
<td>0,41</td>
<td></td>
</tr>
<tr>
<td>Plataforma 2</td>
<td>5,14</td>
<td></td>
</tr>
<tr>
<td>Plataforma 3</td>
<td>0,07</td>
<td></td>
</tr>
<tr>
<td>Plataforma 4</td>
<td>4,91</td>
<td></td>
</tr>
<tr>
<td>Plataforma 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plataforma 6</td>
<td>0,89</td>
<td></td>
</tr>
<tr>
<td>Plataforma 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plataforma 8</td>
<td>0,44</td>
<td></td>
</tr>
<tr>
<td>Plataforma 9</td>
<td>1,26</td>
<td></td>
</tr>
<tr>
<td>Plataforma A</td>
<td>1,37</td>
<td></td>
</tr>
<tr>
<td>Plataforma AIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plataforma B</td>
<td>0,46</td>
<td></td>
</tr>
<tr>
<td>Plataforma C</td>
<td>0,61</td>
<td></td>
</tr>
<tr>
<td>Plataforma D</td>
<td>0,53</td>
<td></td>
</tr>
<tr>
<td>Plataforma Piritas</td>
<td></td>
<td>0,27</td>
</tr>
<tr>
<td>Plataforma Portería</td>
<td>2,24</td>
<td></td>
</tr>
<tr>
<td>Plataforma Túneles</td>
<td>1,41</td>
<td></td>
</tr>
<tr>
<td>Polvorín Constr.</td>
<td>0,03</td>
<td></td>
</tr>
<tr>
<td>Obra</td>
<td>Construcción</td>
<td>Operación</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Poza Colectora 1</td>
<td>1,23</td>
<td>Año 1</td>
</tr>
<tr>
<td>Poza Colectora 2</td>
<td>0,47</td>
<td>Año 2</td>
</tr>
<tr>
<td>PTAI</td>
<td>0,48</td>
<td>Año 3</td>
</tr>
<tr>
<td>PTAP</td>
<td>0,46</td>
<td>Año 4</td>
</tr>
<tr>
<td>PTARND1</td>
<td>0,66</td>
<td>Año 5</td>
</tr>
<tr>
<td>Sed Planta Beneficio</td>
<td>0,64</td>
<td>Año 10</td>
</tr>
<tr>
<td>Sedimentador 1</td>
<td>2,05</td>
<td>Año 15</td>
</tr>
<tr>
<td>Sedimentador 2</td>
<td>2,67</td>
<td>Año 20</td>
</tr>
<tr>
<td>Sedimentador 3</td>
<td>0,96</td>
<td></td>
</tr>
<tr>
<td>Sedimentador 4</td>
<td>0,51</td>
<td></td>
</tr>
<tr>
<td>Sedimentador 5</td>
<td>1,55</td>
<td></td>
</tr>
<tr>
<td>Sedimentador 6</td>
<td>1,30</td>
<td></td>
</tr>
<tr>
<td>Sedimentador 7</td>
<td>2,20</td>
<td></td>
</tr>
<tr>
<td>Tanques Agua Cruda</td>
<td>0,35</td>
<td></td>
</tr>
<tr>
<td>Tubería HDPE 1</td>
<td>0,70</td>
<td></td>
</tr>
<tr>
<td>Tubería HDPE 2</td>
<td>1,24</td>
<td></td>
</tr>
<tr>
<td>Tubería HDPE 3</td>
<td>1,02</td>
<td></td>
</tr>
<tr>
<td>Tubería HDPE 4</td>
<td>0,23</td>
<td></td>
</tr>
<tr>
<td>Tubería HDPE 4A</td>
<td>0,26</td>
<td></td>
</tr>
<tr>
<td>Tubería HDPE 5</td>
<td>0,11</td>
<td></td>
</tr>
<tr>
<td>Tubería HDPE 6</td>
<td>0,09</td>
<td></td>
</tr>
<tr>
<td>Tubería HDPE 7</td>
<td>0,29</td>
<td></td>
</tr>
<tr>
<td>Vía Campament-Planta</td>
<td>1,31</td>
<td></td>
</tr>
<tr>
<td>Vía Canal Norte</td>
<td>1,12</td>
<td></td>
</tr>
<tr>
<td>Vía Captación</td>
<td>0,40</td>
<td></td>
</tr>
<tr>
<td>Vía Construcción 1</td>
<td>4,78</td>
<td></td>
</tr>
<tr>
<td>Vía Construcción 2</td>
<td>1,67</td>
<td></td>
</tr>
<tr>
<td>Vía Construcción 3</td>
<td>1,03</td>
<td></td>
</tr>
<tr>
<td>Vía Construcción 4</td>
<td>4,58</td>
<td></td>
</tr>
<tr>
<td>Vía Construcción 5</td>
<td>1,75</td>
<td></td>
</tr>
<tr>
<td>Vía Construcción 6</td>
<td>0,31</td>
<td></td>
</tr>
<tr>
<td>Vía Construcción 7</td>
<td>4,20</td>
<td></td>
</tr>
<tr>
<td>Vía Construcción 8</td>
<td>0,16</td>
<td></td>
</tr>
<tr>
<td>Vía Construcción 9</td>
<td>0,12</td>
<td></td>
</tr>
<tr>
<td>Vía Conx plataforma</td>
<td>1,46</td>
<td></td>
</tr>
<tr>
<td>Vía de Acceso</td>
<td>3,29</td>
<td></td>
</tr>
<tr>
<td>Vía Dep Relave Filtr</td>
<td>9,27</td>
<td></td>
</tr>
<tr>
<td>Obra</td>
<td>Construcción</td>
<td>Operación</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>Año 1</td>
<td>Año 2</td>
</tr>
<tr>
<td>Vía Depósito Piritas</td>
<td>0,68</td>
<td></td>
</tr>
<tr>
<td>Vía Plataforma C</td>
<td>0,76</td>
<td></td>
</tr>
<tr>
<td>Vía Plataforma D</td>
<td>0,48</td>
<td></td>
</tr>
<tr>
<td>Vía Portales</td>
<td>2,61</td>
<td></td>
</tr>
<tr>
<td>Vía Principal</td>
<td></td>
<td>6,96</td>
</tr>
<tr>
<td>Zodme A</td>
<td>15,48</td>
<td></td>
</tr>
<tr>
<td>Zodme B</td>
<td>20,45</td>
<td></td>
</tr>
<tr>
<td>Zodme C</td>
<td>38,78</td>
<td></td>
</tr>
<tr>
<td>Zodme D</td>
<td>1,45</td>
<td></td>
</tr>
<tr>
<td>Zodme E</td>
<td>0,80</td>
<td></td>
</tr>
<tr>
<td>Zodme F</td>
<td>0,78</td>
<td></td>
</tr>
<tr>
<td>Zona de Subsidencia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>318,35</td>
<td>4,35</td>
</tr>
</tbody>
</table>

Nota: Estas áreas se asignan a la obra que genera la primera intervención en el tiempo. Esta es la única área que puede ser sumada o totalizada debido a que no existe superposición con otras intervenciones en el tiempo.

Fuente: Integral, 2019
3.3.7.9 **Duración de la explotación**

Una vez terminada la etapa de construcción, que durará 4 años, se dará inicio a la etapa de explotación que durará 21 años.

La etapa de construcción de los túneles de acceso demandará casi tres años, periodo en el cual se genera aproximadamente el 66% del material estéril que saldrá de la operación subterránea. En parte del tercero y cuarto año de construcción, se llevarán a cabo los primeros desarrollos productivos de la mina (nivel de socavación, rampa de producción, entre otros). En el cuarto año de construcción será necesario realizar la socavación inicial del método de explotación, por lo tanto, se extraerán 3.076 Mt de mineral, las cuales se almacenarán en el depósito temporal en superficie (Depósito de pirita), hasta que se inicie la etapa de producción.

Es a partir de este año cuando comienza la explotación sistemática con el método Hundimiento por sub-niveles y de donde se obtiene el beneficio de las 124 millones de toneladas de mineral (Véase la Figura 3.137)

![Figura 3.137 Duración de la explotación](image)

Fuente: Minera de Cobre Quebradona, 2019

3.3.7.10 **Equipos y maquinaria por utilizar (principal y auxiliar)**

A continuación, se presenta la conformación estimada de los equipos requeridos para las fases de construcción y operación de la mina.

3.3.7.10.1 **Equipos para construcción**

La construcción de la infraestructura del Proyecto requerirá de movimientos de tierra masivos en especial para la adecuación de vías, plataformas, portales, depósitos de material sobrante (ZODMEs) y obras de drenaje. Para la ejecución de dichos movimientos de tierra se estimaron los recursos requeridos teniendo en cuenta los siguientes elementos:
Cronograma de construcción

Cantidades de obra de movimientos de tierra

Equipo típico a utilizar y rendimientos

Disponibilidad de materiales agregados en sitio y en canteras externas

Adicionalmente, la estimación de la flota de maquinaria se basó en las siguientes condiciones y requerimientos:

- El primer año de la fase de construcción se ejecutarán aproximadamente 2.500.000 m³ de cortes y llenos, que incluirán principalmente las vías, plataformas y demás obras tempranas y temporales que requiere el proyecto. Durante esta etapa se presentarán los picos de volumen de maquinaria, dada la corta duración.

- Entre los años 2 a 4 (Construcción) los cortes y llenos totalizarán aproximadamente los 4.500.000 m³, correspondientes a la adecuación de las obras de infraestructura definitivas del proyecto.

- En general la mayor porción del volumen de material a excavar en sitio (aproximadamente entre el 50% al 70%) no será adecuado para uso como material de relleno, y por lo tanto el proyecto contempla zonas de disposición de material sobrante no apto (ZODMEs) y el suministro de materiales especiales de canteras externas para suplir las necesidades de las obras.

- Dentro del área del Proyecto se establecerán zonas de almacenamiento y distribución de los materiales de canteras externas; se asignarán frentes de trabajo exclusivos para el manejo y suministro del material de canteras.

- Los movimientos de tierra se ejecutarán a través de la asignación de frentes de trabajo fijos que atenderán zonas y obras puntuales tales como las plataformas y portales, complementados por frentes de trabajo “flotantes” que estarán distribuidos alrededor del proyecto por ejemplo para la construcción y mantenimiento de vías internas secundarias, drenajes temporales y otras obras puntuales.

Los resultados del análisis realizado arrojan que en su momento de máxima exigencia durante la etapa de construcción el Proyecto requerirá un promedio de cinco frentes de trabajo fijos “típicos”, cada uno compuesto por los equipos presentados en la Tabla 3.48.

Tabla 3.48 Ilustración de la composición de la flota para movimiento de tierras

<table>
<thead>
<tr>
<th>Retroexcavadora</th>
<th>Volqueta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantidad por frente: 1</td>
<td>Cantidad por frente: 5</td>
</tr>
<tr>
<td>Cantidad pico: 5</td>
<td>Cantidad pico: 25</td>
</tr>
</tbody>
</table>
3.3.7.10.2 Equipos para operación

Los equipos móviles son típicamente los usados en minas subterráneas, básicamente en las actividades de producción, desarrollo, y servicios.

Las productividades de la flota se han basado en cálculos principales, evaluaciones comparativas y experiencia práctica.

Para los primeros años de producción, antes de iniciar el servicio de la trituradora subterránea, se han considerado camiones de 40 a 63 toneladas para transportar el material extraído de los niveles superiores al depósito de estériles ubicado en el valle.

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Cantidad por frente</th>
<th>Cantidad pico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulldócer</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Cilindro Vibrocompactador</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Motoniveladora</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Carro cisterna</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Cargador frontal</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Fuente: Minería de Cobre Quebradona, 2019
Una vez se alcanza la etapa estable de producción, la flota de equipos móviles para soportar una capacidad de la planta de beneficio a una tasa de 6,2 Mtpa, comprende los equipos para mover el mineral al sistema de trituradora subterránea/banda transportadora; como taladros de perforación, cargadores LHD de 14 – 25 toneladas y rompe rocas. La flota de equipos de desarrollo incluye cargadores LHD de 14 – 25 toneladas, cargadores de explosivos y equipos para labores de sostenimiento. El equipo de servicio se utiliza para la construcción y mantenimiento de la mina. Para el pico de la operación se requiere una flota de aproximadamente 83 equipos móviles, como se muestra en la Tabla 3.49.

La cantidad de equipos móviles varía dependiendo de las actividades de desarrollo y producción.

Tabla 3.49 Lista de equipos móviles

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Tipo (similar a)</th>
<th>kw</th>
<th>Pico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumbo de dos brazos para desarrollo subterráneo</td>
<td>Sandvik DD422</td>
<td>120</td>
<td>7</td>
</tr>
<tr>
<td>Jumbo Perforador de barrenos largos – Producción</td>
<td>Sandvik DL 421 o Sandvik DL431 - 7C</td>
<td>120</td>
<td>4</td>
</tr>
<tr>
<td>Cargador para niveles de producción</td>
<td>Sandvik LH621</td>
<td>340</td>
<td>10</td>
</tr>
<tr>
<td>Cargador para transferencia de mineral</td>
<td>Sandvik LH621</td>
<td>340</td>
<td>3</td>
</tr>
<tr>
<td>Camión de acarreo</td>
<td>Sandvik TH633i</td>
<td>567</td>
<td>7</td>
</tr>
<tr>
<td>Empernador de roca</td>
<td>Sandvik DS411</td>
<td>120</td>
<td>2</td>
</tr>
<tr>
<td>Empernador de cable</td>
<td>Sandvik DS411</td>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>Perforador para perforaciones secundarias</td>
<td>Sandvik DC302R</td>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>Cargador de explosivos para desarrollo</td>
<td>Normet Charmec 16110 B</td>
<td>104</td>
<td>2</td>
</tr>
<tr>
<td>Cargador de explosivos para producción</td>
<td>Normet Charmec 16110 B</td>
<td>104</td>
<td>3</td>
</tr>
<tr>
<td>Martillo Hidráulico o Rompe Rocas Móvil</td>
<td>BTI - TM15 (en LP15 Carrier)</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Martillo Rompe bancos</td>
<td>BTI - RMS 18</td>
<td>92</td>
<td>2</td>
</tr>
<tr>
<td>Equipo robotizado para concreto lanzado</td>
<td>Normet Hilmeck SF 605</td>
<td>110</td>
<td>4</td>
</tr>
<tr>
<td>Elevador de tijera</td>
<td>Normet Utilift SF 330</td>
<td>110</td>
<td>4</td>
</tr>
<tr>
<td>Manipulador telescópico o Telehandler</td>
<td>CAT TH514C</td>
<td>110</td>
<td>2</td>
</tr>
<tr>
<td>Equipo robotizado para concreto lanzado</td>
<td>Normet Spraymec 6050 WP</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Camión de concreto (6m3)</td>
<td>Normet UltiMc LF600</td>
<td>92</td>
<td>4</td>
</tr>
<tr>
<td>Motoniveladora</td>
<td>CAT - Elphinstone UG 20</td>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>Retroexcavadora</td>
<td>BTI - LP12 Carrier</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Carro Cisterna</td>
<td>BTI - Water Cassette (on LP-12 Carrier)</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>Vibro compactador</td>
<td>Genérico</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Minicargador (Bob-Cat)</td>
<td>Genérico</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Volqueta</td>
<td>Genérico</td>
<td>160</td>
<td>2</td>
</tr>
<tr>
<td>Camioneta</td>
<td>Toyota Hilux</td>
<td>35</td>
<td>22</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tanto en la etapa de construcción y montaje como en la etapa de operación, el Proyecto buscará la mejora continua con la posibilidad de utilizar vehículos eléctricos.

El cribado del mineral es completado en cada subnivel antes de la transferencia a la trituradora subterránea. Equipos móviles para fracturas rocas con sobre tamaños se han incluido en la flota de equipos y se emplean cuando estas bloquean la cebra, afectando el sistema de manejo de mineral y la productividad del subnivel. Estas unidades pueden operarse remotamente, lo que mantiene al operador en un lugar seguro.

La mina propuesta se encuentra aproximadamente a 6,0 km del portal de acceso y se prevé el uso de pequeños transportadores de personal, que se utilizarán en el cambio de turno para...
transportar el personal hacia y desde la mina. Las camionetas serán empleadas por el personal de Staff para acceder a la mina. En la Figura 3.138 se presentan algunos ejemplos de los tipos de equipos principales de la operación minera.

![Tipos de equipos principales para la operación minera](image)

Para el sostenimiento de la mina se requerirán equipos como empernadores, para proteger la parte posterior y las paredes del frente de desarrollo, y equipos para concreto lanzado. El equipo móvil restante (Vibro compactador, Motoniveladora, elevador de tijera, y manipulador telescópico) se usará como vehículos de servicio y para instalación y mantenimiento de los
distintos servicios mineros (uberías de aire y agua, conductos de ventilación y bombas). El elevador de tijera y el camión cisterna serán usados para ayudar con las actividades de construcción.

3.3.7.10.3 Filosofía Operacional

La mina operará 365 días por año, 24 horas por día, turnos de 7 días x 7 noches x 7 días de descanso, con turnos de hasta cuatro cuadrillas.

Durante la etapa de implementación, el desarrollo de la mina y el acceso primario se planea desarrollarlos utilizando un contratista experimentado que tenga un historial exitoso en el desarrollo y construcción de minas seguras y en infraestructura subterránea según los estándares que la compañía exige (seguridad, calidad, cumplimiento, coste, medio ambiente, aspectos sociales).

El Proyecto sería administrado por un equipo de Minera de Cobre Quebradona S.A. con contratistas que realizarán todas las actividades de desarrollo y producción mineras hasta que se complete la fase de puesta en marcha.

Se asume que el escenario de operación por parte de Minera de Cobre Quebradona S.A. comenzará una vez se haya alcanzado la tasa de producción planeada (6,2 Mtpa), y se hayan demostrado las ventajas de seguridad, eficiencia y costo para cambiar al equipo del operador propietario.

Estas actividades incluyen:

- Perforación de producción
- Desarrollos para el sistema de manejo del mineral
- Fragmentación secundaria y servicios auxiliares

El mantenimiento será planificado y preventivo para minimizar el tiempo de inactividad no planificado. Para ayudar en esto, el personal de mantenimiento incluirá secciones de planificación e ingeniería de detalle. Se han planificado los siguientes criterios para las actividades de mantenimiento:

- El trabajo de mantenimiento es una competencia central. Todo el mantenimiento de rutina en el sitio se llevará a cabo internamente, incluido el mantenimiento preventivo, las reparaciones en ejecución y el mantenimiento predictivo.
- Los reemplazos de componentes para equipos móviles y revisiones se realizarán con proveedores especializados de servicios internos y externos.
- La actividad máxima, como los reemplazos del revestimiento de la trituradora, las principales reparaciones / mantenimiento eléctrico, el empalme y el reemplazo de la banda transportadora, etc., se llevará a cabo a través de proveedores especializados de servicios externos.
- Los contratistas realizarán las principales reparaciones fuera del sitio.

Para realizar estas tareas, se requiere una infraestructura adecuada con instalaciones permanentes en el sitio.
3.3.7.11 Actividades de transporte interno

A continuación, se describen las actividades de transporte al interior de la mina.

3.3.7.11.1 Sistemas de transporte

Se estima que el Proyecto generará aproximadamente 17,000 t de material de producción por día y de 600 – 1800 t de material de desarrollo. El material del desarrollo comprende estéril y mineral, la cantidad de uno o del otro depende de la etapa en la cual se realice dicho desarrollo.

La producción de mineral a partir de los niveles de extracción se realizará con equipos LHD de 14 - 25 toneladas, los cuales extraerán el mineral de los anillos de producción y luego lo transportarán hasta los piques de traspaso de mineral; ubicados en el perímetro de cada subnivel.

El sistema de manejo de materiales se realizará de formas distintas en la etapa anterior y posterior a la puesta en marcha de la trituradora subterránea. Este sistema operará de la siguiente manera:

SLC – Etapa 1 (Anterior a la puesta en marcha de la trituradora subterránea):
- Transporte del mineral con equipo LHD de 14 - 25 toneladas de capacidad, hasta un punto de transferencia ubicado en el perímetro del subnivel;
- Transporte en camión de 40 - 63 toneladas de capacidad, hasta el depósito ubicado en superficie.

SLC – Etapa 2 (Etapa con trituradora subterránea):
- La producción continúa a través de los niveles
- El cribado de mineral se completa en cada subnivel de producción, antes de la transferencia por una criba de 1,2 m x 1,2 m
- Sistema de piques de traspaso de mineral y nivel de transferencia (véase la Figura 3.139 y la Figura 3.140). Seis Piques de traspaso.
- Sistema de piques de traspaso alimenta con un chute opcional para camiones.
- LHD transporta y descarga en los puntos de alimentación de la estación de trituración ubicada en el nivel 1130
- Trituradora giratoria individual con una capacidad de producción de 6,2 Mtpa
- Mineral triturado es transportado por una banda transportadora subterránea hasta las instalaciones, ubicadas en superficie.
- Los piques de traspaso de mineral de 3 metros de diámetro estarán ubicados en el perímetro de los niveles de extracción y equipados de una cebra para clasificar el material a un tamaño de 1,2m x 1,2 m. Este pique de traspaso alimenta un chute para transferir el material a los LHD, ubicados en el nivel de transferencia de mineral, los cuales transportarán y descargarán el mineral a la estación de trituración (Descarga directa a la tolva de recepción), donde será triturado y posteriormente transportado por una banda a través de un túnel hasta la superficie, para su procesamiento.
- El material producido del desarrollo que tenga una ley mayor a la ley de corte se transportará desde el frente de desarrollo a uno de los piques de traspaso de mineral y se mezclará con el material de producción.

Figura 3.139 Sistema de manejo de material – Piques de traspaso de mineral, Nivel de transferencia, trituradora y banda transportadora
Fuente: Minera de Cobre Quebradona, 2019

Figura 3.140 Nivel de Transferencia de Mineral 1152
Fuente: Minera de Cobre Quebradona, 2019
La cantidad restante de material de desarrollo considerada como estéril (Material con ley menor a la ley de corte), se extraerá de los frentes de desarrollo y se vaciará por un pique de traspaso. El estéril se almacenará temporalmente en el nivel de transferencia de mineral (Nivel 1152) y, posteriormente será triturado y transportado a superficie por medio de la banda transportadora, hasta su punto de acopio en superficie.

La trituradora subterránea estará provista de tres posiciones de descargue. Tres cargadores serán capaces de volcar simultáneamente. El sistema de control de tráfico de camiones consistirá en lo siguiente:

- Luces en la estación de descarga para indicar si el descargue está autorizado o no.
- Se instalarán luces de acceso y un sistema de seguridad para acceder al nivel de transferencia de mineral y descargue.

En la parte inferior de la tolva, se ubicará un alimentador de placas para entregar el mineral a la trituradora. El mineral triturado pasa a través de una tolva que descarga a una banda de sacrificio, la cual hace la transferencia a una banda transportadora que lleva el mineral a través de un túnel de aproximadamente 6,0 km; hasta la superficie y descarga en la pila de almacenamiento de material grueso.

El diseño para la trituración y transporte por banda está conformado de la siguiente manera (véase la Figura 3.141):

Trituración

- Descarga directa de cucharones entre las tolvas de mineral
- Alimentación de trituradora giratoria con alimentador de delantal
- Tres posiciones de descarga
- Una trituradora giratoria subterránea
- Se recomienda instalar el rompe rocas en la alimentación de la trituradora, debido a la posibilidad de que rocas oblongas pasen por la preselección antes de la descarga
- Entrega anual de mineral a la planta: 6,2 Mtpa secas
- Recolección de polvo en la trituradora primaria y puntos de transferencia
- Supresión de polvo en el nivel de descarga.

Transporte

- Descarga de trituradora primaria en banda transportadora del túnel, a través de la banda de sacrificio
- Dos imanes autolimpiables para trampa de metales, instalados en la banda de sacrificio – uno en pleno vuelo y el otro en la polea principal. Detector de metales instalado entre imanes;
- Banda transportadora convencional usando transportador terrestre la pila de almacenamiento de material grueso
- Alimentadores de delantal reclama de la pila de almacenamiento de material grueso hacia la banda transportadora de alimentación al molino.
El transportador terrestre estará equipado con pesómetro.

En la Figura 3.141 se observa el diseño de la trituración y transporte por bandas, que empleará el proyecto.

3.3.7.11.2 Transporte interno de material mineral

Para los movimientos del mineral y el estéril la mina subterránea cuenta con 12 cargadores LHD’s de 14 - 25 t y 12 camiones de 40 - 63 t (véase la Tabla 3.50).

<table>
<thead>
<tr>
<th>Tabla 3.50 Especificaciones del equipo de cargue interno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
</tr>
<tr>
<td>Método de explotación</td>
</tr>
<tr>
<td>Capacidad nominal de la planta</td>
</tr>
<tr>
<td>Días de operación por año</td>
</tr>
<tr>
<td>Cargadores LHD’s</td>
</tr>
<tr>
<td>Camiones TH633i</td>
</tr>
<tr>
<td>Disponibilidad de la operación</td>
</tr>
<tr>
<td>Uso de la disponibilidad</td>
</tr>
<tr>
<td>Utilización efectiva</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Estos equipos estarán distribuidos en los diferentes niveles de operación y desarrollo de la siguiente forma:

- Seis cargadores LHD’s de 14 - 25 t que alcanzarán una productividad de 150 tph con una distancia media de acarreo de 150 m y un ciclo de 7,5 minutos, los cuales operarán de a dos por cada subnivel de producción, con descarga máxima de 500 t por buzón de producción, apoyados por la flota de camiones cuando los ciclos se hagan demasiado largos.

- Tres cargadores en la pila de mineral de transferencia a la trituradora y tres en los niveles de preparación, igualmente apoyados por camiones.

- La mina contará con 33 puntos de extracción activos de mineral por día, equivalentes a tres anillos de producción por cargador.

- La meta diaria de producción con esta flota de equipos está fijada en un movimiento de 17.500 t de mineral a la trituradora y su consiguiente transporte a la planta de beneficio en superficie.

El transporte de mineral con los camiones es factible desde el arranque de las operaciones hasta el final del sistema de manejo de materiales, para alcanzar la tasa de producción de 6,2 Mtpa.
Figura 3.141 Trituradora Giratoria y Estación de Transferencia
Fuente: Minera de Cobre Quebradona, 2019
3.3.7.11.3 Trituración Primaria

La estación de trituración está conformada por los siguientes sistemas:

- **Transporte y Descarga:** El mineral primario de la mina es descargado simultáneamente por vehículos LHD (cargar, transportar, descargar) desde tres posiciones hacia la tolva de recepción.

- **Tolva de Recepción – Transportador de carga:** Este sistema está conformado por la tolva que tiene capacidad para recibir 500 t mineral, el cual es descargado hacia la trituradora, a través de un transportador de placas.

- **Trituradora – Transportador de banda:** Se contará con una trituradora giratoria tipo cónica, con una capacidad para procesar 17,5 kt de mineral, equivalente a 1.041 t/h, trabajando al 70% de su capacidad y un rendimiento máximo de 1.374 t/h. La trituradora es alimentada con rocas de 1.100 mm y el producto entregado será de P₁₀₀ = 250 mm y P₈₀ = 112 mm. Posterior a la trituradora se cuenta con una tolva de descarga con capacidad para 400 t y hace la transición hacia la banda de sacrificio a través del transportador de banda. Es importante anotar que se prevé la utilización de un sistema rompe rocas que permita eliminar sobretamaños que no se detectaron previamente en el proceso de cargue de camiones y que pueden obstruir la alimentación de esta. La planta y el rompe rocas serán operados remotamente desde el Cuarto de control ubicado en superficie.

- **Banda de Sacrificio – Detección de Metales:** La banda de Sacrificio es un transportador de banda de mayor especificación que puede soportar esfuerzos extremos y su diseño contempla bandas con ancho de 1.219 mm (48") y se estima que operará a una velocidad de 2,03 m/s. Su capacidad estimada de transporte es de 1.041 t/h; este transportador está equipado con detectores y trampas magnéticas para captura de elementos metálicos. Al final de su recorrido, tiene por objeto entregar el mineral al sistema de bandas que conducirán el material hasta la pila de almacenamiento principal en la planta de beneficio en superficie.

3.3.7.11.4 Transporte de material mineral a superficie (bandas transportadoras)

El sistema de bandas transportadoras se ha diseñado aplicando los últimos estándares de CEMA (Conveyor Equipment Manufacturer’s Association) y se estima que tendrá una longitud de 6,1 km y baja pendiente (máximo de 15 %); 5,7 km aproximadamente se encuentran instalados en el interior del túnel, soportados desde la parte superior; los 400 m restantes hasta el Stockpile, están soportados a piso. Este sistema de bandas posterior a la banda de sacrificio se compone de un conjunto de bandas con ancho de 1.067 mm (42") que operarán a una velocidad de 2,69 m/s, con una capacidad estimada de transporte de 1.041 t/h, cuenta con sistemas de protección contra incendio y sistemas de supresión de polvo (nebulizadores - SN y depuradores húmedos – DH, los cuales no utilizarán ningún agente húmedo diferente de agua cruda). Los sistemas de supresión de polvo están localizados en los puntos de transferencia de tolvas, alimentadores, alimentadores de trituradora y cámaras de descargue, zócalos de la banda y patios (véase la Figura 3.143 y la Figura 3.144).
Figura 3.142 Transporte de material mineral a superficie
Fuente: Minera de Cobre Quebradona, 2019

Este sistema descarga el material triturado en un stockpile ubicado en superficie, cerca de los portales (pila cónica de 83 m de diámetro, 31,3 m de altura y ángulo de inclinación de 37°). En la Tabla 3.51 se resumen las principales especificaciones de diseño.

<table>
<thead>
<tr>
<th>Tabla 3.51 Especificaciones de diseño de las bandas transportadoras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
</tr>
<tr>
<td>General</td>
</tr>
<tr>
<td>Rendimiento anual en base seca</td>
</tr>
<tr>
<td>Contenido de humedad</td>
</tr>
<tr>
<td>Rendimiento anual en base húmeda</td>
</tr>
<tr>
<td>Días de operación de trituradora</td>
</tr>
<tr>
<td>Numero de trituradoras</td>
</tr>
<tr>
<td>Tipo de trituradora</td>
</tr>
<tr>
<td>Gradación</td>
</tr>
<tr>
<td>Alimentación F$_{100}$</td>
</tr>
<tr>
<td>Producto P$_{100}$</td>
</tr>
<tr>
<td>Producto P$_{80}$</td>
</tr>
<tr>
<td>Utilización anual de la trituradora</td>
</tr>
<tr>
<td>Capacidad de trituración (@ 70 % utilización)</td>
</tr>
<tr>
<td>Posiciones de alimentación</td>
</tr>
<tr>
<td>Tolva de recibo de material</td>
</tr>
<tr>
<td>Tolva de descargue de material triturado</td>
</tr>
<tr>
<td>Banda de Sacrificio</td>
</tr>
<tr>
<td>Capacidad nominal</td>
</tr>
<tr>
<td>Capacidad (@ 70 % utilización)</td>
</tr>
<tr>
<td>Capacidad pico</td>
</tr>
<tr>
<td>Ancho de banda</td>
</tr>
<tr>
<td>Velocidad de banda</td>
</tr>
</tbody>
</table>

Estudio de Impacto Ambiental I-0010371-MQC-EIA-V1-FA Noviembre, 2019
Descripción de la(s) modificación(es) de las redes de drenaje

3.3.7.12 Sistema de drenaje de aguas subterráneas (de infiltración)

3.3.7.12.1 Manejo de aguas subterráneas en la etapa de construcción

Según el modelo hidrogeológico disponible, el caudal de infiltración de agua durante la construcción de la mina oscilará entre 14,89 y 49,49 l/s (véase el Anexo 3_4_Modelo_hidrogeol_numerico). Sin embargo, hasta que los accesos estén conectados a través del descenso en espiral (área de explotación de la mina), hay efectivamente dos circuitos de drenaje en funcionamiento de manera independiente (véase el Anexo 3_5_Redes_servicios_mina).

Para la evaluación del circuito, el sistema de drenaje en esta etapa se separó en tres segmentos (véase la Tabla 3.52).

Tabla 3.52 Segmentos del circuito de drenaje de aguas subterráneas

<table>
<thead>
<tr>
<th>Segemento del circuito</th>
<th>Detalle</th>
<th>Elevación mínima (msnm)</th>
<th>Elevación máxima (msnm)</th>
<th>Longitud del circuito (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceso 1</td>
<td>Descenso plano. Desarrollo desde el portal del túnel hasta la base de la mina</td>
<td>1.074</td>
<td>1.100</td>
<td>6.146</td>
</tr>
<tr>
<td>Acceso 2</td>
<td>Desarrollo inclinado desde el portal del túnel hasta la parte superior de la mina</td>
<td>1.085</td>
<td>1.664</td>
<td>5.904</td>
</tr>
<tr>
<td>Descenso en espiral</td>
<td>Descenso en espiral desde la parte superior de la mina hacia el centro</td>
<td>1.382</td>
<td>1.664</td>
<td>1.983</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019
Figura 3.143 Sistema de bandas transportadoras - Perfil
Fuente: Minera de Cobre Quebradona, 2019
Figura 3.144 Sistema de bandas transportadoras – Planta y perfil
Fuente: Minera de Cobre Quebradona, 2019
El acceso 1 usa dos líneas paralelas, cada una alimentada por una bomba. Cada bomba tendrá capacidad para impulsar 36 l/s desde la posición de bombeo final en la estación de bombeo inferior (véase la Tabla 3.145). Se pueden usar bombas de 37 kW en caso de que se requiera una capacidad de impulsión adicional sin que sea necesario actualizar la línea de la bomba, esto aumentará el caudal de salida a 47 l/s por bomba. Las dos líneas de bombeo instaladas en este circuito se reutilizarán en el circuito de desagüe primario durante la etapa de operación.

Figura 3.145 Sistema de drenaje de aguas subterráneas para la etapa de construcción y montaje

Fuente: Minera de Cobre Quebradona, 2019

El acceso 2 y el descenso en espiral (área de explotación) requieren de un sistema de bombeo por etapas debido a la estimación de la carga hidráulica. Se requiere una línea desde el portal hasta la parte superior de la mina antes de cambiar a un índice de presión más alto y avanzar hacia abajo en el descenso en espiral. Se utilizarán dos bancos de tres bombas de rotor helicoidal como travelling pumps hasta alcanzar su capacidad en las bahías de bombeo temporales en los niveles 1.535 y 1.392. Una vez que se ha completado la construcción del descenso en espiral, la tubería utilizada para el acceso 2 ya no será requerida. Esta línea puede utilizarse para la instalación de la estación de bombeo primaria.

3.3.7.12.1.2 Manejo de aguas subterráneas en la etapa de operación

La capacidad requerida de cada circuito se ha modelado para condiciones críticas de hasta 500 l/s, aun cuando la condición hidrogeológica del caso base o condición normal corresponde a un rango entre 90 y 12 l/s (véase la Figura 3.145).

Para retirar el agua de manera confiable, tanto aquella que llega a la base de la mina como las entradas de agua en la parte superior, al comenzar la operación y explotar el área, será necesario aumentar la capacidad de bombeo.

Se sugiere un sistema de impulsión de agua por etapas usando cuatro bombas centrífugas, cada una con su propia línea de bombeo, dispuestas en paralelo. Cada bomba impulsará de manera independiente. Las bombas se alimentarán desde un solo tanque principal o área de almacenamiento y se activarán por etapas a través de flotadores. Este sistema en paralelo proporciona la capacidad necesaria para manejar los picos de entrada de agua previstos al tiempo que proporciona redundancia múltiple a la operación para los requisitos de bombeo del caso base. Se asume que, una vez que se conecten los accesos con el descenso en espiral, toda el agua de la mina se conducirá al tanque de almacenamiento de la estación de bombeo primaria por gravedad o a través de bombas de superficie (véase la Figura 3.146).
Se seleccionaron bombas centrífugas debido a su tolerancia al manejo de sólidos en fluidos, desgaste por abrasión y corrosión y los requisitos de mantenimiento continuo junto con la capacidad de bombeo en ambientes de baja presión. Para combatir los problemas de acidez del agua que pueden surgir de la actividad minera, las bombas deben contener los elementos internos con cromo. Se requerirán recubrimientos de elastómero o de cerámica en los componentes internos de la bomba y del acero si los niveles de pH caen por debajo de 3,0.

Se contará con variador de frecuencia (VFD) para la bomba primaria principal. Esto permitiría un rango de operación infinito hasta la capacidad máxima de la bomba, y reduciría aún más los costos de operación al reducir el consumo de energía, siempre que los caudales de entrada de agua sean menores a los previstos.

Las líneas independientes se utilizaron para proporcionar flexibilidad en el circuito y reducción de riesgos si las bombas o líneas requieren mantenimiento y aislamiento. Se utilizó una dimensión y clasificación de un solo tubo para todo el proceso de bombeo para facilitar la instalación y las cantidades de pedido. Es probable que la cabeza de presión prevista (PH) a través de la mina cause una degradación prematura en las tuberías de acero suave y se requeriría un material inoxidable u otro material de alta tolerancia a la corrosión, lo cual no sería rentable si se compara con el que no sería rentable en comparación con el polietileno, material seleccionado para las tuberías de conducción.

Para garantizar el funcionamiento correcto de la bomba y cumplir con el requerimiento de succión neta positiva (Net Positive Suction Head Requirement –NPSHr-) de la bomba, se requiere que el tanque de retención de agua principal se ubique 3,0 m por encima del punto de succión de la bomba.

Con el fin de hacer frente a las posibles fluctuaciones del agua debido a las operaciones, la lluvia y la falla en la redundancia de las bombas, se considerar la inclusión de un colector de agua de tamaño adecuado que pueda dirigir el agua hacia la estación de bombeo primaria. Se estima que se requieren 2.000 m³ de almacenamiento por cada hora que la estación de bombeo no esté operativa en el caso del escenario extremo de entrada de agua.

Dada la secuenciación de la mina y la exposición del área subterránea, las bombas de impulso y las líneas de bombeo se pueden instalar en tres fases (véase la Tabla 3.53). Esto permite realizar pruebas operativas para modelaciones hidrogeológicas sin gastos, en el caso de la infraestructura necesaria para atender el escenario extremo de entrada de agua (mayor caudal).

Tabla 3.53 Fases de instalación de la estación de bombeo

<table>
<thead>
<tr>
<th>Fase</th>
<th>Detalle</th>
<th>Cantidad de bombas instaladas</th>
<th>Capacidad del sistema (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase 1</td>
<td>Establecimiento de la estación de bombeo</td>
<td>2</td>
<td>276</td>
</tr>
<tr>
<td>Fase 2</td>
<td>Inicio de la explotación</td>
<td>3</td>
<td>414</td>
</tr>
<tr>
<td>Fase 3</td>
<td>Explotación al 50%</td>
<td>4</td>
<td>552</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019
3.3.7.12.1.3 Manejo de aguas crudas

El caudal aproximado de aguas crudas es de 17 l/s; sin embargo, hasta que los túneles de acceso se conecten con el área de explotación habrá dos circuitos independientes de aguas crudas en operación, y la capacidad requerida para cada circuito es de hasta 17 l/s.

Cada circuito usará tuberías en polietileno y en acero para la conducción del agua. Se utilizarán bombas de rotor helicoidal para bombear el agua desde el portal hasta la base de la mina. Ambos accesos requieren un bombeo en dos etapas para impulsar el agua hacia las áreas de trabajo debido a la elevación y la distancia. El acceso 1 (plano) requiere una segunda bomba de rotor helicoidal para ser ubicada cerca de la parte baja de la espiral (en donde se encuentra la estación de bombeo primaria) para impulsar el agua para el desarrollo superior, mientras que el acceso 2 (inclinado) requiere una única bomba de rotor helicoidal ubicada en el punto medio de la pendiente (véase la Figura 3.147). La parte superior del descenso en espiral enviará las aguas por gravedad y no requiere un sistema de bombeo.

La tubería de acero se requiere para satisfacer la operación bajo condiciones de alta presión. Se asume que la mina tomará aguas crudas, por lo cual se prevé una degradación de acero. Por lo anterior, se requieren reductores de presión en cada nivel, para controlar la presión del circuito a partir de las bombas.

3.3.7.13 Radio de acción y repercusiones en el ecosistema y estabilidad del terreno por efecto de las vibraciones

El Proyecto Minera de Cobre Quebradona realizó un estudio de vibraciones (véase el Anexo 3.6 Estudio Vibraciones. Estudio de impacto de vibraciones en superficie. Mina Quebradona, ORICA, 2018), el cual aplica criterios de daño según la norma alemana (DIN), pues es la más restrictiva y, en la práctica, la de mayor utilización en minería.

Los resultados obtenidos indican que los niveles de daño asociados a las vibraciones son diferentes al comparar la etapa de construcción de túneles (Desarrollo de la mina) con la etapa de operación.

Para el caso de la construcción de túneles, el valor límite de PPV (Peak Particle Velocity, por sus siglas en inglés) para generación de daño según la norma DIN (PPV de 4 mm/s), se alcanza a los 100 m de distancia del pozo de voladura, en tanto que durante la producción este valor se alcanza a los 250 m del pozo de voladura.

Teniendo en cuenta que la operación del Proyecto Minera de Cobre Quebradona será exclusivamente subterránea, estas voladuras nunca alcanzarán a generar daño en la superficie del terreno (Parte alta del proyecto. Vereda Quebradona).

En cuanto a las vibraciones generadas por la construcción de los primeros metros de los túneles, es previsible que las vibraciones producidas por las voladuras en este tramo serán percibidas en un radio de 100 m o un poco mayor (PPV ≥4 mm/s). Esta área de afectación se

Figura 3.147 Sistema de drenaje de aguas crudas
Fuente: Minera de Cobre Quebradona, 2019
reducirá progresivamente a medida que avance la perforación de los túneles hacia el interior de la montaña.

En la zona superficial en el valle (parte baja del proyecto) se prevé una afectación temporal de las poblaciones de fauna residentes en las coberturas vegetales que se encuentran dentro de la distancia señalada (Bosque de galería, Bosque denso alto, Pasto arbolado, Pasto limpio), incluyendo los parches ubicados encima de los portales. Sin embargo, se debe tener en cuenta que para el momento en que se inicie la construcción de los túneles, ya se ha removido la vegetación para poder construir las vías de acceso a los portales y por lo tanto el impacto ya estará parcialmente causado. Por otra parte, se prevé un efecto por el ruido de las voladuras iniciales, que puede inducir el desplazamiento temporal de aquellos animales de mayor movilidad (por ejemplo, las aves).

3.3.7.14 Plan de obras

Según las duraciones previstas de las distintas etapas del proyecto, las obras de construcción del Proyecto se desarrollarán durante cuatro años. Durante los siguientes 21 años de operación se conformarán el Depósito de relaves filtrados y otras obras asociadas al aprovechamiento del yacimiento. Finalmente, durante la etapa de cierre, las actividades se enfocarán en la recuperación ambiental del área intervenida por el proyecto.

En el cronograma detallado del proyecto (véase el numeral 3.6.5 Cronograma del proyecto)

<table>
<thead>
<tr>
<th>Tabla 3.54 Cronograma de construcción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividad</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Construcción de las vías de acceso</td>
</tr>
<tr>
<td>Construcción de instalaciones y servicios</td>
</tr>
<tr>
<td>Desarrollo de mina subterránea</td>
</tr>
<tr>
<td>Construcción de la planta de beneficio</td>
</tr>
<tr>
<td>Construcción de depósito de relaves filtrados</td>
</tr>
<tr>
<td>Construcción de la subestación y servicios eléctricos</td>
</tr>
<tr>
<td>Conformación del TMF</td>
</tr>
<tr>
<td>Cierre y Pos-cierre</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019 *: (C): Construcción; (O): Operación; (Ci): Cierre-Poscierre

3.3.7.15 Fuentes de iluminación artificial

La ubicación de las fuentes de luz artificial tiene un carácter muy importante para la seguridad y continuidad de los trabajos al igual que para los desplazamientos de las personas.

3.3.7.15.1 Ubicación de fuentes de iluminación artificial en la mina

Las diferentes áreas que componen la mina subterránea, como túneles de acceso, túneles de desarrollo y facilidades de infraestructura, requieren diferentes diseños de iluminación.

Los túneles de acceso tendrán un sistema de iluminación fijo cumpliendo con los niveles mínimos de iluminación requeridos y considerando las condiciones para evitar deslumbramiento a la salida de estos.

Para los túneles de desarrollo, el sistema de iluminación será móvil a través de reflectores portátiles, según los requerimientos de las tareas a desarrollar. Además, se contará con la iluminación de la flota móvil de carga y descarga de material.
Para el área de infraestructura subterránea como oficinas, talleres, bodegas, y otras, el sistema de iluminación artificial se diseñará según los requerimientos de trabajo y confort, cumpliendo con los niveles de iluminación requeridos por los estándares como el RETILAP.

3.3.7.15.2 Ubicación de fuentes de iluminación artificial exterior

Durante operación y construcción se instalarán luminarias tipo LED con flujo hemisférico superior (FHS) entre 0,5 y 1,0 % o 0 %, o unas similares que estén disponibles en el mercado local.

Debido a la direccionalidad del diodo emisor de luz, el factor de utilización de las luminarias tipo LED es superior al obtenido con lámparas de alta presión de sodio, reduciendo las emisiones de luz por encima del plano horizontal y los ángulos pequeños por debajo de esta, que son los que más aportan a la contaminación. Además, el consumo energético de estos dispositivos es menor, y se pueden controlar con sistemas inteligentes apagando o reduciendo el flujo de iluminación en algunas horas de la noche.

A continuación, se mencionan las premisas consideradas por el proyecto para reducir los posibles efectos de la iluminación requerida por el proyecto:

- La selección de los niveles de iluminación serán acordes con lo exigido en el RETILAP y no se sobreiluminarán las instalaciones del Proyecto Minera de cobre Quebradona.

- No se iluminarán carreteras o vías de construcción, solo se iluminarán los exteriores del campamento y zona de proceso o planta, donde permanecerá personal, donde permanecerá personal, acorde con las normas de seguridad vigentes.

- Donde las normas de seguridad y el diseño lo permitan, se utilizarán fotocontroles temporizados para interrumpir o reducir el servicio, de tal forma que las luminarias se enciendan durante un período de tiempo que satisfaga las necesidades de los usuarios y luego se apaguen o reduzcan su nivel de iluminación.

- En la etapa de construcción, para trabajos nocturnos, se utilizará iluminación focalizada solo en las áreas donde se ejecuten los trabajos cumpliendo los niveles de iluminación requeridos por los estándares técnicos que apliquen, como el RETILAP.

- Los diseños para lograr los niveles de iluminación requeridos serán realizados por áreas de acuerdo con las actividades humanas nocturnas, la seguridad en la circulación de vehículos y peatones.

- No se tendrá iluminación perimetral en los predios de la mina.

Las siguientes figuras indican la ubicación de las fuentes de iluminación artificial en las áreas exteriores del Proyecto (véanse también los planos 0010368-MQC-IL-010 al 0010368-MQC-IL-060, en el Anexo_3_7_Iluminacion).
Figura 3.148 Sistema de iluminación exterior. Área integrada de operaciones (AIO)
Fuente: Minera de Cobre Quebradona, 2019

Figura 3.149 Sistema de iluminación exterior. Área Campamento
Fuente: Minera de Cobre Quebradona, 2019
3.3.7.15.3 Contaminación lumínica

Basados en las huellas de iluminación en el área del Proyecto, se pudo determinar que entre los años 2016 y 2018 se ha incrementado la iluminación artificial, es decir el desarrollo urbanístico, y vial es directamente proporcional a dicho fenómeno. En las siguientes figuras se aprecia, en virtud del tiempo, las salidas gráficas de iluminación para los años de la referencia en las que se evidencia dicho incremento.

Figura 3.151 Huella de iluminación en el área del proyecto año 2016
Fuente: https://www.lightpollutionmap.info, 2019
La contaminación luminica se define como la propagación de luz artificial hacia el cielo nocturno. Igualmente se tiene contaminación luminosa al iluminar espacios que no lo requieren. La contaminación lumínica es producto de un diseño o montaje inadecuado; por lo que la solución se está dando desde la etapa de diseño de este Proyecto.

Para la prevención y control es fundamental identificar las dos clases principales de impacto ambiental de la contaminación lumínica: el primero, de gran alcance o general, se produce por la emisión a la atmósfera de luz artificial y por su difusión sucesiva por parte de las moléculas y de las partículas en suspensión de la atmósfera (aerosoles), que se comportan como fuentes secundarias de luz; el segundo, de corto alcance o local, se produce por la contaminación lumínica directa hacia superficies, objetos o sujetos que no es necesario iluminar (véase la Figura 3.153).

Figura 3.152 Huella de iluminación en el área del proyecto año 2018
Fuente: https://www.lightpollutionmap.info, 2019

Figura 3.153 Esquema general de las distintas direcciones de emisión en la generación de contaminación lumínica
Fuente: Integral, 2019
El aumento de la luminosidad del cielo nocturno (el resplandor nocturno de la atmósfera) es la consecuencia más conocida de entre los muchos efectos de la contaminación lumínica. Por otro lado, la luz difundida por la atmósfera causa también otros perjuicios al medio pues ilumina el suelo de modo no despreciable en la vecindad de áreas urbanas o iluminadas, provocando un efecto importante en la luminosidad ambiental percibida por los animales en sus hábitats naturales. Esto tiene efectos muy diversos según las longitudes de onda predominantes y las especies de que se traten. Otro efecto importante de la contaminación lumínica es el despilfarro de energía eléctrica, que ocasiona mayores costos y emisiones de gases.

Para disminuir los impactos de la contaminación lumínica se deben implementar los siguientes criterios:

- **El primer criterio fundamental** es utilizar luminarias que eviten por completo la emisión de luz sobre el horizonte. El límite adoptado en las mejores normativas de estados y regiones europeas es de 0 cd o lm a 90º o más sobre el plano horizontal (con una tolerancia de 0,5 cd o lm) para cualquier luminaria pública o privada. Se recomienda un flujo hemisférico superior (FHS) entre 0,5 y 1 %.

- **El segundo criterio fundamental** para un control efectivo de la contaminación lumínica es no sobreiluminar, es decir, no aplicar niveles de iluminación superiores a las recomendaciones internacionales de seguridad para cada uso, y disminuir estos niveles de forma homogénea a las horas de la noche en que la disminución de las actividades no justifica su mantenimiento. Esta es la única manera práctica y universal de no aumentar la contaminación lumínica procedente de la reflexión del pavimento o superficie iluminada.

- **El tercer criterio fundamental** es usar lámparas cuya distribución espectral tenga la máxima intensidad en las longitudes de onda a las que el ojo tiene la máxima sensibilidad en las condiciones típicas de las áreas a iluminar (normalmente visión fotópica), evitando al máximo las lámparas de amplo espectro (de luz «blanca»).

3.3.7.15.4 La contaminación lumínica y la población aledaña

La exposición a la luz durante la noche tiene consecuencias para la fisiología humana porque cuando es de suficiente luminosidad (intensidad) y de la longitud de onda apropiada, es traducida a una señal eléctrica que viaja al sistema nervioso central. Esta señal altera la función del reloj biológico y en última instancia, la producción de melatonina en la glándula pineal. La melatonina, que se secreta fundamentalmente de forma exclusiva durante la noche, presenta una serie de importantes funciones que se pierden en el momento en el que existe exposición nocturna a la luz.

Algunas de estas acciones incluyen la modulación del ciclo sueño/vigilia, la regulación de los ritmos circadianos, la sincronización, etc. Las consecuencias de estas alteraciones pueden ser simplemente una leve sensación de malestar o aun cambios fisiológicos que pueden a largo plazo, traducirse en procesos fisiopatológicos que contribuirían a la enfermedad.

El grado de contaminación lumínica enviado sobre la horizontal de una instalación de alumbrado se calculó con la siguiente fórmula:
Figura 3.154 Cálculo contaminación lumínica. – RETILAP cap. 575.3
Fuente: Minera de Cobre Quebradona, 2019

Para desarrollar la fórmula el primer componente es propio de la luminaria seleccionada (ULOR), el segundo corresponde a su instalación (UWLR) y el tercero y cuarto son del lugar o sitio de instalación (Kr1 y Kr2). Dado que la luminaria seleccionada no emite flujo luminoso por encima de la horizontal, FHS=0, el ULOR=0, para ilustrar este aspecto se incluye la hoja de datos de la luminaria, donde se puede observar que la luz no es emitida por encima del ángulo de 90°, en este caso está por muy cerca a los 75°.

HOLOPHANE EUROPE LIMITED and C&G CARANDINI S.A VMX.L123,V6.XL3 V-Max Streetlighting luminaire / Hoja de datos de luminarias

Figura 3.155 Hoja datos luminaria
Fuente: Minera de Cobre Quebradona, 2019

El factor UWLR es considerado cero debido a que la luminaria se instalará de forma perpendicular a la superficie a iluminar sin ningún grado de inclinación.

Para la cuantificación de los factores Kr1 y Kr2 utilizamos el software de cálculo de iluminación DIAlux.4.12, el cual es un programa computacional de distribución libre aceptado internacionalmente por diseñadores y fabricantes de luminarias.

La simulación se realizó con una luminaria recreando las condiciones de instalación pero en un cuarto para poder cuantificar la luz reflejada en todas las direcciones y hacia el cielo; esto se hizo utilizando un grado de reflexión para paredes y techos de 0, que es equivalente a tener un espacio abierto.

Para hacer una buena valoración de la contaminación lumínica la luz reflejada en los primeros 3,5 m de altura, con referencia a la superficie, no se considera contaminación porque esta sirve para dar contraste a los objetos que se encuentran en la zona a iluminar, por este motivo las mallas de cálculo de las paredes empiezan a los 3,5 m de altura.
Los parámetros utilizados para el cálculo de la contaminación luminica fueron los siguientes:

- Luminaria tipo Led, alumbrado público, fabricante Holophane referencia Vmax, con potencia de 98 W, flujo luminoso de 13786 lumenes, IK 07, IP66.
- Distancia entre luminarias 35 metros.
- Altura de montaje 10 metros.
- Ancho de calzada 10 metros.
- Tipo de asfalto R3, $Q_r = 0,07$.

Con estos parámetros se simuló un área de trabajo de 35*15 m y 11 m de altura.

Resultados luminotécnicos

Debido a que el estudio de contaminación se basa en la luz reflejada por la superficie hacia la atmósfera y la malla de cálculo tiene la posibilidad de hacer la diferenciación entre la luz que llega directamente de la luminaria y la indirecta reflejada por las superficies, se toma el valor de la indirecta en cada una de las mallas propuestas.

Estos datos se muestran a continuación y en la tabla de resultados luminotécnicos (véase la Tabla 3.55).

Local 1 / Resultados luminotécnicos.

- Flujo Luminoso total: 13.786 lm
- Potencia total: 98,0 W
- Factor mantenimiento: 0,80
- Zona marginal: 0,000 m

Tabla 3.55 Resultados luminotécnicos de contaminación lumínica

<table>
<thead>
<tr>
<th>Superficie</th>
<th>Intensidades Luminicas medias [lx]</th>
<th>Grado de reflexión [%]</th>
<th>Densidad luminica media [cd/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Directo</td>
<td>Indirecto</td>
<td>Total</td>
</tr>
<tr>
<td>Plano útil</td>
<td>11</td>
<td>0,00</td>
<td>11</td>
</tr>
<tr>
<td>Pared derecha</td>
<td>3,38</td>
<td>0,16</td>
<td>3,54</td>
</tr>
<tr>
<td>Pared atrás</td>
<td>3,43</td>
<td>0,19</td>
<td>3,62</td>
</tr>
<tr>
<td>Pared izquierda</td>
<td>0,26</td>
<td>0,08</td>
<td>0,34</td>
</tr>
<tr>
<td>Pared adelante</td>
<td>0,78</td>
<td>0,09</td>
<td>0,87</td>
</tr>
<tr>
<td>Techo</td>
<td>0,00</td>
<td>0,32</td>
<td>0,32</td>
</tr>
<tr>
<td>Suelo</td>
<td>11</td>
<td>0,00</td>
<td>11</td>
</tr>
<tr>
<td>Techo</td>
<td>0,00</td>
<td>0,32</td>
<td>0,32</td>
</tr>
<tr>
<td>Pared 1</td>
<td>2,69</td>
<td>0,19</td>
<td>2,89</td>
</tr>
<tr>
<td>Pared 2</td>
<td>5,27</td>
<td>0,18</td>
<td>5,45</td>
</tr>
<tr>
<td>Pared 3</td>
<td>6,4</td>
<td>0,25</td>
<td>6,65</td>
</tr>
<tr>
<td>Pared 4</td>
<td>5,27</td>
<td>0,18</td>
<td>5,45</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Los niveles de iluminación indirecta se multiplican por el área de cada una de las mallas de cálculo para obtener el valor de la contaminación luminica en cada plano (véase la Tabla 3.56).

Tabla 3.56 Calculo de la contaminación luminica por zonas

<table>
<thead>
<tr>
<th>Zona</th>
<th>Área (m²)</th>
<th>Luxes (lx)</th>
<th>Total zona (lx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pared derecha</td>
<td>112,5</td>
<td>0,16</td>
<td>18</td>
</tr>
<tr>
<td>Pared atrás</td>
<td>262,5</td>
<td>0,19</td>
<td>49,875</td>
</tr>
<tr>
<td>Pared izquierda</td>
<td>112,5</td>
<td>0,08</td>
<td>9</td>
</tr>
<tr>
<td>Pared adelante</td>
<td>262,5</td>
<td>0,09</td>
<td>23,625</td>
</tr>
<tr>
<td>Techo</td>
<td>525</td>
<td>0,32</td>
<td>168</td>
</tr>
</tbody>
</table>

Total contaminación 268,5

Fuente: Minera de Cobre Quebradona, 2019

La contaminación luminica es de 268,5 luxes por luminaria, lo que representa un 2% del flujo total emitido por la fuente luminosa.
% contaminación lumínica = (total contaminación lumínica/flujo luminoso) *100
% contaminación lumínica = (268,5/13.786)*100 = 1,95

Esta contaminación lumínica puede dividirse en dos componentes: el flujo intruso y el flujo hacia la atmósfera. El flujo intruso será la sumatoria de las paredes y el flujo hacia la atmósfera será el medido, el cual es de 168 luxes y corresponde al 62,5 % del flujo de contaminación lumínica total.

Tabla 3.57. Cálculo del flujo intruso

<table>
<thead>
<tr>
<th>Zona</th>
<th>Área (m²)</th>
<th>Luxes (lx)</th>
<th>Total zona (lx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pared derecha</td>
<td>112,5</td>
<td>0,16</td>
<td>18</td>
</tr>
<tr>
<td>Pared atrás</td>
<td>262,5</td>
<td>0,19</td>
<td>49,875</td>
</tr>
<tr>
<td>Pared izquierda</td>
<td>112,5</td>
<td>0,08</td>
<td>9</td>
</tr>
<tr>
<td>Pared adelante</td>
<td>262,5</td>
<td>0,09</td>
<td>23,625</td>
</tr>
</tbody>
</table>

Total contaminación 100,5

Fuente: Minera de Cobre Quebradona, 2019

Gracias a la simulación podemos observar que los niveles de contaminación lumínica son demasiado bajos haciendo el sistema muy eficiente y el desperdicio de iluminación casi nulo.

Las memorias del cálculo de contaminación lumínica se muestran en el Anexo_3_7_Iluminación (Cálculo contaminación lumínica).

3.3.7.15.5 Posible efecto de la contaminación lumínica en la población

Para determinar la influencia de la iluminación de la mina a las poblaciones cercanas se realizó el ejercicio de medir la máxima distancia que podía abarcar una luminaria y compararla con la distancia a la cual se encuentra el centro poblado más cercano, teniendo en cuenta las condiciones de instalación mencionadas anteriormente.

Cálculo de separación entre luminarias.

Los cálculos se realizaron utilizando el software DIALux4.12, en uno de ellos separamos las luminarias en un tramo de vía hasta obtener puntos en el medio donde el valor de la iluminación fuera cero, en el otro utilizamos solo una luminaria y se buscó el área de influencia donde los niveles más alejados sean cero.

Con estos resultados de la simulación podemos observar que con una interdistancia de 200 metros el espacio del centro entre luminarias presenta niveles de cero, esto indica que el radio de acción lateral del flujo luminoso en esta luminaria es de aproximadamente 100 metros y el radio de acción hacia el frente es de 80 metros, como la luminaria emite un flujo luminoso menor hacia la parte de atrás consideraremos el mismo radio de acción que hacia adelante (véase el Anexo_3_7_Iluminación. Separación entre luminarias).
Cálculo de luminaria individual.

Para confirmar que las distancias halladas son correctas, se simuló una sola luminaria observándose que el flujo luminoso no tiene influencia después de 75 metros hacia los costados y 80 metros hacia el frente, pero para ser más conservativos se tomó una distancia de no influencia de 100 metros a los costados y 100 metros hacia el frente y atrás (véase el Anexo_3_7_Iluminación. Área influencia luminaria individual) (véase la Figura 3.161).

Según el Anexo_3_7_Iluminacion_Render_Contam_luminica, se puede verificar visualmente que la iluminación exterior queda contenida en las áreas que se requiere iluminar sin generar contaminación lumínica a los centros poblados más cercanos. En las siguientes figuras se presentan las salidas gráficas de la huellas de iluminación para la planta de beneficio, portería, campamento y área integrada de operaciones.
Figura 3.158 Render portería
Fuente: Integral, 2019

Figura 3.159 Render campamento
Fuente: Integral, 2019
Figura 3.160 Render AIO
Fuente: Integral, 2019

contaminación / Elemento del suelo 1 / Superficie 1 / Gráfico de valores (E)
Figura 3.161 Área de influencia luminaria individual
Fuente: Minera de Cobre Quebradona, 2019

De las imágenes anteriores se puede concluir visualmente que la iluminación exterior queda contenida en las áreas de intervención efectiva que se requieren iluminar, sin generar contaminación luminica a los centros poblados más cercanos, es decir la huella de iluminación se ajusta específicamente a las áreas del Proyecto y no afecta predios aledaños.

3.3.7.16 Diseño minero con aceleración máxima

La estabilidad-hundibilidad del método minero de Hundimiento por subniveles, utilizado en el Proyecto Minera de Cobre Quebradona, se evaluó de acuerdo con la metodología Laubscher, la cual aplica para desarrollos mineros subterráneos, a diferencia del método de análisis con aceleración máxima (Am), contemplado en los Términos de referencia TdeR-13, el cual es utilizado en desarrollos mineros superflaciles.

3.3.7.17 Modelación estabilidad geotécnica

3.3.7.17.1 Subterránea

En este capítulo se presentan los resultados de la investigación geotécnica realizada mediante la aplicación de técnicas directas e indirectas para la obtención de información geotécnica y utilización de metodologías de análisis reconocidas a nivel internacional.

El proceso de interpretación y modelamiento geotécnico permitió establecer que las condiciones geotécnicas del macizo rocoso presentan favorabilidad para la aplicación de varios métodos mineros comúnmente aplicados en la industria.

A continuación, se presentan los resultados del proceso de logueo geotécnico de núcleos de perforación, ensayos de laboratorio e interpretación de información geológica disponible.

3.3.7.17.1.1 Logueo geotécnico de núcleos

El logueo geotécnico de núcleos de perforación se realizó bajo la metodología AngloGold Ashanti modificada (AGA 2015) diseñada para establecer las características físicas, estructurales y resistencia del macizo rocoso tanto en la zona del depósito como en las zonas circundantes donde se localiza el desarrollo minero y la infraestructura asociada. Dicha metodología se basa en los estándares internacionales definidos por la Sociedad Internacional de Mecánica de Rocas (ISRM), el instituto geotécnico de Noruega (NGI), así como la metodología definida por Laubscher 1990, considerada de amplio uso a nivel de la industria minera.

En total, se loguearon 19 perforaciones, correspondiendo a 15.776,47 metros de perforación geotécnica (véase la Tabla 3.58).

Tabla 3.58 Perforaciones utilizadas para el logueo geotécnico

<table>
<thead>
<tr>
<th>Proyecto</th>
<th>Pozo</th>
<th>Profundidad (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQC</td>
<td>CHA-DD-050</td>
<td>1.458,00</td>
</tr>
<tr>
<td>MQC</td>
<td>CHA-DD-058</td>
<td>1.483,61</td>
</tr>
<tr>
<td>MQC</td>
<td>CHA-DD-061</td>
<td>1.483,61</td>
</tr>
<tr>
<td>MQC</td>
<td>CHA-DD-062</td>
<td>1.502,11</td>
</tr>
<tr>
<td>MQC</td>
<td>CHA-DD-064</td>
<td>774,38</td>
</tr>
<tr>
<td>MQC</td>
<td>CHA-DD-065</td>
<td>1.001,17</td>
</tr>
<tr>
<td>MQC</td>
<td>CHA-DD-066</td>
<td>736,52</td>
</tr>
<tr>
<td>MQC</td>
<td>CHA-DD-067</td>
<td>751,39</td>
</tr>
<tr>
<td>MQC</td>
<td>CHA-DD-068</td>
<td>801,35</td>
</tr>
<tr>
<td>MQC</td>
<td>CHA-DD-070</td>
<td>1.002,70</td>
</tr>
<tr>
<td>MQC</td>
<td>CHA-DD-073</td>
<td>882,00</td>
</tr>
<tr>
<td>MQC</td>
<td>CHA-DD-077</td>
<td>1016,2</td>
</tr>
<tr>
<td>MQC</td>
<td>CHA-DD-079</td>
<td>969,11</td>
</tr>
<tr>
<td>MQC</td>
<td>CHA-DD-080</td>
<td>201,16</td>
</tr>
<tr>
<td>MQC</td>
<td>CHA-DD-081</td>
<td>251,12</td>
</tr>
<tr>
<td>MQC</td>
<td>CHA-DD-082</td>
<td>251,46</td>
</tr>
<tr>
<td>MQC</td>
<td>CHA-DD-083</td>
<td>251,46</td>
</tr>
<tr>
<td>Proyecto</td>
<td>Pozo</td>
<td>Profundidad (m)</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>MQC</td>
<td>CHA-DD-084</td>
<td>465.05</td>
</tr>
<tr>
<td>MQC</td>
<td>CHA-DD-086</td>
<td>494.07</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15,776.47</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Además del logueo geotécnico, se estableció la litología para cada uno en los intervalos mencionados en la metodología, de esta forma se identificaron tres grupos litológicos correspondientes a cuerpos Intrusivos, Tobas, Brechas, así como diques y el perfil de meteorización. La Figura 3.162 muestra la localización en planta de los pozos de investigación geotécnica (nótese la ubicación de los cuerpos mineralizados).

La Figura 3.163 presenta el perfil esquemático de la zona de exploración geotécnica, y las principales unidades litológicas asociadas a Tobas de la Formación Combia e Intrusivos mineralizados.
Los resultados del logueo geotécnico se sometieron a control de calidad (QA/QC) previo al aseguramiento en la base de datos presentada en el Anexo 3.8_Logueo_geotecnico (Minera de Cobre Quebradona, 2018). La información recolectada se utilizó para los análisis e interpretaciones subsecuentes enfocadas en la clasificación y caracterización del macizo rocoso y su respuesta ante el método minero propuesto. A continuación, se presentan las principales características litológicas y estructurales observadas en el proceso de logueo geotécnico:

3.3.7.17.1.1 Meteorización

La profundidad del perfil de meteorización se estimó a partir de las perforaciones realizadas en la zona. El perfil de meteorización desarrollado en la zona de estudio corresponde a los horizontes típicos desarrollados en ambientes tropicales por efecto de la interacción de la roca intacta con los agentes meteóricos tales como la erosión, la lluvia y el aire.

El perfil de meteorización se conforma por el horizonte residual, caracterizado por la pérdida total de la textura y estructura de la roca parental con espesor promedio entre 0 y 1 metros. El saprolito, caracterizado por conservar la textura y la estructura de la roca, con una pérdida considerable de la resistencia y espesor promedio entre 1 a 30 metros y la Zona de transición, caracterizada por conservar la textura y estructura de la roca con fracturas oxidadas, así como leve pérdida de la resistencia y espesor variable entre 30 y 50 metros.

3.3.7.17.1.2 Alteración

En total se loguearon diferentes tipos de alteración, encontrando que la alteración potásica (POT) predomina principalmente a profundidad en los alrededores de las intrusiones, así como la sericitica (SER) que predomina cerca de la superficie. Adicionalmente, se encontró la alteración clorita sericitica (CHL_SER) localizada entre las alteraciones POT y SER, aunque no de manera dominante.

La alteración en la toba (TCT) aparenta ser más uniforme que en los cuerpos Intrusivos donde se aprecia con mayor variabilidad, no obstante, se pudieron distinguir zonas de alteración sericitica, clorita sericitica y potásica definidas en este orden con respecto a la profundidad.
3.3.7.17.1.1.3 Rugosidad
La condición de las discontinuidades se describió de acuerdo con la rugosidad y las características del relleno. La mayoría de las discontinuidades presentan una textura Ondulada Suave (US) a Ondulada Rugosa (UR) con menor porción de categorías Planar Suave (PS) y Ondulada Escalonada (UP).

3.3.7.17.1.1.4 Relleno
La variabilidad en la condición del relleno de las estructuras es representada por el tipo de relleno, el cual fue mayormente categorizado como arcilla suave, seguido por revestimientos duros de carácter limoso a arenoso. Dicha condición se evidenció tanto en los cuerpos intrusivos como en las tobas donde se observaron rellenos suaves de arcilla, talco y clorita, seguidos por recubrimientos limosos a arenosos.

3.3.7.17.1.1.5 Índice de calidad de la roca (RQD%)
El índice de calidad de la Roca (RQD%), se midió de acuerdo con la metodología de logueo del macizo rocoso en intervalos de tres metros, a lo largo de cada perforación. Se clasificó principalmente como Bueno a Muy Bueno (80-100%), tanto para la toba como para las rocas intrusivas, con menor proporción de Regular a Pobre. La Figura 3.164 muestra la distribución del RQD de acuerdo con las categorías establecidas.

3.3.7.17.1.1.6 Frecuencia de Fracturas por Metro (FF/m)
La frecuencia de fracturas por metro (FF/m) se estimó a partir del conteo de fracturas naturales definidas como planos preexistentes abiertos que presentan relleno suave y paredes oxidadas por la presencia o contacto con agua subterránea así como la inclusión de fracturas inducidas. A nivel general, se pudo apreciar un relativo bajo grado de fracturamiento en el macizo rocoso. La frecuencia de fracturas se calculó en menos de 2 fracturas por metro (FF/m<2) para aproximadamente el 70% del total de metros logueados y entre 2 a 6 fracturas por metro (2≤FF/m<6) para aproximadamente 25% de los datos (Figura 3.165).

3.3.7.17.1.1.7 Resistencia Estimada en Campo (FES)
La Resistencia estimada en campo (FES) se calculó a partir de la clasificación cualitativa ISRM 1978, que subdivide la estimación de la clasificación en 5 categorías que varían entre R1 o Muy Débil (1<UCS≤25 MPa) a R5 o Muy Fuerte (100≤UCS<250 MPa).
La exploración geotécnica permitió establecer que la roca intacta se clasifica entre Muy fuerte (R5) para aproximadamente el 53% de las mediciones, encontrando dos grupos adicionales de resistencia definidos como Fuerte (R4) y Moderadamente Fuerte (R3), tal y como se aprecia en la Figura 3.166.

![Distribución Frecuencia de Fracturas por Metro- FF/m](image1)

Figura 3.165 Distribución de la Frecuencia de Fracturas por Metro- FF/m
Fuente: Minera de Cobre Quebradona, 2019

![Distribución Resistencia Estimada en Campo FES](image2)

Figura 3.166 Distribución de la Resistencia Estimada en Campo- FES
Fuente: Minera de Cobre Quebradona, 2019

3.3.7.17.1.2 Ensayos de laboratorio

Para la caracterización geomecánica de las unidades litológicas presentes en la zona de estudio, se realizaron una serie de ensayos de laboratorio que permitieron estimar las propiedades física, elásticas, la resistencia de la roca intacta y la influencia de las principales alteraciones sobre esta. A continuación, se presentan los resultados de los ensayos de laboratorio.

3.3.7.17.1.2.1 Ensayos de resistencia a la compresión uniaxial (UCS)

Se realizó un total de 30 ensayos de compresión uniaxial bajo la norma ASTM-D 7012, dimensionados e instrumentados con sensores de deformación (Strain gauges) utilizados para...
registrar las deformaciones axial y radial, de acuerdo con lo establecido en la norma. En la Tabla 3.59 se presentan los resultados de los ensayos de compresión, considerando además la influencia de la alteración en los rangos estimados.

Tabla 3.59 Resultados de Resistencia a la compresión uniaxial de acuerdo con la litología y tipo de alteración

<table>
<thead>
<tr>
<th>Litología</th>
<th>Alteración</th>
<th>UCS Promedio (MPa)</th>
<th>Desviación estándar</th>
<th>Rango (MPa)</th>
<th>Número de Ensayos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toba</td>
<td>CHLSER - SER</td>
<td>85,3</td>
<td>27,4</td>
<td>61,2 – 131,6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>POT</td>
<td>150,3</td>
<td>31,7</td>
<td>91,5 – 178,9</td>
<td>10</td>
</tr>
<tr>
<td>Intrusivo</td>
<td>CHLSER-SER</td>
<td>101,9</td>
<td>1,5</td>
<td>100,8 – 103,0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>POT</td>
<td>180,5</td>
<td>44,6</td>
<td>60,4-239,7</td>
<td>12</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

3.3.7.17.1.2.2 Propiedades Elásticas

Las propiedades elásticas de la roca intacta se definieron a partir de las deformaciones axial y radial registradas durante la ejecución de los ensayos. En la Tabla 3.60 se presenta el resumen de los parámetros registrados.

Tabla 3.60 Propiedades elásticas registradas de acuerdo con la litología y tipo de alteración

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Litología</th>
<th>Alteración</th>
<th>Promedio</th>
<th>Desviación estándar</th>
<th>Rango (MPa)</th>
<th>Número de Ensayos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Módulo de Young [E]</td>
<td>Toba</td>
<td>CHLSER-SER</td>
<td>33,1</td>
<td>12,6</td>
<td>21,1 – 54,8</td>
<td>6</td>
</tr>
<tr>
<td>(GPa) Inf.</td>
<td></td>
<td>POT</td>
<td>60,7</td>
<td>11,9</td>
<td>47,5 – 86,4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Intrusivo</td>
<td>CHLSER-SER</td>
<td>37,2</td>
<td>9,0</td>
<td>30,9 – 43,6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POT</td>
<td>49,5</td>
<td>13,3</td>
<td>27,0 – 63,9</td>
<td>12</td>
</tr>
<tr>
<td>Relación de Poisson</td>
<td>Toba</td>
<td>CHLSER-SER</td>
<td>0,20</td>
<td>0,07</td>
<td>0,11 – 0,28</td>
<td>6</td>
</tr>
<tr>
<td>[ν] Inf.</td>
<td></td>
<td>POT</td>
<td>0,26</td>
<td>0,04</td>
<td>0,19 – 0,32</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Toba</td>
<td>CHLSER-SER</td>
<td>0,22</td>
<td>0,05</td>
<td>0,18 – 0,25</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POT</td>
<td>0,25</td>
<td>0,04</td>
<td>0,18 – 0,3</td>
<td>12</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

3.3.7.17.1.2.3 Ensayos de Compresión Triaxial

Como complemento a los ensayos de resistencia, se realizaron una serie de ensayos de compresión triaxial para determinar las condiciones de resistencia bajo estados variables de esfuerzo. Los ensayos se realizaron bajo la norma ASTM-D 7012, en tres puntos confinados a diferente presión de cámara (confinamiento). Los resultados de los ensayos triaxiales se presentan en la Tabla 3.61.

Tabla 3.61 Resultados de ensayos de Compresión triaxial

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Desde</th>
<th>Hasta</th>
<th>Tipo de Roca</th>
<th>Gravedad específica (g/cm³)</th>
<th>σ₁ (σ₂ = 5 MPa)</th>
<th>σ₁ (σ₂ = 10 MPa)</th>
<th>σ₁ (σ₂ = 20 MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX001 - TX003</td>
<td>598,69</td>
<td>599,08</td>
<td>Toba</td>
<td>2,78</td>
<td>150,95</td>
<td>165,1</td>
<td>265,23</td>
</tr>
<tr>
<td>TX004 - TX006</td>
<td>683,92</td>
<td>684,31</td>
<td>Toba</td>
<td>2,78</td>
<td>150,55</td>
<td>191,5</td>
<td>206,55</td>
</tr>
<tr>
<td>TX010 - TX012</td>
<td>583,5</td>
<td>583,89</td>
<td>Intrusivo</td>
<td>2,75</td>
<td>194,36</td>
<td>244,3</td>
<td>330,51</td>
</tr>
<tr>
<td>TX013 - TX015</td>
<td>690,14</td>
<td>690,53</td>
<td>Intrusivo</td>
<td>2,75</td>
<td>201,64</td>
<td>247,4</td>
<td>284,55</td>
</tr>
<tr>
<td>TX016 - TX018</td>
<td>712,13</td>
<td>712,52</td>
<td>Intrusivo</td>
<td>2,75</td>
<td>241,8</td>
<td>296,7</td>
<td>388,55</td>
</tr>
<tr>
<td>TX019 - TX021</td>
<td>630,08</td>
<td>630,47</td>
<td>Intrusivo</td>
<td>2,81</td>
<td>204,84</td>
<td>301,8</td>
<td>272,22</td>
</tr>
<tr>
<td>TX022 - TX024</td>
<td>791,15</td>
<td>791,54</td>
<td>Intrusivo</td>
<td>2,71</td>
<td>285,79</td>
<td>334,4</td>
<td>383,69</td>
</tr>
<tr>
<td>TX025 - TX027</td>
<td>885,45</td>
<td>885,84</td>
<td>Intrusivo</td>
<td>2,69</td>
<td>224,79</td>
<td>272,3</td>
<td>350,4</td>
</tr>
<tr>
<td>TX028 - TX030</td>
<td>1000,4</td>
<td>1000,79</td>
<td>Intrusivo</td>
<td>2,75</td>
<td>209,18</td>
<td>248,7</td>
<td>238,26</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

3.3.7.17.1.2.4 Ensayos de Tracción Indirecta

Los ensayos de tracción indirecta se realizaron bajo la norma ASTM D 3967, los resultados se presentan en la Tabla 3.62.
Tabla 3.62 Resultados de ensayos de Tracción indirecta de acuerdo con la litología y tipo de alteración

<table>
<thead>
<tr>
<th>Litología</th>
<th>Alteración</th>
<th>Promedio (MPa)</th>
<th>Desviación estándar</th>
<th>Rango (MPa)</th>
<th>Numero de Ensayos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toba</td>
<td>POT</td>
<td>10.6</td>
<td>1.4</td>
<td>9.7-11.6</td>
<td>2</td>
</tr>
<tr>
<td>Intrusivo</td>
<td>POT</td>
<td>10.1</td>
<td>2.3</td>
<td>6.0-12.1</td>
<td>7</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

3.3.7.17.1.2.5 Ensayos de Resistencia al corte en discontinuidades

Los ensayos de corte directo en discontinuidades se realizaron en estructuras que presentan macro rugosidad tipo Planar y micro rugosidad tipo Suave Planar a Rugosa Planar con rellenos < 1mm; consideradas como críticas para la estabilidad de las excavaciones subterráneas.

La condición de rugosidad de la discontinuidad o JRC (Barton 1977) fue igualmente caracterizada con el fin de analizar el efecto en la resistencia al corte de la discontinuidad. La Tabla 3.63 presenta las características de las discontinuidades seleccionadas para los ensayos mencionados:

Tabla 3.63 Características de las discontinuidades

<table>
<thead>
<tr>
<th>Pozo</th>
<th>Desde</th>
<th>Hasta</th>
<th>Espesor del relleno</th>
<th>Tipo de relleno</th>
<th>Macro rugosidad</th>
<th>Micro rugosidad</th>
<th>JRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHA-079</td>
<td>815,11</td>
<td>815,17</td>
<td><1</td>
<td>Duro-Fino</td>
<td>Planar</td>
<td>Planar Suave</td>
<td>4-6</td>
</tr>
<tr>
<td>CHA-079</td>
<td>852,23</td>
<td>852,38</td>
<td><1</td>
<td>Duro-Fino</td>
<td>Planar</td>
<td>Rugosa-Planar</td>
<td>6-8</td>
</tr>
<tr>
<td>CHA-077</td>
<td>779,15</td>
<td>779,46</td>
<td><1</td>
<td>Duro-Fino</td>
<td>Planar</td>
<td>Rugosa-Planar</td>
<td>8-10</td>
</tr>
<tr>
<td>CHA-077</td>
<td>765,35</td>
<td>765,61</td>
<td><1</td>
<td>Duro-Fino</td>
<td>Planar</td>
<td>Rugosa-Planar</td>
<td>8-10</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

La Figura 3.167 ilustra la condición de las discontinuidades en muestra preparada para ensayo de corte directo en discontinuidades. Los resultados de los ensayos de corte directo se resumen en la Tabla 3.64.

Tabla 3.64 Resultados ensayo de corte directo

<table>
<thead>
<tr>
<th>Pozo</th>
<th>Desde</th>
<th>Hasta</th>
<th>JRC</th>
<th>Angulo de Fricción Φ[$^\circ$]</th>
<th>Cohesión c [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHA-079</td>
<td>815,11</td>
<td>815,17</td>
<td>4-6</td>
<td>23.7</td>
<td>0,02</td>
</tr>
<tr>
<td>CHA-079</td>
<td>852,23</td>
<td>852,38</td>
<td>6-8</td>
<td>26,1</td>
<td>0,01</td>
</tr>
<tr>
<td>CHA-077</td>
<td>779,15</td>
<td>779,46</td>
<td>8-10</td>
<td>33,3</td>
<td>0,10</td>
</tr>
<tr>
<td>CHA-077</td>
<td>765,35</td>
<td>765,61</td>
<td>8-10</td>
<td>35,4</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

La Figura 3.168 muestra la relación entre el ángulo de fricción registrado en la ejecución de los ensayos de laboratorio y el JRC registrado en el proceso de logueo de núcleos.
En la gráfica se muestra un significativo incremento del ángulo de fricción con respecto al coeficiente de rugosidad definido para cada muestra, definiendo así la rugosidad (JRC) como un parámetro que debe ser considerado en la evaluación de la resistencia al corte en discontinuidades.

![Gráfica de relación entre la rugosidad (JRC) y el ángulo de fricción](image)

Figura 3.168 Relación entre la Rugosidad (JRC) y el Ángulo de Fricción

Fuente: Minera de Cobre Quebradona, 2019

3.3.7.17.1.3 Campo de esfuerzos In Situ

Las complejas interacciones entre las placas Suramérica-Caribe y Nazca han sido investigadas por autores como Colmenares y Zoback (2003). Ellos han integrado datos de mediciones de esfuerzos *in situ* así como registros neotectónicos y datos tomados con sistemas de posicionamiento Global, demostrando que el campo de esfuerzos en la parte norte de Suramérica, varía sistemáticamente en orientación y magnitud.

En la zona donde se localiza el Proyecto Minera de Cobre Quebradona, la dirección de compresión es generalmente NW-SE y se caracteriza por sistemas de fallas inversas y de rumbo de sur a norte. La Figura 3.169, muestra el mapa tectónico generalizado de la parte norte de Sur América; en rojo se indica la localización del Proyecto y en verde del proyecto hidroeléctrico Porce III.
Suarez-Burgos (2010) analizaron el tensor natural de esfuerzos y realizaron ensayos de esfuerzos in situ en el proyecto hidroeléctrico PORCE III, localizado aproximadamente a 150 km del municipio de Jericó.

La Tabla 3.65 y la Figura 3.170 presentan el resumen del tensor de esfuerzos determinado para el proyecto Porce III, así como la interpretación realizada para el Proyecto (Nienaber, 2015ª).

Tabla 3.65 Distribución de esfuerzos in situ PORCE III – Proyecto Minera de Cobre Quebradona

<table>
<thead>
<tr>
<th>Esfuerzo Principal</th>
<th>Rumbo [°]</th>
<th>Buzamiento [°]</th>
<th>Magnitud [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_1 = \sigma_H$</td>
<td>097</td>
<td>60</td>
<td>14,0</td>
</tr>
<tr>
<td>$\sigma_2 = \sigma_H$</td>
<td>007</td>
<td>00</td>
<td>12,2</td>
</tr>
<tr>
<td>$\sigma_3 = \sigma_V$</td>
<td>277</td>
<td>90</td>
<td>7,0</td>
</tr>
</tbody>
</table>

Esfuerzo Principal: Proyecto Minera de Cobre Quebradona (Nienaber 2015a)

<table>
<thead>
<tr>
<th>Interpretación Esfuerzos</th>
<th>Rumbo [°]</th>
<th>Magnitud [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_1 = \sigma_H$</td>
<td>280</td>
<td>17 a 40 (23)</td>
</tr>
<tr>
<td>$\sigma_2 = \sigma_H$</td>
<td>010</td>
<td>13 a 32 (19)</td>
</tr>
<tr>
<td>$\sigma_3 = \sigma_V$</td>
<td>110</td>
<td>7 a 16 (9)</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019
Figura 3.170 Representación estereográfica de la orientación de los esfuerzos in situ calculados para el Proyecto Porce III y los estimados para el Proyecto
Fuente: Minera de Cobre Quebradona, 2019

Las mediciones se realizaron bajo las siguientes hipótesis:

- El esfuerzo vertical generado por el macizo rocoso se asume coincidente con uno de los esfuerzos principales (σ_v), y los dos restantes se asumen horizontales.
- Debido a que en la región predomina un régimen compresivo, la magnitud principal mayor es horizontal.
- La magnitud del esfuerzo vertical es geoestática.

Con el fin de determinar la magnitud y orientación de los esfuerzos in situ, se seleccionaron tres muestras orientadas para la realización de ensayos de Emisiones Acústicas (AE) tomadas de los pozos de perforación CHA-DD-077 y CHA-DD-079, localizados a lo largo de la traza del túnel de acceso.

De cada muestra seleccionada se perforaron tres subgrupos de seis (6) núcleos que se utilizaron para ensayos de AE, con estos resultados se determinaron la magnitud y orientación de los esfuerzos en los puntos definidos (véase la Tabla 3.66).

Tabla 3.66 Resumen de la magnitud y orientación de los esfuerzos

<table>
<thead>
<tr>
<th>Pozo</th>
<th>Desde</th>
<th>Hasta</th>
<th>Litología</th>
<th>Esfuerzo</th>
<th>Magnitud (MPa)</th>
<th>Rumbo (°)</th>
<th>Buzamiento (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHA-DD-077</td>
<td>908,6</td>
<td>909,1</td>
<td>LQDIO</td>
<td>Sigma1</td>
<td>63,45</td>
<td>263,18</td>
<td>41,08</td>
</tr>
<tr>
<td>CHA-DD-077</td>
<td>908,6</td>
<td>909,1</td>
<td>LQDIO</td>
<td>Sigma2</td>
<td>43</td>
<td>18,96</td>
<td>26,53</td>
</tr>
<tr>
<td>CHA-DD-077</td>
<td>908,6</td>
<td>909,1</td>
<td>LQDIO</td>
<td>Sigma3</td>
<td>30,45</td>
<td>131,4</td>
<td>37,4</td>
</tr>
<tr>
<td>CHA-DD-079</td>
<td>232,87</td>
<td>233,37</td>
<td>TCT</td>
<td>Sigma1</td>
<td>23,71</td>
<td>273,67</td>
<td>11,47</td>
</tr>
<tr>
<td>CHA-DD-079</td>
<td>232,87</td>
<td>233,37</td>
<td>TCT</td>
<td>Sigma2</td>
<td>19,49</td>
<td>162,66</td>
<td>60,5</td>
</tr>
<tr>
<td>CHA-DD-079</td>
<td>232,87</td>
<td>233,37</td>
<td>TCT</td>
<td>Sigma3</td>
<td>13,81</td>
<td>9,55</td>
<td>26,78</td>
</tr>
<tr>
<td>CHA-DD-079</td>
<td>500</td>
<td>500,5</td>
<td>TCT</td>
<td>Sigma1</td>
<td>38,57</td>
<td>261,21</td>
<td>15,87</td>
</tr>
<tr>
<td>CHA-DD-079</td>
<td>500</td>
<td>500,5</td>
<td>TCT</td>
<td>Sigma2</td>
<td>35,09</td>
<td>20,48</td>
<td>59,83</td>
</tr>
<tr>
<td>CHA-DD-079</td>
<td>500</td>
<td>500,5</td>
<td>TCT</td>
<td>Sigma3</td>
<td>31,44</td>
<td>163,61</td>
<td>24,94</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

La Figura 3.171 muestra la representación estereográfica (proyección polar) de los esfuerzos principales ($\sigma_1, \sigma_2, \sigma_3$) tomados a partir de los ensayos AE, además de los esfuerzos reportados para el proyecto Hidroeléctrico Porce III.
Figura 3.171 Orientación principal de esfuerzos para el Proyecto en superposición con los reportados para el proyecto Porce III
Fuente: Minera de Cobre Quebradona, 2019

Los resultados muestran una posible redistribución del régimen de esfuerzos en los alrededores del cuerpo mineralizado, representado por el aumento en la magnitud del esfuerzo principal mayor a medida que nos alejamos de este i.e. $\sigma_1 = 63 \text{ MPa}$ correspondiente al ensayo CHA-DD-077 entre 908.6 y 909.1m.

Adicionalmente, no se evidencia relación con el campo de esfuerzos registrado para el proyecto Porce III, concluyendo que este es localmente afectado por la ocurrencia de eventos geológicos como los registrados en el área del Proyecto.

La Figura 3.172 ilustra la representación espacial de los vectores asociados a la orientación y magnitud de los esfuerzos obtenidos de los ensayos. Se aprecia la influencia del cuerpo intrusivo en la redistribución del campo de esfuerzos expresada en la magnitud y orientación de los esfuerzos principales (σ_1, σ_3).

Figura 3.172 Representación especial de los esfuerzos obtenidos de los ensayos de laboratorio
Fuente: Minera de Cobre Quebradona, 2019

Además de la representación especial de los esfuerzos obtenidos, se proyectó la distribución del esfuerzo principal (σ_1) (véase la Figura 3.173).

En la gráfica se observa mayor dispersión entre esfuerzos principales (σ_1, σ_3) en el ensayo realizado a mayor profundidad y en inmediaciones al cuerpo intrusivo registrado. Lo anterior corrobora la importancia de registrar de manera preliminar el campo de esfuerzos in situ, ya que...
cualquier método de minería subterránea generará una redistribución de estos por la disminución en la columna litostática en la zona de la excavación.

![Figura 3.173 Distribución del esfuerzo principal vs profundidad](image)

Figura 3.173 Distribución del esfuerzo principal vs profundidad

Fuente: Minera de Cobre Quebradona, 2019

3.3.7.17.1.4 Clasificación geotécnica del macizo rocoso

Con el fin de determinar la calidad geomecánica del macizo rocoso en la zona del depósito mineral, se determinan las características físicas, hidráulicas y estructurales del macizo rocoso a partir de la descripción cualitativa de los núcleos de perforación y afloramientos disponibles, así como a partir de la realización de ensayos mecánicos de laboratorio en muestras de roca.

Laubscher (1990) desarrolló la metodología empírica para describir la calidad del macizo rocoso en términos del Índice de Calidad del Macizo Rocosó ó RMR (Rock Mass Rating) definido por la ecuación:

\[
RMR = P(BS) + P(JS) + P(JC)
\]

Donde,
BS: Resistencia estimada en campo o Resistencia a la Compresión Uniaxial
JS: Espaciamiento entre las estructuras
JC: Condición de las estructuras, definida de acuerdo con la rugosidad a escala menor e intermedia, así como la alteración de la pared rocosa y el espesor y resistencia del material de relleno.

La Figura 3.174 muestra la distribución porcentual del RMR; se observa una clara predominancia de las clases RMR Regular (40 - 60) y, en menor proporción, las clases RMR Pobre (20-40) y Bueno (40-60).
La Figura 3.176 y la Figura 3.175, muestran la distribución espacial de los pozos así como la zonificación de acuerdo a la clasificación del RMR.

Figura 3.175 Perfil representativo de la distribución espacial de clasificación del macizo Rocos
Fuente: Minera de Cobre Quebradona, 2019
En la Figura 3.175 y Figura 3.176, se aprecia una predominancia de la clase RMR Regular (40-60) en la parte central del depósito y clase RMR Bueno (60 - 80) hacia la periferia donde no se presenta influenciada de las alteraciones hidrotermales.

Las clases RMR Pobre (RMR 20 - 40) a RMR Muy Pobre (RMR 0 - 20) se presentan mayormente asociadas a la influencia de zonas de mayor fracturamiento, zonas de alteración sericítica así como al perfil de meteorización desarrollado en superficie.

3.3.7.17.1.5 Análisis de Estabilidad – Hundibilidad del macizo rocoso

Considerando la hundibilidad como la capacidad que tiene un macizo rocoso para fluir naturalmente después de ser socavado, se realizó la evaluación mediante la utilización de los resultados de Clasificación (RMR) ajustados de acuerdo con el grado de meteorización, orientación de las estructuras y esfuerzos inducidos por el desarrollo de la mina para definir el Índice Minero de Calidad del Macizo Rocosos ó MRMR (Mining Rock Mass Rating) (Laubscher 1990).

Para la evaluación del potencial de hundibilidad se utilizó la relación empírica entre el MRMR y el Radio Hidráulico (RH) que representa el área mínima requerida para inducir el hundimiento.

La metodología de análisis comprende tres zonas fundamentales definidas como zona estable, zona de transición y zona inestable en la cual se induce el hundimiento natural del macizo rocoso.

La Figura 3.177 ilustra las condiciones de hundibilidad requeridas para el nivel 1.675msnm. Allí se muestra que con un MRMR promedio de 65 se requiere un radio hidráulico igual a 39 (RH=39), equivalente a una sección mínima de 155 m x 155 m (24,025 m²) que ubica el macizo en la zona inestable. No obstante, para este nivel se tiene una sección de 64,000 m², equivalente a un radio hidráulico de 69 (RH=69), que excede el mínimo requerido para iniciar el hundimiento.
3.3.7.17.1.6 Subsistencia

La Subsistencia es un proceso de carácter físico que se desarrolla en el tiempo definida como el hundimiento de la superficie del terreno con poco o ningún movimiento lateral. Dicho proceso se genera a partir de cavidades de origen natural o antrópicas que se desarrollan a profundidad, tiende a ser discontinua y asimétrica alrededor de la cavidad principal y está controlado por las estructuras geológicas, la calidad del macizo rocoso y los efectos topográficos.

La zona de subsidencia representa el límite externo en el cual se pueden medir las deformaciones superficiales. El borde exterior puede contener sólo pequeñas grietas y deformaciones que se extienden y crecen a medida que se avanza hacia el interior, mientras que en el centro se presentan los mayores desplazamientos y la roca completamente fracturada.

La Figura 3.6 representa, de manera conceptual, la zona de subsidencia (Van As et al. 2003), y sus tres zonas principales de expresión geomorfológica definidas como:

- **Zona de hundimiento**: se localiza directamente encima de la cavidad, caracterizada por presentar la mayor perturbación y estar llena de bloques irregulares.

- **Zona de fracturamiento**: adyacente a la zona de hundimiento, caracterizada por la aparición de fracturas radiales que generan volcamiento de bloques hacia el centro de la cavidad.

- **Zona de subsidencia**: enmarcada por el límite externo al hundimiento en el cual se pueden detectar las deformaciones medibles en superficie.

El fenómeno de subsidencia fue analizado para el Proyecto Minera de Cobre Quebradona, mediante el método empírico (Laubscher 1990) que estima los ángulos de subsidencia en función de la calidad del macizo rocoso (MRMR).

Para la evaluación de la zona de subsidencia asociada al Proyecto, se asumieron los siguientes escenarios:

- La zona de extracción y el desarrollo de la mina comprenden desde las cotas 1675 a 1125 m.

- El volumen total de material a ser extraído es de 40 Mm³

- El macizo rocoso es relativamente competente (Regular a Bueno) en la periferia del depósito localizada por fuera de la zona mineralizada.

- Se espera una profundidad final de hundimiento menor a 365 m.
• Se considera una expansión natural de la roca del 20% y un aporte de material de los deslizamientos generados en las paredes que contribuirán a una reducción de la profundidad de la cavidad en el tiempo.

• Se espera que el hundimiento de la superficie en la zona central inicie a partir del año 3 del inicio de la explotación.

La Tabla 3.67 muestra los ángulos de subsidencia para cada clase de macizo rocoso (RMR), así como los parámetros de corrección en función de la meteorización, orientación de las estructuras y la magnitud de los esfuerzos:

Tabla 3.67 Ángulos de subsidencia y parámetros de corrección para el macizo rocoso

<table>
<thead>
<tr>
<th>Elevación (msnm)</th>
<th>RMR</th>
<th>Meteorización</th>
<th>Orientación</th>
<th>Esfuerzos</th>
<th>MRMR</th>
<th>Clase MRMR</th>
<th>Ángulo de subsidencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>>1900</td>
<td>60</td>
<td>95</td>
<td>90</td>
<td>100</td>
<td>51</td>
<td>III</td>
<td>65</td>
</tr>
<tr>
<td>1900</td>
<td>80</td>
<td>100</td>
<td>90</td>
<td>100</td>
<td>72</td>
<td>II</td>
<td>70</td>
</tr>
<tr>
<td>1700</td>
<td>80</td>
<td>100</td>
<td>90</td>
<td>100</td>
<td>72</td>
<td>II</td>
<td>70</td>
</tr>
<tr>
<td>1500</td>
<td>80</td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>76</td>
<td>II</td>
<td>77</td>
</tr>
<tr>
<td>1300</td>
<td>80</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td>72</td>
<td>II</td>
<td>80</td>
</tr>
<tr>
<td>1100</td>
<td>80</td>
<td>100</td>
<td>100</td>
<td>80</td>
<td>64</td>
<td>II</td>
<td>80</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

La Figura 3.178 muestra el contorno establecido para la zona de subsidencia, modelado de acuerdo con los parámetros establecidos en la Tabla 3.67. Nótese la representación de las fallas mayores identificadas en la zona de estudio.

Figura 3.178 Perfil representativo de la zona de subsidencia en función de la clasificación del macizo Rocosos

Fuente: Minera de Cobre Quebradona, 2019

La Figura 3.179 muestra el perfil representativo de la zona de subsidencia con orientación NW-SE así como la estimación de la calidad del macizo rocoso (RMR) y la presencia de estructuras mayores.
Debido al método de explotación, se estima que el fenómeno de subsidencia se genere de una forma lenta hasta que se alcance la máxima capacidad de producción, igualmente se espera que la perturbación del macizo se genere dentro del perímetro de subsidencia estimado para el final de la mina, y alcance de manera progresiva una huella total de aproximadamente 72 Ha.

Las deformaciones esperadas en la zona de subsidencia deberán ser monitoreadas mediante el uso de tecnologías remotas tipo SAR (Space-borne Synthetic Aperture Radar) que involucran el uso de radares satelitales, diseñados para detectar las deformaciones diferenciales del terreno a escalas centimétrica-milimétrica a través de las irregularidades topográficas.

Dicho plan de monitoreo permitirá tener control del modelo de subsidencia en tiempo real durante la fase de explotación, cierre y post cierre de la operación.

3.3.7.17.1.6.1 Análisis de estabilidad Zona de Subsidencia

Con el fin de determinar las condiciones de estabilidad asociadas a la zona de subsidencia, se utilizó un modelo numérico basado en el método del Factor de Reducción de la Resistencia (SRF) incorporado en el Software RS3 (Rocscience, 2019).

Para calcular el Factor de Seguridad (FOS) representativo, el método reduce la resistencia del macizo rocoso hasta alcanzar la falla y correlacionando esta reducción con el factor de seguridad. Dicho método es comúnmente utilizado en el diseño de excavaciones superficiales y subterráneas.

El modelo fue construido para reproducir la zona de hundimiento y la de subsidencia entendida como una zona de seguridad para el emplazamiento de la infraestructura permanente (véase la Figura 3.180)
La construcción del modelo numérico representa un volumen de roca que rodea la zona de subsidencia cubierta por una unidad de Saprolito de 40m de espesor y Roca fresca caracterizada con los parámetros obtenidos para las unidades Tobas e Intrusivos (véase la Figura 3.181).

Los factores de seguridad obtenidos a partir de la modelación numérica se presentan en la Figura 3.182.
Figura 3.182 Vista en planta de los factores de seguridad en la zona de subsidencia, la línea naranja delimita los Factores de Seguridad mayores a 2.0 (FOS>2.0)
Fuente: Minera de Cobre Quebradona, 2019

La Figura 3.182 muestra que la zona de subsidencia es estable con factor de seguridad ~ 2.0 (FOS~ 2.0). Se aprecian algunas zonas en la cresta de la zona de subsidencia con FOS~1.2 alcanzado en el saprolito.

El análisis realizado muestra que el material con potencial de deslizamiento (FOS<1.0) no excede la delimitación realizada para la zona de subsidencia, de igual manera la zona definida para el emplazamiento de infraestructura permanente (línea naranja) presenta factores de seguridad mayores a 1.9 (FOS>2.0).

Se implementará un plan de monitoreo diseñado para detectar las deformaciones diferenciales del terreno a escalas centimétrica - milimétrica y a frecuencias de monitoreo fácilmente ajustables en el tiempo, lo cual permitirá tener control del modelo de subsidencia en tiempo real durante la fase de explotación, cierre y post cierre de la operación. Este plan se desarrolla en el capítulo 10 del presente estudio (Plan de seguimiento y monitoreo).

3.3.7.17.2 Túnel
3.3.7.17.2.1 Caracterización geomecánica

La caracterización geomecánica consiste en el análisis pormenorizado de los resultados obtenidos en los ensayos de laboratorio y de los resultantes de los ensayos in situ, comparando unos con otros, correlacionándolos entre sí; dando validez a todos y cada uno de los ensayos o descartando aquellos cuyo resultado no se considera fiable o representativo. A partir de este análisis se realiza un tratamiento estadístico sencillo de los datos para, finalmente, establecer modelos constitutivos acordes al tipo de terreno, que proporcionan sus parámetros resistentes y deformacionales.

Los materiales existentes en la zona de estudio constituyen un macizo rocoso convencional, por ello se ha empleado la metodología habitual en estos casos para estimar las propiedades de la roca intacta de los litotipos presentes, para posteriormente minorarlas y establecer los parámetros mecánicos del macizo rocoso.
Se ha comparado la resistencia a compresión simple obtenida en laboratorio con la densidad aparente de la roca considerando como valores anómalos aquellos que se encuentran alejados de los resultados más frecuentes, no considerándolos aptos para su empleo en la caracterización.

Las zonas de falla (ZF) se diferencian por su mayor fracturación y por tanto inferior RQD, lo que implica un menor RMR.

Una vez caracterizado el litotipo a nivel de roca intacta, el macizo rocoso se ha clasificado utilizando los criterios de valoración de Laubscher, los cuales proporcionan un valor del índice RMR desarrollado por Bieniawski, pero ajustado teniendo en cuenta los cambios en los esfuerzos inducidos por la actividad minera sobre el macizo rocoso.

De acuerdo con el estudio geológico, son dos los tipos de roca que se han reconocido para propósitos geotécnicos: la primera unidad corresponde a las “Tobas”, que incluyen los aglomerados, tufas, flujos basálticos y diques andesíticos; y una segunda unidad geotécnica, que incluye múltiples intrusiones de cuarzodiorita a dioritas, que se agrupan en la denominación de “Intrusivos” (véase también Anexo_3_3_Desarrollo_accesos_mina). (Proyecto de factibilidad desarrollos de acceso a mina. Ingeniería a nivel de FEED para soportar el E.I.A. 1909. SUBTERRA. 2019).

De los resultados de los ensayos de laboratorio, en la Tabla 3.68, se sintetizan los parámetros de referencia.

A pesar de encontrarse en el trazado del túnel proyectado algunos cuerpos de “intrusivo”, son de un tamaño reducido, que poco condicionan las propiedades del perfil geotécnico; siendo todo el perfil longitudinal de los túneles de desarrollo al yacimiento y a la cámara de trituración, dominantemente condicionados por el material correspondiente a las Tobas, como puede apreciarse en la Figura 3.183.

<table>
<thead>
<tr>
<th>Litología</th>
<th>UCS (Mpa)</th>
<th>V</th>
<th>E (Gpa)</th>
<th>Densidad (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrusivo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mínimo</td>
<td>60,43</td>
<td>0,18</td>
<td>30,91</td>
<td>2.68</td>
</tr>
<tr>
<td>Máximo</td>
<td>239,71</td>
<td>0,30</td>
<td>63,85</td>
<td>2.82</td>
</tr>
<tr>
<td>Promedio</td>
<td>169,23</td>
<td>0,24</td>
<td>49,89</td>
<td>2.74</td>
</tr>
<tr>
<td>Toba</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mínimo</td>
<td>61,15</td>
<td>0,11</td>
<td>21,13</td>
<td>2.59</td>
</tr>
<tr>
<td>Máximo</td>
<td>178,89</td>
<td>0,32</td>
<td>86,45</td>
<td>3.06</td>
</tr>
<tr>
<td>Promedio</td>
<td>125,95</td>
<td>0,24</td>
<td>50,4</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Fuente: 05-2299-02 Quebradora Sublevel Caving Mine, SRK Consulting, 2018
De acuerdo con el modelo estadístico del modelo geotécnico realizado para el Proyecto Minera de Cobre Quebradona, para cada unidad geotécnica, se cuenta con un valor de RMR, UCS, módulo de Poisson \(\nu\), módulo de Young \(E\) y densidad \(\gamma\).

Apoyados con base en la bibliografía, según el tipo de roca se asigna un \(m_i\); y con ello, siguiendo el criterio de Hoek-Brown, se establecerán las propiedades del macizo rocoso.

3.3.7.17.2.1.1 **Propiedades mecánicas de la roca intacta**

El primer paso para la caracterización mecánica del macizo es establecer las propiedades de la roca intacta para los materiales presentes en el trazado de la excavación.

Como se ha indicado anteriormente, estas propiedades se han definido a partir de la información disponible en el estudio geométrico del Proyecto, los ensayos de laboratorio realizados en las muestras obtenidas en el sondeo CAU83 y datos bibliográficos de litologías similares.

Los resultados de los ensayos de laboratorio se han diferenciado entre las muestras a profundidades de menos de 300 m y las que se localizan a profundidades superiores.

En la Tabla 3.69 y Tabla 3.70 se muestran los ensayos realizados en la unidad de “Tobas”, que han sido utilizados para la caracterización de la roca intacta.
Tabla 3.69 Ensayos realizados en muestras del sondeo CAU83 localizadas en zonas de cobertura de menos de 300 m

<table>
<thead>
<tr>
<th>Prof_Desde</th>
<th>Prof_Hasta</th>
<th>Prof_med</th>
<th>Densidad_Seca</th>
<th>SigmaU</th>
<th>TRIAXIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>m</td>
<td>m</td>
<td>kg/m³</td>
<td>MPa</td>
<td></td>
</tr>
<tr>
<td>90,06</td>
<td>90,21</td>
<td>90,14</td>
<td>2501</td>
<td>54,1</td>
<td>86,3</td>
</tr>
<tr>
<td>90,22</td>
<td>90,37</td>
<td>90,30</td>
<td>2479</td>
<td>61,7</td>
<td>75,6</td>
</tr>
<tr>
<td>90,55</td>
<td>90,70</td>
<td>90,63</td>
<td>2504</td>
<td>63,7</td>
<td>85,9</td>
</tr>
<tr>
<td>110,69</td>
<td>110,84</td>
<td>110,77</td>
<td>2619</td>
<td></td>
<td></td>
</tr>
<tr>
<td>184,28</td>
<td>184,43</td>
<td>184,36</td>
<td>2612</td>
<td></td>
<td></td>
</tr>
<tr>
<td>194,95</td>
<td>195,10</td>
<td>195,03</td>
<td>2535</td>
<td>86,2</td>
<td>50,5</td>
</tr>
<tr>
<td>195,82</td>
<td>195,97</td>
<td>195,90</td>
<td>2495</td>
<td>67,1</td>
<td>88,1</td>
</tr>
<tr>
<td>195,98</td>
<td>196,13</td>
<td>196,06</td>
<td>2453</td>
<td>84,0</td>
<td>78,0</td>
</tr>
<tr>
<td>245,48</td>
<td>245,63</td>
<td>245,56</td>
<td>2659</td>
<td></td>
<td></td>
</tr>
<tr>
<td>302,32</td>
<td>302,47</td>
<td>302,40</td>
<td>2553</td>
<td>39,5</td>
<td>78,0</td>
</tr>
<tr>
<td>302,48</td>
<td>302,63</td>
<td>302,56</td>
<td>2530</td>
<td>65,8</td>
<td>10</td>
</tr>
<tr>
<td>302,63</td>
<td>302,78</td>
<td>302,71</td>
<td>2540</td>
<td>96,5</td>
<td>20</td>
</tr>
<tr>
<td>323,00</td>
<td>323,15</td>
<td>323,08</td>
<td>2468</td>
<td></td>
<td></td>
</tr>
<tr>
<td>388,24</td>
<td>388,39</td>
<td>388,32</td>
<td>2477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>398,50</td>
<td>398,65</td>
<td>398,58</td>
<td>2480</td>
<td>84,3</td>
<td>5</td>
</tr>
<tr>
<td>398,66</td>
<td>398,81</td>
<td>398,74</td>
<td>2489</td>
<td>86,2</td>
<td>10</td>
</tr>
<tr>
<td>398,82</td>
<td>398,97</td>
<td>398,90</td>
<td>2503</td>
<td>120,5</td>
<td>20</td>
</tr>
<tr>
<td>442,25</td>
<td>442,40</td>
<td>442,33</td>
<td>2488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>505,32</td>
<td>505,47</td>
<td>505,40</td>
<td>2266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nº de muestras</td>
<td>18</td>
<td>7</td>
<td>12</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Valor mínimo</td>
<td>2453</td>
<td>39,5</td>
<td>50,5</td>
<td>5</td>
<td>18,1</td>
</tr>
<tr>
<td>Valor máximo</td>
<td>2659</td>
<td>86,2</td>
<td>120,5</td>
<td>20</td>
<td>80,2</td>
</tr>
<tr>
<td>Media</td>
<td>2521,39</td>
<td>65,19</td>
<td>82,98</td>
<td>11,67</td>
<td>38,60</td>
</tr>
<tr>
<td>Desviación estándar</td>
<td>56,99</td>
<td>16,31</td>
<td>16,79</td>
<td>6,51</td>
<td>17,03</td>
</tr>
<tr>
<td>Coeficiente de variación (%)</td>
<td>2,26</td>
<td>25,02</td>
<td>20,24</td>
<td>55,83</td>
<td>44,13</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

Tabla 3.70 Ensayos realizados en muestras del sondeo CAU83 localizadas en zonas de cobertura de más de 300 m

<table>
<thead>
<tr>
<th>Prof_Desde</th>
<th>Prof_Hasta</th>
<th>Prof_med</th>
<th>Densidad_Seca</th>
<th>SigmaU</th>
<th>TRIAXIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>m</td>
<td>m</td>
<td>kg/m³</td>
<td>MPa</td>
<td></td>
</tr>
<tr>
<td>517,03</td>
<td>517,18</td>
<td>517,105</td>
<td>2390</td>
<td>66,7</td>
<td>5</td>
</tr>
<tr>
<td>517,19</td>
<td>517,34</td>
<td>517,265</td>
<td>2359</td>
<td>77,7</td>
<td>10</td>
</tr>
<tr>
<td>517,35</td>
<td>517,5</td>
<td>517,425</td>
<td>2379</td>
<td>84,3</td>
<td>20</td>
</tr>
<tr>
<td>545,91</td>
<td>546,06</td>
<td>545,985</td>
<td>2264</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>675,12</td>
<td>675,27</td>
<td>675,195</td>
<td>2555</td>
<td>107,7</td>
<td></td>
</tr>
<tr>
<td>688,08</td>
<td>688,23</td>
<td>688,155</td>
<td>2439</td>
<td>87,6</td>
<td>5</td>
</tr>
<tr>
<td>688,24</td>
<td>688,39</td>
<td>688,315</td>
<td>2471</td>
<td>92,8</td>
<td>10</td>
</tr>
<tr>
<td>688,4</td>
<td>688,55</td>
<td>688,475</td>
<td>2480</td>
<td>98</td>
<td>20</td>
</tr>
<tr>
<td>730,89</td>
<td>731,04</td>
<td>730,965</td>
<td>2576</td>
<td>85,4</td>
<td></td>
</tr>
<tr>
<td>Nº de muestras</td>
<td>18</td>
<td>7</td>
<td>12</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Valor mínimo</td>
<td>2453</td>
<td>39,5</td>
<td>50,5</td>
<td>5</td>
<td>18,1</td>
</tr>
<tr>
<td>Valor máximo</td>
<td>2659</td>
<td>86,2</td>
<td>120,5</td>
<td>20</td>
<td>80,2</td>
</tr>
<tr>
<td>Media</td>
<td>2521,39</td>
<td>65,19</td>
<td>82,98</td>
<td>11,67</td>
<td>38,60</td>
</tr>
<tr>
<td>Desviación estándar</td>
<td>56,99</td>
<td>16,31</td>
<td>16,79</td>
<td>6,51</td>
<td>17,03</td>
</tr>
<tr>
<td>Coeficiente de variación (%)</td>
<td>2,26</td>
<td>25,02</td>
<td>20,24</td>
<td>55,83</td>
<td>44,13</td>
</tr>
<tr>
<td>Prof_Desde _m</td>
<td>Prof_Hasta _m</td>
<td>Prof_media _m</td>
<td>Densidad Se ca_kg/m³</td>
<td>SigmaU _MPa</td>
<td>TRIAXIAL</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>767,1</td>
<td>767,25</td>
<td>767,175</td>
<td>2646</td>
<td>130,4</td>
<td>46,6</td>
</tr>
<tr>
<td>772,03</td>
<td>772,18</td>
<td>772,105</td>
<td>2665</td>
<td>103,9</td>
<td>5</td>
</tr>
<tr>
<td>772,19</td>
<td>772,34</td>
<td>772,265</td>
<td>2669</td>
<td>110</td>
<td>10</td>
</tr>
<tr>
<td>772,35</td>
<td>772,5</td>
<td>772,425</td>
<td>2669</td>
<td>101,7</td>
<td>20</td>
</tr>
<tr>
<td>807,19</td>
<td>807,31</td>
<td>807,25</td>
<td>2685</td>
<td>159,2</td>
<td>50,7</td>
</tr>
<tr>
<td>853,74</td>
<td>853,86</td>
<td>853,8</td>
<td>2432</td>
<td>131,2</td>
<td>5</td>
</tr>
<tr>
<td>853,87</td>
<td>853,99</td>
<td>853,93</td>
<td>2430</td>
<td>103,4</td>
<td>10</td>
</tr>
<tr>
<td>854</td>
<td>854,13</td>
<td>854,065</td>
<td>2440</td>
<td>137,8</td>
<td>20</td>
</tr>
<tr>
<td>861,38</td>
<td>861,5</td>
<td>861,44</td>
<td>2467</td>
<td>104,3</td>
<td>30,4</td>
</tr>
<tr>
<td>906,26</td>
<td>906,38</td>
<td>906,32</td>
<td>2719</td>
<td>269*</td>
<td>5</td>
</tr>
<tr>
<td>906,39</td>
<td>906,51</td>
<td>906,45</td>
<td>2709</td>
<td>300*</td>
<td>10</td>
</tr>
<tr>
<td>906,52</td>
<td>906,64</td>
<td>906,58</td>
<td>2731</td>
<td>247,6*</td>
<td>20</td>
</tr>
<tr>
<td>911,01</td>
<td>911,14</td>
<td>911,075</td>
<td>2498</td>
<td>40,3</td>
<td></td>
</tr>
<tr>
<td>966,77</td>
<td>966,9</td>
<td>966,835</td>
<td>2585</td>
<td>125,3</td>
<td></td>
</tr>
<tr>
<td>1012,66</td>
<td>1012,78</td>
<td>1012,72</td>
<td>2449</td>
<td>129,1</td>
<td>5</td>
</tr>
<tr>
<td>1012,78</td>
<td>1012,9</td>
<td>1012,84</td>
<td>2439</td>
<td>96,3</td>
<td>10</td>
</tr>
<tr>
<td>1012,9</td>
<td>1013,02</td>
<td>1012,96</td>
<td>2411</td>
<td>121,8</td>
<td>20</td>
</tr>
<tr>
<td>1023,69</td>
<td>1023,82</td>
<td>1023,755</td>
<td>2472</td>
<td>28,1*</td>
<td>12*</td>
</tr>
<tr>
<td>1077,45</td>
<td>1077,58</td>
<td>1077,515</td>
<td>2465</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>1129,28</td>
<td>1129,4</td>
<td>1129,34</td>
<td>2518</td>
<td>145,1</td>
<td>5</td>
</tr>
<tr>
<td>1129,4</td>
<td>1129,52</td>
<td>1129,46</td>
<td>2517</td>
<td>135,8</td>
<td>10</td>
</tr>
<tr>
<td>1129,52</td>
<td>1129,64</td>
<td>1129,58</td>
<td>2504</td>
<td>128,7</td>
<td>20</td>
</tr>
<tr>
<td>1145,7</td>
<td>1145,83</td>
<td>1145,765</td>
<td>2775</td>
<td>100,6</td>
<td></td>
</tr>
<tr>
<td>1199,34</td>
<td>1199,46</td>
<td>1199,4</td>
<td>2525</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>1257,44</td>
<td>1257,57</td>
<td>1257,505</td>
<td>2597</td>
<td>107,2</td>
<td></td>
</tr>
<tr>
<td>1269,84</td>
<td>1269,9</td>
<td>1269,9</td>
<td>2499</td>
<td>122,5</td>
<td>5</td>
</tr>
<tr>
<td>1269,97</td>
<td>1270,1</td>
<td>1270,035</td>
<td>2505</td>
<td>118,8</td>
<td>10</td>
</tr>
<tr>
<td>1270,1</td>
<td>1270,22</td>
<td>1270,16</td>
<td>2503</td>
<td>103,2</td>
<td>20</td>
</tr>
<tr>
<td>1294,74</td>
<td>1294,87</td>
<td>1294,805</td>
<td>2648</td>
<td>94,6</td>
<td></td>
</tr>
<tr>
<td>1320,64</td>
<td>1320,77</td>
<td>1320,705</td>
<td>2464</td>
<td>110,3</td>
<td>5</td>
</tr>
<tr>
<td>1320,77</td>
<td>1320,89</td>
<td>1320,83</td>
<td>2451</td>
<td>115,3</td>
<td>10</td>
</tr>
<tr>
<td>1320,9</td>
<td>1321,02</td>
<td>1320,96</td>
<td>2469</td>
<td>178</td>
<td>20</td>
</tr>
<tr>
<td>1351,48</td>
<td>1351,61</td>
<td>1351,545</td>
<td>2578</td>
<td>86,3</td>
<td></td>
</tr>
<tr>
<td>1381,15</td>
<td>1381,28</td>
<td>1381,215</td>
<td>2682</td>
<td>126,9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nº de muestras</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Media</th>
<th>Desviación estándar</th>
<th>Coeficiente de variación (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>2264</td>
<td>2464</td>
<td>2528,58</td>
<td>112,50</td>
<td>52,24</td>
</tr>
<tr>
<td></td>
<td>40,3</td>
<td>24,33</td>
<td>24,33</td>
<td>21,63</td>
<td>4,55</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019
En la Figura 3.184 se muestra la relación entre la densidad seca y la resistencia a compresión simple de los ensayos realizados en la unidad de Tobas, donde se observa como aumenta la densidad de acuerdo al aumento de la resistencia.

Figura 3.184 Grafica de la relación densidad aparente-resistencia a compresión simple de la unidad Tobas
Fuente: Subterra, 2019

En la Figura 3.185 y la Figura 3.186 se muestra gráficamente los ajustes de los criterios de rotura de Hoek-Brown, realizados para esta unidad, a partir de los resultados de los ensayos triaxiales y de tracción realizados en el laboratorio.

Figura 3.185 Gráfica de ajuste de roca intacta de la Unidad de Tobas, para profundidad de menos de 350 m
Fuente: Subterra, 2019
El módulo de deformación de la roca intacta E_i obtenido en laboratorio es de 52.200 MPa, valor adecuado para este tipo de materiales.

En la Figura 3.187 se muestra la relación E_i/σ_{ci} en la que se observa que la mayoría de las medidas presentan un valor entre 200 y 500, que se considera adecuado para esta unidad.

Figura 3.186 Gráfica de ajuste de roca intacta de la Unidad de Tobas, para profundidad de más de 350 m
Fuente: Subterra, 2019

Figura 3.187 Gráfica de la relación entre el módulo de Young y la resistencia a compresión simple de la Unidad Tobas
Fuente: Subterra, 2019
El parámetro \(m_i \) se ha asignado a partir de la bibliografía (Hoek et al 1996). La Figura 3.188 muestra valores de la constante \(m_i \) para diferentes grupos de rocas.

<table>
<thead>
<tr>
<th>Rock type</th>
<th>Class</th>
<th>Group</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clastic</td>
<td></td>
<td></td>
<td>Course</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medium</td>
</tr>
<tr>
<td>SEDIMENTARY</td>
<td>Organic</td>
<td></td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Very Fine</td>
</tr>
<tr>
<td>Non-Clastic</td>
<td>Carbonate</td>
<td>Breccia (20)</td>
<td>Chalk 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Coal (8-21)</td>
</tr>
<tr>
<td></td>
<td>Chemical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gypsum (6)</td>
<td>Ashydrite 13</td>
<td></td>
</tr>
<tr>
<td>METAMORPHIC</td>
<td>Foliated*</td>
<td>Gneiss (33)</td>
<td>Schist (10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phyllite (10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slate 9</td>
</tr>
<tr>
<td>IGNEOUS</td>
<td>Light</td>
<td>Granite (33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Granoedite (30)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diorite (28)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gabro (27)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Norite (22)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dark</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhyolite (16)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dacite (17)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Andesite 19</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dolerite (19)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basalt (17)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extrusive pyroclastic type</td>
<td>Agglomerate (20)</td>
<td>Tuff (18)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Breccia (18)</td>
<td></td>
</tr>
</tbody>
</table>

*These values are for intact rock specimens tested normal to foliation. The value of \(m_i \) will be significantly different if failure occurs along a foliation plane (Hoek, 1983).

Figura 3.188 Valores bibliográficos de la constante \(m_i \), para roca intacta, según grupos de rocas (Hoek et al, 1996)
Fuente: Subterra, 2019

Así, haciendo un análisis de los parámetros obtenidos anteriormente y los de los nuevos ensayos de laboratorio se han obtenido los siguientes valores para la caracterización de la roca intacta, mostrados en la Tabla 3.71

Tabla 3.71 Parámetros de la roca intacta

<table>
<thead>
<tr>
<th>Litología</th>
<th>Profundidad</th>
<th>(\gamma_a) (t/m³)</th>
<th>(\sigma_c') (MPa)</th>
<th>(E') (MPa)</th>
<th>(E'/\sigma_{ci})</th>
<th>v</th>
<th>(m_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobas</td>
<td>Profundidad <350 m</td>
<td>2.66</td>
<td>75,25</td>
<td>35,850</td>
<td>476</td>
<td>0.22</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Profundidad >350 m</td>
<td>2.67</td>
<td>126,65</td>
<td>56,445</td>
<td>446</td>
<td>0.25</td>
<td>13</td>
</tr>
<tr>
<td>Intrusivo</td>
<td></td>
<td>2.74</td>
<td>169</td>
<td>49,890</td>
<td>295</td>
<td>0.30</td>
<td>25</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

Para establecer las propiedades del macizo rocoso se adoptará el 75% de la resistencia media que se ha obtenido en la caracterización para las zonas de falla, ya que de estas zonas no se disponen datos, pero se estima que presentarán propiedades más desfavorables, estando así del lado de la seguridad en los análisis de estabilidad de la excavación.

3.3.7.17.2.1.2 Propiedades mecánicas del macizo rocoso

Una vez determinadas las propiedades de cada litotipo a nivel de roca intacta, deben minorarse a nivel macizo rocoso. Para ello a cada litotipo se le ha asociado un Rock Mass Ratio (RMR), aplicando la clasificación de Laubscher.

Estudio de Impacto Ambiental

I-0010371-MQC-EIA-V1-FA

Noviembre, 2019

3.266
En base a los parámetros definidos de roca intacta, se han establecido los parámetros resistentes de cohesión y fricción del macizo rocoso mediante el programa RocLab, el cual permite determinar los parámetros resistentes del macizo rocoso, basados en el criterio de rotura generalizado de Hoek-Brown. Se han realizado los cálculos para cada uno de los intervalos de RMR obtenidos de la zonificación geotécnica, teniendo en cuenta la relación de la unidad litológica de Tobas, Formación Combia (Tmc), ya que es la unidad por la que principalmente discurre el trazado de las excavaciones, teniendo en cuenta distintos intervalos de recubrimiento.

Tabla 3.72 Resultados obtenidos para establecer los parámetros resistentes, calculados para el macizo rocoso conformado por la unidad litológica de las Tobas (Tmc). Túnel de desarrollo minero proyectado a cámara de trituración. Mina Quebradona, excavación D&B

<table>
<thead>
<tr>
<th>Y (kN/m³)</th>
<th>v</th>
<th>RMRL</th>
<th>σc (MPa)</th>
<th>σr (MPa)</th>
<th>σt (MPa)</th>
<th>mb</th>
<th>s</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>26,7</td>
<td>0,25</td>
<td>20</td>
<td>95</td>
<td>42.300</td>
<td>56.450</td>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

Tabla 3.73 Resultados obtenidos para establecer los parámetros resistentes, calculados para el macizo rocoso conformado por la unidad litológica de las Tobas (Tmc). Túnel de desarrollo minero proyectado a cámara de trituración. Mina Quebradona, excavación con TBM

<table>
<thead>
<tr>
<th>Y (kN/m³)</th>
<th>N</th>
<th>RMRL</th>
<th>σc (MPa)</th>
<th>σr (MPa)</th>
<th>σt (MPa)</th>
<th>mb</th>
<th>s</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>26,7</td>
<td>0,25</td>
<td>20</td>
<td>95</td>
<td>42.300</td>
<td>56.450</td>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

3.3.7.17.2.1.3 Agua subterránea

En términos generales, se tiene la referencia que la zona hidrogeológicamente presenta fundamentalmente una infiltración a través de las discontinuidades del macizo rocoso, dada la baja capacidad de almacenamiento y baja permeabilidad del macizo rocoso; separando las zonas de falla, que, por su presencia de roca fracturada-muy fracturada, y de los contactos mecánicos entre litologías; dónde se espera infiltraciones importantes a nivel puntual.
De acuerdo con los estudios y modelación realizados por la propiedad del Proyecto, para la roca dominante se tiene una permeabilidad estimada de $K = 10^{-10} \text{ m/s}$, para un orden de magnitud del flujo en la sección de los túneles entre 0,0002 a 0,0025 l/m de túnel, equivalentes a 4 l/s al final de su longitud. Para los sectores de zonas de falla, se estima una permeabilidad en el rango: $K=10^{-7}$ y 10^{-6} m/s (véase la Figura 3.189).

Tanto si se trata de un macizo rocoso como si se trata de un suelo, a partir de la Ley de Darcy se definen los siguientes grados de permeabilidad de los materiales teniendo en cuenta el coeficiente de permeabilidad K que se muestran en la Tabla 3.74.

<table>
<thead>
<tr>
<th>Grado de permeabilidad</th>
<th>Valor de K (cm/s)</th>
<th>Valor de K (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevada</td>
<td>Superior a 10^{-1}</td>
<td>Superior a 10^{-7}</td>
</tr>
<tr>
<td>Media</td>
<td>10^{-1} a 10^{-3}</td>
<td>10^{-3} a 10^{-5}</td>
</tr>
<tr>
<td>Baja</td>
<td>10^{-3} a 10^{-5}</td>
<td>10^{-5} a 10^{-7}</td>
</tr>
<tr>
<td>Muy baja</td>
<td>10^{-5} a 10^{-7}</td>
<td>10^{-7} a 10^{-9}</td>
</tr>
<tr>
<td>Prácticamente impermeable</td>
<td>Menor de 10^{-7}</td>
<td>Menor a 10^{-9}</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

En razón a lo anterior, y las comprobaciones realizadas en campo sobre infraestructuras subterráneas cercanas, como lo es la obra del Proyecto de la Central Hidroeléctrica Piedras, de la empresa Celsia, se aprecia que el macizo es de Baja permeabilidad; para el Proyecto Minera de Cobre Quebradona, estando dentro del mismo contexto geomecánico, se estima un caudal de infiltración a los túneles de acceso muy bajo.
3.3.7.17.2.1.4 Zonificación geotécnica

De acuerdo a la información proporcionada por la propiedad, en cuanto a características geomecánicas de la roca intacta y a la valoración geomecánica del macizo rocoso, junto con las consideraciones de permeabilidad de la roca, se han obtenido los parámetros geomecánicos asignados al macizo rocoso, a través de los trazados de las infraestructuras subterráneas proyectadas, obteniendo los perfiles geotécnicos a través de los ejes de los túneles principales de acceso proyectados, tanto a cámara de trituración como a la parte alta del yacimiento o nivel de socavación; esto es; dos túneles gemelos, semi-horizontal, hasta cámara de trituración primaria; así como los túneles proyectados a la parte alta del yacimiento o nivel de socavación, esto es, un túnel en Perforación y Voladura P&V al 14.5%, y un túnel con TBM al 10%; los cuales se presentan a continuación.
Figura 3.190 Perfil geotécnico Túnel de acceso a cámara de trituración
Fuente: Subterra, 2019
Figura 3.191 Perfil geotécnico Túnel de acceso a parte alta del yacimiento (Socavación)
Fuente: Subterra, 2019
3.3.7.17.2.2 Prediseño de los sostenimientos

Para la excavación y sostenimiento de la infraestructura subterránea de la Mina Quebradona, se ha previsto el empleo de dos métodos constructivos diferentes:

- **NATM:** El sostenimiento del túnel proyectado, excavado mediante perforación y voladura, estará compuesto por concreto lanzado y pernos principalmente, pudiendo ser necesario el uso de marcos metálicos y ocasionalmente paraguas ligeras en el caso de los terrenos de peor calidad.

 Este método se empleará en las siguientes infraestructuras:
 - Túnel inicial para introducir la TBM
 - Túneles principales y galerías secundarias
 - Caverna de trituración y parte alta del yacimiento o zona de socavación

Para los pozos se han previsto, a su vez, el método mecanizado de ejecución, siguiente:

- **Método Raise-Boring,** basado en la excavación de un taladro piloto que posteriormente es escarificado, de abajo hacia arriba, con herramientas mecánicas, en su integridad, desescombrando por abajo, y una vez que la excavación está completada en su integridad, se procede a sostener y/o revestir el pozo. En este caso para ello se ha previsto el empleo de concreto lanzado, pernos y marcos metálicos.

De acuerdo a lo anterior en la práctica totalidad de los casos, salvo para el citado caso de empleo de dovelas en los terrenos de peor calidad que se excaven con TBM, los elementos de soporte serán pernos, marcos y concreto lanzado; siendo este último reforzado con fibras o malla, el elemento principal.

Por ello en todos los casos de este proyecto, se seguirán los siguientes principios constructivos, en los que se basa el NATM:

- La zona de roca que rodea al túnel interviene en la estabilidad de la excavación y es el principal elemento del que depende ésta. Es decir, es la propia roca la que se autosostiene, ya que se forma un arco de descarga en torno al túnel, que transmite las tensiones a ambos lados de este.

- Como consecuencia de lo señalado en el punto anterior, conviene mantener inalteradas, en la medida de lo posible, las características de la roca que rodean al túnel. Ello se consigue con un diseño adaptativo de las voladuras para cada tipo de terreno, o mediante el empleo de excavación mecánica en los terrenos de peor calidad o la TBM.

- El sostenimiento se pondrá de forma que deje deformarse al terreno, siempre dentro de la estabilidad del túnel, con objeto de que la roca desarrolle su capacidad autoportante.

- El sostenimiento se colocará inmediatamente después de la excavación, y misión fundamental es evitar que el terreno pierda propiedades. La misión secundaria del mismo será aportar su capacidad resistente, que es pequeña en comparación con las grandes presiones que puede existir en el terreno debido al enorme peso del terreno del recubrimiento.

- En este caso, para grandes profundidades, más de 600 m, en los que es de prever problemas de squeezing en los terrenos de peor calidad, se ha preferido diseñar una estrategia de soporte secuencial, en la que se aplica una segunda capa de concreto lanzado por detrás de la frente de excavación.

- En la etapa de Proyecto se diseñan varios tipos de sostenimiento a aplicar según sea la calidad geotécnica de la roca. Durante la obra los sostenimientos se optimizan y escogen, a partir de la información suministrada en el Plan de Seguimiento y Monitoreo del Proyecto.
Para realizar el prediseño de los sostenimientos de todas las obras subterráneas, se han empleado dos metodologías diferenciadas. En primer lugar, se han empleado métodos empíricos basados en las clasificaciones geomecánicas, y en la experiencia, lo que proporciona un prediseño muy ajustado del sostenimiento a instalar.

Adicionalmente, se han realizado comprobaciones mediante curvas características, con el software RocSuport de RocScience.

A continuación, se recogen las metodologías y los resultados para cada uno de estos análisis.

3.3.7.17.2.2.1 Clasificaciones geomecánicas

Para realizar una primera estimación de las necesidades de sostenimiento que exigirá la excavación de las obras subterráneas previstas, se ha recurrido, en primer lugar, a los métodos empíricos de diseño. Estos métodos proporcionan una aproximación al sostenimiento de los túneles, aunque no se consideran un método de cálculo, siendo de gran valor y utilidad para enfocar el problema de partida.

Los métodos empíricos se basan en las clasificaciones geomecánicas. Son muchos los esquemas de clasificación geomecánica de los macizos rocosos que se han desarrollado desde que Ritter, en 1879, intentara formalizar un método para el diseño de túneles. La mayoría de los métodos de clasificación multiparamétricos (Wickham, Bieniawski, Barton, Palmström, etc.) se han desarrollado para su uso en obra civil o minería, introduciendo todo tipo de componentes de la caracterización geotécnica del macizo rocoso.

Figura 3.192 Equivalencia entre el RMR y el Q (Barton y Bieniawski. RMR and Q – Setting records, T&T, feb.2008)

Fuente: Subterra, 2019
Como se aprecia, el índice Q de Barton también se puede calcular relacionándolo con el RMR de Bieniawski, mediante las siguientes expresiones:

\[
Q = 10^{\frac{RMR-50}{15}} \quad \text{(Barton, 1995)}
\]

\[
Q = e^{\frac{RMR-44}{9}} \quad \text{(Bieniawski, 1989)}
\]

En todos los casos, la aplicación de las clasificaciones geomecánicas para definir el soporte de un túnel, requiere tener en cuenta los dos aspectos siguientes:

- Es necesario analizar la idoneidad de la clasificación geomecánica elegida en función de los datos geológicos, del comportamiento tenso-deformacional del macizo y del proceso constructivo a utilizar.
- Los sostenimientos recomendados a partir de estas clasificaciones representan las condiciones medias del tramo considerado, y no tienen en cuenta posibles extremos, por ejemplo, los puntos singulares, ni rocas especiales (volcánicas, evaporíticas, expansiva).

En cualquier caso, no está de más recalcar que los métodos empíricos de diseño de sostenimientos permiten conocer los órdenes de magnitud más habituales. Los sostenimientos definitivos deberán ser referendados mediante los cálculos tenso-deformacionales justificativos correspondientes.

Las obras subterráneas de la Mina Quebradona se enmarcan en una zona sísmica. Una zona sísmica se caracteriza por presentar considerables niveles de tensión natural, mayores que las zonas asismáticas. Por ello, a la hora de emplear clasificaciones geomecánicas para definir sostenimientos en terrenos susceptibles de sufrir terremotos, es recomendable recurrir a aquellas que tienen en consideración los efectos tensionales. En este sentido, se ha preferido las aplicaciones basadas en el índice Q de Barton, ya que con el parámetro SFR (Stress Reduction Factor) se tiene en consideración la diferencia de nivel tensional.

Basándose en un gran número de casos históricos de excavaciones subterráneas, inicialmente Barton y Lunde (1974), y Grinstad y Barton (1993) aplicaron el índice Q para dimensionar de modo empírico el sostenimiento de una obra subterránea excavada mediante el NATM.

Sin embargo, recientemente el NGI (Instituto Noruego de Geotecnia) ha revisado estos criterios constituyendo la aplicación que se emplea en este proyecto.

Para diseñar el sostenimiento a instalar, en primer lugar, el NGI, utiliza las dimensiones de la excavación a realizar y el tipo de uso que se va a dar a la obra (ESR) para definir la “Dimensión Equivalente” (De) de la excavación.

\[
De = \frac{B}{ESR}
\]

Donde:

- B = anchura de la excavación (m).
- ESR = parámetro función del nivel tensional que se obtiene de la Tabla 3.75.

<table>
<thead>
<tr>
<th>Tipo de excavación</th>
<th>ESR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 3.75 Cuadro de definición de la variable ESR.</td>
<td></td>
</tr>
<tr>
<td>A Temporal, apertura de mina, etc.</td>
<td>ca. 3.5</td>
</tr>
<tr>
<td>B Ejes verticales*:</td>
<td></td>
</tr>
<tr>
<td>i. Sección Circular</td>
<td>ca. 2.5</td>
</tr>
<tr>
<td>ii. Sección cuadrada/rectangular</td>
<td>ca. 2.0</td>
</tr>
<tr>
<td>*Depende del propósito, puede ser menos de los valores dados</td>
<td></td>
</tr>
<tr>
<td>C Minas abiertas permanentes, túneles de agua para hidro generación (excluye compuerta de alta presión, túneles suplementarios de agua, túneles piloto, perforaciones y cabezotes de gran</td>
<td>1.6</td>
</tr>
<tr>
<td>apertura</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>D Vías menores y túneles de ferrocarril, camaras de purga, túneles de acceso, túneles para aguas residuales, etc.</td>
<td>1.3</td>
</tr>
<tr>
<td>E Central eléctrica, cuartos de almacenamiento, plantas de tratamiento de aguas, vías mayores y túneles de ferrocarril, camaras de defensa civil, portales, intersecciones, etc.</td>
<td>1.0</td>
</tr>
<tr>
<td>F Estaciones nucleares subterráneas, estaciones de ferrocarril, infraestructura deportiva y pública, fábricas, etc.</td>
<td>0.8</td>
</tr>
<tr>
<td>G Cavernas muy importantes y aperturas subterráneas de gran vida útil, ~100 años, con o sin acceso para mantenimiento</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

Esta dimensión, junto con el número Q, equivalente al RMR, sirve para definir nueve categorías de sostenimiento, basándose en pernos de anclaje repartido, concreto lanzado reforzado con fibras y cimbras metálicas. Toda esta información se ha resumido en el ábaco representado en la Figura 3.193.

![Cuadro de sostenimiento en función del índice Q (NGI, 2015)](image)

Fuente: Subterra, 2019

Para la aplicación de este método en el diseño de sostenimiento, en los que hay consideración sísmica, para estar del lado de la seguridad, Barton (1984) propone incrementar el valor del SRF en un 100 %, a lo que grosso modo se traduce en una reducción del valor habitual de Q a la mitad.

\[
Q \text{ (diseño sísmico)} = 0.5 \times Q \text{ (diseño estático)}
\]

En términos de presión de sostenimiento, esta regla supone incrementar su valor en un 25 % como se ilustra en el gráfico adjunto:
Figura 3.194 Reducción sísmica del valor de Q para obtener un aumento del 25 % en la presión de sostenimiento
Fuente: Subterra, 2019

Barton recomienda que este incremento en la presión del sostenimiento se materialice a base de pernos, cerrando la malla e incrementando la longitud si fuese necesario. La razón que indica para esta recomendación es que de ese modo se limitan los movimientos en las diaclasas, y con esto también se limitan los posibles incrementos de filtraciones tras los terremotos.

Todas las consideraciones anteriores han sido consideradas para definir los sostenimientos que se proponen, tomando en general un ESR=1, dadas las incertidumbres existentes en esta fase del proyecto.

Para estimar la longitud de los pernos a emplear considerando no sólo la anchura de la excavación, sino también la calidad geomecánica del macizo rocoso, resulta adecuado aplicar las siguientes expresiones:

Clases I y II: L=1,4+0,18W
Clase III: L=1,8+0,18W
Clase IV: L=2+0,18W
Clase V: L=3+0,18W

Siendo W la anchura o vano máximo de la excavación subterránea en metros.

Finalmente, para la estimación de la longitud del máximo vano sin sostener puede realizarse a partir de los índices Q de Barton y RMR de Bieniawski, ya que el vano máximo sin sostener puede ser estimado a partir del ESR y de Q de la siguiente manera:

Máximo vano sin sostener (longitud de pase) = 2∙ESR∙Q^{0.4} (m)

O bien siguiendo a Bieniawski (1989), que relaciona el valor RMR para el tiempo de autosoporte de un espacio activo sin soporte, tal y como se muestra en la Figura 3.195. Resultando conveniente comprobar ambos métodos y contrastarlos.
3.3.7.17.2.2.2 Método convergencia – confinamiento (curvas características)

Bajo ciertas condiciones de simetría de carga y geometría regular de la excavación (excavación cilíndrica o esférica) es posible efectuar un análisis simplificado de la interacción terreno-sostenimiento que permita el Proyecto de este último.

Aunque el análisis es relativamente sencillo, se tienen en cuenta parámetros fundamentales del terreno (módulos elásticos, criterios de rotura, deformabilidad post-rotura) y del sostenimiento (rigidez y su última carga). La idea fundamental del procedimiento se esquematiza en la Figura 3.196.

En la sección BB’, ya excavada y próxima al frente, la tensión po ha desaparecido y el contorno del túnel ha experimentado un desplazamiento hacia el interior (ui). Debido a la marcada tridimensionalidad del problema no es posible en principio efectuar un análisis bidimensional en sección plana. De hecho, en estas condiciones (2D, deformación plana) una sección circular sin presión interior se deformaría considerablemente más que lo que se observaría en una sección como la BB’ próxima la frente. Sin embargo, se podría mantener el análisis bidimensional si se...
supusiera la existencia de una presión ficticia tal que su aplicación conduzca al mismo desplazamiento radial u_i que en el caso real tridimensional. En este caso la variación continua desde $p_i=p_0$ hasta $p_i=0$ reproduciría el complejo proceso de deformación desde una sección AA', sin alterar por la construcción del túnel hasta la sección del túnel sin revestimiento alguno y alejada del frente, para evitar su efecto 3D.

La relación entre esta p_i y u_i constituye la denominada “curva característica” o “curva de convergencia” del túnel y sólo depende de las propiedades del terreno (para una geometría circular). Lo normal, sin embargo, es que a una cierta distancia del frente d (sección CC') se coloque un determinado sostenimiento (bulones, hormigón proyectado, cerchas, revestimientos continuos o una combinación de alguno de ellos) que inmediatamente entrará en carga al menos por dos razones:

- El progresivo alejamiento del frente lo que supone la disminución virtual de la carga p_i y por tanto un incremento de deformación radial.
- Las deformaciones diferidas de la roca al transcurrir el tiempo.

En una primera aproximación el revestimiento reaccionará con una determinada rigidez constante (k) frente a las deformaciones impuestas.

Teniendo en cuenta que se instala una vez que la roca se ha deformado una magnitud u_d, la respuesta del revestimiento se puede escribir:

$$p_i = k \cdot (u_i - u_d)$$

El desplazamiento u_d corresponde a una determinada presión virtual sobre el túnel p_d. La ecuación anterior se denomina CF (curva de confinamiento) y se puede ver en la Figura 3.197.

![Figura 3.197 Representación de las distintas curvas en un gráfico p_i vs u_i](fuente: Subterra, 2019)

Finalmente, túnel y revestimiento alcanzarán una posición única de equilibrio (sección DD') cuando se alcancen la presión y desplazamiento (p_{eq}, u_{eq}) comunes a las dos curvas CC y CF.

Para una determinada curva CC el proyectista o constructor puede optar por la instalación de un revestimiento muy próximo al frente (u_d1) o lejos de él (u_d2), como muestra la Figura 3.198. Puede también elegir la rigidez del sostenimiento (rígido: k_1; deformable k_n). En principio, cuanto más rígido sea un sostenimiento y más próximo al frente se instale, mayor será la presión de equilibrio que ha de soportar y menor el desplazamiento radial (o convergencia) del túnel.
El fundamento del método consiste en dibujar la curva de convergencia, que se asocia al terreno y la curva de confinamiento, que lo hace al sostenimiento, sobre un diagrama donde el eje horizontal representa la deformación del contorno de la excavación hacia el interior y el eje vertical se asocia con la tensión radial del elemento de terreno situado en el contorno de la superficie excavada del túnel. La curva del terreno, que se obtiene de las ecuaciones características de la elasticidad, se puede descomponer en tres partes que simulan el comportamiento del terreno; una parte elástica, representada por una línea recta, que disminuye su tensión y aumenta la deformación a medida que se excava; una parte plástica, representada por una curva que se inicia cuando se supera el criterio de rotura, cuya forma depende del comportamiento plástico del terreno. Si en esta fase la curva corta al eje de abscisas (deformación), la excavación es estable sin necesidad de utilizar ningún elemento auxiliar; por el contrario, si la curva no toca el eje y comienza a ascender se asocia con la fase de colapso de la excavación.

En este contexto se puede representar la curva del sostenimiento, con inicio a partir de una deformación o relajación estimada del terreno y con un comportamiento elástico al inicio, hasta que se corte con la curva característica del terreno, obteniendo en ese caso el punto de equilibrio, que define la deformación radial alcanzada por el contorno del túnel y la presión que la roca está ejerciendo sobre el sostenimiento.

Para aplicar este método es necesario:

- Determinar la curva CC (que sólo depende de las características del terreno)
- Determinar la rigidez del sostenimiento (k).
- Determinar la deformación del túnel u_d (o de forma equivalente, p_d) correspondiente a la instalación del sostenimiento.

El método descrito tiene las limitaciones que se derivan de las hipótesis o condiciones que conducen a su formulación. Las más sobresalientes son:

- Estado de tensiones inicial isótropo y homogéneo.
- Geometrías circulares.
- Dificultades para adaptar el comportamiento tridimensional del frente y en para estimar el movimiento u_d.

Como ventajas se señala que es posible obtener soluciones analíticas para muchos casos, que la comparación con otros métodos más avanzados (numéricos) es bastante satisfactoria y que proporciona un buen entendimiento de los fenómenos de interacción entre terreno y sostenimiento.
La limitación del método convergencia – confinamiento es la que se puede asociar a cualquier método analítico, aunque en este caso se aporta la participación de los elementos de sostenimiento.

Para el análisis analítico expuesto se ha empleado el programa RocSuport v3.0, para la estimación de la deformación en excavaciones circulares.

El análisis que realiza el programa permite visualizar la interacción del túnel con diferentes sistemas de sostenimiento, permitiendo determinar un factor de seguridad del sistema de soporte.

Los parámetros de cálculo para la resolución mediante este método son:

- Módulo elástico del macizo rocoso.
- Coeficiente de Poisson.
- Resistencia a compresión simple del macizo rocoso.
- Ángulo de fricción del macizo rocoso.
- Densidad.

Dado que el programa sólo admite geometrías circulares, se define un parámetro denominado radio equivalente (Req) que es el radio de una excavación circular con la misma área que la excavación real.

En la Tabla 3.76 se muestran los parámetros de cálculo utilizados en cada uno de los casos analizados.

Tabla 3.76 Parámetros de cálculo a emplear al aplicar el método de las Curvas Características

<table>
<thead>
<tr>
<th>Propiedades unidad de Tobas (Tmc)</th>
<th>(Y) (kN/m(^3))</th>
<th>(\nu)</th>
<th>RMR</th>
<th>(\sigma_{ci}) (MPa)</th>
<th>(E_i) (MPa)</th>
<th>(m_i)</th>
<th>D</th>
<th>(E_m) (MPa)</th>
<th>(\sigma_{cm}) (MPa)</th>
<th>(\sigma_{e}) (MPa)</th>
<th>(\sigma_{t}) (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.7</td>
<td>0.25</td>
<td>20</td>
<td>95</td>
<td>42300</td>
<td>13</td>
<td>0</td>
<td>1932</td>
<td>8,890</td>
<td>0,756</td>
<td>-0,018</td>
<td></td>
</tr>
<tr>
<td>26.7</td>
<td>0.25</td>
<td>50</td>
<td>126,6</td>
<td>56450</td>
<td>13</td>
<td>0</td>
<td>5983</td>
<td>17,548</td>
<td>2,855</td>
<td>-0,067</td>
<td></td>
</tr>
<tr>
<td>26.7</td>
<td>0.25</td>
<td>70</td>
<td>126,6</td>
<td>56450</td>
<td>13</td>
<td>0</td>
<td>41710</td>
<td>70,119</td>
<td>38,962</td>
<td>-4,223</td>
<td></td>
</tr>
<tr>
<td>26.7</td>
<td>0.25</td>
<td>90</td>
<td>126,6</td>
<td>56450</td>
<td>13</td>
<td>0</td>
<td>43271</td>
<td>89,862</td>
<td>91,187</td>
<td>-6,413</td>
<td></td>
</tr>
</tbody>
</table>

RMR

<table>
<thead>
<tr>
<th>Cobertura (m)</th>
<th>350 (NATM)</th>
<th>600 (NATM)</th>
<th>900 TBM</th>
<th>1200 (NATM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mohr-Coulomb</td>
<td>Mohr-Coulomb</td>
<td>Mohr-Coulomb</td>
<td>Mohr-Coulomb</td>
<td>Mohr-Coulomb</td>
</tr>
<tr>
<td>(\phi) (°)</td>
</tr>
<tr>
<td>20</td>
<td>36</td>
<td>29.7</td>
<td>26.95</td>
<td>25.10</td>
</tr>
<tr>
<td>30</td>
<td>44</td>
<td>33.80</td>
<td>30.76</td>
<td>28.70</td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>36.23</td>
<td>37.17</td>
<td>30.83</td>
</tr>
<tr>
<td>70</td>
<td>54</td>
<td>43.48</td>
<td>42.87</td>
<td>38.11</td>
</tr>
<tr>
<td>90</td>
<td>54</td>
<td>49.13</td>
<td>47.46</td>
<td>44.58</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

En las siguientes tablas se muestran los resultados obtenidos del análisis mediante curvas características, cuyos resultados detallados se recogen en el Anexo 3.3_Dilo_Accesos_Mina.

Tabla 3.77 Resumen de resultados de los análisis mediante curvas características. Túnel con tuneladora

<table>
<thead>
<tr>
<th>Sostenimiento</th>
<th>Rango</th>
<th>RMR</th>
<th>Pernos (\Phi 22) mm L=4 m</th>
<th>Concreto Lanzado SH-35</th>
<th>Malla</th>
<th>Marcos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Esp. Long (m)</td>
<td>Esp. Trans. (m)</td>
<td>15x15 (\Phi 6.5)</td>
<td>LG</td>
<td>FS</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>>80</td>
<td></td>
<td>3 (500 J)</td>
<td>SI</td>
<td>NO</td>
<td>>5</td>
</tr>
</tbody>
</table>
Tabla 3.78 Resumen de resultados de los análisis mediante curvas características. Túnel NATM

<table>
<thead>
<tr>
<th>Sostenimiento</th>
<th>Rango RMR</th>
<th>Recubrimiento</th>
<th>Longitud</th>
<th>Pernos Φ 22 mm</th>
<th>Concreto Lanzado SH-35</th>
<th>Marcos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(m)</td>
<td></td>
<td>(cm)</td>
<td></td>
<td>LG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pase (m)</td>
<td></td>
<td>Esp. Long (m)</td>
<td>Esp. Trans. (m)</td>
<td>FS</td>
</tr>
<tr>
<td>I</td>
<td>>80</td>
<td>600-1200</td>
<td>5</td>
<td>2.5</td>
<td>2.5</td>
<td>3 (sin fibra)+5</td>
</tr>
<tr>
<td>II</td>
<td>60-80</td>
<td>600-1200</td>
<td>4</td>
<td>2.0</td>
<td>2.0</td>
<td>5(500 J)+5</td>
</tr>
<tr>
<td>III</td>
<td>40-60</td>
<td>600-1200</td>
<td>3</td>
<td>1.5</td>
<td>1.5</td>
<td>10(500 J)+10</td>
</tr>
<tr>
<td>IV</td>
<td>20-40</td>
<td>600-1200</td>
<td>1.5</td>
<td>1.5</td>
<td>1.0</td>
<td>15(700 J)+10</td>
</tr>
<tr>
<td>V</td>
<td>< 20</td>
<td>600-1200</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>25(1000 J)+20</td>
</tr>
<tr>
<td>Caverna Trituradora</td>
<td>60-80</td>
<td>1200</td>
<td>2</td>
<td>2.0</td>
<td>1.5</td>
<td>15(700 J)</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

Adicionalmente, debido a la cobertera del túnel, se ha analizado el riesgo de squeezing en el interior del túnel.

Para realizar la predicción y valoración del fenómeno de fluencia (*Squeezing*), suelen aplicarse criterios empíricos, basados en la experiencia. En general suelen utilizarse dos tipos de criterios, los basados en las clasificaciones geomecánicas, y los basados en la estimación de la resistencia a compresión simple del macizo rocoso.

Entre los criterios basados en clasificaciones geomecánicas podemos citar:

- Criterio de Singh (1992) basado en la recopilación de 39 casos de túneles ejecutados de la India. Este criterio correlaciona el valor de la cobertera sobre el túnel y de la clasificación Q de Barton.
- Criterio de Goel, este mejora y amplia el criterio de Singh aplicando un criterio de *Squeezing* basado en la obtención del parámetro Q de Barton del macizo rocoso, establecido a partir de datos procedentes de 99 ejemplos de obras subterráneas en Escandinavia, Reino Unido e India.

En nuestro caso usaremos distintos criterios basados en la estimación de la resistencia a compresión simple del macizo. Entre los diferentes criterios podemos diferenciar:

1. *El término deformación plástica y/o viscosa, se ha recogido como la traducción del término Squeezing, que más exactamente se corresponde con una gran deformación, que ocurre alrededor de una excavación subterránea, asociada a la fluencia por tensiones que superan la resistencia a esfuerzo cortante. La deformación puede producirse durante la construcción o continuar por un período de tiempo* (Barla, 1993). Squeezing rocks in tunnels.
Criterio de Jethwa (1984)

Donde se obtiene un factor de competencia Nc de la siguiente formulación:

\[Nc = \frac{\sigma_{cm}}{p_0} = \frac{\sigma_{cm}}{\gamma \cdot H} \]

Donde:

- \(\sigma_{cm} \): Es la resistencia a compresión del macizo rocoso
- \(\gamma \): Es el peso específico de la roca
- \(H \): Cobertura del terreno sobre el túnel

El resultado obtenido en el cálculo del factor de competencia predice las condiciones de fluencia de acuerdo a los siguientes valores:

<table>
<thead>
<tr>
<th>JETWA et. al. (1995)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nc > 2.0 Non squeezing</td>
</tr>
<tr>
<td>Nc 0.8 – 2.0 Midly squeezing</td>
</tr>
<tr>
<td>Nc 0.4 – 0.8 Moderately squeezing</td>
</tr>
<tr>
<td>Nc < 0.4 Highly squeezing</td>
</tr>
</tbody>
</table>

Criterio de Barla (1995)

\[I = \frac{\sigma_{cm}}{p_0} \]

Donde:

- \(\sigma_{cm} \): Es la resistencia a compresión del macizo rocoso.
- \(\gamma \): Es el peso específico de la roca
- \(H \): Cobertura del terreno sobre el túnel.

El resultado obtenido en el cálculo del factor de competencia predice las condiciones de fluencia de acuerdo a los siguientes valores:

<table>
<thead>
<tr>
<th>BARLA (1995)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 1.0 Non squeezing</td>
</tr>
<tr>
<td>0.4 – 1.0 Midly squeezing</td>
</tr>
<tr>
<td>0.2 – 0.4 Moderately squeezing</td>
</tr>
<tr>
<td>< 0.2 Highly squeezing</td>
</tr>
</tbody>
</table>

Criterio de Hoek (1980)

En el criterio de Hoek se obtiene la deformación esperada con la siguiente fórmula:

\[\varepsilon_t(\%) = 0.15 \cdot \left(1 - \frac{p_i}{p_0}\right) \cdot \frac{\sigma_{cm}^{-(3p_i+1)/(3p_i+0.54)}}{p_0} \]

Para \(p_i = 0 \):

\[\varepsilon_t(\%) = 0.15 \cdot \frac{\sigma_{cm}^{-(1.85)}}{p_0} \]

Donde:
\(\varepsilon_t(\%) \). - Es la convergencia esperada en el túnel en %.

Pi.- Presión interna

Po.- Tensión del macizo “insitu”

\(\sigma_{cm} \).- Resistencia a compresión del macizo rocoso

El resultado obtenido predice las condiciones de fluencia de acuerdo a los siguientes valores:

<table>
<thead>
<tr>
<th>HOEK (1980) Stress Coefficient (Sc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon_t < 1 %) Insignificant squeezing</td>
</tr>
<tr>
<td>(\varepsilon_t 1 % – 2.5 %) Minor squeezing</td>
</tr>
<tr>
<td>(\varepsilon_t 2.5% – 5 %) Severe squeezing</td>
</tr>
<tr>
<td>(\varepsilon_t 5 % – 10 %) Very severe squeezing</td>
</tr>
<tr>
<td>(\varepsilon_t > 10 %) Extreme squeezing</td>
</tr>
</tbody>
</table>

Criterio de Hoek & Marinós (2000)

Este criterio está basado en el de Hoek (1980), por lo que los valores que se obtienen son también deformaciones, analizado la potencialidad de *Squeezing* en función de las deformaciones máximas esperadas de acuerdo a la siguiente formulación:

\[
\varepsilon = 100 \cdot \left(0.002 - 0.0025 \frac{\pi_i}{\pi_o} \frac{\sigma_{cm}(2.4\pi_i - 2)}{\pi_o} \right)
\]

Para \(\pi_i=0 \):

\[
\varepsilon = 0.2 \left(\frac{\sigma_{cm}}{\pi_o} \right)^{(-2)}
\]

Donde:

\(\varepsilon(\%) \). - Es la convergencia esperada en el túnel en %.

Pi.- Presión interna

Po.- Tensión del macizo “insitu”

\(\sigma_{cm} \).- Resistencia a compresión del macizo rocoso

El resultado obtenido predice las condiciones de fluencia de acuerdo a los siguientes valores:

<table>
<thead>
<tr>
<th>HOEK (2000) and HOEK & MARINOS (2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon_t < 1 %) Insignificant squeezing</td>
</tr>
<tr>
<td>(\varepsilon_t 1 % – 2.5 %) Minor squeezing</td>
</tr>
<tr>
<td>(\varepsilon_t 2.5% – 5 %) Severe squeezing</td>
</tr>
<tr>
<td>(\varepsilon_t 5 % – 10 %) Very severe squeezing</td>
</tr>
<tr>
<td>(\varepsilon_t > 10 %) Extreme squeezing</td>
</tr>
</tbody>
</table>

Asignación de riesgo

Con los rangos descritos de riesgo por cada uno de los autores se ha establecido una media ponderada de riesgo, asignando un valor creciente al riesgo de *Squeezing* en función de cada autor, así, el criterio de Jethva puede tener rangos entre 0-3, un valor de 0-3 para el criterio de Barla y valores de 0-4 para los criterios de Hoek y Hoek & Marinós. De manera que un valor 0 es una probabilidad nula de ocurrencia del suceso y un valor de 14 es una probabilidad del 100 % de suceso (suceso cierto), tal y como se recoge en la Tabla 3.79. De esta manera se ha
establecido una probabilidad de ocurrencia con base en los cuatro autores, para las diferentes formaciones.

Tabla 3.79 Rangos Ponderados de Riesgo

<table>
<thead>
<tr>
<th>Rango del Porcentaje de Riesgo</th>
<th>Código de Color</th>
<th>Riesgo de Ocurrencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥92 %</td>
<td></td>
<td>Segura</td>
</tr>
<tr>
<td>77% - 92 %</td>
<td></td>
<td>Muy Alta</td>
</tr>
<tr>
<td>77% - 62 %</td>
<td></td>
<td>Alta</td>
</tr>
<tr>
<td>46% - 62%</td>
<td></td>
<td>Media</td>
</tr>
<tr>
<td>31% - 46%</td>
<td></td>
<td>Baja</td>
</tr>
<tr>
<td>15% - 31%</td>
<td></td>
<td>Muy Baja</td>
</tr>
<tr>
<td>≤ 15%</td>
<td></td>
<td>Nula</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

Se ha establecido una variación de rangos de RMRL y de resistencia compresión simple, así como de espesor de cobertera, cuyos resultados se muestran en la Tabla 3.80
<table>
<thead>
<tr>
<th>FORMACIÓN</th>
<th>LITOLOGÍA</th>
<th>(V_s) (m/s)</th>
<th>(\sigma_{\text{cl}}) (MPa)</th>
<th>GSI (adopted)</th>
<th>DEPT H (m)</th>
<th>(\sigma_{\text{lm}}) (MPa)</th>
<th>SQUEEZING ANALYSIS</th>
<th>VALORES DE PONDERACION DE RIESGO DE SQUEEZING</th>
<th>PROBABILIDAD DE SQUEEZING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formación</td>
<td>Combia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Tmc)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tobas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,67</td>
<td>95</td>
<td>100</td>
<td>8,9</td>
<td>8,9</td>
<td>3,33</td>
<td>3,33</td>
<td>3,33</td>
<td>3,33</td>
<td>0,02</td>
</tr>
<tr>
<td>2,67</td>
<td>95</td>
<td>200</td>
<td>8,9</td>
<td>8,9</td>
<td>1,66</td>
<td>1,66</td>
<td>1,66</td>
<td>1,66</td>
<td>0,06</td>
</tr>
<tr>
<td>2,67</td>
<td>95</td>
<td>300</td>
<td>8,9</td>
<td>8,9</td>
<td>1,11</td>
<td>1,11</td>
<td>1,11</td>
<td>1,11</td>
<td>0,12</td>
</tr>
<tr>
<td>2,67</td>
<td>95</td>
<td>400</td>
<td>8,9</td>
<td>8,9</td>
<td>0,83</td>
<td>0,83</td>
<td>0,83</td>
<td>0,83</td>
<td>0,21</td>
</tr>
<tr>
<td>2,67</td>
<td>95</td>
<td>500</td>
<td>8,9</td>
<td>8,9</td>
<td>0,67</td>
<td>0,67</td>
<td>0,67</td>
<td>0,67</td>
<td>0,32</td>
</tr>
<tr>
<td>2,67</td>
<td>95</td>
<td>600</td>
<td>8,9</td>
<td>8,9</td>
<td>0,55</td>
<td>0,55</td>
<td>0,55</td>
<td>0,55</td>
<td>0,45</td>
</tr>
<tr>
<td>2,67</td>
<td>95</td>
<td>700</td>
<td>8,9</td>
<td>8,9</td>
<td>0,48</td>
<td>0,48</td>
<td>0,48</td>
<td>0,48</td>
<td>0,59</td>
</tr>
<tr>
<td>2,67</td>
<td>95</td>
<td>800</td>
<td>8,9</td>
<td>8,9</td>
<td>0,42</td>
<td>0,42</td>
<td>0,42</td>
<td>0,42</td>
<td>0,76</td>
</tr>
<tr>
<td>2,67</td>
<td>95</td>
<td>900</td>
<td>8,9</td>
<td>8,9</td>
<td>0,37</td>
<td>0,37</td>
<td>0,37</td>
<td>0,37</td>
<td>0,95</td>
</tr>
<tr>
<td>2,67</td>
<td>95</td>
<td>1000</td>
<td>8,9</td>
<td>8,9</td>
<td>0,33</td>
<td>0,33</td>
<td>0,33</td>
<td>0,33</td>
<td>1,15</td>
</tr>
<tr>
<td>2,67</td>
<td>95</td>
<td>1100</td>
<td>8,9</td>
<td>8,9</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
<td>1,37</td>
</tr>
<tr>
<td>2,67</td>
<td>95</td>
<td>1200</td>
<td>8,9</td>
<td>8,9</td>
<td>0,28</td>
<td>0,28</td>
<td>0,28</td>
<td>0,28</td>
<td>1,61</td>
</tr>
<tr>
<td>2,67</td>
<td>126,6</td>
<td>100</td>
<td>17,5</td>
<td>17,5</td>
<td>6,57</td>
<td>6,57</td>
<td>6,57</td>
<td>6,57</td>
<td>0</td>
</tr>
<tr>
<td>2,67</td>
<td>126,6</td>
<td>200</td>
<td>17,5</td>
<td>17,5</td>
<td>3,29</td>
<td>3,29</td>
<td>3,29</td>
<td>3,29</td>
<td>0,02</td>
</tr>
<tr>
<td>2,67</td>
<td>126,6</td>
<td>300</td>
<td>17,5</td>
<td>17,5</td>
<td>2,19</td>
<td>2,19</td>
<td>2,19</td>
<td>2,19</td>
<td>0,04</td>
</tr>
<tr>
<td>2,67</td>
<td>126,6</td>
<td>400</td>
<td>17,5</td>
<td>17,5</td>
<td>1,64</td>
<td>1,64</td>
<td>1,64</td>
<td>1,64</td>
<td>0,06</td>
</tr>
<tr>
<td>2,67</td>
<td>126,6</td>
<td>500</td>
<td>17,5</td>
<td>17,5</td>
<td>1,31</td>
<td>1,31</td>
<td>1,31</td>
<td>1,31</td>
<td>0,09</td>
</tr>
<tr>
<td>2,67</td>
<td>126,6</td>
<td>600</td>
<td>17,5</td>
<td>17,5</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>0,13</td>
</tr>
<tr>
<td>2,67</td>
<td>126,6</td>
<td>700</td>
<td>17,5</td>
<td>17,5</td>
<td>0,94</td>
<td>0,94</td>
<td>0,94</td>
<td>0,94</td>
<td>0,17</td>
</tr>
<tr>
<td>2,67</td>
<td>126,6</td>
<td>800</td>
<td>17,5</td>
<td>17,5</td>
<td>0,82</td>
<td>0,82</td>
<td>0,82</td>
<td>0,82</td>
<td>0,22</td>
</tr>
<tr>
<td>2,67</td>
<td>126,6</td>
<td>900</td>
<td>17,5</td>
<td>17,5</td>
<td>0,73</td>
<td>0,73</td>
<td>0,73</td>
<td>0,73</td>
<td>0,27</td>
</tr>
<tr>
<td>2,67</td>
<td>126,6</td>
<td>1000</td>
<td>17,5</td>
<td>17,5</td>
<td>0,66</td>
<td>0,66</td>
<td>0,66</td>
<td>0,66</td>
<td>0,33</td>
</tr>
<tr>
<td>FORMACIÓN</td>
<td>LITÓLOGIA</td>
<td>Y_{S} (t/m³)</td>
<td>$σ_s$ (MPa)</td>
<td>GSI (adopted)</td>
<td>DEPT H (m)</td>
<td>$σ_{cm}$ (MPa)</td>
<td>SQUEEZING ANALYSIS</td>
<td>VALORES DE PONDERACION DE RIESGO DE SQUEEZING</td>
<td>PROBABILIDAD DE SQUEEZING</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
<td>------------------</td>
<td>--------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>2,67</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td>1100</td>
<td>17,5</td>
<td>0,6 0,6 0,6 0,6</td>
<td>0,6 0,39 0,39 0,56 0,56</td>
<td>2 2 1 1 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td>1200</td>
<td>17,5</td>
<td>0,55 0,55 0,55 0,55</td>
<td>0,55 0,46 0,46 0,67 0,67</td>
<td>2 2 1 1 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>32,5 27</td>
<td>12,1 10,1 12,1 10,1</td>
<td>1 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>32,5 27</td>
<td>6,09 5,06 6,09 5,06</td>
<td>0,01 0,01 0,01 0,01</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td>300</td>
<td>32,5 27</td>
<td>4,06 3,37 4,06 3,37</td>
<td>0,01 0,02 0,01 0,02</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td>400</td>
<td>32,5 27</td>
<td>3,04 2,53 3,04 2,53</td>
<td>0,02 0,03 0,02 0,03</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>32,5 27</td>
<td>2,44 2,02 2,44 2,02</td>
<td>0,03 0,04 0,03 0,05</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td>600</td>
<td>32,5 27</td>
<td>2,03 1,69 2,03 1,69</td>
<td>0,04 0,06 0,05 0,07</td>
<td>0 1 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td>700</td>
<td>32,5 27</td>
<td>1,74 1,44 1,74 1,44</td>
<td>0,05 0,08 0,07 0,1</td>
<td>1 1 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td>800</td>
<td>32,5 27</td>
<td>1,52 1,26 1,52 1,26</td>
<td>0,07 0,1 0,09 0,13</td>
<td>1 1 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td>900</td>
<td>32,5 27</td>
<td>1,35 1,12 1,35 1,12</td>
<td>0,09 0,12 0,11 0,16</td>
<td>1 1 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td>1000</td>
<td>32,5 27</td>
<td>1,22 1,01 1,22 1,01</td>
<td>0,1 0,15 0,13 0,2</td>
<td>1 1 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td>1100</td>
<td>32,5 27</td>
<td>1,11 0,92 1,11 0,92</td>
<td>0,12 0,18 0,16 0,24</td>
<td>1 1 0 1 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td>1200</td>
<td>32,5 27</td>
<td>1,01 0,84 1,01 0,84</td>
<td>0,15 0,21 0,19 0,28</td>
<td>1 1 0 1 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>75,1 70,1</td>
<td>28,1 26,2 28,1 26,2</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>75,1 70,1</td>
<td>14,0 13,1 14,0 13,1</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td>300</td>
<td>75,1 70,1</td>
<td>9,38 8,75 9,38 8,75</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td>400</td>
<td>75,1 70,1</td>
<td>7,03 6,57 7,03 6,57</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>75,1 70,1</td>
<td>5,63 5,25 5,63 5,25</td>
<td>0,01 0,01 0,01 0,01</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td>600</td>
<td>75,1 70,1</td>
<td>4,69 4,38 4,69 4,38</td>
<td>0,01 0,01 0,01 0,01</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td>700</td>
<td>75,1 70,1</td>
<td>4,02 3,75 4,02 3,75</td>
<td>0,01 0,01 0,01 0,01</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2,67</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td>800</td>
<td>75,1 70,1</td>
<td>3,52 3,28 3,52 3,28</td>
<td>0,01 0,02 0,02 0,02</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>
Formación Lito-lógica

<table>
<thead>
<tr>
<th>FORMACIÓN</th>
<th>LITOLOGÍA</th>
<th>Yk (t/m³)</th>
<th>σci (MPa)</th>
<th>GSI (adopted)</th>
<th>DEPT H (m)</th>
<th>σcm (MPa)</th>
<th>SQUEEZING ANALYSIS</th>
<th>VALORES DE PONDERACIÓN DE RIESGO DE SQUEEZING</th>
<th>PROBABILIDAD DE SQUEEZING</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.67</td>
<td>126.6</td>
<td>900</td>
<td>75.1</td>
<td>70.1</td>
<td>3.13</td>
<td>2.92</td>
<td>JETHWA (1984)</td>
<td>0.02 0.02 0.02 0.02</td>
<td>0 0 0 0 0 0 0 0 0% Nula</td>
</tr>
<tr>
<td>2.67</td>
<td>126.6</td>
<td>1000</td>
<td>75.1</td>
<td>70.1</td>
<td>2.81</td>
<td>2.63</td>
<td>JETHWA (1984)</td>
<td>0.02 0.03 0.03 0.03</td>
<td>0 0 0 0 0 0 0 0 0% Nula</td>
</tr>
<tr>
<td>2.67</td>
<td>126.6</td>
<td>1100</td>
<td>75.1</td>
<td>70.1</td>
<td>2.56</td>
<td>2.39</td>
<td>JETHWA (1984)</td>
<td>0.03 0.03 0.03 0.04</td>
<td>0 0 0 0 0 0 0 0 0% Nula</td>
</tr>
<tr>
<td>2.67</td>
<td>126.6</td>
<td>1200</td>
<td>75.1</td>
<td>70.1</td>
<td>2.34</td>
<td>2.19</td>
<td>JETHWA (1984)</td>
<td>0.03 0.04 0.04 0.04</td>
<td>0 0 0 0 0 0 0 0 0% Nula</td>
</tr>
<tr>
<td>2.67</td>
<td>126.6</td>
<td>100</td>
<td>93.3</td>
<td>89.9</td>
<td>34.9</td>
<td>33.6</td>
<td>JETHWA (1984)</td>
<td>0 0 0 0 0 0 0 0 0% Nula</td>
<td></td>
</tr>
<tr>
<td>2.67</td>
<td>126.6</td>
<td>200</td>
<td>93.3</td>
<td>89.9</td>
<td>17.4</td>
<td>16.8</td>
<td>JETHWA (1984)</td>
<td>0 0 0 0 0 0 0 0 0% Nula</td>
<td></td>
</tr>
<tr>
<td>2.67</td>
<td>126.6</td>
<td>300</td>
<td>93.3</td>
<td>89.9</td>
<td>11.6</td>
<td>11.2</td>
<td>JETHWA (1984)</td>
<td>0 0 0 0 0 0 0 0 0% Nula</td>
<td></td>
</tr>
<tr>
<td>2.67</td>
<td>126.6</td>
<td>400</td>
<td>93.3</td>
<td>89.9</td>
<td>8.73</td>
<td>8.41</td>
<td>JETHWA (1984)</td>
<td>0 0 0 0 0 0 0 0 0% Nula</td>
<td></td>
</tr>
<tr>
<td>2.67</td>
<td>126.6</td>
<td>500</td>
<td>93.3</td>
<td>89.9</td>
<td>6.99</td>
<td>6.73</td>
<td>JETHWA (1984)</td>
<td>0 0 0 0 0 0 0 0 0% Nula</td>
<td></td>
</tr>
<tr>
<td>2.67</td>
<td>126.6</td>
<td>600</td>
<td>93.3</td>
<td>89.9</td>
<td>5.82</td>
<td>5.61</td>
<td>JETHWA (1984)</td>
<td>0.01 0.01 0.01 0.01</td>
<td>0 0 0 0 0 0 0 0 0% Nula</td>
</tr>
<tr>
<td>2.67</td>
<td>126.6</td>
<td>700</td>
<td>93.3</td>
<td>89.9</td>
<td>4.99</td>
<td>4.81</td>
<td>JETHWA (1984)</td>
<td>0.01 0.01 0.01 0.01</td>
<td>0 0 0 0 0 0 0 0 0% Nula</td>
</tr>
<tr>
<td>2.67</td>
<td>126.6</td>
<td>800</td>
<td>93.3</td>
<td>89.9</td>
<td>4.37</td>
<td>4.21</td>
<td>JETHWA (1984)</td>
<td>0.01 0.01 0.01 0.01</td>
<td>0 0 0 0 0 0 0 0 0% Nula</td>
</tr>
<tr>
<td>2.67</td>
<td>126.6</td>
<td>900</td>
<td>93.3</td>
<td>89.9</td>
<td>3.88</td>
<td>3.74</td>
<td>JETHWA (1984)</td>
<td>0.01 0.01 0.01 0.01</td>
<td>0 0 0 0 0 0 0 0 0% Nula</td>
</tr>
<tr>
<td>2.67</td>
<td>126.6</td>
<td>1000</td>
<td>93.3</td>
<td>89.9</td>
<td>3.49</td>
<td>3.37</td>
<td>JETHWA (1984)</td>
<td>0.01 0.02 0.02 0.02</td>
<td>0 0 0 0 0 0 0 0 0% Nula</td>
</tr>
<tr>
<td>2.67</td>
<td>126.6</td>
<td>1100</td>
<td>93.3</td>
<td>89.9</td>
<td>3.18</td>
<td>3.06</td>
<td>JETHWA (1984)</td>
<td>0.02 0.02 0.02 0.02</td>
<td>0 0 0 0 0 0 0 0 0% Nula</td>
</tr>
<tr>
<td>2.67</td>
<td>126.6</td>
<td>1200</td>
<td>93.3</td>
<td>89.9</td>
<td>2.91</td>
<td>2.8</td>
<td>JETHWA (1984)</td>
<td>0.02 0.02 0.02 0.03</td>
<td>0 0 0 0 0 0 0 0 0% Nula</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019
Como se observa para profundidades del entorno del 900 y rangos de RMR inferiores a los 20-30 puntos pueden existir posibles fenómenos de squeezing. Por ello a partir de estos rangos se recomienda realizar un sostenimiento secuencial en diversas etapas a diferentes distancias del frente de excavación.

En términos generales, a continuación, se resume la valoración geomecánica realizada por el departamento de geotécnica, para los trazados proyectados de los túneles de acceso al yacimiento.

Tabla 3.81 Escenario previsto en la zonificación geotécnica de los túneles proyectados, Mina Quebradona

<table>
<thead>
<tr>
<th>Unidad geotécnia definida para el túnel</th>
<th>Rango RMR</th>
<th>Distribución optimista estimada en el túnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIPO I (MUY BUENO)</td>
<td>80 < RMR < 100</td>
<td></td>
</tr>
<tr>
<td>TIPO II (BUENO)</td>
<td>60 < RMR < 80</td>
<td>4.174, 72.4</td>
</tr>
<tr>
<td>TIPO III (NORMAL)</td>
<td>40 < RMR < 60</td>
<td>1.313, 22.8</td>
</tr>
<tr>
<td>TIPO IV (MALO)</td>
<td>20 < RMR < 40</td>
<td>171, 3.0</td>
</tr>
<tr>
<td>TIPO V (MUY MALO) / ZONAS DE FALLA</td>
<td>RMR < 20</td>
<td>31, 0.5</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

3.3.7.17.2.2.3 Análisis cinemático de estabilidad de cuñas

Con carácter preliminar, con base en las perforaciones CHA-DD-077 (entre la profundidad 660 m a 720 m), y CHA-DD-079 (entre la profundidad 570 m a 620 m), tomando un área de influencia de 25 m en torno al eje del túnel proyectado a la zona alta del yacimiento; se establece la siguiente tendencia de familias principales.

Figura 3.199 Diagrama de Contorno concentración de polos correspondientes a los datos de discontinuidades en el sondeo 077 y 079, a nivel del túnel proyectado a la zona alta del yacimiento

Fuente: Subterra, 2019

En la Tabla 3.82 se presentan los datos estructurales, correspondientes a las principales familias de diaclasas presentes en la sección del túnel analizado, con los cuales se realizan los análisis de cinemáticos de cuñas.
Tabla 3.82 Familias de discontinuidades para análisis

<table>
<thead>
<tr>
<th>Discontinuidades</th>
<th>ID</th>
<th>DIP</th>
<th>DIP DIRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J1</td>
<td>80</td>
<td>031</td>
</tr>
<tr>
<td></td>
<td>J2</td>
<td>59</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>J3</td>
<td>04</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>J4</td>
<td>56</td>
<td>99</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

3.3.7.17.2.2.3.1 Cuñas cinemáticamente inestables (Peso superior a 1 tonelada y F.S. menor a 1.0)

Para el estudio cinemático de cuñas, para estar del lado conservador, se consideraron como parámetros resistentes para las juntas, un valor de Cohesión = 0, ángulo de fricción PHI=32°, y una densidad de la roca de 2.7 ton/m³; y sobre la base de la herramienta informática Unwedge 4.1, se procedió con los análisis cinemáticos de estabilidad.

Del análisis de combinación entre los distintos planos, se obtuvo como resultado la identificación de cuñas cinemáticamente inestables o críticas, las cuales se definen por tener un peso superior a 1 ton y un factor de seguridad (FS) menor a 1.0.

Las cuñas que se forman por la combinación de las discontinuidades analizadas, bajo las condiciones expuestas atrás de peso (>1 tonelada) y factor de seguridad (<1), se reseñan en la Tabla 3.83. Un ejemplo de la representación tipo, en la sección del túnel, se pueden observar en la Figura 3.200 correspondiente a las discontinuidades J1J2 y J4.

Tabla 3.83 Cuñas críticas asociadas con las discontinuidades principales

<table>
<thead>
<tr>
<th>Junta A</th>
<th>Junta B</th>
<th>Junta C</th>
<th>Factor de seguridad ()</th>
<th>Peso cuña (ton)</th>
<th>ID Cuña crítica</th>
<th>Posición de la cuña</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0,63</td>
<td>10,72</td>
<td>2</td>
<td>Superior izquierda</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0,55</td>
<td>17,96</td>
<td>7</td>
<td>Inferior derecha</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0,63</td>
<td>17,81</td>
<td>2</td>
<td>Inferior izquierda</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0,12</td>
<td>6,62</td>
<td>4</td>
<td>Techo</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>0,55</td>
<td>17,85</td>
<td>7</td>
<td>Superior derecha</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

Representación de la tipología de cuña para la combinación de las discontinuidades/Juntas J1J2J4:
3.3.7.17.2.3.2 Cuñas críticas y soporte

Teniendo en cuenta el análisis realizado con las principales estructuras de diaclasas presentes, a continuación, se incluye un resumen de las cuñas cinemáticamente inestables, y su comportamiento una vez aplicado los sostenimientos ST-II y ST-III, evaluando su condición de estabilidad (FS).

De acuerdo con los parámetros de sostenimiento definidos para sostenimiento ST-II (80<RMR<60), los pernos contarían con una distribución de 2LX2T y una longitud de 2.5 m. Además, de una capa de hormigón lanzado (concreto lanzado) de 5 cm.

Por su parte, el sostenimiento ST-III (40<RMR<60), constaría de pernos de 3 m de longitud y una disposición de 1.5LX1.5T, con una capa de lanzado de 10 cm.

Las propiedades de los pernos, considerados en el análisis, se presentan en la Tabla 3.84

<table>
<thead>
<tr>
<th>Propiedades de cálculo asignadas a los pernos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistencia del anclaje/ Anchor capacity (corrugado Ø 22 mm)</td>
</tr>
<tr>
<td>12,3 ton</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019
Realizados los cálculos sobre las distintas cuñas cinemáticamente inestables, con los sostenimientos ST-II y ST-III, a modo de ejemplo, se incluye la tipología de las cuñas 2, 4 y 7, para la combinación J1-J2-J4, en la que se aprecia Factores de Seguridad (FS>1,5) con el sostenimiento aplicado.

De forma resumida, a continuación, se presenta la tabla resumen con los cálculos realizados, al analizar las cuñas cinemáticamente inestables, aplicando el sostenimiento ST-II y ST-III, en la que se aprecia la condición de estabilidad para las distintas cuñas.

<table>
<thead>
<tr>
<th>Junta A</th>
<th>Junta B</th>
<th>Junta C</th>
<th>Peso de la cuña (ton)</th>
<th>ID Cuña crítica</th>
<th>Posición de la cuña</th>
<th>Factor de Seguridad (FS) sin sost</th>
<th>Factor de seguridad ST-II</th>
<th>Factor de seguridad ST-III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>10,72</td>
<td>2</td>
<td>Superior izquierda</td>
<td>0,63</td>
<td>17,809</td>
<td>32,799</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>17,96</td>
<td>7</td>
<td>inferior derecha</td>
<td>0,55</td>
<td>16,319</td>
<td>29,648</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>17,81</td>
<td>2</td>
<td>Inferior izquierda</td>
<td>0,63</td>
<td>13,839</td>
<td>24,841</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6,62</td>
<td>4</td>
<td>Techo</td>
<td>0,12</td>
<td>19,655</td>
<td>36,454</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>17,85</td>
<td>7</td>
<td>Superior derecha</td>
<td>0,55</td>
<td>15,699</td>
<td>28,956</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019
3.3.7.17.2.2.4 Sostenimientos recomendados

En este acápite se resumen los sostenimientos que se recomiendan adoptar para todas las obras subterráneas que componen el Proyecto Minero Quebradona.

3.3.7.17.2.2.4.1 Perforraación y voladura (P&V)

Conforme a lo anterior los sostenimientos recomendados son los indicados en la siguiente tabla.

<table>
<thead>
<tr>
<th>Tabla 3.86 Sostenimientos recomendados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sostenimiento</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>IV</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>Vibra</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

3.3.7.17.2.2.4.2 Anillo de dovelas

Como ya se ha comentado, únicamente se prevé el uso de dovelas en la clase de sostenimiento C5 diseñada para los túneles excavados con TBM y en terrenos de calidad geomecánica que presenten RMR inferiores a 20 puntos.

A continuación, se presentan los criterios analizados y los trabajos realizados para diseñar el anillo de dovelas, que se ha abordado en tres etapas: funciones del anillo de dovelas, tipología actual de los anillos de dovelas y diseño específico de las dovelas.

3.3.7.17.2.2.4.2.1 Funciones del anillo de dovelas

Los anillos de dovelas ejercen, al menos, las funciones de sostenimiento y revestimiento en los túneles y, cuando puede haber un flujo apreciable de agua, también deben cumplir el papel de mantener estanco el túnel. Además, en los terrenos de baja calidad, proporcionan la reacción suficiente para que la TBM avance, apoyada en ellas mediante gatos hidráulicos. En los párrafos siguientes se concreta el alcance de las funciones que deben desempeñar los anillos de dovelas que se coloquen en el túnel del presente estudio:

- **Sostenimiento**: la función de sostenimiento de un anillo de dovelas está ligada al empuje del terreno sobre los anillos, en el caso de que éstos entren en contacto con el terreno al salir de la tuneladora.
- **Empuje de la tuneladora**: en un DSU híbrido, el empuje de la tuneladora, en los terrenos donde no puedan apoyarse las zapatas, deberá ser suministrado por los...
cilindros de empuje que se apoyarán directamente sobre los anillos de dovelas. En apartados anteriores se ha valorado el empuje de la tuneladora, que debe tener un valor nominal de 77.401 KN y que, excepcionalmente, puede subir hasta 92.881 KN para afrontar una situación de desbloqueo. Suponiendo que este empuje sea transmitido por 23 cilindros y que la zapata de apoyo sobre las dovelas tenga una superficie de unos 2.300 cm², las cifras anteriores de empuje equivalen a unos 33 KN/cm², en condiciones normales y a 40 KN/cm² en el caso de un trabajo excepcional. Estas tensiones ejercen un efecto de compresión en las caras transversales de las dovelas y generan tracciones en su interior; por lo que para valorar su efecto se deberá, en el diseño de detalle, realizar un cálculo específico.

- Revestimiento y estanqueidad: el revestimiento de los túneles ejerce un efecto funcional de acabado, para que el túnel pueda cumplir el objetivo para el que va a ser construido y, eventualmente, puede ejercer un papel estructural para complementar el efecto del sostenimiento ante una posible degradación del terreno a medio-largo plazo. En cuanto a la estanqueidad del revestimiento, al estar el terreno circundante bajo el nivel freático, debe estar orientada a impedir las fugas de agua al interior del túnel. Para ello será necesario incorporar, entre los anillos y entre las dovelas del mismo anillo, las correspondientes juntas de estanqueidad.

3.3.7.17.2.2.4.2.2 Tipología del anillo

- Los anillos de dovelas son elementos que tienen una geometría de cilindros huecos de pared gruesa y que se diferencian por la disposición de sus caras transversales; según que éstas sean paralelas, es decir, perpendiculares al eje de los anillos o bien oblicuas, tal como se muestra en la Figura 3.202.

Figura 3.202 Geometrías básicas de anillos de dovelas
Fuente: Subterra, 2019

En este caso, dado que únicamente se colocarán dovelas en la sección C5, parece recomendable adoptar anillos de caras paralelas, que permiten que las dovelas que los
integran puedan ser teóricamente de idénticas dimensiones; aunque casi siempre la dovela de base es diferente a las demás al tener que alojar la vía de acceso al frente. En los túneles de diámetro apreciable, como es el caso, se suele utilizar una dovela más pequeña, o de llave, para cerrar el anillo con facilidad.

Con el empleo de anillos de caras paralelas se consigue una notable simplificación del proceso de fabricación y almacenaje de las dovelas.

3.3.7.17.2.2.4.2.3 Espesor y longitud del anillo

El espesor de un anillo de dovelas está directamente relacionado con la anchura de la excavación, con el empuje del terreno, con las solicitudes durante el avance de la tuneladora y con las características del hormigón empleado en su fabricación.

Normalmente la longitud del anillo de dovelas se escoge por razones de operatividad durante su colocación; aunque, por razones evidentes de acortamiento del ciclo interesa que su longitud sea la mayor posible que sea compatible con un tiempo de colocación razonable. Para la mina Quebradona se aconseja que este sea de 1.500 mm.

Con objeto de poder establecer unos parámetros de diseño, que han sido objeto de los oportunos cálculos para su comprobación, en la Tabla 3.87 se muestran las características más relevantes de los anillos de dovelas utilizados en algunos túneles importantes de construcción reciente.

Tabla 3.87 Características de los anillos colocados en algunos túneles relevantes

<table>
<thead>
<tr>
<th>Túneles</th>
<th>Diámetro de Excavación (m)</th>
<th>GAP Radial (cm)</th>
<th>Diámetro interior del anillo øINT (m)</th>
<th>Diámetro exterior del anillo øEXT (m)</th>
<th>Espesor E (m)</th>
<th>E / øINT (%)</th>
<th>Longitud del anillo (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lineas 8 y 10 del Metro de Madrid</td>
<td>7,38</td>
<td>9,0</td>
<td>6,70</td>
<td>7,20</td>
<td>0,25</td>
<td>3,73</td>
<td>1,21</td>
</tr>
<tr>
<td>Lineas 4, 7 y 9 del Metro de Madrid</td>
<td>9,38</td>
<td>15,5</td>
<td>8,43</td>
<td>9,07</td>
<td>0,32</td>
<td>3,80</td>
<td>1,50</td>
</tr>
<tr>
<td>Linea 5 del Metro de Valencia</td>
<td>6,52</td>
<td>8,5</td>
<td>5,75</td>
<td>6,35</td>
<td>0,30</td>
<td>5,22</td>
<td>1,20</td>
</tr>
<tr>
<td>Lineas 1 y 2 del Metro de Lisboa</td>
<td>9,71</td>
<td>9,5</td>
<td>8,80</td>
<td>9,52</td>
<td>0,36</td>
<td>4,09</td>
<td>?</td>
</tr>
<tr>
<td>Trasvase Guadiaro-Majaceite (Cádiz)</td>
<td>4,88</td>
<td>9,0</td>
<td>4,20</td>
<td>4,70</td>
<td>0,25</td>
<td>5,95</td>
<td>1,30</td>
</tr>
<tr>
<td>Trasvase Evinos-Moros (Grecia)</td>
<td>4,20</td>
<td>10,0</td>
<td>3,60</td>
<td>4,00</td>
<td>0,20</td>
<td>5,56</td>
<td>1,30</td>
</tr>
<tr>
<td>Linea D del Metro de Lyon</td>
<td>6,27</td>
<td>13,5</td>
<td>5,30</td>
<td>6,00</td>
<td>0,35</td>
<td>6,60</td>
<td>?</td>
</tr>
<tr>
<td>Metro de Atenas</td>
<td>9,50</td>
<td>16,0</td>
<td>8,48</td>
<td>9,18</td>
<td>0,35</td>
<td>4,13</td>
<td>1,50</td>
</tr>
<tr>
<td>4º Túnel bajo el río Elba (Hamburgo)</td>
<td>14,20</td>
<td>22,5</td>
<td>12,35</td>
<td>13,75</td>
<td>0,70</td>
<td>5,67</td>
<td>2,00</td>
</tr>
<tr>
<td>Tunnel de la Trans-Tokyo Bay</td>
<td>14,14</td>
<td>12,0</td>
<td>12,60</td>
<td>13,90</td>
<td>0,65</td>
<td>5,16</td>
<td>1,50</td>
</tr>
<tr>
<td>Túnel de la circunvalación exterior de Tokyo</td>
<td>12,04</td>
<td>12,0</td>
<td>10,60</td>
<td>11,80</td>
<td>0,60</td>
<td>5,66</td>
<td>?</td>
</tr>
<tr>
<td>Túneles</td>
<td>Diámetro de Excavación (m)</td>
<td>GAP Radial (cm)</td>
<td>Diámetro interior del anillo (\phi_{INT}) (m)</td>
<td>Diámetro exterior del anillo (\phi_{EXT}) (m)</td>
<td>Espesor E (m)</td>
<td>(E / \phi_{INT}) (%)</td>
<td>Longitud del anillo (m)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Túnel de Zabalceta</td>
<td>5,835</td>
<td>8,7</td>
<td>5,26</td>
<td>5,660</td>
<td>0,20</td>
<td>3,8</td>
<td>1,6</td>
</tr>
<tr>
<td>Línea 9 del Metro de Barcelona. (Tuneladora de roca)</td>
<td>11,95</td>
<td>17,5</td>
<td>10,90</td>
<td>11,6</td>
<td>0,35</td>
<td>3,2</td>
<td>1,8</td>
</tr>
<tr>
<td>Línea 9 del Metro de Barcelona. (Tuneladora de suelos)</td>
<td>12,06</td>
<td>18,0</td>
<td>10,90</td>
<td>11,7</td>
<td>0,40</td>
<td>3,67</td>
<td>1,8</td>
</tr>
<tr>
<td>Túneles de Guadarrama</td>
<td>9,51 / 9,46</td>
<td>18,5 / 16,0</td>
<td>8,50</td>
<td>9,14</td>
<td>0,32</td>
<td>3,76</td>
<td>1,6</td>
</tr>
<tr>
<td>Túneles de Abdulajis</td>
<td>10,0</td>
<td>15,0</td>
<td>8,50</td>
<td>9,70</td>
<td>0,45</td>
<td>4,6</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Fuente: Subtierra, 2019

En esta tabla pueden apreciarse que la relación entre el espesor de la dovela y el diámetro interior del túnel, expresada en porcentaje, tiene un límite inferior del 3,2%; aunque la mayor parte de los valores más bajos de este índice se sitúan en torno al 3,7%.

Lógicamente, los índices que se aproximan al límite superior corresponden a túneles que están fuertemente solicitados por el terreno, mientras que las dovelas más esbeltas, menor porcentaje; corresponden a túneles construidos en terrenos de buena calidad.

También hay que tener presente que en los túneles de menor diámetro el índice considerado tiende a ser elevado; ya que existe una limitación geométrica sobre el espesor de las dovelas que hace, a efectos prácticos, que no sea posible contemplar espesores menores de 20 cm.

El diámetro interno de los túneles de la Mina Quebradona es de 9.000 mm, por lo que el espesor escogido para el anillo, de 320 mm, supone un 3,5 % del él, derivándose de los cálculos efectuados que la calidad del hormigón deberá ser H50, debiendo además preverse una cuantía de acero en el entorno de los 90 g/m3 así como la incorporación de fibra en una cuantía que asegure los 500 J de resistencia a flexo-tracción, lo que supondrá una dosificación de fibra de referencia en el entorno de los 30 kg/m3.

3.3.7.17.2.3 Análisis tensodeformacional previo de las secciones críticas

3.3.7.17.2.3.1.1 Análisis realizados

Para el cálculo de la estabilidad previo de los sostenimientos más pesados, se ha procedido a modelar las secciones más desfavorables, correspondientes a las zonas de roca de peor calidad, incluyendo:

- Pique de ventilación de 529 m de longitud, excavado en su totalidad en roca de calidad media (RMR=50).
- Sección del túnel de acceso ejecutado con perforación y voladura, en zonas de falla (RMR=20) y con la mayor cobertera, correspondiente a unos 900 m.
- Sección del túnel de acceso ejecutado con TBM, en zonas de falla (RMR=20) y con la mayor cobertera, correspondiente a unos 1000 m.
- Sección de la caverna de trituración, excavada en su totalidad en roca de calidad buena (RMR=70), cuya cobertera es de unos 1100 m.

3.3.7.17.2.3.1.2 Metodología del dimensionamiento

3.3.7.17.2.3.1.2.1 Módelo de cálculo

Se ha empleado el programa PHASE 2D (RS2 9.0) de elementos finitos para realizar el análisis tensodeformacional. La caja del modelo creado es de aproximadamente 5 veces el diámetro equivalente de la excavación en cada sección, y teniendo en cuenta las coberteras correspondientes para cada caso particular. A continuación se muestran las figuras de las dimensiones adoptadas en cada modelo.

Con ánimo de representar las zonas de falla que afectan a las galerías de acceso, se representa de manera esquemática la configuración del terreno en dichas zonas, modelando una zona de RMR=20 (rojo) de 3 m de espesor, una de RMR=30 (verde claro) de 5 m a cada lado y el resto con un RMR=50 (verde oscuro).

![Modelo de Cálculo. Pique de ventilación. Fase 1](image-url)

Fuente: Subterra, 2019
Figura 3.204 Modelo de Cálculo. Detalle pique de ventilación. Fase 1
Fuente: Subterra, 2019

Figura 3.205 Modelo de Cálculo. Detalle pique de ventilación. Fase 2 (sondeo)
Fuente: Subterra, 2019
Figura 3.206 Modelo de Cálculo. Detalle pique de ventilación. Fase 5 (excavación en fase intermedia)
Fuente: Subterra, 2019

Figura 3.207 Modelo de Cálculo. Pique de ventilación. Fase 10 (final)
Fuente: Subterra, 2019
Figura 3.208 Modelo de Cálculo. Túnel de acceso ejecutado con perforación y voladura
Fuente: Subterra, 2019

Figura 3.209 Modelo de Cálculo. Túnel de acceso ejecutado con TBM
Fuente: Subterra, 2019
Figura 3.210 Modelo de Cálculo. Caverna de trituración
Fuente: Subterra, 2019

Figura 3.211 Modelo de Cálculo. Detalle caverna de trituración. Fase 3 (excavación y sostenimiento avance)
Fuente: Subterra, 2019
3.3.7.17.2.3.1.2.2 Condiciones de contorno

Se han fijado los desplazamientos horizontales y verticales en los límites de la caja del modelo, debido a que el modelo no llega a superficie. El nivel de superficie se encuentra fuera de la caja del modelo a una distancia igual a la cobertera de cada sección.

Primero se realiza se inicializa el estado tensional “in situ” en todos los elementos del modelo. Este estado está definido por:
donde:

\(\sigma_{yy} \): Tensión vertical.

\(\rho \): Densidad del terreno.

\(g \): Aceleración de la gravedad.

\(h \): Altura de las tierras.

\(\sigma_{xx} = K_{0x} \cdot \sigma_{yy} \): Tensión horizontal en la dirección contenida en el plano del modelo.

\(\sigma_{zz} = K_{0z} \cdot \sigma_{yy} \): Tensión horizontal en la dirección del eje perpendicular al modelo.

\(K_{0x}, K_{0z} \): Coeficientes de reparto de tensiones horizontales.

Los coeficientes de reparto de tensiones empleados en el modelo han sido calculados a partir de los datos del ensayo de emisión acústica recibido. Dicho ensayo nos aporta unos valores de tensiones \(\sigma_1 \), \(\sigma_2 \) y \(\sigma_3 \), los cuales no son coincidentes con la dirección de las tensiones vertical y horizontal. Para obtener los valores con las direcciones deseadas, se hace un cambio de base del tensor de tensiones representativo del terreno, obteniéndose unos valores de \(\sigma_{1} = 32.14 \), \(\sigma_{h1} = 38.07 \) y \(\sigma_{h2} = 34.31 \). Dividiendo la tensión vertical entre las dos horizontales y haciendo la media ponderada de ambas, se obtiene un valor de \(K_{0} \) de:

- \(K_{0x} : 0.844 \).
- \(K_{0z} : 0.844 \).

Propiedades geotécnicas del terreno

Los materiales que se han utilizado en el modelo corresponden a los descritos en el apartado 3.3.7.17.2.1.2

Propiedades de los elementos estructurales

La simulación del hormigón proyectado se ha realizado mediante elementos volumétricos de malla. El parámetro más importante para representar el comportamiento del hormigón de sostenimiento es su módulo elástico, puesto que ha de reproducir el proceso de fraguado que se produce simultáneamente a su puesta en carga por el avance del túnel. Se han considerado los siguientes valores de módulo de elasticidad, mostrados en la Tabla 3.88.

Tabla 3.88 Propiedades del Shotcrete

<table>
<thead>
<tr>
<th>Tipo de elemento</th>
<th>E Corto plazo (MPa)</th>
<th>E Largo plazo (MPa)</th>
<th>f’c (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormigón proyectado SH-35</td>
<td>8.050</td>
<td>17.500</td>
<td>25</td>
</tr>
<tr>
<td>Dovelas H50</td>
<td>33.000</td>
<td>33.000</td>
<td>35</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019
Los marcos metálicos se han modelizado mediante elementos tipo “liner”, que son elementos bidimensionales con 3 grados de libertad por nodo (2 desplazamientos y 1 rotación). Las propiedades asignadas a los marcos se resumen en la Tabla 3.89.

<table>
<thead>
<tr>
<th>Tipo de elemento</th>
<th>E (MPa)</th>
<th>A (m2)</th>
<th>I (m4)</th>
<th>F_y (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marco reticulado</td>
<td>200.000</td>
<td>0.001335</td>
<td>3.06e-006</td>
<td>420</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

Los bulones se han modelado mediante elementos tipo “bolt”, cuyas propiedades se reflejan en la Tabla 3.90.

<table>
<thead>
<tr>
<th>Tipo de elemento</th>
<th>E (MPa)</th>
<th>Φ (mm)</th>
<th>σ_t (m4)</th>
<th>Espaciado longitudinal (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pernos de acero anclados con resina de cemento.</td>
<td>200.000</td>
<td>22</td>
<td>0,16</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

Los pases de avance utilizados para la modelización numérica es de:

- Sección del túnel de acceso ejecutado con perforación y voladura: pase de 1 m, colocando con un desfase de 6 m la segunda capa de hormigón proyectado.
- Sección de la caverna de trituración: pase de 3 m para la primera fase de excavación y 4 m para las siguientes fases de excavación.

3.3.7.17.2.3.1.2.5 Simulación del efecto de frente en 2D

La modelización de un túnel en una sección bidimensional está plenamente justificada salvo en las inmediaciones del frente de excavación, donde el efecto del núcleo de terreno que constituye el frente, ejerce un papel activo de sostenimiento que, en sentido estricto, sólo se puede cuantificar con total precisión con un modelo de tres dimensiones.

Sin embargo, la simulación del efecto frente cuando se modelizan problemas planos, puede realizarse suponiendo que, en las inmediaciones del frente, actúa una presión radial en el perímetro de la excavación que tiende a contrarrestar la ejercida por el terreno; o bien, suponer que el núcleo de roca varía su módulo de elasticidad con la distancia al frente.

En el presente proyecto se ha utilizado la fórmula de Panet para calcular la presión radial del núcleo. Panet propone que la presión radial ejercida por el núcleo, que hace el papel de sostenimiento transitorio, puede calcularse mediante las expresiones siguientes:

$$P_t = (1 - \lambda) P_o$$

$$\lambda = \lambda_o + (1 - \lambda_o) \frac{m}{m}$$
MINERA DE COBRE QUEBRADONA S.A.

\[m = 1 - e^{-\frac{1}{k^2 R^2}} \]

donde:

- \(r_i \) es el radio de la excavación
- \(x \) es la distancia al frente
- y en caso de medios elásticos y excavaciones circulares,

\[\lambda_0 \approx \frac{1}{3} \]

En la Figura 3.214 se ilustra el efecto de estabilización transitoria que el núcleo de la excavación ejerce sobre el túnel.

![Diagrama de estabilidad de la excavación](SECCION A-A)

- \(\sigma_r \) Presión radial de sostenimiento
- \(\sigma_o \) Presión de campo
- \(R \) Radio de la excavación

3.3.7.17.2.3.1.2.6 Fases de cálculo

A. Pozo de ventilación

Para la resolución del modelo numérico, se han seguido una serie de pasos que simulan las fases que resultan representativas de la excavación de la sección más...
desfavorable del pique de ventilación. A continuación, se muestran las fases modelizadas para dicha sección. Nótese que, debido al método de excavación de este pozo, no se modela el sostenimiento, ya que debe ser autoestable.

Tabla 3.91 Fases de cálculo. Pozo de ventilación

<table>
<thead>
<tr>
<th>Fase</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inicialización del estado tensional</td>
</tr>
<tr>
<td>2</td>
<td>Perforación del sondeo</td>
</tr>
<tr>
<td>3</td>
<td>Excavación Fase 1</td>
</tr>
<tr>
<td>4</td>
<td>Excavación Fase 2</td>
</tr>
<tr>
<td>5</td>
<td>Excavación Fase 3</td>
</tr>
<tr>
<td>6</td>
<td>Excavación Fase 4</td>
</tr>
<tr>
<td>7</td>
<td>Excavación Fase 5</td>
</tr>
<tr>
<td>8</td>
<td>Excavación Fase 6</td>
</tr>
<tr>
<td>9</td>
<td>Excavación Fase 7</td>
</tr>
<tr>
<td>10</td>
<td>Excavación Fase 8</td>
</tr>
<tr>
<td>11</td>
<td>Excavación Fase 9</td>
</tr>
<tr>
<td>12</td>
<td>Excavación Fase 10</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

B. Túnel de acceso ejecutado con perforación y voladura

Para la resolución del modelo numérico, se han seguido una serie de pasos que simulan las fases que resultan representativas de la excavación y sostenimiento de la sección más desfavorable del túnel de acceso ejecutado con perforación y voladura. A continuación se muestran las fases modelizadas para dicha sección.

Tabla 3.92 Fases de cálculo. Túnel de acceso ejecutado con perforación y voladura

<table>
<thead>
<tr>
<th>Fase</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inicialización del estado tensional</td>
</tr>
<tr>
<td>2</td>
<td>Excavación</td>
</tr>
<tr>
<td>3</td>
<td>Sostenimiento Fase 1</td>
</tr>
<tr>
<td>4</td>
<td>Sostenimiento Fase 2</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

C. Túnel de acceso ejecutado TBM

Para la resolución del modelo numérico, se han seguido una serie de pasos que simulan las fases que resultan representativas de la excavación y sostenimiento de la sección más desfavorable del túnel de acceso ejecutado con TBM. A continuación se muestran las fases modelizadas para dicha sección.

Tabla 3.93 Fases de cálculo. Túnel de acceso ejecutado con TBM

<table>
<thead>
<tr>
<th>Fase</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inicialización del estado tensional</td>
</tr>
<tr>
<td>2</td>
<td>Excavación</td>
</tr>
<tr>
<td>3</td>
<td>Sostenimiento</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

D. Caverna de trituración

Para la resolución del modelo numérico, se han seguido una serie de pasos que simulan las fases que resultan representativas de la excavación y sostenimiento de la...
sección más desfavorable de la caverna de trituración. A continuación se muestran las fases modelizadas para dicha sección.

Tabla 3.94 Fases de cálculo. Caverna de trituración

<table>
<thead>
<tr>
<th>Fase</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inicialización del estado tensional</td>
</tr>
<tr>
<td>2</td>
<td>Excavación Fase 1</td>
</tr>
<tr>
<td>3</td>
<td>Sostenimiento Fase 1</td>
</tr>
<tr>
<td>4</td>
<td>Excavación Fase 2</td>
</tr>
<tr>
<td>5</td>
<td>Sostenimiento Fase 2</td>
</tr>
<tr>
<td>6</td>
<td>Excavación Fase 3</td>
</tr>
<tr>
<td>7</td>
<td>Sostenimiento Fase 3</td>
</tr>
<tr>
<td>8</td>
<td>Excavación Fase 4</td>
</tr>
<tr>
<td>9</td>
<td>Sostenimiento Fase 4</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

3.3.7.17.2.3.1.3 Resultado del modelo numérico

3.3.7.17.2.3.1.3.1 Pique de ventilación

A continuación, se muestran los resultados obtenidos una vez excavadas y sostenidas todas las fases del pique de ventilación.

Tabla 3.95 Resumen resultados. Fase final. Modelo Numérico. Pique de ventilación (RMR=50, Profundidad máxima 529m)

<table>
<thead>
<tr>
<th>Magnitud</th>
<th>Máximo Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terreno</td>
<td></td>
</tr>
<tr>
<td>Desplazamiento horizontal (mm)</td>
<td>3.00</td>
</tr>
<tr>
<td>Plastificación (m)</td>
<td><1</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

A modo de conclusión, se puede indicar que el terreno es autoestable y, por tanto, es capaz de soportar las cargas provocadas por la excavación sin necesidad de sostenimiento. A pesar de ello, se colocará una capa de shotcrete de espesor variable en función de la calidad del terreno en el que se perfora, además de añadir si fuera necesario bulones o marcos.
Figura 3.215 Desplazamientos horizontales. Fase final
Fuente: Subterra, 2019
Teniendo en cuenta que la sección modelada ha sido la crítica, es decir, aquella que ha sido excavada en terrenos de peor calidad geotécnica y mayor cobertera, se asume que las demás secciones (más favorables) también cumplen los factores de seguridad exigidos.

3.3.7.17.2.3.1.3.2 Túnel de acceso ejecutado con perforación y voladura

A continuación, se muestran los resultados obtenidos una vez excavadas y sostenidas todas las fases del túnel de acceso ejecutado con perforación y voladura.

Tabla 3.96 Resumen resultados. Fase final. Modelo Numérico. Túnel de acceso ejecutado con perforación y voladura (Zona de falla RMR=20, Zona próxima a falla RMR=30 y Zona alejada a falla RMR=50. Máxima cobertera 907 m)

<table>
<thead>
<tr>
<th>Magnitud</th>
<th>Máximo Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terreno</td>
<td></td>
</tr>
<tr>
<td>Desplazamiento vertical de la clave (mm)</td>
<td><40</td>
</tr>
<tr>
<td>Plastificación (m)</td>
<td>3,70</td>
</tr>
<tr>
<td>Sostenimiento</td>
<td></td>
</tr>
<tr>
<td>Shotcrete SH-35</td>
<td></td>
</tr>
<tr>
<td>Compresión (MPa)</td>
<td>32,00</td>
</tr>
<tr>
<td>Tracción (MPa)</td>
<td><1,00</td>
</tr>
<tr>
<td>Marco reticularado</td>
<td></td>
</tr>
<tr>
<td>Axiles (MN)</td>
<td>3,74</td>
</tr>
<tr>
<td>Momentos (MNm)</td>
<td>0,017</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019
A modo de conclusión, se puede indicar que el sostenimiento es capaz de sostener las cargas impuestas por la roca, localizándose su mayor compresión en los hombros del sostenimiento. La respuesta del hormigón de sostenimiento es favorable dado que en gran parte de su extensión se encuentra comprimido.

Figura 3.217 Desplazamientos verticales. Fase final (m)
Fuente: Subterra, 2019

Figura 3.218 Compresión en el sostenimiento. Fase final (MPa)
Fuente: Subterra, 2019
Teniendo en cuenta que la sección modelada ha sido la crítica, es decir, aquella que ha sido excavada en terrenos de peor calidad geotécnica y mayor cobertera, se asume que las demás secciones (más favorables) también cumplen los factores de seguridad exigidos.

3.3.7.17.2.3.1.3.3 Túnel de acceso ejecutado con TBM

A continuación, se muestran los resultados obtenidos una vez excavadas y sostenidas todas las fases del túnel de acceso ejecutado con TBM.
Tabla 3.97 Resumen resultados. Fase final. Modelo Numérico. Túnel acceso ejecutado con TBM (Zona de falla RMR=20, Zona próxima a falla RMR=30 y Zona alejada a falla RMR=50. Máxima cobertera 1030 m)

<table>
<thead>
<tr>
<th>Magnitud</th>
<th>Máximo Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desplazamiento vertical de la clave (mm)</td>
<td>66,00</td>
</tr>
<tr>
<td>Plastificación (m)</td>
<td>3,70</td>
</tr>
<tr>
<td>Compresión (MPa)</td>
<td>20,40</td>
</tr>
<tr>
<td>Tracción (MPa)</td>
<td><1,00</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

A modo de conclusión, se puede indicar que el sostenimiento es capaz de sostener las cargas impuestas por la roca, dejando holgura en su resistencia a la compresión y a la tracción, localizándose su mayor compresión en la clave del sostenimiento. La respuesta del hormigón de sostenimiento es favorable dado que en gran parte de su extensión se encuentra comprimido.

Figura 3.221 Desplazamientos verticales. Fase final (m)

Fuente: Subterra, 2019
Figura 3.222 Compresión en el sostenimiento. Fase final (MPa)
Fuente: Subterra, 2019

Figura 3.223 Tracción en el sostenimiento. Fase final (MPa)
Fuente: Subterra, 2019
Teniendo en cuenta que la sección modelada ha sido la crítica, es decir, aquella que ha sido excavada en terrenos de peor calidad geotécnica y mayor cobertera, se asume que las demás secciones (más favorables) también cumplen los factores de seguridad exigidos.

3.3.7.17.2.3.1.3.4 Caverna de trituración

A continuación, se muestran los resultados obtenidos una vez excavadas y sostenidas todas las fases de la caverna de trituración.

Tabla 3.98 Resumen resultados. Fase final. Modelo Numérico. Caverna de trituración (RMR=70, Máxima cobertera 1100m)

<table>
<thead>
<tr>
<th>Magnitud</th>
<th>Máximo Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terreno</td>
<td></td>
</tr>
<tr>
<td>Desplazamiento vertical de la clave (mm)</td>
<td>7,00</td>
</tr>
<tr>
<td>Plastificación (m)</td>
<td>0,50</td>
</tr>
<tr>
<td>Sostenimiento</td>
<td></td>
</tr>
<tr>
<td>Shotcrete SH-35</td>
<td></td>
</tr>
<tr>
<td>Compresión (MPa)</td>
<td>35,20</td>
</tr>
<tr>
<td>Tracción (MPa)</td>
<td>< 1,00</td>
</tr>
<tr>
<td>Búñones</td>
<td></td>
</tr>
<tr>
<td>Axiles (MN)</td>
<td>0,06</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

A modo de conclusión, se puede indicar que el sostenimiento es capaz de sostener las cargas impuestas por la roca, localizándose su mayor compresión en los hombros del sostenimiento. La respuesta del hormigón de sostenimiento es favorable dado que en gran parte de su extensión se encuentra comprimido.
Figura 3.225 Desplazamientos verticales. Fase final (m)
Fuente: Subterra, 2019

Figura 3.226 Compresión en el sostenimiento. Fase final (MPa)
Fuente: Subterra, 2019
Teniendo en cuenta que la sección modelada ha sido la crítica, es decir, aquella que ha sido excavada en terrenos de peor calidad geotécnica y mayor cobertera, se asume que las demás secciones (más favorables) también cumplen los factores de seguridad exigidos.
3.3.7.17.2.3.1.3.5 Análisis probabilístico del túnel de acceso ejecutado con perforación y voladura.

Con ánimo de analizar la probabilidad de falla tanto del terreno como de los sostenimientos, se ha llevado a cabo un estudio probabilístico basado en los resultados de resistencia a compresión simple de la roca intacta y su desviación típica, obteniendo así resultados con resistencias más bajas y quedando del lado de la seguridad. Los valores tanto de la resistencia a compresión simple como de su desviación típica se encuentran en la Tabla 3.70 Ensayos realizados en muestras del sondeo CAU83 localizadas en zonas de cobertura de más de 300 m

A continuación, se muestran los resultados obtenidos una vez excavadas y sostenidas todas las fases del túnel de acceso ejecutado con perforación y voladura.

Tabla 3.99 Resumen resultados. Fase final. Análisis probabilístico. Túnel de acceso ejecutado con perforación y voladura (Zona de falla RMR=20, Zona próxima a falla RMR=30 y Zona alejada a falla RMR=50. Máxima cobertura 907 m)

<table>
<thead>
<tr>
<th>Terreno</th>
<th>Magnitud</th>
<th>Máximo Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desplazamiento vertical de la clave (mm)</td>
<td>46,3</td>
<td></td>
</tr>
<tr>
<td>Plastificación (m)</td>
<td>4,58</td>
<td></td>
</tr>
<tr>
<td>Sostenimiento</td>
<td>Shotcrete SH-35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compresión (MPa)</td>
<td>34,00</td>
</tr>
<tr>
<td></td>
<td>Tracción (MPa)</td>
<td>< 1,50</td>
</tr>
<tr>
<td>Marco reticulado</td>
<td>Axiles (MN)</td>
<td>4,26</td>
</tr>
<tr>
<td></td>
<td>Momentos (MNm)</td>
<td>0,023</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

A modo de conclusión, se puede indicar que el sostenimiento es capaz de sostener las cargas impuestas por la roca, localizándose su mayor compresión en los hombros del sostenimiento, a pesar de suponer una resistencia a compresión simple penalizada por la desviación típica (μ) resultante de los ensayos. La respuesta del hormigón de sostenimiento es favorable dado que en gran parte de su extensión se encuentra comprimido.

Teniendo en cuenta que la sección modelada ha sido la crítica, es decir, aquella que ha sido excavada en terrenos de peor calidad geotécnica y mayor cobertura, se asume que las demás secciones (más favorables) también cumplen los factores de seguridad exigidos.

A continuación y con ánimo de comparar los resultados obtenidos en el análisis probabilístico con los valores medio y de ±μ, se expone la siguiente tabla con los desplazamientos en clave (A) y en los hastiales (B y C):
Tabla 3.100 Desplazamientos con diferentes valores de desviación típica en la clave y en los hastiales para el túnel de acceso ejecutado mediante perforación y voladura

<table>
<thead>
<tr>
<th>ANÁLISIS PROBABILIDAD DE FALLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRITERIO ANÁLISIS</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Desplazamiento valor medio µ</td>
</tr>
<tr>
<td>Desplazamiento valor + µ</td>
</tr>
<tr>
<td>Desplazamiento valor - µ</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

3.3.7.17.2.3.1.3.6 Análisis probabilístico de la caverna de trituración

Con ánimo de analizar la probabilidad de falla tanto del terreno como de los sostenimientos, se ha llevado a cabo un estudio probabilístico basado en los resultados de resistencia a compresión simple de la roca intacta y su desviación típica, obteniendo así resultados con resistencias más bajas y quedando del lado de la seguridad. Los valores tanto de la resistencia a compresión simple como de su desviación típica se encuentran en la Tabla 3.70 Ensayos realizados en muestras del sondeo CAU83 localizadas en zonas de cobertera de más de 300 m

A continuación, se muestran los resultados obtenidos una vez excavadas y sostenidas todas las fases de la caverna de trituración.

Tabla 3.101 Resumen resultados. Fase final. Análisis probabilístico. Caverna de trituración (RMR=70 y máxima cobertera 1100 m)

<table>
<thead>
<tr>
<th>Magnitud</th>
<th>Máximo Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terreno</td>
<td>Desplazamiento vertical de la clave (mm)</td>
</tr>
<tr>
<td></td>
<td>Plastificación (m)</td>
</tr>
<tr>
<td>Sostenimiento</td>
<td>Shotcrete SH-35</td>
</tr>
<tr>
<td></td>
<td>Tracción (MPa)</td>
</tr>
<tr>
<td>Bulones</td>
<td>Axiles (MN)</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

A modo de conclusión, se puede indicar que el sostenimiento es capaz de sostener las cargas impuestas por la roca, localizándose su mayor compresión en los hastiales del sostenimiento, a pesar de suponer una resistencia a compresión simple penalizada por la desviación típica (µ) resultante de los ensayos. La respuesta del hormigón de sostenimiento es favorable dado que en gran parte de su extensión se encuentra comprimido.

Teniendo en cuenta que la sección modelada ha sido la crítica, es decir, aquella que ha sido excavada en terrenos de peor calidad geotécnica y mayor cobertera, se asume que las demás secciones (más favorables) también cumplen los factores de seguridad exigidos.
A continuación y con ánimo de comparar los resultados obtenidos en el análisis probabilístico con los valores medio y de ±µ, se expone la siguiente tabla con los desplazamientos en clave (A) y en los hastiales (B y C):

<table>
<thead>
<tr>
<th>CRITERIO ANÁLISIS</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>C (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desplazamiento valor medio µ</td>
<td>10,10</td>
<td>15,80</td>
<td>15,80</td>
</tr>
<tr>
<td>Desplazamiento valor + µ</td>
<td>9,05</td>
<td>14,90</td>
<td>14,95</td>
</tr>
<tr>
<td>Desplazamiento valor - µ</td>
<td>11,01</td>
<td>16,70</td>
<td>16,70</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

3.3.7.17.2.3.1.3.7 Análisis probabilístico del pozo de ventilación

Con ánimo de analizar la probabilidad de falla del terreno, se ha llevado a cabo un estudio probabilístico basado en los resultados de resistencia a compresión simple de la roca intacta y su desviación típica, obteniendo así resultados con resistencias más bajas y quedando del lado de la seguridad. Los valores tanto de la resistencia a compresión simple como de su desviación típica se encuentran en la Tabla 3.70

Ensayos realizados en muestras del sondeo CAU83 localizadas en zonas de cobertera de más de 300 m

A continuación, se muestran los resultados obtenidos una vez excavadas todas las fases del pozo de ventilación.

<table>
<thead>
<tr>
<th>Magnitud</th>
<th>Máximo Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terreno</td>
<td></td>
</tr>
<tr>
<td>Desplazamiento horizontal (mm)</td>
<td>3,23</td>
</tr>
<tr>
<td>Plastificación (m)</td>
<td>1,17</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

A modo de conclusión, se puede indicar que el terreno es autoestable, permitiendo excavar la totalidad del pozo de manera segura a pesar de suponer una resistencia a compresión simple penalizada por la deviación típica (µ) resultante de los ensayos.

Teniendo en cuenta que la sección modelada ha sido la crítica, es decir, aquella que ha sido excavada en terrenos de peor calidad geotécnica y mayor profundidad, se asume que los demás pozos (más favorables) también cumplen los factores de seguridad exigidos.

A continuación y con ánimo de comparar los resultados obtenidos en el análisis probabilístico con los valores medio y de ±µ, se expone la siguiente tabla con los desplazamientos en tres puntos localizados a 429 m (A), a 479 m (B) y a 529 m (C), los cuales corresponden respectivamente a la profundidad menor, intermedia y mayor del modelo:
Tabla 3.104 Desplazamientos con diferentes valores de desviación típica en tres puntos clave del pozo de ventilación

<table>
<thead>
<tr>
<th>CRITERIO ANÁLISIS</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>C (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desplazamiento valor medio µ</td>
<td>3,23</td>
<td>3,68</td>
<td>4,39</td>
</tr>
<tr>
<td>Desplazamiento valor + µ</td>
<td>3,26</td>
<td>3,73</td>
<td>4,44</td>
</tr>
<tr>
<td>Desplazamiento valor - µ</td>
<td>3,24</td>
<td>3,69</td>
<td>4,37</td>
</tr>
</tbody>
</table>

Fuente: Subterra, 2019

3.3.7.17.2.4 Bocamina

Dentro del concepto de emboquilles se agrupan tanto los trabajos que deben realizarse en el terreno para el inicio del túnel, como la construcción de los portales definitivos del mismo.

En cuanto a los primeros, la propiedad cuenta con los estudios, análisis y estabilidad de los taludes de los portales, bajo las siguientes condiciones:

Factores de seguridad a cumplir en función de las distintas situaciones de proyecto:

- Situaciones persistentes: F.S. > 1,5.
- Situaciones transitorias o de corto plazo (Fases provisionales de obra): F.S. > 1,3.
- Situaciones accidentales (Sismo): F.S. > 1,1.

En a lo segundo, esto es, el portal propiamente, procede establecer, para garantizar la estabilidad de la excavación, implementar la realización de un paraguas de presostenimiento en los primeros metros del túnel.

Dada la importancia del portal, como punto de entrada y salida al túnel, es recomendable para la solución adoptada, rematar el emboquille en fase definitiva mediante un falso túnel, este túnel artificial tendría una longitud de 10-15,0 m.
3.3.7.17.3 Superficial

En este capítulo se resumen los diseños geotécnicos de obras exteriores requeridos para el estudio de impacto ambiental del futuro proyecto de explotación Minera de Cobre Quebradona.

El detalle de los diseños particulares se incluye en el Anexo_3_9A_Anexo_geotecnico.

3.3.7.17.3.1 Descripción general de las obras exteriores

En este capítulo se resumen los diseños geotécnicos de obras exteriores requeridos para el estudio de impacto ambiental del futuro proyecto de explotación Minera de Cobre Quebradona. Estas obras se describen en el numeral 3.3.8.2.2 Corredores de acceso existentes y 3.3.8.2.3 Corredores de acceso nuevos.

El detalle de los diseños particulares se incluye en el Anexo_3_9_Anexo_geotecino.

3.3.7.17.3.1.1 Accesos viales

Los accesos requeridos para el Proyecto se dividen en dos grupos.

3.3.7.17.3.1.1 Accesos existentes

Los accesos existentes corresponden a vías que actualmente funcionan a lo largo del Proyecto, y que requieren adecuaciones para satisfacer las solicitudes en las diferentes fases del proyecto.

En estas se deben mejorar tanto las condiciones de estabilidad de taludes como las condiciones de tránsito de vehículos.
En vista de que se trata de vías existentes, se realizaron recorridos de campo para identificar los materiales que componen los cortes y evaluar las condiciones actuales de estabilidad (véase el mapa MQC-INT-EIA-DESC-03-INFRA).

3.3.7.17.3.1.1.2 Accesos nuevos

Los accesos nuevos corresponden a las vías actualmente inexistentes, proyectadas para conectar las diferentes obras del Proyecto en cada una de las fases (construcción y operación). El planteamiento de dichas vías se observa en el mapa MQC-INT-EIA-DESC-03-CYM y en los planos 0010368-MQC-LY-010 al 0010368-MQC-LY-060.

Dado que las vías son proyectadas fue necesario contar con los resultados de la exploración, recorridos de campo e información de otras vías para determinar el perfil de suelo y los parámetros de resistencia.

3.3.7.17.3.1.2 ZODMEs

En este Proyecto se definieron seis zonas de disposición de materiales estériles o ZODMES (véase la Figura 3.229 y Figura 3.230). Tres en la zona superficial en el valle (parte baja del proyecto): ZODMES A, B y C, y tres en la zona superficial sobre la montaña (parte alta): ZODMEs D, E y F.

Estas zonas de depósito se localizaron en sitios donde las condiciones topográficas y logísticas eran favorables para su emplazamiento. Una vez definida su localización, se analizó la estabilidad de cada uno de los depósitos con base en la configuración geométrica, la información topográfica del terreno y la condición geológica geotécnica de la zona.

Como parte del análisis de las zonas de depósito se incluyen el depósito temporal de estériles y la pila de suelo (véase la Figura 3.232 y Figura 3.233).

Figura 3.229 Localización del ZODME A y el ZODME B
Fuente: Integral, 2019
Figura 3.230 Localización del ZODME C y el ZODME D
Fuente: Integral, 2019

Figura 3.231 Localización ZODMEs E y F
Fuente: Integral, 2019
Figura 3.232 Localización Pila de suelo
Fuente: Integral, 2019
En la Tabla 3.105 se presenta la capacidad de cada depósito, incluyendo los temporales y la pila de suelo.

Tabla 3.105 Información sobre capacidad de los depósitos del Proyecto

<table>
<thead>
<tr>
<th>Zona superficial en el valle (Parte baja)</th>
<th>Volumen de material (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.500.000</td>
</tr>
<tr>
<td>B</td>
<td>2.800.000</td>
</tr>
<tr>
<td>C</td>
<td>8.300.000</td>
</tr>
</tbody>
</table>
ZODME | Volumen de material (m³)
--- | ---
Pila de suelo | 1.900.000
Depósito Temporal estériles | 1.350.000
Zona superficial sobre la montaña (parte alta) | |
D | 143.500
E | 55.600
F | 74.300

Fuente: Integral, 2019

3.3.7.17.3.1.3 Plataformas

Para la ejecución de las obras del Proyecto se requiere la adecuación de plataformas para la disposición de obras importantes, tales como las plantas de concreto, el campamento, laboratorios, polvorín, entre otros.

A continuación, se describen algunas de las plataformas más relevantes para el proyecto con sus principales características. Los detalles de los diseños de estas plataformas se presentan en el MAPA MQC-INT-EIA-DESC-03-INFR y en los planos 0010368-MQC-LY-010 al 0010368-MQC-LY-060.

3.3.7.17.3.1.3.1 Plataformas en fase de Construcción

Durante esta fase se proyecta la conformación de once (11) plataformas de construcción en la zona baja del Proyecto (zona superficial en el valle) y cuatro (4) en la zona superficial sobre la montaña, cerca a la proyección de la zona de subsidencia. Entre las plataformas se destacan las Plataformas 2 y 4 en las zonas norte y central, respectivamente.

Las plataformas restantes son pequeñas o representan intervenciones de baja altura de corte y lleno por lo que no son obras críticas para su conformación.

En general para estas explicaciones los taludes de corte presentan pendiente 1H:1V y los llenos pendientes 2H:1V. En el mapa MQC-INT-EIA-DESC-03-INFR y en los planos 0010368-MQC-LY-010 al 0010368-MQC-LY-060, se observa que los accesos a estas plataformas serán a través de las vías de construcción 1 al 7.

3.3.7.17.3.1.3.2 Plataformas para operación inicial y final

Durante estas etapas se mantendrá en operación gran parte de las plataformas de la fase de construcción. Además, se plantea la conformación de otras de mayor área, las cuales son necesarias para el desarrollo de las actividades de aprovechamiento.

Gran parte de las nuevas plataformas se conforma en la parte sur del Proyecto, cerca de la zona de aprovechamiento, con excepción de la plataforma de portería la cual se encuentra en la zona norte.

A continuación, se describen las principales plataformas del Proyecto:

- Plataforma planta de beneficio

Es una de las plataformas de mayor área (28,84 ha) con taludes de corte de pendiente variable (0,5H:1,0V a 1H:1V) y llenos de pendiente 2H:1V.
• Plataforma Área Integrada de Operaciones AIO

Al igual que la Planta de beneficio, posee una gran área (31,40 ha). En este caso los taludes de corte mantienen una pendiente de 1H:1V y llenos de pendiente 2H:1V.

En esta plataforma se localizarán igualmente los laboratorios, estación de combustible, Campamento, plantas de concreto, entre otras instalaciones necesarias en la fase de operación.

• Plataforma Túneles

En esta plataforma se localizan los portales de los túneles del Proyecto, así como todos los equipos necesarios para la excavación subterránea (véase la Figura 3.234). La excavación tiene un área de 1,44 ha y está conformada por taludes de corte con pendiente 1H:1V, que alcanzan los 30 m. Dadas las condiciones topográficas y geotécnicas del área de excavación, fue necesario implementar tratamientos geotécnicos que incluyen anclajes, concreto lanzado y drenes, para estabilizar los taludes con factores de seguridad admisibles.

• Otras plataformas

En esta fase se conforman igualmente las plataformas de explosivos, relaves filtrados, relaves con pirita y plantas de tratamiento PTAP, PTARND1, PTARD. Las cuales poseen áreas pequeñas y por ende cortes y llenos que en general no superan los 10 m de altura.

3.3.7.17.3.1.4 Sedimentadores

El Proyecto considera la construcción de siete sedimentadores ubicados estratégicamente en la zona superficial en el valle (parte baja) con el fin de servir como
estructuras de almacenamiento y tratamiento de sedimentación de las aguas provenientes del Depósito de relaves y de los ZODMEs.

El análisis de estabilidad geotécnica de la sección crítica típica asociada a las estructuras de los sedimentadores se presenta en el el Anexo_3_9A_Anexo_geotecnico.

3.3.7.17.3.2 Metodología de análisis

Las actividades que se llevaron a cabo para la evaluación de la estabilidad de los taludes de todas las obras exteriores proyectadas son las siguientes.

- Se definió la geología del sitio, los rasgos geomorfológicos y los procesos morfodinámicos.
- Con base en la geología, exploración del subsuelo y recorridos de campo se sectorizó la obra.
- Se identificaron secciones críticas y sobre ellas se esquematizaron los perfiles estratigráficos.
- Se estimaron las propiedades geotécnicas de cada uno de los horizontes involucrados en la intervención, posterior a la caracterización. Para definir los parámetros del suelo de los taludes de corte, se realizó el siguiente procedimiento:
 - Se verificó la descripción geológica de los sectores para obtener una correlación de los parámetros de resistencia del suelo.
 - A partir de las exploraciones de cada sector se obtuvieron las clasificaciones, humedades promedio y parámetros de resistencia de los diferentes estratos de suelo.
 - Se realizaron análisis regresivos de los taludes existentes partiendo de los parámetros previamente estimados, buscando factores de seguridad que reflejaran la condición actual de los mismos, para ajustar los valores asumidos.
 - Luego se hicieron los análisis de estabilidad, de acuerdo a lo que se establece en los criterios de diseño.
 - Finalmente se definió la geometría de los taludes típicos, de tal forma que cumpliera con los factores de seguridad mínimos definidos, bien sea con o sin tratamiento.
 - Además, se especifican las recomendaciones constructivas especiales donde se requiera.

De manera esquemática y en términos generales, los análisis y diseños de los taludes se realizaron adoptando los siguientes criterios.

3.3.7.17.3.3 Criterios de diseño

En este capítulo se describen los criterios empleados para:

- Evaluar la estabilidad de los taludes tanto de corte como de lleno para las diferentes obras.
- Estimar la capacidad de carga para las zonas donde se implantarán llenos.

3.3.7.17.3.3.1 Mecanismos de falla

Con el fin de evaluar la estabilidad de los taludes y de acuerdo a las características de los suelos, y los cortes propuestos, se dispone del Análisis de equilibrio límite.

Este análisis evalúa la superficie de falla a presentarse en las excavaciones por efecto del desconfinamiento causado por la misma excavación. El indicador de equilibrio radica en la relación entre fuerzas resistentes al movimiento y aquellas actuantes que lo generan.

3.3.7.17.3.3.2 Tipos de análisis de estabilidad para diseño

La evaluación de la estabilidad y el diseño del soporte necesario para su estabilidad, se realizó mediante la metodología de análisis de equilibrio límite, con ayuda del programa SLIDE.

Se considera que los métodos más apropiados para representar la resistencia de las fuerzas motoras frente a las resistentes, son aquellos que tienen en cuenta tanto las fuerzas como los momentos, por esta razón se utilizan los métodos de Janbu y Spencer.

3.3.7.17.3.3.3 Condiciones de trabajo consideradas

La estabilidad de las obras civiles se evaluará para la condición estática, seudoestática y condiciones extraordinarias de niveles de agua en el suelo.

Para el análisis seudoestático se tomarán las recomendaciones del título H (capítulo H.5.2.5) de la NSR-10, donde se define el coeficiente sísmico de diseño K_{ST}, el cual tiene un valor igual o menor que a_{max} y que para suelos, enrocados y macizos rocosos muy fracturados se puede emplear la siguiente relación:

$$K_{ST} = 0.5 \times a_{\text{max}}$$

Dónde:

- K_{ST} = Coeficiente sísmico de diseño para análisis seudoestático de taludes
- a_{max} = Aceleración máxima del terreno = $a_f F_a I$
- a_f = Coeficiente que representa la aceleración horizontal pico efectiva.
- F_a = Coeficiente de amplificación del suelo para la zona de periodos cortos del espectro.
- I = Coeficiente de importancia.

Del título A, NSR-10, se definen los valores de A_a, F_a e I como se observa a continuación:

- $A_a = 0.25$, de acuerdo con la Figura A.2.3-2 de la NSR-10, en donde se define que el Proyecto está localizado en la región 5.
F_s=1,3, de acuerdo con la Figura A.2.3-2 de la NSR-10, en donde se define que el Proyecto está localizado en la región 5.

I=1,0, definido de acuerdo con el capítulo A.2.5 (NSR-10) en donde se determina un grupo de uso I para este Proyecto.

Con base en lo anterior, se determina el máximo coeficiente sísmico horizontal para el diseño. Por otro lado, la aceleración vertical considerada corresponde al 50% de la horizontal (véase la Tabla 3.106).

Tabla 3.106: eudo-aceleraciones adoptadas para los análisis de estabilidad

<table>
<thead>
<tr>
<th>A_s</th>
<th>Fa</th>
<th>I</th>
<th>(a_{max})</th>
<th>Khs</th>
<th>Kvs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,25</td>
<td>1,3</td>
<td>1,00</td>
<td>0,325</td>
<td>0,16</td>
<td>0,08</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

3.3.7.17.3.3.4 Factores de seguridad

Los factores mínimos de seguridad adoptados para considerar la estabilidad de los taludes, corresponden a los indicados por la NSR-10, en la Tabla H.2.4-1:

- Factor de seguridad mínimo de FS: 1,5 en condición estática
- Factor de seguridad mínimo de FS: 1,05 en condición seudoestática.

Estos criterios son mayores a los establecidos como requisito del estudio de impacto ambiental para zonas de riesgo sísmico alto (Tabla 4 Términos de referencia – EIA – Proyectos de explotación minera).

Como se mencionó anteriormente, se realizarán análisis de estabilidad para una condición de lluvia intensa, donde se alcancen niveles freáticos extraordinarios. Es claro que un aumento notable en el nivel freático puede disminuir el factor de seguridad en condición estática hasta valores de 1,3 aproximadamente; sin embargo, esto se considera admisible, teniendo en cuenta que no se trata de la condición normal de operación y que los taludes contarán con drenes y obras hidráulicas para la pronta evacuación del agua.

3.3.7.17.3.3.5 Resistencia de elementos de soporte

Durante los diseños es posible que se identifique la necesidad de elementos de soporte que ayuden a alcanzar los factores de seguridad requeridos. Las resistencias de los elementos de soporte se encuentran dados por las siguientes expresiones:

Para torones de pre – esfuerzo → \(\phi \cdot Rn = \beta \cdot f_{pu} \cdot A_s \)

Para barras de anclaje → \(\phi \cdot Rn = \beta \cdot f_y \cdot A_s \)

Dónde:

- \(\phi \): Factor de amplificación de la carga=1,30
- \(\beta \): Factor de reducción=0,75
- Rn: Resistencia elemento
fy: Esfuerzo de fluencia del acero para barras de anclaje (se empleará acero grado 60, fy=412 MPa)

fpu: Esfuerzo último cables para anclaje (se empleará acero grado 270, fpu=1860 MPa)

As: Área transversal nominal

Las resistencias de los diferentes elementos están dadas por:

Para un torón φ: 0,6"

\[R_{n,φ:0.6''} = 0.75 \times \frac{1860 \text{ MPa} \times 140 \text{ mm}^2}{1.3 \times 1000} = 150 \text{ kN} \]

Para una barra No. 8

\[R_{n,φ:BA8''} = 0.75 \times \frac{412 \text{ MPa} \times 510 \text{ mm}^2}{1.3 \times 1000} = 121 \text{ kN} \]

Los cálculos están basados en la metodología descrita en el artículo FHWA-IF-99-015 “GEOTECHNICAL ENGINEERING CIRCULAR NO. 4 - Ground Anchors and Anchored Systems” (Federal Highway Administration), en donde especifican que la carga de diseño no deberá superar el 60% de la especificada resistencia a la tracción mínima (SMTS) del acero.

De acuerdo con lo anterior se definen los siguientes tipos de soporte, de acuerdo con la carga de diseño requerida:

Tabla 3.107 Tipos de soporte a considerar en diseño

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Carga de diseño (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barra de anclaje No. 8 (BAL-8)</td>
<td>< 120</td>
</tr>
<tr>
<td>Cable de 2 torones</td>
<td>180 - 300</td>
</tr>
<tr>
<td>Cable de 3 torones</td>
<td>300 - 450</td>
</tr>
</tbody>
</table>

* En caso de requerirse una carga mayor, se añadirá el número de torones necesarios.

Fuente: Minera de Cobre Quebradona, 2019

De esta forma, el tipo de anclaje estará acorde a las resistencias aquí establecidas. El espaciamiento se definirá con valores entre 2,0 m y 3,0 m y la inclinación de los anclajes serán de 15°.

3.3.7.17.3.3.6 Longitud de bulbo

Estimando el empuje que deberá ser soportado por el elemento; a partir del predimensionamiento del sistema de sostenimiento, realizado con los modelos de equilibrio límite, se establece dicho empuje de tal forma que se estabilice la masa de suelo. De esta manera se hace una distribución de la localización de los anclajes en el espacio, de forma que la tensión que debe soportar cada anclaje esté dentro de los límites normales de construcción de forma que la longitud del elemento no sea excesiva, que la cantidad de refuerzo requerida pueda colocarse dentro del hueco de la perforación y que la placa sea lo menos robusta posible. Posteriormente, se calcula la tensión límite del suelo, es decir, la resistencia a la rotura de cada estrato con la profundidad.
Este cálculo se basa en la teoría del presurómetro de Menard, donde se tienen en cuenta los parámetros de resistencia, así como la resistencia última del suelo o roca según sea el caso. Una vez calculados estos parámetros, con la ayuda de las gráficas de Bustamante, se determina la resistencia a la fricción que tendrá el bulbo de anclaje con la profundidad, ingresando con la tensión límite que se determinó previamente con la teoría de Menard.

La resistencia a la fricción admisible para el diseño del bulbo será el resultante de la metodología anterior, dividido por un factor de seguridad de 3.

Por último, se calcula la longitud del bulbo con la tensión que debe resistir cada anclaje y la resistencia a la fricción, de acuerdo a la ecuación siguiente:

$$LB = \frac{Td}{q_s \text{ adm.} \cdot \phi \cdot \alpha}$$

Donde:
- LB: Longitud de bulbo
- Td: Tensión de diseño por anclaje
- $q_s \text{ adm.}$: Resistencia a la fricción del bulbo
- ϕ: Diámetro de la perforación (0,10 m)
- α: Coeficiente de expansión por inyección (De acuerdo a los materiales del proyecto, se empleará un factor de 1,5)

Las inyecciones de los anclajes serán de grouting a alta presión en pasos sucesivos y fases repetidas (IRS).

La longitud del anclaje será la longitud libre más la longitud del bulbo. El bulbo, que será la parte resistente del elemento, debe quedar por fuera de la superficie de falla que define el factor de seguridad de diseño.

3.3.7.17.3.3.7 Capacidad de carga

Con el fin de determinar unas capacidades de carga para obras pequeñas y los llenos proyectados a lo largo del Proyecto, se consideró las recomendaciones emitidas en el código Colombiano de Puentes CCP14, emitido por INVIA en el cual se presentan diferentes capacidades en función del tipo de suelo (Véase la Tabla 3.108).

<table>
<thead>
<tr>
<th>Tipo de material de apoyo</th>
<th>Consistencia en el lugar</th>
<th>Capacidad de carga (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rango ordinario</td>
<td>Valores de uso recomendado</td>
</tr>
<tr>
<td>Rocas Masivas cristalinas iegna y metamórficas, Granito, diorita, basalto, gneis conglomerante bien cimentado. (La condición permite grietas menores)</td>
<td>Roca Sana muy Dura</td>
<td>5,70 - 9,60</td>
</tr>
<tr>
<td>Rocas metamórficas foliadas pizarra esquistos. (la condición en roca sana permite grietas</td>
<td>Roca Sana , dura</td>
<td>2,90 - 3,80</td>
</tr>
</tbody>
</table>
Tipo de material de apoyo

<table>
<thead>
<tr>
<th>Consistencia en el lugar</th>
<th>Capacidad de carga (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rango ordinario</td>
</tr>
<tr>
<td>menores</td>
<td></td>
</tr>
<tr>
<td>Rocas sedimentarias: Lutitas duras cementadas, limolitas areniscas, caliza sin cavidades.</td>
<td>Roca sana, dura</td>
</tr>
<tr>
<td>Lecho rocoso erosionado ambientalmente o fracturado de cualquier tipo, excepto rocas altamente arcillosas.</td>
<td>Roca medio dura</td>
</tr>
<tr>
<td>Mezcla bien gradada de suelo grano fino y grueso: masas glaciales, capas de suelo endurecido, rocas rodantes (GW-GC, GC, SC)</td>
<td>Muy denso</td>
</tr>
<tr>
<td>Grava, mezcla de grava y arena, mezcla de roca rodante y grava (GW, GP,SW,SP)</td>
<td>Muy denso</td>
</tr>
<tr>
<td>Arenita gruesa a media y con poca grava (SW, SP).</td>
<td>Medio denso a denso</td>
</tr>
<tr>
<td>Arenita fina a media, arena media a gruesa limosa o arcillosa (SP,SM,SC)</td>
<td>Muy denso</td>
</tr>
<tr>
<td>Arcilla inorgánica homogénea, arcilla arenosa o arcillosa (CL, CH).</td>
<td>Muy denso</td>
</tr>
<tr>
<td>Limo inorgánico, lino arenoso o arcilloso (ML, MH).</td>
<td>Muy rígido a duro</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Según las descripciones de los materiales identificados a lo largo del Proyecto se estiman de forma conservadora que las obras sobre perfiles de roca soportan 960 kPa. Mientras que para perfiles de suelo los esfuerzos no deberían superar valores de 380 kPa.

3.3.7.17.3.4 Geología particular para las obras exteriores

Teniendo en cuenta las características geológicas regionales y los sondeos realizados en la zona donde se construirá la infraestructura del Proyecto, se tiene que, para el diseño del portal, la geología se enmarca en depósitos de vertiente de espesor promedio de 40 m, suprayaciendo rocas de la Formación Combia.

Para los cortes y llenos de las vías, las plataformas, ZODMES y depósitos temporales, la geología corresponde a depósitos de vertiente de espesor variable entre 9 m y 15 m, suprayaciendo rocas sedimentarias de la Formación Amagá.

3.3.7.17.3.5 Plan de investigación geotécnica

El plan de investigación geotécnica desarrollado para el Proyecto Minera de Cobre Quebradona, consistió en continuos recorridos de campo, pozos de perforación, apiques y líneas de refracción sísica.
El equipo incluyó un taladro Kluane KC-1000 con varillas de perforación para diámetros HTW-NTW, cucharas para Ensayo de Penetración Standard (SPT), martillo de 63,5 kg y muestreadores Shelby de pared delgada (véase la Figura 3.235).

Los fluidos de perforación utilizados incluyeron el uso de agua y polímeros para mantener la estabilidad del pozo y en casos especiales los pozos se limpiaron adecuadamente antes de llevar a cabo las pruebas de permeabilidad. Las pruebas de perforación y penetración estándar fueron ejecutadas por geólogos e ingenieros de Minera de cobre Quebradona S. A. bajo la supervisión de Ausenco.

La información recopilada en la campaña de exploración y los resultados de los ensayos in situ y en laboratorio, permitieron la caracterización geológico-geotécnica de los materiales de las diferentes zonas del Proyecto, lo cual, en conjunto con los levantamientos topográficos, permitieron realizar los análisis de estabilidad de todas las obras geotécnicas del Proyecto. La localización de los puntos de perforación para la investigación geotécnica se ilustra en el mapa MQC-INT-EIA-CAI-05-PEX (véase también el Anexo_3_9A_Anexo_geotecnico. Apendice_01_Geot-Geol_Report. Plano 102512-0000-B-201).

A continuación, se describen los principales aspectos de la campaña geotécnica.
Investigación geotécnica e hidrogeológica

Consiste en la investigación mediante apiques (también llamados calicatas) y perforaciones, las cuales permiten realizar ensayos in situ o tomar las muestras para ensayos de laboratorio.

A la fecha se han ejecutado 23 pozos, totalizando 1.592 m y 21 apiques, adicionando 50,2 m a la investigación directa en las áreas de los predios San Antonio, La Mancha y Candelaria.

En la Tabla 3.109 se presentan la localización y profundidad alcanzada por las trincheras.

Tabla 3.109 Investigación ejecutada- trincheras

<table>
<thead>
<tr>
<th>Trincheras</th>
<th>Coordenadas Magna Sirgas Oeste</th>
<th>Profundidad (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP_QUEUE18-01</td>
<td>1.152.747, 1.133.249</td>
<td>2,8</td>
</tr>
<tr>
<td>TP_QUEUE18-04</td>
<td>1.152.188, 1.133.049</td>
<td>2,8</td>
</tr>
<tr>
<td>TP_QUEUE18-05</td>
<td>1.152.530, 1.133.008</td>
<td>2,5</td>
</tr>
<tr>
<td>TP_QUEUE18-06</td>
<td>1.152.741, 1.132.840</td>
<td>2,6</td>
</tr>
<tr>
<td>TP_QUEUE18-09</td>
<td>1.152.592, 1.132.575</td>
<td>2,8</td>
</tr>
<tr>
<td>TP_QUEUE18-10</td>
<td>1.153.042, 1.132.270</td>
<td>2,6</td>
</tr>
<tr>
<td>TP_QUEUE18-12A</td>
<td>1.152.894, 1.132.290</td>
<td>2,2</td>
</tr>
<tr>
<td>TP_QUEUE18-13A</td>
<td>1.152.790, 1.132.165</td>
<td>2,5</td>
</tr>
<tr>
<td>TP_QUEUE18-14A</td>
<td>1.153.343, 1.132.276</td>
<td>2,9</td>
</tr>
<tr>
<td>TP_QUEUE18-15</td>
<td>1.153.224, 1.131.845</td>
<td>1,5</td>
</tr>
<tr>
<td>TP_QUEUE18-21</td>
<td>1.151.812, 1.132.401</td>
<td>1,5</td>
</tr>
<tr>
<td>TP_QUEUE18-22A</td>
<td>1.151.997, 1.132.386</td>
<td>2,5</td>
</tr>
<tr>
<td>TP_QUEUE18-24</td>
<td>1.151.983, 1.132.311</td>
<td>2,5</td>
</tr>
<tr>
<td>TP_QUEUE18-23</td>
<td>1.152.219, 1.132.233</td>
<td>2,8</td>
</tr>
<tr>
<td>TP_QUEUE18-19</td>
<td>1.152.039, 1.132.067</td>
<td>2,5</td>
</tr>
<tr>
<td>TP_QUEUE18-11</td>
<td>1.152.299, 1.132.049</td>
<td>1,2</td>
</tr>
<tr>
<td>TP_QUEUE18-16</td>
<td>1.152.475, 1.131.792</td>
<td>1,2</td>
</tr>
<tr>
<td>TP_QUEUE18-07</td>
<td>1.153.741, 1.132.540</td>
<td>2,9</td>
</tr>
<tr>
<td>TP_QUEUE18-08</td>
<td>1.153.788, 1.132.325</td>
<td>3,2</td>
</tr>
<tr>
<td>TP_QUEUE18-02</td>
<td>1.153.039, 1.133.102</td>
<td>2,8</td>
</tr>
<tr>
<td>TP_QUEUE18-03</td>
<td>1.153.832, 1.133.101</td>
<td>2,9</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018

Adicionalmente, se ejecutaron perforaciones a rotación las cuales se detallan en la Tabla 3.110.

Tabla 3.110 Investigación ejecutada, perforación a rotación

<table>
<thead>
<tr>
<th>Perforación</th>
<th>Coordenadas Magna Sirgas Oeste</th>
<th>Profundidad (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH QUEUE18-01A (CAU-005)</td>
<td>1.153.238, 1.133.822</td>
<td>22,17</td>
</tr>
<tr>
<td>DH QUEUE18-01 (CAU-003)</td>
<td>1.153.238, 1.133.813</td>
<td>50,00</td>
</tr>
<tr>
<td>DH QUEUE18-02 (CAU-021)</td>
<td>1.153.943, 1.133.230</td>
<td>70,11</td>
</tr>
<tr>
<td>DH QUEUE18-09 (CAU-020)</td>
<td>1.153.878, 1.132.470</td>
<td>70,36</td>
</tr>
<tr>
<td>DH QUEUE18-09A (CAU-022)</td>
<td>1.153.888, 1.132.477</td>
<td>27,11</td>
</tr>
<tr>
<td>DH QUEUE18-03 (CAU-006)</td>
<td>1.153.026, 1.133.235</td>
<td>70,00</td>
</tr>
<tr>
<td>DH QUEUE18-04 (CAU-008)</td>
<td>1.156.403, 1.132.841</td>
<td>70,00</td>
</tr>
<tr>
<td>DH QUEUE18-05 (CAU-002)</td>
<td>1.152.556, 1.133.213</td>
<td>70,00</td>
</tr>
<tr>
<td>DH QUEUE18-06 (CAU-004)</td>
<td>1.152.675, 1.132.995</td>
<td>70,00</td>
</tr>
</tbody>
</table>
3.3.7.17.3.5.1.1 Pruebas in-situ

Se realizaron múltiples pruebas a diferentes profundidades dentro del pozo, con el fin de obtener la mayor información posible del material del depósito de vertiente de sobrecarga y de las rocas sedimentarias subyacentes, lo mismo que otras características de interés. Para controlar la alteración de la muestra y los efectos potenciales del entorno se recolectaron muestras con tubo Shelby de pared delgada, a intervalos seleccionados a través del material de sobrecarga.

Las pruebas de penetración estándar (SPT) se llevaron a cabo a intervalos de aproximadamente 3 m, excepto donde se detectó la presencia de roca o se encontró rechazo de la plataforma de perforación. La prueba de permeabilidad in-situ se completó empleando el método Lefranc en pozos seleccionados. La prueba Packer in-situ se realizó con paquetes inflables de Nitrógeno aislando la zona de fracturas de la roca después de la terminación del pozo. Cabe destacar que estas pruebas se realizaron en pozos correspondientes a aquellos donde las características estructurales eran aplicables (véase la Figura 3.236).
3.3.7.17.3.5.1.2 Logueo y muestreo de suelo

Para el registro de las muestras se describió el suelo en forma general, incluyendo datos de tamaño y forma de partícula, gradación, color, resistencia aproximada, estructura, contenido de humedad y otras.

La Tabla 3.111 resume las características de los pozos y apiques perforados junto con los ensayos realizados in-situ:

Tabla 3.111 Resumen de pozos y pruebas de campo

<table>
<thead>
<tr>
<th>Identificación del Pozo</th>
<th>Profundidad (m)</th>
<th>Shelby</th>
<th>SPT</th>
<th>Calicata</th>
<th>Profundidad (m)</th>
<th>Pruebas in-situ</th>
<th>Densidad de campo</th>
<th>Infiltración</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAU001</td>
<td>92</td>
<td>1</td>
<td>1</td>
<td>TPQUE18-01</td>
<td>2,8</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CAU002</td>
<td>92</td>
<td>2</td>
<td>4</td>
<td>TPQUE18-02</td>
<td>2,8</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CAU003</td>
<td>50</td>
<td></td>
<td></td>
<td>TPQUE18-03</td>
<td>2,9</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CAU004</td>
<td>70</td>
<td>4</td>
<td></td>
<td>TPQUE18-04</td>
<td>2,8</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CAU005</td>
<td>22,17</td>
<td></td>
<td></td>
<td>TPQUE18-05</td>
<td>2,5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CAU006</td>
<td>49</td>
<td>2</td>
<td>5</td>
<td>TPQUE18-06</td>
<td>2,6</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CAU007</td>
<td>52,38</td>
<td>1</td>
<td>5</td>
<td>TPQUE18-07</td>
<td>2,9</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CAU008</td>
<td>70</td>
<td>2</td>
<td>3</td>
<td>TPQUE18-08</td>
<td>1,53</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CAU009</td>
<td>61,05</td>
<td></td>
<td>1</td>
<td>TPQUE18-09</td>
<td>2,8</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CAU010</td>
<td>12,13</td>
<td></td>
<td></td>
<td>TPQUE18-10</td>
<td>2,6</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CAU011</td>
<td>701</td>
<td>1</td>
<td>5</td>
<td>TPQUE18-11</td>
<td>1,56</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CAU012</td>
<td>50,37</td>
<td>2</td>
<td>3</td>
<td>TPQUE18-12</td>
<td>2,5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CAU013</td>
<td>50,05</td>
<td>3</td>
<td></td>
<td>TPQUE18-13</td>
<td>2,2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CAU014</td>
<td>100,75</td>
<td>3</td>
<td></td>
<td>TPQUE18-14</td>
<td>2,9</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CAU015</td>
<td>69,33</td>
<td>1</td>
<td>4</td>
<td>TPQUE18-15</td>
<td>1,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAU016</td>
<td>2,23</td>
<td>1</td>
<td>2</td>
<td>TPQUE18-16</td>
<td>1,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3.7.17.3.5.1.3 Ensayos de campo

Durante las investigaciones ejecutadas en campo se realizaron ensayos de percusión (SPT) y de Cono dinámico. Los ensayos de percusión realizados permiten caracterizar indirectamente la resistencia del suelo a partir del número de golpes obtenidos. Mientras que el ensayo de cono dinámico permite estimar la densidad del material.

En la Tabla 3.112 se presentan los resultados de los ensayos SPT y en la Tabla 3.113 los resultados de densidad en campo realizados en las diferentes perforaciones y trincheras.

3.3.7.17.3.5.1.4 Ensayos del laboratorio

Durante las investigaciones de campo se recolectaron muestras inalteradas para la ejecución de ensayos de laboratorio, con el objetivo de caracterizar geomecánicamente los diferentes materiales, especialmente el depósito de vertiente, sobre el cual se conformará la mayor parte de las obras.

Los ensayos realizados fueron: caracterización, cortes directos tanto en suelo como en roca, ensayos de carga punctal y compresión inconfinada en roca. A continuación, se resumen los ensayos realizados y procesados a la fecha (véanse Tabla 3.114 a la Tabla 3.120).

Tabla 3.112 Resultados de ensayos de percusión (SPT)

<table>
<thead>
<tr>
<th>Sondeo</th>
<th>Profundidad del ensayo (m)</th>
<th>N SPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH_QUE18-03</td>
<td>1.72 - 2.17</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>6.42 - 6.87</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>9.29 - 9.74</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>14.03 - 14.48</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>15.83 - 16.12</td>
<td>Rechazo</td>
</tr>
<tr>
<td></td>
<td>3.17 - 3.62</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>5.21 - 5.66</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>8.63 - 9.02</td>
<td>Rechazo</td>
</tr>
<tr>
<td>DH_QUE18-04</td>
<td>10.10 - 10.83</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>13.35 - 13.80</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>19.58 - 19.69</td>
<td>Rechazo</td>
</tr>
<tr>
<td></td>
<td>21.66 - 21.92</td>
<td>Rechazo</td>
</tr>
<tr>
<td>DH_QUE18-05</td>
<td>6.89 - 6.96</td>
<td>Rechazo</td>
</tr>
<tr>
<td></td>
<td>8.96 - 9.41</td>
<td>28</td>
</tr>
<tr>
<td>DH_QUE18-06</td>
<td>3.17 - 3.62</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>5.21 - 5.66</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>8.63 - 9.02</td>
<td>Rechazo</td>
</tr>
<tr>
<td>DH_QUE18-11</td>
<td>3.17 - 3.62</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>4.19 - 5.64</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>8.65 - 9.10</td>
<td>Rechazo</td>
</tr>
<tr>
<td>DH_QUE18-12</td>
<td>10.66 - 11.11</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>18.28 - 18.73</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>25.18 - 25.63</td>
<td>40</td>
</tr>
<tr>
<td>DH_QUE18-13</td>
<td>3.17 - 3.62</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>4.19 - 5.64</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>8.65 - 9.10</td>
<td>Rechazo</td>
</tr>
<tr>
<td>DH_QUE18-14</td>
<td>10.66 - 11.11</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>18.28 - 18.73</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>25.18 - 25.63</td>
<td>40</td>
</tr>
<tr>
<td>DH_QUE18-15</td>
<td>3.17 - 3.62</td>
<td>Rechazo</td>
</tr>
<tr>
<td></td>
<td>4.19 - 5.64</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>8.65 - 9.10</td>
<td>Rechazo</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019
Tabla 3.113 Resultados de ensayos de densidad in situ.

<table>
<thead>
<tr>
<th>Trinchera</th>
<th>Profundidad del ensayo (m)</th>
<th>Densidad in situ (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP QUE18-01</td>
<td>1.20 - 1.30</td>
<td>2.0</td>
</tr>
<tr>
<td>TP QUE18-02</td>
<td>1.20 - 1.30</td>
<td>1.9</td>
</tr>
<tr>
<td>TP QUE18-03</td>
<td>1.20 - 1.30</td>
<td>2.4</td>
</tr>
<tr>
<td>TP QUE18-04</td>
<td>1.25 - 1.35</td>
<td>1.8</td>
</tr>
<tr>
<td>TP QUE18-05</td>
<td>1.20 - 1.30</td>
<td>2.6</td>
</tr>
<tr>
<td>TP QUE18-06</td>
<td>1.20 - 1.30</td>
<td>1.9</td>
</tr>
<tr>
<td>TP QUE18-07</td>
<td>1.20 - 1.30</td>
<td>1.9</td>
</tr>
<tr>
<td>TP QUE18-08</td>
<td>1.20 - 1.30</td>
<td>1.9</td>
</tr>
<tr>
<td>TP QUE18-09</td>
<td>1.20 - 1.30</td>
<td>2.0</td>
</tr>
<tr>
<td>TP QUE18-10</td>
<td>1.20 - 1.30</td>
<td>2.0</td>
</tr>
<tr>
<td>TP QUE18-12A</td>
<td>1.20 - 1.30</td>
<td>2.2</td>
</tr>
<tr>
<td>TP QUE18-13A</td>
<td>1.20 - 1.30</td>
<td>2.0</td>
</tr>
<tr>
<td>TP QUE18-14A</td>
<td>1.20 - 1.30</td>
<td>2.2</td>
</tr>
<tr>
<td>TP QUE18-22A</td>
<td>1.25 - 1.35</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018

Tabla 3.114 Resultados ensayos de clasificación granulométrica

<table>
<thead>
<tr>
<th>Perforación</th>
<th>Profundidad (m)</th>
<th>LL (%)</th>
<th>LP (%)</th>
<th>IP (%)</th>
<th>G (%)</th>
<th>A (%)</th>
<th>F (%)</th>
<th>USCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH QUE18-01</td>
<td>1.9 - 2.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>38</td>
<td>61</td>
<td>2</td>
<td>SW</td>
</tr>
<tr>
<td></td>
<td>5.5 - 6.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>33</td>
<td>67</td>
<td>0</td>
<td>SW</td>
</tr>
<tr>
<td></td>
<td>8.5 - 9.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>49</td>
<td>0</td>
<td>GP</td>
</tr>
<tr>
<td></td>
<td>11.6 - 12.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>73</td>
<td>27</td>
<td>0</td>
<td>GW</td>
</tr>
<tr>
<td></td>
<td>14.4 - 15.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>31</td>
<td>69</td>
<td>0</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>16.7 - 17.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>79</td>
<td>21</td>
<td>0</td>
<td>GW</td>
</tr>
<tr>
<td></td>
<td>18.6 - 19.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>45</td>
<td>41</td>
<td>15</td>
<td>GM</td>
</tr>
<tr>
<td></td>
<td>21.5 - 22.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>65</td>
<td>35</td>
<td>1</td>
<td>GW</td>
</tr>
<tr>
<td>CAU-003</td>
<td>0.3 - 0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>65</td>
<td>4</td>
<td>SW</td>
</tr>
<tr>
<td></td>
<td>5.5 - 6.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>43</td>
<td>55</td>
<td>2</td>
<td>SW</td>
</tr>
<tr>
<td></td>
<td>7.5 - 7.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>47</td>
<td>53</td>
<td>1</td>
<td>SW</td>
</tr>
<tr>
<td></td>
<td>14.6 - 14.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>53</td>
<td>45</td>
<td>2</td>
<td>GW</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018
<table>
<thead>
<tr>
<th>Perforación</th>
<th>Profundidad (m)</th>
<th>Límites de Atterberg</th>
<th>Granulometría</th>
<th>USCS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Desde</td>
<td>Hasta</td>
<td>LL (%)</td>
<td>LP (%)</td>
</tr>
<tr>
<td>DH_QUE18-03 CAU-006</td>
<td>20,2</td>
<td>20,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>21,1</td>
<td>21,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,2</td>
<td>0,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4,7</td>
<td>4,9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7,4</td>
<td>7,6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>11,2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>13,2</td>
<td>13,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DH_QUE18-04 CAU-008</td>
<td>1</td>
<td>1,2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4,6</td>
<td>4,7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6,3</td>
<td>6,5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11,2</td>
<td>11,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DH_QUE18-05 CAU-002</td>
<td>1,9</td>
<td>3,2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5,9</td>
<td>6,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11,5</td>
<td>11,7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>12,4</td>
<td>12,8</td>
<td>33</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>14,7</td>
<td>14,8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>16,0</td>
<td>16,4</td>
<td>45</td>
<td>18</td>
</tr>
<tr>
<td>DH_QUE18-06 CAU-004</td>
<td>1,8</td>
<td>2,1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7,0</td>
<td>7,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>8,3</td>
<td>8,8</td>
<td>53</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>10,4</td>
<td>10,7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>13,4</td>
<td>13,8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>15,4</td>
<td>15,7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>19,4</td>
<td>19,9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>23,8</td>
<td>24</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DH_QUE18-07 CAU-011</td>
<td>2,4</td>
<td>2,6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4,8</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6,6</td>
<td>6,9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>14,2</td>
<td>14,5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5,14</td>
<td>5,59</td>
<td>35</td>
<td>18</td>
</tr>
<tr>
<td>DH_QUE18-18 CAU-007</td>
<td>1,4</td>
<td>1,8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5,9</td>
<td>6,1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DH_QUE18-19 CAU-009</td>
<td>1,7</td>
<td>1,9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4,3</td>
<td>4,5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10,9</td>
<td>11,1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>19,9</td>
<td>20,2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TP-QUE18-01</td>
<td>0,6</td>
<td>2,8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,6</td>
<td>2,8</td>
<td>43</td>
<td>33</td>
</tr>
<tr>
<td>TP-QUE18-02</td>
<td>1,3</td>
<td>1,5</td>
<td>70</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>2,0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>2,0</td>
<td>52</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>2,2</td>
<td>2,8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2,2</td>
<td>2,8</td>
<td>39</td>
<td>26</td>
</tr>
<tr>
<td>TP-QUE18-03</td>
<td>1,0</td>
<td>1,5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>1,5</td>
<td>50</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
<td>2,9</td>
<td>46</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
<td>2,9</td>
<td>46</td>
<td>31</td>
</tr>
<tr>
<td>TP-QUE18-04</td>
<td>0,6</td>
<td>1,1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,6</td>
<td>1,1</td>
<td>45</td>
<td>33</td>
</tr>
<tr>
<td>Perforación</td>
<td>Profundidad (m)</td>
<td>Límites de Atterberg</td>
<td>Granulometría</td>
<td>USCS</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>Desde Hasta</td>
<td>LL (%) LP (%) IP (%)</td>
<td>G (%) A (%) F (%)</td>
<td></td>
</tr>
<tr>
<td>TP-QUE18-05</td>
<td>1.1 1.5</td>
<td>- - -</td>
<td>63 36 1</td>
<td>GW</td>
</tr>
<tr>
<td></td>
<td>1.5 2.8</td>
<td>- - -</td>
<td>11 84 5</td>
<td>SW</td>
</tr>
<tr>
<td></td>
<td>1.5 2.8</td>
<td>51 34 17</td>
<td>22 70 8</td>
<td>SP-SM</td>
</tr>
<tr>
<td></td>
<td>0.5 0.9</td>
<td>- - -</td>
<td>39 59 2</td>
<td>SW</td>
</tr>
<tr>
<td>TP-QUE18-06</td>
<td>2.0 2.9</td>
<td>80 33 47</td>
<td>1 5 94</td>
<td>CH</td>
</tr>
<tr>
<td></td>
<td>1.2 2.0</td>
<td>44 33 11</td>
<td>36 37 26</td>
<td>SM</td>
</tr>
<tr>
<td>TP-QUE18-07</td>
<td>1.2 2.0</td>
<td>- - -</td>
<td>18 79 3</td>
<td>SW</td>
</tr>
<tr>
<td></td>
<td>2.0 2.5</td>
<td>43 30 13</td>
<td>20 72 8</td>
<td>SW-SM</td>
</tr>
<tr>
<td></td>
<td>2.0 2.5</td>
<td>- - -</td>
<td>17 79 5</td>
<td>SW</td>
</tr>
<tr>
<td>TP-QUE18-08</td>
<td>0.5 1.0</td>
<td>- - -</td>
<td>22 75 3</td>
<td>SW</td>
</tr>
<tr>
<td></td>
<td>0.5 1.0</td>
<td>55 34 21</td>
<td>8 45 71</td>
<td>SM</td>
</tr>
<tr>
<td></td>
<td>2.0 2.6</td>
<td>- - -</td>
<td>23 74 4</td>
<td>SW</td>
</tr>
<tr>
<td>TP-QUE18-09</td>
<td>2.0 2.6</td>
<td>52 34 18</td>
<td>11 46 43</td>
<td>SM</td>
</tr>
<tr>
<td>TP-QUE18-10</td>
<td>0.8 1.2</td>
<td>- - -</td>
<td>37 61 2</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>0.8 1.2</td>
<td>48 32 16</td>
<td>6 60 34</td>
<td>SM</td>
</tr>
<tr>
<td></td>
<td>2.0 2.9</td>
<td>- - -</td>
<td>22 74 4</td>
<td>SW</td>
</tr>
<tr>
<td>TP-QUE18-11</td>
<td>2.0 2.9</td>
<td>46 32 14</td>
<td>6 58 36</td>
<td>SM</td>
</tr>
<tr>
<td></td>
<td>2.0 3.2</td>
<td>59 37 22</td>
<td>4 51 45</td>
<td>SM</td>
</tr>
<tr>
<td></td>
<td>2.0 3.2</td>
<td>52 34 18</td>
<td>3 38 59</td>
<td>MH</td>
</tr>
<tr>
<td>TP-QUE18-12</td>
<td>1.2 2.1</td>
<td>45 28 17</td>
<td>0 12 88</td>
<td>ML</td>
</tr>
<tr>
<td></td>
<td>1.2 2.1</td>
<td>- - -</td>
<td>21 77 2</td>
<td>SW</td>
</tr>
<tr>
<td></td>
<td>1.2 2.1</td>
<td>46 32 14</td>
<td>0 19 81</td>
<td>ML</td>
</tr>
<tr>
<td></td>
<td>2.0 2.6</td>
<td>39 29 10</td>
<td>0 38 62</td>
<td>ML</td>
</tr>
<tr>
<td>TP-QUE18-13</td>
<td>0.9 1.2</td>
<td>- - -</td>
<td>20 78 2</td>
<td>SW</td>
</tr>
<tr>
<td></td>
<td>0.9 1.2</td>
<td>49 33 16</td>
<td>3 39 58</td>
<td>ML</td>
</tr>
<tr>
<td></td>
<td>1.8 2.5</td>
<td>- - -</td>
<td>32 35 3</td>
<td>SW</td>
</tr>
<tr>
<td>TP-QUE18-14</td>
<td>1.8 2.5</td>
<td>43 30 13</td>
<td>16 54 30</td>
<td>SM</td>
</tr>
<tr>
<td></td>
<td>0.9 1.2</td>
<td>48 35 13</td>
<td>3 65 32</td>
<td>SM</td>
</tr>
<tr>
<td></td>
<td>1.2 2.2</td>
<td>- - -</td>
<td>27 72 1</td>
<td>SW</td>
</tr>
<tr>
<td></td>
<td>1.2 2.2</td>
<td>46 32 14</td>
<td>14 55 31</td>
<td>SM</td>
</tr>
<tr>
<td>TP-QUE18-15</td>
<td>0.9 1.2</td>
<td>- - -</td>
<td>20 77 3</td>
<td>SW</td>
</tr>
<tr>
<td></td>
<td>0.9 1.2</td>
<td>46 29 17</td>
<td>2 29 69</td>
<td>ML</td>
</tr>
<tr>
<td></td>
<td>2.0 2.9</td>
<td>- - -</td>
<td>22 73 5</td>
<td>SW</td>
</tr>
<tr>
<td></td>
<td>2.0 2.9</td>
<td>43 29 14</td>
<td>10 36 54</td>
<td>ML</td>
</tr>
<tr>
<td></td>
<td>0.4 0.9</td>
<td>51 32 19</td>
<td>5 44 51</td>
<td>MH</td>
</tr>
<tr>
<td></td>
<td>1.1 1.5</td>
<td>- - -</td>
<td>52 47 2</td>
<td>GW</td>
</tr>
<tr>
<td>Estación</td>
<td>Profundidad (m)</td>
<td>Tipo de muestra</td>
<td>W (%)</td>
<td>σ_n (kPa)</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>DH_QUE18-03</td>
<td>4,90 - 5,35</td>
<td>Inalterada</td>
<td>31,2</td>
<td>100,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31,4</td>
<td>200,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30,3</td>
<td>400,7</td>
</tr>
<tr>
<td></td>
<td>8,84 - 9,29</td>
<td>Remoldeada</td>
<td>55,1</td>
<td>99,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15,9</td>
<td>199,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40,4</td>
<td>399,4</td>
</tr>
<tr>
<td>DH_QUE18-04</td>
<td>1,80 - 2,25</td>
<td>Remoldeada</td>
<td>29,1</td>
<td>100,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28,8</td>
<td>200,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29,9</td>
<td>400,7</td>
</tr>
<tr>
<td>DH_QUE18-05</td>
<td>7,74 - 8,05</td>
<td>Remoldeada</td>
<td>25,1</td>
<td>99,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23,3</td>
<td>199,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22,8</td>
<td>399,4</td>
</tr>
<tr>
<td></td>
<td>9,90 - 10,25</td>
<td>Remoldeada</td>
<td>22,7</td>
<td>99,9</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.115 Resultados ensayos de corte directo en suelo

Estudio de Impacto Ambiental
Noviembre, 2019
<table>
<thead>
<tr>
<th>Estación</th>
<th>Profundidad (m)</th>
<th>Tipo de muestra</th>
<th>W (%)</th>
<th>σₚ (kPa)</th>
<th>T (kPa)</th>
<th>E (%)</th>
<th>Φᵣ (°)</th>
<th>c (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH_QUE18-07</td>
<td>3,46 - 3,91</td>
<td>Inalterada</td>
<td>25,2</td>
<td>199,7</td>
<td>105</td>
<td>8,8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CAU-011</td>
<td></td>
<td></td>
<td>26,8</td>
<td>399,4</td>
<td>209,7</td>
<td>8,0</td>
<td>17,2</td>
<td>5</td>
</tr>
<tr>
<td>DH_QUE18-09</td>
<td>15,50 – 15,80</td>
<td>Remoldeada</td>
<td>28,9</td>
<td>99,9</td>
<td>51,6</td>
<td>13,6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CAU-020</td>
<td></td>
<td></td>
<td>29,0</td>
<td>199,7</td>
<td>112,1</td>
<td>16,8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DH_QUE18-11</td>
<td>1,50 - 1,95</td>
<td>Inalterada</td>
<td>30,0</td>
<td>149,8</td>
<td>152,1</td>
<td>6,8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CAU-018</td>
<td></td>
<td></td>
<td>32,0</td>
<td>299,5</td>
<td>327,4</td>
<td>10,0</td>
<td>29,2</td>
<td>0</td>
</tr>
<tr>
<td>DH_QUE18-12</td>
<td>16,21 - 16,66</td>
<td>Inalterada</td>
<td>32,0</td>
<td>300,5</td>
<td>242,5</td>
<td>6,5</td>
<td>17,2</td>
<td>4</td>
</tr>
<tr>
<td>CAU-015</td>
<td></td>
<td></td>
<td>18,7</td>
<td>100,2</td>
<td>41,7</td>
<td>3,6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DH_QUE18-15</td>
<td>3,00 - 3,45</td>
<td>Inalterada</td>
<td>27,5</td>
<td>100,2</td>
<td>15,9</td>
<td>4,8</td>
<td>25,6</td>
<td>10</td>
</tr>
<tr>
<td>CAU-012</td>
<td></td>
<td></td>
<td>28,3</td>
<td>200,3</td>
<td>72,4</td>
<td>6,9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DH_QUE18-18</td>
<td>12,11 - 13,09</td>
<td>Remoldeada</td>
<td>28,9</td>
<td>300,5</td>
<td>208,7</td>
<td>7,3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CAU-007</td>
<td></td>
<td></td>
<td>28,9</td>
<td>299,5</td>
<td>270,6</td>
<td>12</td>
<td>36,5</td>
<td>15</td>
</tr>
<tr>
<td>TP_QUE18-09</td>
<td>2,70 - 2,80</td>
<td>Inalterada</td>
<td>15,1</td>
<td>100,2</td>
<td>65,2</td>
<td>3,2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14,1</td>
<td>200,3</td>
<td>133</td>
<td>5,2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16,5</td>
<td>400,7</td>
<td>240,6</td>
<td>4,8</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

Tabla 3.116 Resultados de consolidación en suelos

<table>
<thead>
<tr>
<th>Estación</th>
<th>Profundidad (m)</th>
<th>Clasificación USCS</th>
<th>σₚ (kPa)</th>
<th>Cₛ (kPa)</th>
<th>Cₚ (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH_QUE18-03</td>
<td>4,90 – 5,35</td>
<td>CH</td>
<td>146</td>
<td>0,021</td>
<td>0,199</td>
</tr>
<tr>
<td>CAU-006</td>
<td>8,84 – 9,29</td>
<td>CH</td>
<td>241</td>
<td>0,038</td>
<td>0,066</td>
</tr>
<tr>
<td>DH_QUE19-07</td>
<td>3,46 – 3,91</td>
<td>CL</td>
<td>255</td>
<td>0,040</td>
<td>0,066</td>
</tr>
<tr>
<td>CAU-011</td>
<td></td>
<td>CL</td>
<td>250</td>
<td>0,008</td>
<td>0,033</td>
</tr>
<tr>
<td>DH_QUE19-11</td>
<td>1,50 – 1,95</td>
<td>CL</td>
<td>270</td>
<td>0,017</td>
<td>0,017</td>
</tr>
<tr>
<td>CAU-018</td>
<td></td>
<td>CL</td>
<td>250</td>
<td>0,008</td>
<td>0,033</td>
</tr>
<tr>
<td>DH_QUE19-12</td>
<td>16,21 – 16,66</td>
<td>CL</td>
<td>255</td>
<td>0,019</td>
<td>0,050</td>
</tr>
<tr>
<td>CAU-015</td>
<td></td>
<td>CL</td>
<td>255</td>
<td>0,040</td>
<td>0,066</td>
</tr>
<tr>
<td>DH_QUE19-15</td>
<td>3,00 – 3,45</td>
<td>CL - ML</td>
<td>254</td>
<td>0,019</td>
<td>0,033</td>
</tr>
<tr>
<td>CAU-012</td>
<td>5,14 – 5,59</td>
<td>CL</td>
<td>225</td>
<td>0,019</td>
<td>0,050</td>
</tr>
<tr>
<td>TP_QUE18-02</td>
<td>1,30 – 1,50</td>
<td>CL</td>
<td>255</td>
<td>0,040</td>
<td>0,066</td>
</tr>
</tbody>
</table>
Tabla 3.117 Resultados del ensayo de compresión triaxial en suelos

<table>
<thead>
<tr>
<th>Perforación</th>
<th>Profundidad (m)</th>
<th>Tipo de muestra</th>
<th>(\phi) (°)</th>
<th>(C) (kPa)</th>
<th>(\phi) (°)</th>
<th>(C) (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH.QUE18-01 CAU-003</td>
<td>12,5 – 12,97</td>
<td>Inalterada</td>
<td>19</td>
<td>28</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>DH.QUE18-05 CAU-002</td>
<td>12,37 – 12,82</td>
<td>Inalterada</td>
<td>21</td>
<td>22</td>
<td>14</td>
<td>83</td>
</tr>
<tr>
<td>DH.QUE18-06 CAU-004</td>
<td>8,33 – 8,77</td>
<td>Inalterada</td>
<td>25</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>DH.QUE18-14 CAU016</td>
<td>5,14 – 5,59</td>
<td>Inalterada</td>
<td>24</td>
<td>35</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>TP.QUE18-01</td>
<td>0,60 – 2,80</td>
<td>Remoldeada</td>
<td>32</td>
<td>16</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>TP.QUE18-02</td>
<td>1,30 – 1,50</td>
<td>Inalterada</td>
<td>26</td>
<td>27</td>
<td>18</td>
<td>33</td>
</tr>
<tr>
<td>TP.QUE18-03</td>
<td>2,00 – 2,90</td>
<td>Inalterada</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

Tabla 3.118 Resultados de ensayos de carga puntual en roca

<table>
<thead>
<tr>
<th>Estación</th>
<th>Profundidad (m)</th>
<th>Litología</th>
<th>(I_s) (δ) (Mpa)</th>
<th>(\sigma_c) (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH.QUE18-01 CAU-003</td>
<td>25,40 - 25,47</td>
<td>Arenisca</td>
<td>0,43</td>
<td>10,54</td>
</tr>
<tr>
<td>DH.QUE18-03 CAU-006</td>
<td>32,49 - 32,55</td>
<td>Arenisca</td>
<td>0,21</td>
<td>5,15</td>
</tr>
<tr>
<td>DH.QUE18-04 CAU-008</td>
<td>33,45 - 33,49</td>
<td>Arenisca</td>
<td>0,31</td>
<td>7,6</td>
</tr>
<tr>
<td>DH.QUE18-05 CAU-002</td>
<td>38,65 - 38,72</td>
<td>Arenisca</td>
<td>0,79</td>
<td>11,52</td>
</tr>
<tr>
<td>DH.QUE18-07 CAU-011</td>
<td>49,00 - 49,07</td>
<td>Arenisca</td>
<td>0,21</td>
<td>5,15</td>
</tr>
<tr>
<td>DH.QUE18-08 CAU-017</td>
<td>49,13 - 49,19</td>
<td>Arenisca</td>
<td>0,47</td>
<td>12,74</td>
</tr>
<tr>
<td>DH.QUE18-10 CAU-014</td>
<td>54,67 - 54,71</td>
<td>Arenisca</td>
<td>0,54</td>
<td>13,23</td>
</tr>
<tr>
<td>DH.QUE18-11 CAU-018</td>
<td>58,39 - 58,46</td>
<td>Arenisca</td>
<td>0,54</td>
<td>13,23</td>
</tr>
<tr>
<td>DH.QUE18-12</td>
<td>29,60 - 29,67</td>
<td>Arenisca</td>
<td>0,47</td>
<td>12,74</td>
</tr>
<tr>
<td>DH.QUE18-01 CAU-003</td>
<td>34,89 - 34,96</td>
<td>Arenisca</td>
<td>0,40</td>
<td>9,80</td>
</tr>
<tr>
<td>DH.QUE18-07 CAU-011</td>
<td>54,67 - 54,71</td>
<td>Arenisca</td>
<td>0,44</td>
<td>10,78</td>
</tr>
<tr>
<td>DH.QUE18-08 CAU-017</td>
<td>67,76 - 67,85</td>
<td>Limolita</td>
<td>0,07</td>
<td>1,72</td>
</tr>
<tr>
<td>DH.QUE18-01 CAU-003</td>
<td>10,85 - 10,92</td>
<td>Suelo/CL</td>
<td>0,27</td>
<td>6,62</td>
</tr>
<tr>
<td>DH.QUE18-07 CAU-011</td>
<td>21,63 - 21,70</td>
<td>Arcillolita</td>
<td>0,64</td>
<td>5,88</td>
</tr>
<tr>
<td>DH.QUE18-08 CAU-017</td>
<td>27,00 - 27,08</td>
<td>Arcillolita</td>
<td>0,25</td>
<td>6,13</td>
</tr>
<tr>
<td>DH.QUE18-10 CAU-014</td>
<td>68,30 - 68,39</td>
<td>Arcillolita</td>
<td>0,42</td>
<td>10,29</td>
</tr>
<tr>
<td>DH.QUE18-11 CAU-018</td>
<td>74,30 - 74,36</td>
<td>Conglomerado</td>
<td>0,16</td>
<td>3,92</td>
</tr>
<tr>
<td>DH.QUE18-12</td>
<td>39,93 - 40,01</td>
<td>Conglomerado</td>
<td>0,18</td>
<td>4,41</td>
</tr>
<tr>
<td>DH.QUE18-12</td>
<td>84,74 - 84,81</td>
<td>Arenisca</td>
<td>0,44</td>
<td>10,78</td>
</tr>
<tr>
<td>DH.QUE18-12</td>
<td>21,64 - 21,71</td>
<td>Arenisca</td>
<td>0,26</td>
<td>6,37</td>
</tr>
<tr>
<td>DH.QUE18-12</td>
<td>42,57 - 42,64</td>
<td>Arenisca</td>
<td>0,43</td>
<td>10,54</td>
</tr>
<tr>
<td>DH.QUE18-12</td>
<td>62,92 - 62,99</td>
<td>Arenisca</td>
<td>1,22</td>
<td>29,89</td>
</tr>
<tr>
<td>DH.QUE18-12</td>
<td>63,81 - 63,89</td>
<td>Arenisca</td>
<td>1,02</td>
<td>24,99</td>
</tr>
<tr>
<td>DH.QUE18-12</td>
<td>37,93 - 37,98</td>
<td>Arcillolita</td>
<td>0,23</td>
<td>5,64</td>
</tr>
</tbody>
</table>
Tabla 3.119 Resultados ensayos de carga puntual en roca

<table>
<thead>
<tr>
<th>Estación</th>
<th>Profundidad (m)</th>
<th>Litología</th>
<th>Is (50) (Mpa)</th>
<th>σ_c (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAU-015</td>
<td>40.32 – 40.39</td>
<td>Conglomerado</td>
<td>0.21</td>
<td>5.15</td>
</tr>
<tr>
<td>DH_QUE18-13</td>
<td>32.35 – 32.44</td>
<td>Conglomerado</td>
<td>0.06</td>
<td>1.47</td>
</tr>
<tr>
<td>CAU-019</td>
<td>33.25 – 33.33</td>
<td>Conglomerado</td>
<td>0.14</td>
<td>3.43</td>
</tr>
<tr>
<td>DH_QUE18-14</td>
<td>53.48 – 53.55</td>
<td>Limolita</td>
<td>0.06</td>
<td>1.47</td>
</tr>
<tr>
<td>CAU-016</td>
<td>59.32 – 59.40</td>
<td>Arenisca</td>
<td>0.19</td>
<td>4.66</td>
</tr>
<tr>
<td></td>
<td>70.20 – 70.27</td>
<td>Arenisca</td>
<td>3.45</td>
<td>84.53</td>
</tr>
<tr>
<td>DH_QUE18-15</td>
<td>19.03 – 19.10</td>
<td>Arcillolita</td>
<td>0.38</td>
<td>9.31</td>
</tr>
<tr>
<td>CAU-012</td>
<td>29.58 – 29.66</td>
<td>Arcillolita</td>
<td>1.33</td>
<td>32.59</td>
</tr>
<tr>
<td></td>
<td>35.37 – 35.47</td>
<td>Arcillolita</td>
<td>0.35</td>
<td>8.58</td>
</tr>
<tr>
<td></td>
<td>47.50 – 47.57</td>
<td>Arcillolita</td>
<td>0.19</td>
<td>4.66</td>
</tr>
<tr>
<td>DH_QUE18-16</td>
<td>46.26 – 46.31</td>
<td>Toba ignimbrita</td>
<td>2.07</td>
<td>50.72</td>
</tr>
<tr>
<td>CAU-010</td>
<td>54.18 – 54.25</td>
<td>Toba ignimbrita</td>
<td>3.36</td>
<td>82.32</td>
</tr>
<tr>
<td></td>
<td>63.27 – 63.34</td>
<td>Toba ignimbrita</td>
<td>4.17</td>
<td>102.17</td>
</tr>
<tr>
<td></td>
<td>104.49 – 104.55</td>
<td>Toba ignimbrita</td>
<td>3.05</td>
<td>74.73</td>
</tr>
<tr>
<td>DH_QUE18-18</td>
<td>17.99 - 18.05</td>
<td>Arcillolitas</td>
<td>0.66</td>
<td>16.17</td>
</tr>
<tr>
<td>CAU-007</td>
<td>30.58 - 30.65</td>
<td>Arenisca</td>
<td>1.18</td>
<td>28.91</td>
</tr>
<tr>
<td></td>
<td>31.36 - 31.43</td>
<td>Arenisca</td>
<td>0.7</td>
<td>17.15</td>
</tr>
<tr>
<td></td>
<td>50.04 - 50.11</td>
<td>Arenisca</td>
<td>1.07</td>
<td>26.22</td>
</tr>
<tr>
<td>DH_QUE18-20</td>
<td>14.64 – 14.72</td>
<td>Arcillolita</td>
<td>0.12</td>
<td>2.94</td>
</tr>
<tr>
<td>CAU-013</td>
<td>29.45 – 29.60</td>
<td>Arenisca</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49.07 – 49.21</td>
<td>Arcillolita</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>68.46 – 68.59</td>
<td>Arenisca</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>DH_QUE18-05</td>
<td>42.99 – 43.12</td>
<td>Arenisca</td>
<td>18.3</td>
<td></td>
</tr>
<tr>
<td>CAU-002</td>
<td>25.27 - 25.41</td>
<td>Arenisca</td>
<td>10.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25.70 - 25.84</td>
<td>Arenisca</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38.51 - 38.65</td>
<td>Arenisca</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49.20 - 49.34</td>
<td>Arenisca</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>DH_QUE18-03</td>
<td>32.36 - 32.50</td>
<td>Arenisca</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>CAU-006</td>
<td>34.74 – 34.89</td>
<td>Arcillolita</td>
<td>5.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.70 – 10.85</td>
<td>Arcillolita</td>
<td>2.40</td>
<td></td>
</tr>
<tr>
<td>DH_QUE18-04</td>
<td>26.85 – 27.00</td>
<td>Arcillolita</td>
<td>3.10</td>
<td></td>
</tr>
<tr>
<td>CAU-008</td>
<td>68.15 – 68.30</td>
<td>Arenisca</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.78 – 30.93</td>
<td>Conglomerado</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>DH_QUE18-10</td>
<td>84.59 – 84.71</td>
<td>Arenisca</td>
<td>11.50</td>
<td></td>
</tr>
<tr>
<td>CAU-014</td>
<td>21.49 – 21.64</td>
<td>Arenisca</td>
<td>3.50</td>
<td></td>
</tr>
<tr>
<td>DH_QUE18-11</td>
<td>68.15 – 68.30</td>
<td>Arenisca</td>
<td>23.2</td>
<td></td>
</tr>
<tr>
<td>CAU-018</td>
<td>37.78 – 37.89</td>
<td>Arcillolita</td>
<td>4.40</td>
<td></td>
</tr>
<tr>
<td>DH_QUE18-12</td>
<td>40.17 – 40.32</td>
<td>Conglomerado</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>CAU-015</td>
<td>21.35 – 21.50</td>
<td>Conglomerado</td>
<td>32.50</td>
<td></td>
</tr>
<tr>
<td>DH_QUE18-13</td>
<td>32.20 – 32.33</td>
<td>Conglomerado</td>
<td>2.40</td>
<td></td>
</tr>
<tr>
<td>CAU019</td>
<td>59.39 – 59.49</td>
<td>Arenisca</td>
<td>7.50</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018
Tabla 3.120 Resultados de los ensayos de corte directo en roca

<table>
<thead>
<tr>
<th>Perforación</th>
<th>Profundidad (m)</th>
<th>Litología</th>
<th>σ_n (MPa)</th>
<th>T (MPa)</th>
<th>ϕ_r ($^\circ$)</th>
<th>c (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAU016</td>
<td>70,05 – 70,20</td>
<td>Arenisca</td>
<td>0.04</td>
<td>0.09</td>
<td>14.9</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>29.38 – 29.51</td>
<td>Arcillolita</td>
<td>0.10</td>
<td>0.10</td>
<td>10.1</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>35.49 – 35.64</td>
<td>Arcillolita</td>
<td>0.14</td>
<td>0.12</td>
<td>15.4</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>47.35 – 47.50</td>
<td>Arcillolita</td>
<td>0.03</td>
<td>0.08</td>
<td>12.6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>46.11 – 46.26</td>
<td>Toba ignimbrita</td>
<td>0.08</td>
<td>0.11</td>
<td>31.9</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>54.03 – 54.18</td>
<td>Toba ignimbrita</td>
<td>0.11</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>63.12 – 63.27</td>
<td>Toba ignimbrita</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>104.34 – 104.49</td>
<td>Toba ignimbrita</td>
<td>0.11</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH_QUE18-18 CAU-007</td>
<td>17.85 - 17.98</td>
<td>Arcillolita</td>
<td>0.03</td>
<td>0.04</td>
<td>17.9</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>31.43 - 31.56</td>
<td>Arenisca</td>
<td>0.07</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>49.89 - 50.04</td>
<td>Arenisca</td>
<td>0.09</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.78 - 30.92</td>
<td>Arenisca</td>
<td>0.03</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>49.05 - 49.19</td>
<td>Arenisca</td>
<td>0.09</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH_QUE18-21 CAU-023</td>
<td>59.10 – 59.25</td>
<td>Toba ignimbrita</td>
<td>0.04</td>
<td>0.03</td>
<td>38.0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>63.34 – 68.58</td>
<td>Arenisca</td>
<td>0.03</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>65.84 – 66.16</td>
<td>Arcillolita</td>
<td>0.07</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>64.80 – 65.10</td>
<td>Arenisca</td>
<td>0.09</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41.58 – 41.82</td>
<td>Conglomerado</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18.04 – 18.35</td>
<td>Arcillolita</td>
<td>0.06</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hallazgos preliminares

El material estéril en la zona investigada se clasificó como suelos de depósito de vertiente transportados depositados en el lecho de roca sedimentaria subyacente. Se observó meteorización parcial a moderada en bloques rocosos del depósito de vertiente y en la parte superior de la secuencia sedimentaria. Basado en investigaciones desarrolladas se comprobó la existencia de una capa de material estéril de aproximadamente 30 m de espesor a lo largo del área investigada.

En general, las condiciones subsuperficiales incluyen bloques métricos de roca incrustados en una matriz de suelo con limos orgánicos y arcillas (suelo), limosos/arcillosos (MC), arenosos/limosos (SM) y material arenoso/arcillosos (SC).

La roca subyacente se caracteriza generalmente por secuencia suave de rocas sedimentarias tales como areniscas, lodolitas y arcillolitas estructuralmente afectadas y parcialmente meteorizadas en su parte superior.

Investigación indirecta

Esta investigación consistió en la ejecución de líneas de refracción sísmica, las cuales permiten la estimación de la velocidad de onda y con ello obtener parámetros de los materiales, tales como el peso específico y el módulo de rigidez. En la Tabla 3.121 se presenta la localización de las líneas ejecutadas.

Tabla 3.121 Líneas de refracción sísmica

<table>
<thead>
<tr>
<th>Línea</th>
<th>Longitud (m)</th>
<th>Coordenadas Magna Sirgas Oeste</th>
<th>Coordenadas Magna Sirgas Oeste</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>X</td>
</tr>
<tr>
<td>LS-PP-01</td>
<td>600</td>
<td>1.151.737.2</td>
<td>1.132.416.0</td>
</tr>
<tr>
<td>LS-PP-02A</td>
<td>120</td>
<td>1.151.736.9</td>
<td>1.131.942.7</td>
</tr>
<tr>
<td>LS-PP-02B</td>
<td>420</td>
<td>1.151.792.3</td>
<td>1.132.116.0</td>
</tr>
<tr>
<td>LS-PP-03</td>
<td>240</td>
<td>1.151.930.9</td>
<td>1.132.251.6</td>
</tr>
<tr>
<td>LS-DT-01</td>
<td>1 200</td>
<td>1.152.406.9</td>
<td>1.132.595.5</td>
</tr>
<tr>
<td>LS-DT-02</td>
<td>1 020</td>
<td>1.151.975.8</td>
<td>1.131.743.4</td>
</tr>
<tr>
<td>LS-DT-03</td>
<td>1 920</td>
<td>1.151.886.0</td>
<td>1.131.935.2</td>
</tr>
<tr>
<td>LS-DT-04</td>
<td>1 200</td>
<td>1.152.782.7</td>
<td>1.131.894.5</td>
</tr>
<tr>
<td>LS-DT-05</td>
<td>1 980</td>
<td>1.152.364.4</td>
<td>1.133.283.8</td>
</tr>
<tr>
<td>LS-DT-06</td>
<td>1 500</td>
<td>1.152.157.1</td>
<td>1.133.066.9</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018
3.3.7.17.3.6 Caracterización geomecánica de materiales

En las zonas de intervención del Proyecto, se evaluaron los resultados de los ensayos de campo y laboratorio ejecutados, y se realizaron análisis regresivos que permiten validar las condiciones reales observadas.

Es importante mencionar que la mayoría de los ensayos, tanto de campo como de laboratorio, se realizaron sobre el depósito de vertiente identificado, el cual corresponde al material más superficial encontrado en el perfil de suelo descrito, y por ende, será el material en el que se conformará la mayor parte de las obras civiles o que servirá de fundación para las mismas.

3.3.7.17.3.6.1 Análisis de resultados ensayos de campo

El primer grupo de resultados importantes obtenidos en campo corresponde a los resultados de los ensayos de cono, donde se identifica que la densidad promedio del depósito de vertiente es de 20,5 kN/m3, con una desviación estándar de ±0,2 kN/m3.

Por otro lado, en la Figura 3.237 se presentan los resultados de las correlaciones de los ángulos de fricción y las cohesiones estimadas a partir de los ensayos de SPT. En la figura el recuadro rojo cual representa los rangos de parámetros estimados al incluir la desviación estándar tanto en la cohesión como en la fricción.

A partir de los ensayos mostrados en la Figura 3.237, se estima que el ángulo de fricción promedio del suelo es de 29° con una desviación estándar de ± 3,8°, mientras que la cohesión presenta un valor promedio de 6 kPa y una desviación alta de 5 kPa.

![Figura 3.237 Resultados correlaciones del ensayo SPT para estimar parámetros de resistencia del suelo](image-url)

Fuente: Integral, 2019
3.3.7.17.3.6.2 Análisis de resultados del laboratorio

Durante el análisis inicial de los resultados del laboratorio, fue posible identificar que las muestras corresponden principalmente a depósitos de vertiente, los cuales de acuerdo a la granulometría serían depósitos de arenas y gravas (véase la Figura 3.238), con contenidos bajos de finos. Según los ensayos del laboratorio se identificó que estos materiales presentaron plasticidades típicamente bajas a nulas, lo que concuerda con los bajos contenidos de suelos finos identificados.

Finalmente, de la clasificación obtenida se esperaría que los materiales presentaran parámetros de resistencia con mayores ángulos de fricción que cohesiones. Pues estos comportamientos son típicos de suelos granulares. En la Tabla 3.122 se presentan los resultados obtenidos de los ensayos de corte directo y triaxiales.

Los resultados presentados en la tabla anterior muestran que el ángulo de fricción \(\phi \) varía entre 14° y 36°, donde el promedio es de 24° con una desviación estándar de alta de 6°, situación que también se presenta con el valor de la cohesión, pues según los ensayos del laboratorio esta varía entre 0 kPa y 35 kPa, donde el valor promedio es de 15 kPa con una desviación estándar de 10 kPa.

![Figura 3.238 Clasificación USCS de los materiales](image)

Fuente: Minera de Cobre Quebradona, 2018

<table>
<thead>
<tr>
<th>Estación</th>
<th>Profundidad (m)</th>
<th>(\phi) (°)</th>
<th>c (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH_QUE18-03</td>
<td>4.90 - 5.35</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>DH_QUE18-04</td>
<td>8.84 - 9.29</td>
<td>17.7</td>
<td>15</td>
</tr>
<tr>
<td>DH_QUE18-05</td>
<td>1.80 - 2.25</td>
<td>20.3</td>
<td>25</td>
</tr>
<tr>
<td>DH_QUE18-07</td>
<td>7.74 - 8.05</td>
<td>20.8</td>
<td>10</td>
</tr>
<tr>
<td>DH_QUE18-07</td>
<td>9.90 - 10.25</td>
<td>25.2</td>
<td>15</td>
</tr>
<tr>
<td>DH_QUE18-07</td>
<td>18.41 - 18.68</td>
<td>17.2</td>
<td>5</td>
</tr>
<tr>
<td>DH_QUE18-12</td>
<td>3.46 - 3.91</td>
<td>29.2</td>
<td>0</td>
</tr>
<tr>
<td>DH_QUE18-12</td>
<td>16.21 - 16.66</td>
<td>20.8</td>
<td>0</td>
</tr>
<tr>
<td>DH_QUE18-15</td>
<td>3.00 - 3.45</td>
<td>25.6</td>
<td>10</td>
</tr>
<tr>
<td>DH_QUE18-15</td>
<td>5.14 - 5.59</td>
<td>36.5</td>
<td>15</td>
</tr>
</tbody>
</table>
Análisis regresivos

Con el fin de calibrar los parámetros geotécnicos y validar que estos modelen las condiciones observadas en campo, se realizan análisis regresivos en zonas con pendientes altas que involucren los diferentes materiales.

Ya que las zonas cercanas a los túneles son estables y de alta pendiente, se realizaron análisis regresivos identificando los rangos de parámetros geotécnicos mínimos para mantener la condición de estabilidad.

En la Figura 3.239 se presenta el perfil geológico típico en la zona de la ladera cerca al escarpe, obtenido a partir de los resultados de la perforación DH_QUE18-16.

Tabla de resultados de perforación

<table>
<thead>
<tr>
<th>Estación</th>
<th>Profundidad (m)</th>
<th>ϕ ($^\circ$)</th>
<th>c (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH_QUE18-18</td>
<td>12,11 - 13,09</td>
<td>31,8</td>
<td>10</td>
</tr>
<tr>
<td>DH_QUE18-01</td>
<td>12,5 – 12,97</td>
<td>19</td>
<td>28</td>
</tr>
<tr>
<td>DH_QUE18-05</td>
<td>12,37 – 12,82</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>16,04 – 16,39</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>DH_QUE18-06</td>
<td>8,33 – 8,77</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>DH_QUE18-14</td>
<td>5,14 – 5,59</td>
<td>24</td>
<td>35</td>
</tr>
<tr>
<td>TP_QUE18-01</td>
<td>0,60 – 2,80</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>TP_QUE18-02</td>
<td>1,30 – 1,50</td>
<td>26</td>
<td>27</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

Ya que los resultados tienen una variación amplia, se realizaron análisis regresivos para caracterizar mejor el rango de los parámetros geotécnicos.

Figura 3.239 Perfil geológico típico en zona cercana al escarpe

Fuente: Integral, 2019
En la Figura 3.240 se presentan los análisis de parámetros requeridos para que el suelo del depósito de vertiente se mantenga estable a pesar de la inclinación de la ladera en la zona mencionada, manteniendo por lo menos un factor de seguridad de $FS = 1.0$.

A partir del análisis anterior incluyendo el análisis de ensayos del laboratorio, se establece que los parámetros para los suelos del depósito de vertiente compuestos principalmente por arenas y gravas deberán poseer ángulos de fricción ϕ entre 31° y 33°, con una cohesión mínima que varía entre 14 kPa y 19 kPa.

Respecto a los parámetros geotécnicos, es prudente mencionar que estos fueron estimados a partir de: los ensayos del laboratorio, análisis regresivos y recomendaciones existentes en la literatura de forma general para el proyecto. Ya que las obras superficiales (con excepción de la depósito de relaves filtrados y obras anexas) se encuentran localizadas en gran medida sobre depósitos de vertiente, los análisis presentados a continuación se basaron en la caracterizar de dicho material.

Respecto a los parámetros geotécnicos del suelo bajo el depósito de relaves filtrados, estos se describen en el archivo Golder (2019c).

3.3.7.17.3.7 Análisis geotécnico de las obras

Con los análisis de estabilidad mediante equilibrio límite se busca encontrar la geometría más adecuada para cada obra y (si se requiere) los tratamientos geotécnicos para alcanzar la estabilidad con los factores de seguridad requeridos.

3.3.7.17.3.7.1 Evaluación de taludes de corte de vías

Para la evaluación de cortes de vías en el Proyecto se analizaron todas las vías. Se consideraron taludes de corte 1H:1V (Pendientes de corte recomendadas para otras obras del Proyecto) que alcanzan alturas que varían desde los 5 m hasta los 30 m aproximadamente, en algunos tramos puntuales.
De esta evaluación fue posible identificar los taludes de mayor altura, entre los que se destaca el corte generado por la vía de construcción 2 en la última curva del trazado, h=25 m (véase la Figura 3.241). El corte mencionado presenta un el perfil de suelo sobre depósitos de vertiente.

El perfil de suelo en este sitio se compone, tal como se mencionó en la sección anterior, por un depósito de vertiente con un espesor de hasta 15 m, bajo el cual subyace la formación Amagá (véase la Figura 3.242). Este perfil pudo ser inferido a partir de la información existente en las exploraciones DH_QUE18-15 y TP_QUE18-11 y TP_QUE18-16.

Este perfil descrito es usual en toda la zona donde se encuentran proyectadas las obras, por lo que la evaluación de cortes para otras obras empelaría los mismos parámetros geotécnicos. A continuación, se presentan los datos de entrada de los materiales que se utilizaron en los modelos:

<table>
<thead>
<tr>
<th>Nombre del material</th>
<th>Color</th>
<th>Unidades de peso (KN/m3)</th>
<th>Strength Type</th>
<th>Cohesión (KN/m2)</th>
<th>Phi</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. Amaga</td>
<td></td>
<td>20</td>
<td>Mohr – Coulomb</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td>D. de vertiente</td>
<td></td>
<td>20</td>
<td>Mohr - Coulbom</td>
<td>18</td>
<td>32</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019
Figura 3.241 Localización general de taludes analizados
Fuente: Integral, 2019
Se proyecta un corte en geometría 1H:1V, con bancos de 12 m de altura y bermas de 3 m, geometría con la que se considera adecuada la estabilidad interna de un banco tanto en condición estática como seudo estática (véase la Figura 3.243, Figura 3.244 y Figura 3.245).

Figura 3.243 Análisis estático para estabilidad de bancos FS=1,5
Fuente: Integral, 2019
Finalmente, evaluando la estabilidad global del corte, se encuentra que es necesario implementar un tratamiento geotécnico para alcanzar los factores de seguridad establecidos en la NSR-10 en condición estática y seudoestática (véase la Figura 3.246, Figura 3.247 y Figura 3.248), el cual consiste en lo siguiente:

- Corte con pendiente 1H:1V con bancos de máximo 12,0 m de altura, acompañado de bermas de 3,0 m de ancho.
• En los dos primeros bancos, pernos BAL8 (barra número 8 anclada con lechada) separados 2,0 m al tresbolillo, con una longitud de 20,0 m en el primer banco y 25,0 m en el segundo. Adicionalmente, se aplican dos capas de lanzado de 0,05 m de espesor cada una.

En conclusión, pese a que el tratamiento para estabilizar el talud parece robusto, se evalúan las geometrías de corte propuestas y se identifica que los puntos que requieren tratamiento a lo largo del proyecto son pocos, ya que la mayoría no superan los 10 m de altura.

Recomendaciones para adecuación de taludes de corte

Para la adecuación de cortes se proponen los siguientes tratamientos:

• Taludes de más de 12 m de altura deben tener cortes con pendientes 1H:1V y emplear bermas de 3,0 m de ancho en bancos de máximo 12 m de altura. Pernos BAL8 separados 2,0 m al tresbolillo y dos capas de concreto lanzado de 0,05 m de espesor cada una.

Figura 3.246 Análisis estático, talud geometría 1H:1V con tratamiento, FS=1,5

Fuente: Integral, 2019
Figura 3.247 Análisis seudoestático, talud geometría 1H:1V con tratamiento FS=1,1
Fuente: Integral, 2019

Figura 3.248 Análisis en condición de lluvia intensa, geometría 1H:1V. Tratamiento, FS=1,3
Fuente: Integral, 2019
Taludes con menos de 12 m de altura deben implementar revegetalización y obras para el control de la erosión superficial.

Los tratamientos finales podrán variar de acuerdo con las características del terreno encontradas in-situ, pues pueden presentarse condiciones puntuales que no fueron identificadas por la exploración y que implican ajustes para mantener el factor de seguridad.

Previo a las intervenciones en los accesos es necesario que se realicen adecuaciones para el control del drenaje superficial de la ladera. Particularmente rondas y cunetas según indique el diseño hidráulico.

Las rondas de coronación deberán construirse a una distancia mínima de 5,0 m medidos desde la proyección del chaflán final de corte.

Las bermas empleadas en la adecuación de los taludes tendrán una pendiente del 5% hacia la cara del talud.

Las bermas deberán ser impermeabilizadas con una mezcla de suelo-cemento, e=0,05 m.

Para la adecuación de las geometrías de los accesos existentes se realizará la excavación de taludes de forma descendente, desde la corona hacia el banco inferior. Para los taludes en suelo se recomiendan avances de máximo 2,5 m.

Los taludes que no requieran de concreto lanzado y pernos, deberán protegerse mediante revegetalización.

Donde se requiera, se podrán emplear mantos para el control de erosión, los cuales deberán fijarse al talud con grapas en U, conformadas por barras corrugadas #3.

En zonas donde se identifiquen niveles freáticos sobre el corte, se deben instalar drenes sub-horizontales, con una inclinación de 5° a 10° con respecto a la horizontal, con una separación de entre 2,0 m y 3,0 m al trespabillo de acuerdo con las condiciones del talud.

La tubería de drenaje en suelo es de 50 mm, micro-perforada con ranuras longitudinales de ancho estándar entre 0,6 mm y 1 mm.

3.3.7.17.3.7.2 Evaluación de llenos para vías

Al igual que para los cortes, se evaluaron los llenos requeridos para todas las vías del proyecto, con una geometría inicial 2H:1V (llenos recomendadas para otras obras del Proyecto).

De esta evaluación inicial fue posible identificar los llenos de mayor altura, los cuales se muestran en la Figura 3.241. Zona en la que el perfil de suelo se compone igualmente por depósitos de vertiente. El perfil en este sitio se compone por un depósito de vertiente con un espesor aproximado de 9,5 m el cual se apoya sobre rocas de la formación Amagá (véase la Figura 3.249). Este perfil fue inferido de la información existente en las exploraciones DH_QUE18-18, DH_QUE18-19 y TP_QUE18-22A.
Por su parte, los materiales que se utilizan para la conformación de los terraplenes, han sido elegidos de acuerdo con los lineamientos estipulados por el INVIAS en la tabla 220-1 del artículo 220-13. Partiendo de esta hipótesis, se seleccionan los parámetros geotécnicos mostrados en la Tabla 3.124.

La estructura por construir en este sitio corresponde a uno de los terraplenes de mayor altura del Proyecto (15 m aproximadamente). La inclinación del terreno natural es aproximadamente 15° con respecto a la horizontal, mientras que el talud proyectado tiene una geometría 2H:1V.

<table>
<thead>
<tr>
<th>Parámetros Terraplén</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso unitario (kN/m³)</td>
<td>20</td>
</tr>
<tr>
<td>Ángulo de fricción (°)</td>
<td>30</td>
</tr>
<tr>
<td>Cohesión (kPa)</td>
<td>10</td>
</tr>
</tbody>
</table>

Adicionalmente, al terraplén se agregó una carga correspondiente a 40 kPa simulando el efecto de la circulación de vehículos de cargas altas.

Como se observa en la Figura 3.249, Figura 3.250 y Figura 3.251, la geometría propuesta satisface los factores de seguridad requeridos en condición estática, seudoestática y de lluvia intensa.

Por último, se verifica que el esfuerzo transmitido al suelo, asumiendo que el terraplén no absorbe la carga vehicular aplicada, se transmite un total de 340 kPa, por lo que se estima que el suelo podría soportar estas cargas siempre que se retire la capa orgánica que se encuentra en superficie.
Figura 3.250 Análisis estático terraplén geometría 2H:1V. FS=1,6
Fuente: Integral, 2019

Figura 3.251 Análisis seudo estático terraplén geometría 2H:1V
Fuente: Integral, 2019
Recomendaciones para llenos de las vías

- Para que todos los llenos del proyecto cumplan con los factores de seguridad establecidos por la NSR-10 se requieren pendientes 2H:1V.

- Se deberá proteger la cara del terraplén mediante un sistema que evite la erosión superficial, para ello se revegetaliza y donde se requiera se podrá implementar un manto permanente para control de erosión.

- Los materiales para la conformación de terraplenes deben cumplir los requisitos mínimos establecidos en el artículo 220-13 del INVIAS, específicamente en la Tabla 220-1 (véase la Tabla 3.125).

Tabla 3.125 Requisitos mínimos para materiales de terraplenes (INVIAS 220-13)

<table>
<thead>
<tr>
<th>Características</th>
<th>Norma de ensayo</th>
<th>Suelos seleccionados</th>
<th>Suelos adecuados</th>
<th>Suelos tolerables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partes del terraplén a las que se aplican</td>
<td></td>
<td>Todas</td>
<td>Todas</td>
<td>Cimiento y núcleo</td>
</tr>
<tr>
<td>Tamaño máximo (mm)</td>
<td>E-123</td>
<td>75</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Porcentaje que pasa el tamiz de 2 mm (No.10) en masa, máximo</td>
<td>E-123</td>
<td>80</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>Porcentaje que pasa el tamiz de 75 mm (No.200) en masa, máximo</td>
<td>E-123</td>
<td>25</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Contenido de materia orgánica, máximo (%)</td>
<td>E-121</td>
<td>0</td>
<td>1,0</td>
<td>1</td>
</tr>
<tr>
<td>Limite líquido, máximo (%)</td>
<td>E-125</td>
<td>30</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Índice de plasticidad, máxima (%)</td>
<td>E-126</td>
<td>10,00</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>CBR de laboratorio (%) Nota 1</td>
<td>E-148</td>
<td>10</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Expansión en prueba CBR, máximo (%)</td>
<td>E-148</td>
<td>0,00</td>
<td>2,0</td>
<td>2,0</td>
</tr>
<tr>
<td>Índice de colapso, máximo (%) nota 2</td>
<td>E-157</td>
<td>2,0</td>
<td>2,0</td>
<td>-</td>
</tr>
<tr>
<td>Contenido de sales solubles, máximo (%)</td>
<td>E-158</td>
<td>0,2</td>
<td>0,2</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: artículo 220-13, INVIAS, 2019

- Lo anterior puede deberse, principalmente, a la naturaleza de los suelos colombianos, donde se presenta un clima tropical que favorece el desarrollo de suelos residuales de gran espesor, propicios a presentar altas deformaciones y dificultades para su compactación. Lo cual, finalmente, está asociado a la vida útil de las carreteras.

- Considerando que los terraplenes conformados deberán soportar la circulación de vehículos con cargas altas, durante la construcción del terraplén deberá lograrse un mínimo del 90% de la densidad máxima obtenida en el ensayo Proctor modificado.

- Para que se mantenga la estabilidad de los terraplenes, es necesario conservar una condición drenada. Para tal fin se recomienda controlar las aguas de escorrentía antes, durante y después de las labores de construcción, con el fin de evitar que se presenten filtraciones excesivas de agua al interior del terraplén.

- Ya que las condiciones topográficas presentan puntos bajos o depresiones ocasionales, se debe evaluar cuales corresponden a vaguadas. Ya que en estas se deben construir filtros para el control del agua.
3.3.7.17.3.7.3 Evaluación Portales de los túneles

Considerando las condiciones geológicas y topográficas del sitio de portal, la excavación de la plataforma del portal se optimizó para alcanzar taludes estables con una intervención mínima de la ladera, por esta razón fue necesario recurrir a tratamientos geotécnicos que incluyen anclajes y concreto lanzado para estabilizar los taludes con los factores de seguridad requeridos en la NSR-10.

Según lo anterior, la implementación de taludes con bancos y bermas aumentaría sustancialmente la excavación, lo cual no se considera favorable, teniendo en cuenta que se trata de la zona cerca del escarpe, donde el depósito es de mayor espesor. Por esta razón, se analizan taludes de corte con pendiente 1H:1V con un solo banco.

El perfil geológico se obtuvo con la información de la exploración DH QUE18-16 y TP QUE-19, donde se encontró que el depósito de vertiente alcanza un espesor de 40m aproximadamente, suprayaciendo el perfil de meteorización de la formación Combia y la formación Amagá.

Con base en lo anterior, se realizó el análisis de estabilidad, no sólo del talud del portal (en el sentido del eje de los túneles), sino de los taludes laterales que conforman la plataforma en cuestión. En la Figura 3.252 se presentan las secciones de análisis. Para este caso se mostrarán sólo los resultados del talud frontal (SP) y las secciones críticas de cada uno de los taludes laterales (STD1 y STI1) que alcanzan alturas de 19 m, 31 m y 22 m respectivamente.

En la Figura 3.253, Figura 3.254 y Figura 3.255 se presentan los resultados para el talud frontal en condición estática, seudoestática y de lluvia intensa, respectivamente.
Figura 3.253 Análisis estático talud frontal, corte 1H:1V con tratamiento. FS=1,5
Fuente: Integral, 2019

Figura 3.254 Análisis seudoestático talud frontal, corte 1H:1V tratamiento. FS=1,1
Fuente: Integral, 2019
De acuerdo con lo anterior, para alcanzar la estabilidad del talud frontal con los factores de seguridad requeridos por la norma, se recomienda instalar el siguiente tratamiento:

- Corte en un banco con pendiente 1H:1V,
- Cinco filas de tensores de tres torones de 0,5" de diámetro cada uno, acero grado 270, de longitud L=25 m, tensionados a 31 toneladas, espaciados cada 3,0 m y dispuestos al tresbolillo.
- Drenes de longitud L=30m, con tubería PVC de 50 mm de diámetro, micro-perforada con ranuras externas longitudinales de ancho estándar entre 0,6 mm y 1 mm. Espaciados cada 15,0m al tresbolillo.
- Drenes de longitud L=15 m, de las mismas características que los anteriormente mencionados, espaciados cada 15 m al tresbolillo, intercalados con los de L=30 m.
- Dos capas de concreto lanzado reforzado con malla electrosoldada, de 0,05 m de espesor cada una en toda la cara del talud.
- Lagrimales de L=0,8 m espaciados cada 5,0 m, dispuestos al tresbolillo e intercalados con los drenes.

Figura 3.255 Análisis lluvia intensa, corte 1H:1V con tratamiento. FS=1,3
Fuente: Integral, 2019

Para el talud lateral derecho, los resultados se presentan en la Figura 3.256, Figura 3.257 y Figura 3.258.
Figura 3.256 Análisis estático, corte 1H:1V con tratamiento. FS=1,5
Fuente: Integral, 2019

Figura 3.257 Análisis seudoestático, corte 1H:1V tratamiento. FS=1,1
Fuente: Integral, 2019
De acuerdo con lo anterior, para alcanzar la estabilidad del talud derecho con los factores de seguridad requeridos por la norma, se recomienda instalar el siguiente tratamiento:

- Corte en un banco con pendiente 1H:1V,
- Trece filas de tensores de tres torones de 0,5" de diámetro cada uno, acero grado 270, de longitud L=28 m, tensionados a 31 toneladas, espaciados cada 2,5 m y dispuestos al tresbolillo.
- Drenes de longitud L=30 m, con tubería PVC de 50 mm de diámetro, micro-perforada con ranuras externas longitudinales de ancho estándar entre 0,6 mm y 1 mm. Espaciados cada 15,0 m al tresbolillo.
- Drenes de longitud L = 15 m, de las mismas características que los anteriormente mencionados, espaciados cada 15 m al tresbolillo, intercalados con los de L=30 m.
- Dos capas de concreto lanzado reforzado con malla electrosoldada, de 0,05 m de espesor cada una en toda la cara del talud.
- Lagrimales de L=0,8 m espaciados cada 5,0 m, dispuestos al tresbolillo e intercalados con los drenes.

Figura 3.259 Análisis estático, corte 1H:1V con tratamiento. FS=1,5
Fuente: Integral, 2019

Figura 3.260 Análisis seudoestático, corte 1H:1V tratamiento. FS=1,1
Fuente: Integral, 2019
Según lo anterior, para alcanzar la estabilidad del talud izquierdo con los factores de seguridad requeridos por la norma, se recomienda instalar el siguiente tratamiento:

- Corte en un banco con pendiente 1H:1V,
- Siete filas de tensores de tres torones de 0,5” de diámetro cada uno, acero grado 270, de longitud L=28 m, tensionados a 31 toneladas, espaciados cada 3,0 m y dispuestos al tresbolillo.
- Drenes de longitud L=30 m, con tubería PVC de 50 mm de diámetro, micro-perforada con ranuras externas longitudinales de ancho estándar entre 0,6 mm y 1mm. Espaciados cada 15,0 m al tresbolillo.
- Drenes de longitud L=15 m, de las mismas características que los anteriormente mencionados, espaciados cada 15 m al tresbolillo, intercalados con los de L=30 m.
- Dos capas de concreto lanzado reforzado con malla electrosoldada, de 0,05 m de espesor cada una en toda la cara del talud.
- Lagrimales de L=0,8 m espaciados cada 5,0 m, dispuestos al tresbolillo e intercalados con los drenes.

3.3.7.17.3.7.4 Evaluación de zonas de depósito de material estéril - ZODMES

Las ZODME que funcionan desde la etapa de construcción están localizadas de la siguiente manera: tres en la Zona superficial en el Valle (parte baja del Proyecto), correspondientes a los ZODMEs A-B-C (véase la Figura 3.262) y tres en la zona...
superficial sobre la montaña (parte alta), correspondientes a los ZODMEs D-E-F, destinados para el acopio de material de las excavaciones (véase la Figura 3.263, así como los mapas MQC-INT-EIA-DESC-03-CYM-A y MQC-INT-EIA-DESC-03-CYM-B y los planos 0010368-MQC-LY-010 al 0010368-MQC-LY-060).

Figura 3.262 ZODMES A (izquierda) y B (derecha) con secciones de análisis
Fuente: Integral, 2019

Figura 3.263 ZODMEs C (izquierda) y D-E-F (derecha) con secciones de análisis
Fuente: Integral, 2019
Los depósitos de la parte baja del proyecto (zona superficial en el valle), se definieron con una geometría 3H:1V. Para los ZODMEs D, E y F, localizados en la zona alta del proyecto (zona superficial sobre la montaña), se adoptó una geometría 2H:1V, debido a las condiciones topográficas del terreno.

Es importante mencionar que la determinación de los parámetros de resistencia de los materiales empleados en llenos es compleja pues son función de diferentes factores tanto naturales como antrópicos, por lo que estos pueden variar punto a punto. Entre los factores más relevantes se encuentran: el origen del material, su exposición al agua u otros agentes intemperantes en el sitio de origen, el proceso de excavación, condiciones de transporte, disposición y conformación, entre otros.

Debido a las limitaciones mencionadas se ha optado por emplear parámetros de resistencia conservadores respecto a los estimados a lo largo del proyecto para los materiales (véase la Tabla 3.126), con el fin de reducir los riesgos de inestabilidades en los ZODMES.

Tabla 3.126 Parámetros de diseño para ZODMEs de material de lleno

<table>
<thead>
<tr>
<th>Zona</th>
<th>γ (kN/m3)</th>
<th>ϕ (°)</th>
<th>c (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZODME (Zona superficial en el valle)</td>
<td>20</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>ZODME (Zona superficial sobre la montaña)</td>
<td>19</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>ZODME compactado (Zona superficial sobre la montaña)</td>
<td>19</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

En lo que respecta a los perfiles geológicos, para definir los espesores de los materiales en el modelo de análisis se consideró la información de la exploración cercana a cada uno de ellos, lo cual se presenta con detalle en el Anexo_3_9A_Anexo_geotecnico.

Se aclara que teniendo en cuenta las obras de drenaje de los ZODMES, no se espera una condición de saturación de este material, por lo tanto, este escenario no se consideró en los análisis; sin embargo, en los modelos en condición estática se incluye un nivel freático que alcanza cotas superiores a las evidenciadas en la exploración, notándose que esto no afecta la estabilidad global del ZODME.

Los resultados de los análisis de estabilidad para el ZODME C (el de mayor capacidad, véase la Tabla 3.105) se presentan a continuación. Los análisis de estabilidad de los otros ZODMES se presentan en detalle en el Anexo_3_9A_Anexo_geotecnico. Sin embargo, los resultados se publican en la Tabla 3.127.

Tabla 3.127 Resultados análisis de estabilidad de los ZODMES

<table>
<thead>
<tr>
<th>ZODME</th>
<th>FS estático ($\geq 1,5$)</th>
<th>FS Seudoestático ($\geq 1,1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Zona superficial en el valle)</td>
<td>2,0</td>
<td>1,3</td>
</tr>
<tr>
<td>B (Zona superficial en el valle)</td>
<td>2,0</td>
<td>1,3</td>
</tr>
<tr>
<td>C (Zona superficial en el valle)</td>
<td>2,0</td>
<td>1,3</td>
</tr>
<tr>
<td>D (Zona superficial sobre la montaña)</td>
<td>1,5</td>
<td>1,1</td>
</tr>
<tr>
<td>E (Zona superficial sobre la montaña)</td>
<td>1,5</td>
<td>1,1</td>
</tr>
<tr>
<td>F (Zona superficial sobre la montaña)</td>
<td>1,5</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019
De forma general es posible concluir que bajo las geometrías de lleno 3H:1V presentadas actualmente los ZODMES son estables y cumplen con lo establecido en la norma.

En la Figura 3.264 y Figura 3.265 se presentan los resultados para la sección más crítica del ZODME C.

Figura 3.264 Análisis de estabilidad condición estática ZODME C, FS=2,0

Fuente: Integral, 2019

Figura 3.265 Análisis de estabilidad condición seudoestática ZODME C, FS=1,3

Fuente: Integral, 2019

El proceso constructivo de los ZODMES comprende diferentes etapas encaminadas a conseguir las características de resistencia que aseguren un correcto funcionamiento del lleno. La calidad de un depósito depende en gran medida a su correcta construcción, es decir, de la apropiada disposición, control, supervisión durante etapa constructiva y posterior mantenimiento.
A continuación, se presentan algunas recomendaciones para construcción y manejo de los ZODMEs:

- No se debe aumentar la altura, ni pendiente de los taludes del depósito, ya que, con la configuración geométrica asumida, se están obteniendo factores de seguridad ajustados a los criterios de diseño.

- Para evitar que las aguas subterráneas asciendan al cuerpo del ZODME y debiliten el contacto entre el terreno y el depósito, se deberán construir filtros principales sobre las vaguadas, con aporte de filtros secundarios que permitan controlar el efecto negativo del agua en toda el área del depósito. Estas obras deberán descargar controladamente en sitios especificados. Si la descarga se ejecuta en cercanías a la pata del depósito, se deben diseñar obras que eviten que el agua erosione los materiales y genere desconfinamiento.

- Para controlar los procesos erosivos y disminuir la infiltración del agua superficial que llegue al cuerpo del depósito, se podrán incluir bermas y cambiar la configuración geométrica hasta 2,5H:1,0V. Todas las bermas deben tener pendiente mínima del 2%, tener cuneta hacia los laterales y los bancos deben recubrirse con revegetalización.

- Se recomienda que durante la construcción se cuente con la presencia eventual de un ingeniero geotecnista que verifique las siguientes condiciones:
 - Las características del suelo de fundación del depósito durante construcción, para tomar las medidas correctivas en caso de identificarse materiales inadecuados, no tenidos en cuenta en los análisis realizados.
 - La calidad de los materiales depositados, para tomar las medidas correctivas en caso de identificarse materiales inadecuados, no tenidos en cuenta en los análisis realizados.
 - Que se respete la configuración propuesta del depósito; principalmente la pendiente y la altura de los taludes.
 - Que inspeccione periódicamente el comportamiento del lleno y notifique oportunamente cualquier anomalía.
 - La atención de las diferentes recomendaciones presentadas en este informe y las usuales durante la construcción de este tipo de estructuras.

- Se mantendrá durante construcción el terreno con una pendiente hacia el talud aguas abajo para facilitar el drenaje. En la medida en que se ascienda el lleno, se debe cubrir el talud con revegetalización.

- Es muy importante implementar obras de manejo de aguas tales como filtros, cunetas, rondas de coronación y drenes horizontales (en la fundación) que reduzcan la infiltración de aguas hacia el lleno. También es importante evitar la formación de zonas de empozamientos en bermas y plazoletas e ir realizando el sellado de la superficie.
Se recomienda realizar un desmonte, limpiando el área que ocupará el depósito, retirando la capa vegetal y todos los suelos blandos que se presenten, principalmente en el fondo de las vaguadas.

Para los ZODMES localizados en la zona superficial sobre la montaña (parte alta), se deberán realizar perforaciones adicionales durante el diseño definitivo y se deberá retirar el horizonte IV de la base, previo a la construcción del ZODME, pues este presenta características geotécnicas que podrían hacerlo inadecuado para la fundación.

Como se mencionó en el numeral 3.3.7.17.3 ZODMEs, a continuación se incluye el análisis de los depósitos de almacenamiento temporal de material y la pila de suelo (véase la Figura 3.232 y la Figura 3.233).

3.3.7.17.3.7.5 Evaluación de depósitos de almacenamiento temporal

La geometría propuesta para estos materiales es igual a la de los ZODMES (3H:1V); sin embargo, en este caso se trata de depósitos de almacenamiento de material rocoso no aprovechable, extraído de las obras subterráneas.

Teniendo en cuenta el tipo de material que se dispondrá en estas áreas, la estabilidad estará condicionada por el ángulo de fricción en reposo, despreciando la cohesión.

En este caso, se estableció un valor conservador de ángulo de fricción 30°, considerando que el material extraído se somete inicialmente a un proceso de trituración, dejando como resultado bloques homogéneos, lo cual dificulta la trabazón de estos en el momento de la conformación.

Los perfiles geológicos se determinaron a partir de la información de la exploración cercana, especialmente las perforaciones DH_QUE18-10 y DH_QUE18-11.

A continuación, se presenta el análisis de estabilidad para las condiciones estática y seudoestática del depósito de almacenamiento temporal de estériles (capacidad 1.350.000 m3) (véase la Tabla 3.105). Los resultados se indican en la Tabla 3.128 y el análisis en el Anexo Geotécnico (véase el Anexo_3_9A_Anexo_geotecnico).

| Tabla 3.128 Resultado de los análisis de estabilidad de los depósitos temporales |
|---|---|---|
| **Depósito** | **FS estático ($\geq 1,5$)** | **FS Seudoestático ($\geq 1,1$)** |
| Depósito temporal de estériles | 1,7 | 1,1 |

Fuente: Integral, 2019

De acuerdo con los resultados anteriores, se concluye que los depósitos temporales son estables con factores de seguridad que satisfacen la norma NSR-10.

En la Figura 3.266 y Figura 3.267 se presentan los resultados del análisis para el depósito temporal de estériles, en condición estática y seudoestática. Se presenta el factor de seguridad mínimo global y todas las superficies menores de 2,0.
Con respecto a la construcción y operación de estos depósitos temporales, se tienen las siguientes recomendaciones:

- No se debe aumentar la altura, ni pendiente de los taludes del depósito, ya que con la configuración geométrica asumida, se están obteniendo factores de seguridad ajustados a los criterios de diseño.
- Se recomienda que durante la construcción se cuente con la presencia eventual de un ingeniero geotecnista que verifique las siguientes condiciones:
- Las características del suelo de fundación del depósito durante construcción, para tomar las medidas correctivas en caso de identificarse materiales inadecuados, no tenidos en cuenta en los análisis realizados.

- La calidad de los materiales depositados, para tomar las medidas correctivas en caso de identificarse materiales inadecuados, no tenidos en cuenta en los análisis realizados.

- Que se respete la configuración propuesta del depósito; principalmente la pendiente y la altura de los taludes.

- Que inspeccione periódicamente el comportamiento del lleno y notifique oportunamente cualquier anomalia.

- La atención de las diferentes recomendaciones presentadas en este informe y las usuales durante la construcción de este tipo de estructuras.

- Se recomienda realizar un desmonte, limpiando el área que ocupará el depósito, retirando la capa vegetal y todos los suelos blandos que se presenten, principalmente en el fondo de las vaguadas.

3.3.7.17.3.7.6 Evaluación de Pila de suelo

En análisis de estabilidad para la pila de suelo se lleva a cabo de forma análoga al de los depósitos anteriores; sin embargo, en este caso el material que se dispondrá en esta área corresponde a la primera capa de suelo con materia orgánica, es decir, al material de descapote. Por ello, se consideran parámetros de resistencia menores al del resto de ZODMEs del Proyecto; cohesión $c=10$ kPa, ángulo de fricción $\phi=23^\circ$ y peso específico $\gamma=17$ kN/m3. La sección de análisis se presenta en la Figura 3.268.

![Figura 3.268 Sección de análisis de la Pila de Suelo](image-url)

Fuente: Integral, 2019
Teniendo en cuenta lo anterior, se realizaron los análisis de estabilidad para las condiciones estática y seudoestática, presentados en la Figura 3.269 y Figura 3.270.

Figura 3.269 Análisis estático Pila de suelo. FS=1,6
Fuente: Integral, 2019

Figura 3.270 Análisis seudoestático Pila de suelo. FS=1,1
Fuente: Integral, 2019

De acuerdo con lo anterior, se concluye que la Pila de suelo es estable con la geometría propuesta, satisfaciendo los factores de seguridad de la norma NSR-10.

Las recomendaciones para el manejo de la Pila de suelo durante construcción y operación son básicamente las mismas que para los ZODMEs.
3.3.7.17.3.7.7 Evaluación de las plataformas

Para la evaluación de las plataformas se tomaron diferentes secciones de forma que se evaluará la condición más desfavorable. Dichos análisis permitieron identificar las secciones más críticas en las plataformas, las cuales se describen a continuación.

De forma ilustrativa se presenta el análisis de estabilidad de la Planta de beneficio, el análisis del resto de las plataformas se presenta en detalle en el Anexo_3_9A_Anexo_geotecnico.

Se debe aclarar que la denominada “Plataforma Túneles” ya fue descrita en el numeral 3.3.7.17.3.

En la plataforma de la Planta de beneficio, se evaluaron varias secciones con el fin de identificar las más críticas, las cuales se muestran en la Figura 3.271.

Figura 3.271 Secciones de la plataforma planta de beneficio para análisis de estabilidad
Fuente: Integral, 2019

Figura 3.272 Análisis estático Plataforma Planta de beneficio Sección 5 F.S:1,5
Fuente: Integral, 2019

Figura 3.273 Análisis seudoestático Planta de beneficio Sección 5, FS=1,1
Fuente: Integral, 2019
De acuerdo con los resultados presentados anteriormente, para la adecuación de cortes en plataformas se proponen los siguientes tratamientos:

- Cortes con pendientes mínimas de 1H:1V y bermas de 3,00 m de ancho en bancos de máximo 12,00 m de altura. Adicionalmente se deberán instalar pernos BAL8 separados 2,00 m al tresbolillo y colocar dos capas de concreto lanzado de 0,05 m de espesor.
- En cortes con alturas inferiores a 5,00 m podrán emplearse taludes con pendiente de 0,5:H:1,0V.
- Taludes de corte con altura menor de 12,00 m de altura se deberán revegetalizar y se les deberán implementar obras para el control de la erosión superficial.
Los tratamientos finales podrán variar de acuerdo con las características del terreno encontradas in-situ.

Las bermas empleadas en la adecuación de los taludes tendrán una pendiente del 5% hacia la cara del talud.

Los taludes que no requieran concreto lanzado y pernos deberán protegerse mediante revegetalización.

Donde se requiera, se podrán emplear mantos para el control de erosión, los cuales deberán fijarse al talud con grapas en U, conformadas por barras corrugadas #3.

En zonas donde se identifiquen niveles freáticos sobre los cortes, se deberán instalar drenes sub-horizontales, con una inclinación de 5° a 10° con respecto a la horizontal, con una separación de 3,00 m, distribuidos al tresbolillo.

Para que los llenos cumplan con los factores de seguridad establecidos por la NSR-10 se requieren pendientes 2H:1V.

La cara de los llenos se deberá proteger mediante un sistema que evite la erosión superficial.

Los materiales para la conformación de terraplenes deberán cumplir los requisitos mínimos establecidos en el artículo 220-13 del INVIA, específicamente en la Tabla 220-1.

Particularmente para la Plataforma de la Planta de Beneficio será necesario conformar el lleno en la parte inferior (20,00 m) compactando el material hasta alcanzar el 90% de la densidad seca máxima del ensayo Proctor modificado, pues esto mejora las condiciones de estabilidad y reduce los asentamientos que podrían presentarse por el gran tamaño de la plataforma.

3.3.7.17.3.7.8 Evaluación de los taludes de corte y lleno de los sedimentadores

Las estructuras denominadas sedimentadores, fueron diseñadas para el almacenamiento temporal de los flujos de escorrentía superficial provenientes del depósito de relaves filtrados (TMF) y de ZODMES, así como para el proceso de sedimentación antes de su disposición final al río Cauca.

Con el fin de caracterizar las condiciones particulares relacionadas con la construcción del sistema de sedimentadores, se llevaron a cabo las siguientes actividades:

- Revisión de información primaria y secundaria existente para estimar las propiedades del subsuelo en el sitio de las obras.
- Caracterización e identificación del sistema de excavación propuesto.
- Evaluación del pre-dimensionamiento y de la estabilidad de las estructuras.
- Evaluación de infiltraciones, tanto en los taludes de corte-lleno como en el subsuelo.
3.3.7.17.3.7.8.1 Criterios de diseño

- **Altura del sedimentador:** La altura se estimó con el estudio de capacidad y demanda, mediante el nivel de agua que puede alcanzar el sedimentador y el volumen/caudal que puede evacuar. Además en la altura, se consideró el borde libre, correspondiente a la distancia vertical medida desde la cota de la corona a la cota del nivel de aguas normales. La altura establecida en el diseño contempla una altura máxima de 8 m.

- **Ancho de la corona:** Se definió un ancho de corona que permitiera el acceso de vehículos tanto durante construcción como operación; el ancho mínimo de corona se definió en 4 m.

- **Taludes laterales.** Para la inclinación de los taludes se tuvieron en cuenta aspectos tales como la altura, el tipo de material del que está constituido, el tipo de cimentación y las fuerzas externas que actúan y que pueden intervenir en él, el diseño previo consideró que las inclinaciones más favorables eran con pendiente 2H:1V.

3.3.7.17.3.7.8.2 Materiales para la conformación de los taludes

Se definió como fuente de material para la conformación de los taludes de lleno, el material proveniente de las excavaciones cercanas, ya que el programa de construcción involucra tanto excavación del terreno, como conformación de talud en la cara externa.

El proceso de selección de material se podrá realizar mediante la implementación de zarandas o cribas para clasificar el material; adicionalmente se deberán realizar pruebas de densidad de compactación en laboratorio. Los requerimientos mínimos que deberán cumplir los materiales para conformación de los taludes de las caras externas de los llenos se indican en la Tabla 3.129.

<table>
<thead>
<tr>
<th>Tabla 3.129 Requerimientos mínimos de los materiales de lleno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Característica</td>
</tr>
<tr>
<td>Tamaño máximo, mm</td>
</tr>
<tr>
<td>Porcentaje que pasa el tamiz N°200, máximo</td>
</tr>
<tr>
<td>CBR de laboratorio, mínimo (%)</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

3.3.7.17.3.7.8.3 Revisión de información del subsuelo

Para llevar a cabo la evaluación de la estabilidad, en la Tabla 3.130 se presentan las propiedades geomecánicas estimadas para la fundación y conformación de los taludes de corte y lleno.
Tabla 3.130 Resumen de propiedades mecánicas

<table>
<thead>
<tr>
<th>Material</th>
<th>Peso unitario húmedo (kN/m³)</th>
<th>Cohesión (kPa)</th>
<th>Ángulo de fricción (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depósito de vertiente (SM-SP)</td>
<td>20 ± 2</td>
<td>6,0 ± 5,0</td>
<td>29 ± 3,8</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

De la información presentada, se destaca el bajo contenido de finos y plasticidad baja a nula que presenta el material de fundación de las obras y el bajo módulo de elasticidad del suelo. Debe resaltarse, que en la fundación de las obras se espera se presente únicamente asentamientos elásticos ya que la consistencia del material del depósito de vertiente es grueso-granular y no se generarán asentamientos por consolidación.

3.3.7.17.3.7.8.4 Localización general de los sedimentadores

Considerando la extensión y el manejo de aguas de contacto del TMF y de las zonas de depósito de material estéril, se dispuso un conjunto de sedimentadores dimensionados para contener los volúmenes de agua producto de la escorrentía y favorecer la depositación de partículas de suelo transportadas por la misma. En la Figura 3.276 se presenta la localización general de los sedimentadores en el proyecto.
Figura 3.276 Esquema general de las obras y localización de los sedimentadores
Fuente: Minera de Cobre Quebradona, 2019

En la Figura 3.277 se presenta la configuración en planta de uno de los sedimentadores del proyecto. Se destacan otras obras que hacen parte del sedimentador, tales como el canal de descarga de emergencia y la tubería de conexión industrial.
En la Figura 3.278 y Figura 3.279 se presenta la sección típica de los sedimentadores del proyecto en su condición más crítica, la cual comprende una sección mixta en corte y lleno, su altura varía entre 6 m y 8 m, en función de los volúmenes de almacenamiento que deberán atender en la facilidad minera. Adicionalmente, con la finalidad de realizar un adecuado drenaje, se contempló una pendiente del terreno del 2% hacia la tubería que conecta con el efluente industrial.
Se definió un borde libre de al menos un metro por debajo de la corona del sedimentador, con el fin de mitigar fenómenos de erosión y lavado de finos que pudieran desencadenar inestabilidades.

3.3.7.17.3.7.8.5 Evaluación de la estabilidad de los sedimentadores

Una vez caracterizado el comportamiento tanto del material del subsuelo (depósitos de vertiente) como del material in-situ (suelos nativos y conformados con materiales provenientes de las excavaciones), se verificó la estabilidad de la sección más crítica correspondiente a la sección mixta (Véase la Figura 3.279).

Inicialmente, se definió la inclinación de los taludes de corte y lleno con base en lo comúnmente considerado para este tipo de obras, posteriormente se validaron mediante la evaluación numérica empleando el método de equilibrio límite. Como criterio de evaluación de la estabilidad de los sedimentadores, se tuvo en cuenta que el fluido no genera resistencia mecánica alguna, lo que se considera sería el escenario más desfavorable. Los parámetros utilizados para evaluar la estabilidad de los sedimentadores por equilibrio límite, se indican en la Tabla 3.131.

<table>
<thead>
<tr>
<th>Material</th>
<th>Peso Unitario Húmedo (kN/m³)*</th>
<th>Cohesión (kPa)**</th>
<th>Ángulo de Fricción (°)</th>
<th>Permeabilidad K (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taludes del sedimentador</td>
<td>21 ± 1,5</td>
<td>5,0 ± 1,0</td>
<td>28 ± 2</td>
<td>1E-5</td>
</tr>
<tr>
<td>Fundación (SM-SP)</td>
<td>20 ± 2</td>
<td>6,0 ± 5,0</td>
<td>29 ± 3,8</td>
<td>1E-6</td>
</tr>
<tr>
<td>Membrana impermeable</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1E-7</td>
</tr>
</tbody>
</table>

Fuente: Minería de Cobre Quebradona, 2019 *: kN: kiloNewton **: kPa: kiloPascal

Las inclinaciones seleccionadas para los taludes de corte y lleno corresponden a 2,0H: 1,0V en la cara libre e interna. La configuración geométrica fue seleccionada teniendo en cuenta la facilidad constructiva de los sedimentadores, disposición de la geomembrana de impermeabilización y la seguridad de los mismos.

En la Tabla 3.132 se presentan los factores de seguridad en condición estática y pseudo-estática para las caras libre e interna. En todos los casos de análisis, se consideró la condición más crítica correspondiente al nivel del agua coincidente con el nivel máximo de operación.
Tabla 3.132 Factores de seguridad de los taludes

<table>
<thead>
<tr>
<th></th>
<th>Factor de Seguridad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cara Libre</td>
</tr>
<tr>
<td>Estático (Fin de Construcción)</td>
<td>1,7</td>
</tr>
<tr>
<td>Pseudo-estático (Fin de Construcción)</td>
<td>1,2</td>
</tr>
<tr>
<td>Estático (Operación)</td>
<td>1,4</td>
</tr>
<tr>
<td>Pseudo-estático (Operación)</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Se encontró que los factores de seguridad obtenidos cumplen con los estándares mínimos definidos para las etapas de construcción y durante operación.

En la Figura 3.280 a Figura 3.283 se presentan gráficamente las superficies de falla en la cara libre de los taludes de los sedimentadores para cada uno de los escenarios presentados en la Tabla 3.132.

Figura 3.280 Factores de seguridad caso estático (fin de construcción)
Fuente: Integral, 2019
Figura 3.281 Factor de seguridad seudo-estático, (fin de construcción)
Fuente: Integral, 2019

Figura 3.282 Factor de seguridad estático, etapa de Operación
Fuente: Integral, 2019
Figura 3.283 Factores de seguridad obtenidos, etapa de Operación seudo-estático
Fuente: Integral, 2019

De acuerdo con lo anterior, se identificó que la sección crítica analizada cumple con los factores de seguridad en la condición estática, seudo-estática y durante operación al nivel máximo.

3.3.7.17.3.7.8.6 Evaluación de infiltraciones

Se realizó un análisis para estimar el volumen de infiltraciones a través de los sedimentadores; esto permitió evaluar las infiltraciones que se presentarán por la fundación y por la cara interna sobre las secciones de talud mixta (corte-lleno). Adicionalmente, se contempló el uso de una membrana de impermeabilización para cuantificar la reducción de las infiltraciones

En la Tabla 3.133 se presentan los resultados de la evaluación sobre los efectos de infiltración por el cuerpo de los sedimentadores y hacia el subsuelo. Adicionalmente en la Figura 3.284 se pueden observar las líneas de flujo y los vectores de desplazamiento del fluido. Para este análisis, así como para la evaluación de la estabilidad, se consideró la condición más crítica correspondiente al nivel máximo de operación.

<table>
<thead>
<tr>
<th>Tabla 3.133 Comportamiento infiltraciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Nivel máximo de operación (Sin membrana)</td>
</tr>
<tr>
<td>Nivel máximo de operación (Con membrana)</td>
</tr>
</tbody>
</table>
En una longitud de talud total de 500 m (longitud perimetral media de los depósitos), los caudales infiltrados equivaldrían a 0,4 l/s sin geomembrana y 0,03 l/s a través de la fundación con geomembrana.

De los resultados obtenidos, se resalta la necesidad de implementar una membrana de impermeabilización anclada que esté en interacción con las aguas de contacto. La función de esta membrana será disminuir las infiltraciones que se puedan presentar a través de las caras internas de los sedimentadores y que puedan percolar al interior del suelo; esto a su vez, permitirá evitar posibles migraciones de contaminantes a los afluentes cercanos.

3.3.7.17.3.7.9 Análisis de probabilidad de falla

El análisis de probabilidad de probabilidad de falla se realiza para cada una de las obras involucradas en el proyecto y se presenta en detalle en el Anexo 3_9B_Anexo_geotecnico_probab_falla.

3.3.8 Construcción y montaje

En los mapas MQC-INT-EIA-DESC-03-AREA y MQC-INT-EIA-DESC-03-DISE se muestran las distintas clases de áreas mineras y el diseño minero general.
3.3.8.1 Instalaciones de soporte minero

Las instalaciones de soporte minero se construirán y localizarán tanto en superficie, principalmente en la zona superficial en el valle, como en la zona subterránea, cerca del depósito de mineral.

3.3.8.1.1 Instalaciones mineras

Las instalaciones mineras corresponden a las estructuras y obras requeridas para el almacenamiento, beneficio, manejo, cargue y disposición del material mineral y sobrante durante la operación minera. A continuación, se describen las instalaciones mineras del Proyecto. Es importante anotar que más adelante, en este mismo numeral se encuentra el detalle de los equipos correspondiente a estas instalaciones.

3.3.8.1.1.1 Estación de trituración

- Túneles de acceso
- Sistemas de ventilación e iluminación
- Cámara de trituración
- Instalación de controles visuales
- Señalización
- Ensamble y posicionamiento de tolva de 500 t
- Instalación de la trituradora (incluye pruebas)
- Instalación del alimentador de placas (Incluye pruebas)
- Banda de sacrificio
- Banda transportadora
- Instalación de detector de metales y trampas magnéticas (incluye pruebas)

Esta estación se muestra en la Figura 3.285.

3.3.8.1.1.2 Transporte interno

- Instalación de soportería
- Ensamble e instalación de Bandas transportadoras (incluye pruebas)
- Adecuación de áreas de inspección y mantenimiento

3.3.8.1.1.3 Depósito (Almacenamiento de material)

- Adecuación de plataforma
- Instalación de estructura y obras civiles
- Demarcación y señalización
3.3.8.1.1.4 Plataformas

Dadas las condiciones topográficas del área, y como preparación del terreno para la construcción de algunos de los componentes de infraestructura del Proyecto, se presenta la necesidad de construir plataformas, bien sea como producto de una excavación o de un lleno. En la Tabla 3.134 y Tabla 3.135 se relacionan las plataformas requeridas en el Proyecto.

Todas estas plataformas se consideran ya construidas para la configuración inicial de operación y se ilustran en el Anexo Planos_Diseño_Plataformas. Además, en la etapa de operación se plantean otras plataformas con el fin de tener zonas de apoyo para la primera parte del proyecto minero, dichas plataformas se pueden observar en el Anexo Planos_Diseño_Plataformas.

Para las plataformas se consideraron taludes con pendientes de corte entre 0,5H:1,0V y 1,0H:1,0V, mientras que para los llenos se utilizaron pendientes 2,00H:1,00V.

Tabla 3.134 Plataformas para obras civiles zona baja del Proyecto (Zona superficial en el valle)

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Cota (msnm)</th>
<th>Area total de intervención (ha)</th>
<th>Area aprovechable (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plataforma 1</td>
<td>Variable</td>
<td>0,42</td>
<td>3,913</td>
</tr>
<tr>
<td>Plataforma 2</td>
<td>791</td>
<td>5,14</td>
<td>37,501</td>
</tr>
<tr>
<td>Plataforma 3</td>
<td>915</td>
<td>0,07</td>
<td>630</td>
</tr>
<tr>
<td>Plataforma 4</td>
<td>916</td>
<td>5,04</td>
<td>36,424</td>
</tr>
<tr>
<td>Plataforma 5</td>
<td>995</td>
<td>0,36</td>
<td>1,346</td>
</tr>
<tr>
<td>Plataforma 6</td>
<td>973</td>
<td>0,96</td>
<td>5,041</td>
</tr>
<tr>
<td>Plataforma 7</td>
<td>Variable</td>
<td>0,10</td>
<td>5,041</td>
</tr>
</tbody>
</table>
MINERA DE COBRE QUEBRADONA S.A.

Estudio de Impacto Ambiental I-0010371-MQC-EIA-V1-FA
Noviembre, 2019 3.392

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Cota (msnm)</th>
<th>Área total de intervención (ha)</th>
<th>Área aprovechable (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plataforma 8</td>
<td>Variable</td>
<td>0,44</td>
<td>0,44</td>
</tr>
<tr>
<td>Plataforma 9</td>
<td>Variable</td>
<td>1,18</td>
<td>1,18</td>
</tr>
<tr>
<td>Plataforma Porteria</td>
<td>Variable</td>
<td>2,24</td>
<td>1,032</td>
</tr>
<tr>
<td>Plataforma explosivos operación y planta emulsión</td>
<td>1.068</td>
<td>1,42</td>
<td>11.421</td>
</tr>
</tbody>
</table>

Plataforma Planta de Beneficio

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Cota (msnm)</th>
<th>Área total de intervención (ha)</th>
<th>Área aprovechable (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta de Beneficio</td>
<td>Variable</td>
<td>28,80</td>
<td>229,864</td>
</tr>
<tr>
<td>Planta de Beneficio + Zona multiusos</td>
<td>Variable</td>
<td>0,69</td>
<td>2,065</td>
</tr>
<tr>
<td>PTARND1</td>
<td>1.063</td>
<td>0,48</td>
<td>2,125</td>
</tr>
</tbody>
</table>

Plataforma Campamento y Área Integrada de Operaciones (AIO)

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Cota (msnm)</th>
<th>Área total de intervención (ha)</th>
<th>Área aprovechable (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campamento</td>
<td>Variable</td>
<td>3,92</td>
<td>37,016</td>
</tr>
<tr>
<td>Área Integrada de Operación (AIO)</td>
<td>Variable</td>
<td>1,75</td>
<td>14,304</td>
</tr>
<tr>
<td>Laboratorio</td>
<td>Variable</td>
<td>0,68</td>
<td>4,398</td>
</tr>
<tr>
<td>Estación de combustible</td>
<td>1,050</td>
<td>0,28</td>
<td>1,888</td>
</tr>
<tr>
<td>Planta concreto y trituración</td>
<td>Variable</td>
<td>0,64</td>
<td>4,800</td>
</tr>
<tr>
<td>PTAP</td>
<td>1.063</td>
<td>0,52</td>
<td>3,100</td>
</tr>
<tr>
<td>Tanques de almacenamiento de agua cruda</td>
<td>1,070</td>
<td>0,37</td>
<td>1,742</td>
</tr>
<tr>
<td>Zona multiusos</td>
<td>Variable</td>
<td>22,42</td>
<td>228,373</td>
</tr>
<tr>
<td>Plataforma túneles</td>
<td>1,075</td>
<td>1,44</td>
<td>12,478</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018

Tabla 3.135 Plataformas para obras civiles zona alta del proyecto (zona superficial sobre la montaña)

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Cota (msnm)</th>
<th>Área total de intervención (m²)</th>
<th>Área aprovechable (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plataforma A</td>
<td>2,090,5</td>
<td>1,47</td>
<td>7,976</td>
</tr>
<tr>
<td>Plataforma B</td>
<td>2,150</td>
<td>0,46</td>
<td>2,834</td>
</tr>
<tr>
<td>Plataforma C</td>
<td>Variable</td>
<td>0,61</td>
<td>4,922</td>
</tr>
<tr>
<td>Plataforma D</td>
<td>2,155</td>
<td>0,53</td>
<td>2,941</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018

Las plataformas 1 y 3 solo serán utilizadas en la etapa de construcción, mientras que la plataforma 4 se mantendrá en toda la etapa de construcción y parte de la etapa de operación hasta que el depósito de relaves filtrados ocupe dicha zona. La plataforma 2 se requiere en construcción y queda disponible para toda la etapa de operación.

Las plataformas que desde la etapa de construcción se instalarán en diferentes zonas del Proyecto se destinarán a espacios y actividades de soporte a la construcción y operación tales como: patios de almacenamiento de equipos, herramientas y materiales, bodegas temporales, zonas de parqueo de vehículos livianos o maquinaria,
instalación de contenedores temporales, zonas de acopio de residuos sólidos, instalación de baños portátiles, instalación de generadores de energía, subestaciones de energía eléctrica, instalación de tanques de agua, instalación de puntos médicos y de atención de emergencias, garitas de control de seguridad, entre otros.

La plataforma planta de beneficio y Plataforma campamento y Área Integrada de Operaciones (AIO), mencionadas en la Tabla 3.134, están conformadas por otras plataformas más pequeñas y unas áreas adicionales denominadas zonas multiusos, tal como se describe a continuación:

A continuación, se indican cómo están conformadas las diferentes plataformas:

- **Plataforma planta de beneficio**: compuesta por la planta de beneficio, subestación principal de operación, PTARND1, PTAI y zona multiusos.

- **Plataforma campamento y Área Integrada de Operaciones (AIO)**: compuesta por el campamento, Área Integrada de Operaciones (AIO), laboratorio, estación de combustible, planta de concreto y trituración, PTAP, tanques de almacenamiento de agua cruda y zona multiusos (véase el Anexo Planos Diseño AIO Área Integrada Operaciones).

3.3.8.1.1.4.1 Volumen estimado de corte y lleno para adecuación de las plataformas

En la Tabla 3.136 se presenta el volumen de los cortes y llenos generados por la construcción de cada una de las plataformas, tanto en la etapa de construcción como de operación, tanto en la zona baja como en la zona alta del Proyecto.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Volumen corte total (m³)</th>
<th>Volumen lleno total (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plataforma 1</td>
<td>2.400</td>
<td>0</td>
</tr>
<tr>
<td>Plataforma 2</td>
<td>85.250</td>
<td>104.300</td>
</tr>
<tr>
<td>Plataforma 3</td>
<td>580</td>
<td>0</td>
</tr>
<tr>
<td>Plataforma 4</td>
<td>215.930</td>
<td>193.920</td>
</tr>
<tr>
<td>Plataforma 5</td>
<td>400</td>
<td>9.850</td>
</tr>
<tr>
<td>Plataforma 6</td>
<td>8.800</td>
<td>22.990</td>
</tr>
<tr>
<td>Plataforma 7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plataforma 8</td>
<td>1.313</td>
<td>0</td>
</tr>
<tr>
<td>Plataforma 9</td>
<td>3.783</td>
<td>0</td>
</tr>
<tr>
<td>Plataforma portería</td>
<td>45.950</td>
<td>15.350</td>
</tr>
<tr>
<td>Plataforma explosivos operación y planta emulsión</td>
<td>22.100</td>
<td>10.850</td>
</tr>
<tr>
<td>Plataforma de piritas</td>
<td>5.908</td>
<td>995</td>
</tr>
<tr>
<td>Plataforma de relaves filtrados</td>
<td>6.753</td>
<td>3.665</td>
</tr>
<tr>
<td>Plataforma Planta de Beneficio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planta de beneficio</td>
<td>1.232.550</td>
<td>14.200</td>
</tr>
<tr>
<td>PTARND1</td>
<td>50</td>
<td>28.000</td>
</tr>
<tr>
<td>PTAI</td>
<td>29.300</td>
<td>0</td>
</tr>
<tr>
<td>Zona multiusos</td>
<td>37.213</td>
<td>0</td>
</tr>
<tr>
<td>Plataforma Campamento y Área Integrada de Operaciones (AIO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campamentos</td>
<td>45.793</td>
<td>39.680</td>
</tr>
</tbody>
</table>

Estudio de Impacto Ambiental I-0010371-MQC-EIA-V1-FA
Noviembre, 2019
### Nombre	Volumen corte total (m³)	Volumen lleno total (m³)
Área Integrada de Operación (AIO) | 52.470 | 0
Laboratorio | 37.604 | 0
Estación de combustible | 13.737 | 0
Planta concreto y trituración | 37.312 | 0
PTAP | 6.300 | 6.910
Tanques de almacenamiento agua cruda | 500 | 6.790
Zona multiusos | 565.484 | 64.120
Plataforma túneles | 174.750 | 2.200

Fuente: Integral, 2018

Tabla 3.137 Volumen estimado de corte y lleno para plataformas zona alta del proyecto (zona superficial sobre la montaña)

<table>
<thead>
<tr>
<th>No</th>
<th>Nombre</th>
<th>Volumen corte total (m³)</th>
<th>Volumen lleno total (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plataforma A</td>
<td>27.300</td>
<td>45.630</td>
</tr>
<tr>
<td>2</td>
<td>Plataforma B</td>
<td>3.850</td>
<td>10.150</td>
</tr>
<tr>
<td>3</td>
<td>Plataforma C</td>
<td>67.400</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Plataforma D</td>
<td>44.450</td>
<td>150</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018

3.3.8.1.1.5 Planta de Beneficio

La planta estará ubicada en la finca La Mancha por presentar mejor viabilidad técnica y ambiental, así como ventajas operacionales y menor requerimiento de equipos para el transporte de mineral.

La planta se dimensionó de acuerdo con el criterio de procesos. Cada parte de la planta ha sido ubicada con base en el flujo del proceso para conseguir la mejor logística de cada área de la planta. Asimismo, se ha buscado seguir la topografía del lugar para generar la menor cantidad de movimiento de tierras posible. La distribución general se muestra en la Figura 3.286.

Los elementos de distribución general de la planta incluyen:

- Pila de almacenamiento de mineral de mina, incluyendo la banda de transporte de mineral desde la mina subterránea.
- Circuito de trituración secundaria y terciaria, incluyendo trituradora secundaria y el molino de rodillos de alta presión (HPGR). El circuito incluye bandas transportadoras para el transporte de mineral y zarandas de clasificación.
- Pilas de almacenamiento adicionales para material fino y de alimentación al HPGR.
- Circuito de molienda.
- Circuito de flotación flash, flotación convencional y remolienda.
- Espesadores de relaves.
- Filtros de relaves.
- Bandas transportadoras de relaves.
Espesador de Concentrado.
Filtro de Concentrado.
Sitios de almacenamiento, preparación y distribución de reactivos, acorde con la naturaleza y requerimiento específico de cada insumo.
Subestaciones eléctricas.
Sala de compresores.
Sala de sopladores.
Racks de tuberías.
Pozas de emergencia.

La cámara de trituración se encuentra al interior de la mina subterránea. Allí se instalará la trituradora primaria de tipo giratoria, así como los alimentadores de placas y controles de polvo correspondientes. Desde la cámara de trituración se instalará una banda transportadora de aproximadamente 6 km. Esta banda transportadora
descargará directamente en la pila de almacenamiento en superficie (véase la Figura 3.287).

La pila de almacenamiento está alineada al portal y la banda principal desde la pila de almacenamiento de mineral iniciará el circuito de trituración secundario. Se tendrá un sistema de recuperación de mineral y luego un sistema de bandas transportadoras para alimentar a la trituradora secundaria y HPGR. Asimismo, contará con tolvas de almacenamiento y zarandas para clasificación de mineral por tamaño. El circuito termina en zarandas húmedas que clasificarán el mineral hacia el circuito de molienda.

Todo el sistema de trituración se encuentra en una única plataforma, en donde también se incluyen dos pilas de almacenamiento para flexibilidad del circuito. Esta plataforma cuenta con una ligera pendiente para las escorrentías y espacio suficiente para la circulación de vehículos.

Después del proceso de trituración y zarandeo húmedo, el mineral será transportado hacia el área de molienda a través de un sistema de bombeo. El área de molienda también se encuentra en la misma plataforma que el circuito de trituración junto con la flotación flash (véase la Figura 3.288).
Las dimensiones del área y la altura total de la instalación de molienda obedecen a las dimensiones de los equipos y de las instalaciones de operación, acceso y mantenimiento.

Los ciclones del circuito de molienda alimentarán al circuito de flotación. Para ello se tiene la plataforma principal de la planta en la cual se incluyen los circuitos de flotación, remolienda, preparación de reactivos, espesamiento de concentrado y filtrado de concentrado. Asimismo, el almacén de concentrado previo al despacho.

En esta plataforma se han considerado también espacios para la circulación de vehículos propios de la operación, así como de transporte de concentrado. En dos plataformas, a menor cota, se han proyectado los espesadores de relaves y el sistema de filtración de relaves.

Todas las plataformas de la planta tendrán pendiente hacia el norte y sus correspondientes cunetas para poder transportar el agua de escorrentía hacia la poza de sedimentación. Dicha poza estará ubicada al norte de la planta concentradora.

El área de flotación incluirá los circuitos de concentrado y pirita, con sus correspondientes etapas (rougher y limpiezas). Las celdas rougher serán las más próximas al área de molienda desde donde son alimentadas (véase la Figura 3.289).
Los trenes de flotación se orientarán de Oeste a Este, con las bombas de descarga en un nivel inferior al de las celdas. Esto permitirá que las celdas estén al nivel del suelo y así se pueda mantener la pendiente mínima para la recolección del concentrado de flotación. El espesador de los relaves de flotación estará ubicado en un nivel inferior respecto del área de flotación, con el fin de que la alimentación a este proceso sea por gravedad.

Las instalaciones de remolienda de los concentrados antes del proceso de flotación de pirita, estarán ubicadas al lado del área de flotación para reducir la distancia de bombeo de la pulpa.

Las instalaciones de filtrado y almacenamiento de concentrado estarán cerca de los espesadores de concentrado (véase la Figura 3.290). El filtro de concentrado se encontrará en un nivel superior para permitir la descarga de este y transporte hacia el almacén a través de bandas transportadoras. El almacén de concentrado será un
edificio cerrado y contará con medidas preventivas como la limpieza de los neumáticos de los vehículos para evitar la contaminación.

La planta de beneficio de Quebradona, tendrá contención primaria y secundaria para los derrames del proceso. La contención primaria se realizará con la confinación del área inmediata, la cual estará diseñada para contener el 110% del volumen interconectado más grande de cada área. La contención secundaria se realizará con pozas de desbordamiento.

Según el diseño y la disposición de la planta, se podrá acceder a la mayoría de los equipos a través de grúas móviles. En el área de molienda y flotación se tendrá una torre grúa. También se tendrán polipastos para las tareas más rutinarias, como la mezcla de reactivos, por ejemplo.
3.3.8.1.1.5.1 Equipos e instalaciones

El listado de los principales equipos de procesamiento para cada una de las áreas de la planta Quebradona se presentan en las siguientes tablas (de la Tabla 3.138 a la Tabla 3.153). Sin embargo, es importante destacar que las marcas, cantidades, modelos y tamaños de los equipos son sólo referenciales y pueden ser modificadas al momento de su compra e instalación.

Tabla 3.138 Equipos Principales – Circuito de Trituración Primaria

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>Referencia</th>
<th>Potencia Instalada (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alimentador de placas con tolva de mineral integrada y banda</td>
<td>IEM D8N-96-37.730-100</td>
<td>75 / 19</td>
</tr>
<tr>
<td>1</td>
<td>Trituradora Primaria</td>
<td>Tipo Giratoria / Top Service / FLSmidth 1300 x 1800 TSU</td>
<td>450</td>
</tr>
<tr>
<td>1</td>
<td>Alimentador de placas de recuperación de trituradora primaria</td>
<td>IEM D4-60-30.77-100</td>
<td>75</td>
</tr>
<tr>
<td>1</td>
<td>Sistema de recolección de polvo (Scrubber) – área de trituración primaria</td>
<td>Scrubber centrífugo en húmedo (15.000 CFM)</td>
<td>55</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019
Tabla 3.139 Equipos Principales – Manejo de Mineral hacia Pila de Mineral Grueso

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>Referencia</th>
<th>Potencia Instalada (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Banda transportadora de alimentación a pila de mineral trituración</td>
<td>1.374 t/h / 42 pulg de ancho / 6.100 m de largo</td>
<td>900</td>
</tr>
<tr>
<td>1</td>
<td>Sistema de recolección de polvo (Scrubber) – área de reclamo</td>
<td>Scrubber centrífugo en húmedo (15.000 CFM)</td>
<td>55</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.140 Equipos Principales – Pila de Mineral Grueso y Reclamo

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>Referencia</th>
<th>Potencia Instalada (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Alimentador de placas de reclamo de mineral grueso</td>
<td>IEM D4-60-30.77-100</td>
<td>90</td>
</tr>
<tr>
<td>1</td>
<td>Banda transportadora de alimentación a zaranda secundario</td>
<td>1.374 t/h / 48 pulg de ancho / 95 m de largo</td>
<td>75</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.141 Equipos Principales – Circuito de Trituración y Tamizado Secundario

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>Referencia</th>
<th>Potencia Instalada (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Banda transportadora de alimentación a tolva de zaranda secundario</td>
<td>2.633 t/h / 60 pulg de ancho / 297 m de largo</td>
<td>370</td>
</tr>
<tr>
<td>1</td>
<td>Zaranda secundaria</td>
<td>Tamiz doble / 4.3 m x 7.3 m</td>
<td>75</td>
</tr>
<tr>
<td>1</td>
<td>Banda transportadora de gruesos de zaranda secundaria</td>
<td>1.510 t/h / 48 pulg de ancho / 134 m de largo</td>
<td>185</td>
</tr>
<tr>
<td>1</td>
<td>Trituradora Secundaria</td>
<td>Tipo Cónica, MP1000</td>
<td>750</td>
</tr>
<tr>
<td>1</td>
<td>Sistema de recolección de polvo (Scrubber) – área de trituración secundaria</td>
<td>Scrubber centrífugo en húmedo (15.000 CFM)</td>
<td>55</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.142 Equipos Principales – Circuito de HPGR y Tamizado Terciario (en Húmedo)

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>Referencia</th>
<th>Potencia Instalada (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Banda transportadora de alimentación a tolva de zaranda de HPGR</td>
<td>1.170 t/h / 42 pulg de ancho / 123 m de largo</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>Zaranda de HPGR (en húmedo)</td>
<td>Tamiz simple / 4.3 m x 7.3 m</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>Banda transportadora de gruesos de zaranda de HPGR</td>
<td>1.170 t/h / 42 pulg de ancho / 92 m de largo</td>
<td>75</td>
</tr>
<tr>
<td>1</td>
<td>Banda transportadora de alimentación a tolva de HPGR</td>
<td>1.170 t/h / 42 pulg de ancho / 90 m de largo</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>HPGR</td>
<td>HPGR / 2.1 m x 1.8 m</td>
<td>4,000</td>
</tr>
<tr>
<td>1</td>
<td>Banda transportadora de descarga de HPGR</td>
<td>1.170 t/h / 42 pulg de ancho / 112 m de largo</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>Sistema de recolección de polvo (Scrubber) – área de HPGR</td>
<td>Scrubber centrífugo en húmedo (15.000 CFM)</td>
<td>55</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019
Tabla 3.143 Equipos Principales – Circuito de Molienda

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>Referencia</th>
<th>Potencia Instalada (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Molino de bolas</td>
<td>7,32 m diámetro / 9,91 m largo (EGL) / doble piñón</td>
<td>11,000</td>
</tr>
<tr>
<td>1</td>
<td>Batería primaria de hidrociclones</td>
<td>Hidrociclones clasificadores</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>Bomba de alimentación de ciclones</td>
<td>Bomba centrífuga horizontal / caudal 2.796 m³/h / TDH 30 m</td>
<td>2 x 750</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.144 Equipos Principales – Circuito de Flotación Flash

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>Referencia</th>
<th>Potencia Instalada (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Celda de flotación flash</td>
<td>Outotec SkimAir 2400</td>
<td>175</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de concentrado de flotación</td>
<td>Bomba centrífuga horizontal</td>
<td>30</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.145 Equipos Principales – Circuito de Flotación Rougher de Cobre

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>Referencia</th>
<th>Potencia Instalada (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Celdas para banco de flotación rougher</td>
<td>Outotec e200</td>
<td>3 x 185</td>
</tr>
<tr>
<td>2</td>
<td>Celdas para banco de flotación scavenger</td>
<td>Outotec e200</td>
<td>2 x 185</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de concentrado de flotación rougher</td>
<td>Bomba centrífuga horizontal</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de relaves flotación scavenger</td>
<td>Bomba centrífuga horizontal</td>
<td>175</td>
</tr>
<tr>
<td>1</td>
<td>Bomba del concentrado flotación scavenger</td>
<td>Bomba centrífuga horizontal</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>Grúa torre</td>
<td>Capacidad máxima de izaje 25 ton @ 70 m</td>
<td>150</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.146 Equipos Principales – Circuito de Remolienda de Cobre

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>Referencia</th>
<th>Potencia Instalada (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Molino de remolienda de cobre</td>
<td>Isamill M5000, capacidad de diseño: 133,3 t/h</td>
<td>1.500</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de alimentación de molino de remolienda</td>
<td>Bomba centrífuga de pulpa</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>Tanques de alimentación a remolienda con agitador</td>
<td>Capacidad útil de 90 m³, 5 m diámetro x 6 m altura (cada tanque)</td>
<td>2 x 30 (por agitador)</td>
</tr>
<tr>
<td>2</td>
<td>Baterías de hidrociclones de remolienda</td>
<td>Hidrociclones clasificadores</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>Bombas de alimentación a batería de hidrociclones de remolienda</td>
<td>Bomba centrífuga de pulpa (1 por cada batería de hidrociclones)</td>
<td>2 x 100</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de sobreflujo de hidrociclones</td>
<td>Bomba centrífuga de pulpa</td>
<td>75</td>
</tr>
<tr>
<td>1</td>
<td>Grúa pescante</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019
Tabla 3.147 Equipos Principales – Circuito de Flotación de Limpiezas de Cobre

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>Referencia</th>
<th>Potencia Instalada (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Celdas de Flotación Cleaner</td>
<td>Outotec e50.3</td>
<td>5 x 55</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de concentrado Cleaner</td>
<td>Bomba centrífuga de pulpa</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de relaves Cleaner</td>
<td>Bomba centrífuga de pulpa</td>
<td>44</td>
</tr>
<tr>
<td>5</td>
<td>Celdas de Flotación Recleaner</td>
<td>Outotec e30</td>
<td>5 x 45</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de concentrado Recleaner</td>
<td>Bomba centrífuga de pulpa</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>Celda de Flotación de Tercer Cleaner</td>
<td>Celda Jameson, modelo B6500/24, capacidad de alimentación de 58,2 t/h, 7,4 m diámetro x 6,92 m altura</td>
<td>NA</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de Recirculación de Celda Jameson</td>
<td>Bomba centrífuga de pulpa</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de concentrado de Tercer Cleaner</td>
<td>Bomba centrífuga de pulpa</td>
<td>19</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.148 Equipos Principales – Espesamiento y Filtración de Concentrados

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>Referencia</th>
<th>Potencia Instalada (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Espesador de Concentrados</td>
<td>Espesador de alta compresión (HCT), diámetro = 18 m</td>
<td>6,6</td>
</tr>
<tr>
<td>2</td>
<td>Bombas de Descarga de Espesador de Concentrados</td>
<td>Bombas peristálticas de pulpa</td>
<td>2 x 30</td>
</tr>
<tr>
<td>1</td>
<td>Tanque de alimentación a Filtro de Concentrados (con agitador)</td>
<td>Capacidad útil del tanque de 960 m³, 10,7 m diámetro, 12,8 m altura</td>
<td>112 (agitador)</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de agua de lavado de tela filtrante de Filtro de Concentrados</td>
<td>Bomba centrífuga de agua</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de agua de flasheo de manifold de Filtro de Concentrados</td>
<td>Bomba centrífuga de agua</td>
<td>75</td>
</tr>
<tr>
<td>1</td>
<td>Filtro de Concentrados</td>
<td>Filtro de placa horizontal (tipo Larox), capacidad de alimentación de 58 t/h</td>
<td>131</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de alimentación al Filtro de Concentrados</td>
<td>Bomba centrífuga de pulpa</td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de líquido filtrado</td>
<td>Bomba centrífuga de agua</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Compresores de Aire de Secado del Filtro de Concentrados</td>
<td>2 x 125</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Puente grúa</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>Banda receptora de torta de Filtro de Concentrados</td>
<td>Capacidad = 53 t/h, ancho = 18 pulg, longitud = 20 m</td>
<td>7,5</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019
Tabla 3.149 Equipos Principales – Almacenamiento y Despacho de Concentrados

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>Referencia</th>
<th>Potencia Instalada (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sistema de recolección de polvo (Scrubber) de Concentrado de Cu</td>
<td>Scrubber centrífugo en húmedo, capacidad del ventilador: 15.000 CFM</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>Banda de Concentrado de Cu</td>
<td>Capacidad = 53 t/h, ancho = 18 pulg, longitud = 43 m</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>Tanque de lavado de llantas de camiones de Concentrado de Cu</td>
<td>Capacidad útil = 20 m³, 3 m diámetro, 3,6 m de altura</td>
<td>NA</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de lavado de llantas de camiones de Concentrado de Cu</td>
<td>Bomba centrífuga de agua</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.150 Equipos Principales – Flotación de Pirita

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>Referencia</th>
<th>Potencia Instalada (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Celdas de Flotación Rougher de Pirita</td>
<td>Outotec e200</td>
<td>5 x 185</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de Concentrado Rougher de Pirita</td>
<td>Bomba centrífuga de pulpa</td>
<td>48</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.151 Equipos Principales – Espesamiento, Filtración y Transporte de Relaves

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>Referencia</th>
<th>Potencia Instalada (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Espesador de Relaves filtrados inertes</td>
<td>Espesador de alta compresión, diámetro 41 m</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>Bombas de Descarga de Espesador de Relaves filtrados inertes</td>
<td>Bombas centrífugas de pulpa</td>
<td>2 x 122</td>
</tr>
<tr>
<td>1</td>
<td>Espesador de relaves con Pirita</td>
<td>Espesador de alta compresión, diámetro 23 m</td>
<td>11,5</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de Descarga de Espesor de relaves con Pirita</td>
<td>Bomba centrífuga de pulpa</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>Tanques de alimentación a Filtros de Relaves filtrados inertes (con agitador)</td>
<td>Capacidad útil de cada tanque = 1.065 m³, 11 m diámetro y 13,2 m de altura</td>
<td>2 x 112 (agitador)</td>
</tr>
<tr>
<td>1</td>
<td>Tanque de alimentación a Filtro de relaves con Pirita (con agitador)</td>
<td>Capacidad útil del tanque = 1.065 m³, 11 m diámetro y 13,2 m de altura</td>
<td>112 (agitador)</td>
</tr>
<tr>
<td>5</td>
<td>Bombas de alimentación a Filtros de Relaves inertes</td>
<td>Bombas centrifugas de pulpa</td>
<td>5 x 450</td>
</tr>
<tr>
<td>2</td>
<td>Bombas de alimentación a Filtro de relaves con Pirita</td>
<td>Bombas centrifugas de pulpa</td>
<td>2 x 450</td>
</tr>
<tr>
<td>4</td>
<td>Filtros de Relaves filtrados inertes</td>
<td>Filtros de placas verticales a presión</td>
<td>4 x 90</td>
</tr>
<tr>
<td>1</td>
<td>Filtro de relaves con Pirita</td>
<td>Filtro de placas verticales a presión</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>Compresores de Aire de Prensado de Filtros</td>
<td>Incluidos en paquete de filtros</td>
<td>2 x 110</td>
</tr>
<tr>
<td>2</td>
<td>Compresores de Aire de Secado de Filtros</td>
<td>Incluidos en paquete de filtros</td>
<td>2 x 400</td>
</tr>
<tr>
<td>4</td>
<td>Alimentadores colectores de descarga de torta de Filtros de Relaves filtrados inertes</td>
<td>Banda de corre, Ancho: 2.400 mm</td>
<td>4 x 37</td>
</tr>
</tbody>
</table>
Tabla 3.152 Equipos Principales – Preparación de Reactivos

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>Referencia</th>
<th>Potencia Instalada (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Planta de Preparación de Lechada de Cal</td>
<td>Comprende sistemas de preparación, control de polvo, molienda de cal y transferencia por bombeo a tanque de almacenamiento y distribución</td>
<td>175</td>
</tr>
<tr>
<td>1</td>
<td>Tanque de Almacenamiento de Cal (con agitador)</td>
<td>Capacidad útil = 65 m³, 4.4 m diámetro y 5.2 m de altura</td>
<td>15 (agitador)</td>
</tr>
<tr>
<td>2</td>
<td>Bombas de distribución de cal</td>
<td>Bombas centrífugas de pulpa</td>
<td>2 x 10</td>
</tr>
<tr>
<td>1</td>
<td>Tanque Diario de Espumante</td>
<td>Capacidad útil = 0.6 m³, 0.9 m diámetro y 1,1 m de altura</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>Bombas de Dosificación de Espumante</td>
<td>Bomba dosificadora</td>
<td>2 x 0,5</td>
</tr>
<tr>
<td>1</td>
<td>Tanque Diario de Colector de Cobre</td>
<td>Capacidad útil = 0.5 m³, 0.9 m diámetro y 1 m de altura</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>Bombas de Dosificación de Colector de Cobre</td>
<td>Bomba dosificadora</td>
<td>2 x 0,5</td>
</tr>
<tr>
<td>1</td>
<td>Tanque Diario de Diésel</td>
<td>Capacidad útil = 0.3 m³, 0.7 m diámetro y 0.8 m de altura</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de Mezclado de Diésel</td>
<td>Bomba centrífuga</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Tanque de Mezclado de Promotor (con agitador)</td>
<td>Capacidad útil = 0.3 m³, 0.7 m diámetro y 0.8 m de altura</td>
<td>7,5 (agitador)</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de Transferencia de Promotor</td>
<td>Bomba centrífuga</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019
Equipo de principales servicios de la planta

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>Referencia</th>
<th>Potencia Instalada (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tanque de Distribución de Promotor (con agitador)</td>
<td>Capacidad útil = 0,3 m³, 0,7 m diámetro y 0,8 m de altura</td>
<td>7,5</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de Dosificación de Promotor</td>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>1</td>
<td>Tanque de Mezclado de PAX (con agitador)</td>
<td>Capacidad útil = 0,5 m³, 0,8 m diámetro y 1 m de altura</td>
<td>7,5 (agitador)</td>
</tr>
<tr>
<td>1</td>
<td>Tolva de Alimentación de PAX</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>1</td>
<td>Sistema de Colección de Polvo de Preparación de PAX</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de Transferencia de PAX</td>
<td>Bomba centrífuga</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Tanque de Almacenamiento de PAX (con agitador)</td>
<td>Capacidad útil = 0,5 m³, 0,8 m diámetro y 1 m de altura</td>
<td>7,5 (agitador)</td>
</tr>
<tr>
<td>2</td>
<td>Bomba de Dosificación de PAX</td>
<td>Bombas centrífugas</td>
<td>2 x 1</td>
</tr>
<tr>
<td>1</td>
<td>Planta de Floculante</td>
<td>Paquete de proveedor que contiene sistema de preparación de floculante y controles de polvo</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>Tanque de Almacenamiento de Floculante</td>
<td>Capacidad útil = 0,5 m³, 0,9 m diámetro y 1,1 m de altura</td>
<td>NA</td>
</tr>
<tr>
<td>6</td>
<td>Bombas de Dosificación de Floculante (dos a espesamiento de concentrados, dos a espesamiento de relaves con piritas y dos a espesamiento de relaves filtrados inertes)</td>
<td>Bombas de cavidad progresiva</td>
<td>6 x 0,75</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.153 Equipo Principales – Servicios de Planta

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>Referencia</th>
<th>Potencia Instalada (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Bombas de Suministro de Agua</td>
<td>Bombas sumergibles</td>
<td>2 x 30</td>
</tr>
<tr>
<td>1</td>
<td>Tanque de Suministro de Agua</td>
<td>Capacidad útil = 9,4 m³, 2,3 m diámetro y 2,8 m de altura</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>Bombas de Transferencia de Agua cruda</td>
<td>Bombas centrífugas de agua, Capacidad = 562 m³/h, TDH = 560 m</td>
<td>2 x 1,200</td>
</tr>
<tr>
<td>1</td>
<td>Tanque de Agua cruda (con reserva de agua contra incendios)</td>
<td>Capacidad útil = 5.246 m³, 18,8 m diámetro y 22,3 m de altura</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>Bombas de Agua cruda</td>
<td>Bombas centrífugas de agua</td>
<td>2 x 50</td>
</tr>
<tr>
<td>5</td>
<td>Bombas de Agua de Lavado de Tela Filtrante</td>
<td>Incluidas en el paquete de filtros de relaves</td>
<td>5 x 200</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de Agua contra Incendios (eléctrica)</td>
<td>Bomba centrífuga de agua</td>
<td>300</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de Agua contra Incendios (diésel)</td>
<td>Bomba centrífuga de agua</td>
<td>NA</td>
</tr>
<tr>
<td>1</td>
<td>Bomba de Agua contra Incendios (tipo jockey)</td>
<td>Bomba centrífuga de agua</td>
<td>7,5</td>
</tr>
<tr>
<td>1</td>
<td>Planta de Tratamiento de Agua Potable</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>Tanque de Agua de Sello</td>
<td>Capacidad útil = 150 m³, 5,8 m diámetro y 6,9 m de altura</td>
<td>NA</td>
</tr>
</tbody>
</table>

Estudio de Impacto Ambiental I-0010371-MQC-EIA-V1-FA
Noviembre, 2019
<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>Referencia</th>
<th>Potencia Instalada (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Bombas de Agua de Sello</td>
<td>Bombas centrífugas de agua</td>
<td>2 x 30</td>
</tr>
<tr>
<td>1</td>
<td>Tanque de Agua Potable</td>
<td>Capacidad útil = 336 m³, 7,5 m diámetro y 9 m de altura</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>Bombas de Agua Potable</td>
<td>Bombas centrífugas de agua</td>
<td>2 x 5</td>
</tr>
<tr>
<td>1</td>
<td>Tanque de Agua de Procesos</td>
<td>Capacidad útil = 97 m³, 5 m diámetro y 6 m de altura</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>Bombas de Agua de Procesos</td>
<td>Bombas centrífugas de agua</td>
<td>3 x 100</td>
</tr>
<tr>
<td>2</td>
<td>Compresores de Aire de Planta</td>
<td>Capacidad = 1.000 Am³/min @ 950 kPa (cada uno)</td>
<td>2 x 132</td>
</tr>
<tr>
<td>2</td>
<td>Secadores de Aire de Planta</td>
<td></td>
<td>2 x 20</td>
</tr>
<tr>
<td>3</td>
<td>Sopladores de Aire de Flotación</td>
<td>Capacidad = 165 Am³/min @ 60 kPa (cada uno)</td>
<td>3 x 250</td>
</tr>
<tr>
<td>1</td>
<td>Soplador de Aire de Flotación Flash</td>
<td>Capacidad = 10 Am³/min @ 55 kPa (cada uno)</td>
<td>15</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

3.3.8.1.1.5.2 Servicios de aire para la planta de beneficio

La trituradora primaria recibe servicio de un compresor de aire en la superficie que abastece tanto a los servicios de la mina subterránea como a la trituradora. El sistema está equipado con un secador de aire y un sistema de filtro.

El aire de baja presión para el circuito de flotación de cobre y de pirita es suministrado por tres sopladores (dos de ellos en servicio y otro en reserva). Las celdas de flotación rougher y las celdas de limpiezas funcionan a diferentes presiones de aire. La presión del aire a las celdas de limpieza de cobre se reduce a la presión requerida a través de una válvula de control de presión en línea.

Un soplador dedicado suministra aire para la celda de flotación flash. Tanto la celda como el soplador estarán ubicados cerca del área de molienda.

Dos compresores de aire proporcionan aire a alta presión para instrumentos de planta y puntos de servicio generales. El aire comprimido se seca y se filtra para medir la calidad del aire del instrumento antes del almacenamiento en los receptores de aire de la planta y su posterior distribución. El aire de alta presión para el filtro de concentrado es suministrado por dos compresores de aire dedicados.

Cuatro compresores de servicio suministran aire de alta presión al área de filtración de relaves. Dos de estos compresores suministran aire de secado a los filtros a través de dos receptores de aire dedicados. Los otros dos compresores suministran aire de mayor presión para la presión de la membrana del filtro a través de tres receptores de aire dedicados.

3.3.8.1.1.5.3 Espectros de generación de ruidos en la Planta de beneficio

Las principales fuentes de ruido en superficie correspondientes a la operación de la planta se presentan a continuación (véase la Tabla 3.154 a la Tabla 3.162). Los espectros de generación de ruidos fueron estimados basados en la medición de ruidos realizada en la Planta de beneficio de la mina Tropicana, de Anglogold Ashanti, en Australia.
Tabla 3.154 Fuentes de ruido principales – Circuito de Trituración y Tamizado Secundario

<table>
<thead>
<tr>
<th>Fuente de ruido</th>
<th>Referencia</th>
<th>Niveles de ruido en la fuente (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banda transportadora de alimentación</td>
<td>2633 t/h / 60 pulg de ancho / 297 m de largo</td>
<td>67 – 75 dBA</td>
</tr>
<tr>
<td>Zaranda secundaria</td>
<td>Tamiz doble / 4.3 m x 7.3 m</td>
<td>70 – 101 dBA</td>
</tr>
<tr>
<td>Trituradora Secundaria</td>
<td>Tipo Cónica, MP1000</td>
<td>> 85 dBA</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.155 Fuentes de ruido principales – Circuito de HPGR y Tamizado Terciario (en Húmedo)

<table>
<thead>
<tr>
<th>Fuente de ruido</th>
<th>Referencia</th>
<th>Niveles de ruido en la fuente (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zaranda de HPGR (en húmedo)</td>
<td>Tamiz simple / 4.3 m x 7.3 m</td>
<td>88 dBA</td>
</tr>
<tr>
<td>HPGR</td>
<td>HPGR / 2.1 m x 1.8 m</td>
<td>82 – 95 dBA</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.156 Fuentes de ruido principales – Circuito de Molienda

<table>
<thead>
<tr>
<th>Fuente de ruido</th>
<th>Referencia</th>
<th>Niveles de ruido en la fuente (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molino de bolas</td>
<td>7,32 m diámetro / 9.91 m largo (EGL) / doble piñón</td>
<td>87 - 93 dBA</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.157 Fuentes de ruido principales – Circuito de Flotación Flash

<table>
<thead>
<tr>
<th>Fuente de ruido</th>
<th>Referencia</th>
<th>Niveles de ruido en la fuente (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celda de flotación flash</td>
<td>Outotec SkimAir 2400</td>
<td>< 85 dBA</td>
</tr>
<tr>
<td>Bomba de concentrado de flotación flash</td>
<td>Bomba centrífuga horizontal</td>
<td>< 85 dBA</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.158 Fuentes de ruido principales – Circuito de Flotación Rougher de Cobre

<table>
<thead>
<tr>
<th>Fuente de ruido</th>
<th>Referencia</th>
<th>Niveles de ruido en la fuente (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celdas para banco de flotación</td>
<td>Outotec e200</td>
<td>< 85 dBA</td>
</tr>
<tr>
<td>Celdas para banco de flotación</td>
<td>Outotec e200</td>
<td>< 85 dBA</td>
</tr>
<tr>
<td>Bomba de concentrado de flotación</td>
<td>Bomba centrífuga horizontal</td>
<td>< 85 dBA</td>
</tr>
<tr>
<td>Bomba de relaves de flotación</td>
<td>Bomba centrífuga horizontal</td>
<td>< 85 dBA</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.159 Fuentes de ruido principales – Circuito de Remolienda de Cobre

<table>
<thead>
<tr>
<th>Fuente de ruido</th>
<th>Referencia</th>
<th>Niveles de ruido en la fuente (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molino de remolienda de cobre</td>
<td>Isamill M5000, capacidad de diseño: 133,3 t/h</td>
<td>87 dBA</td>
</tr>
<tr>
<td>Bomba de alimentación de molino de remolienda</td>
<td>Bomba centrífuga de pulpa</td>
<td>< 85 dBA</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019
Tabla 3.160 Fuentes de ruido principales – Espesamiento y Filtración de Concentrados

<table>
<thead>
<tr>
<th>Fuente de ruido</th>
<th>Referencia</th>
<th>Niveles de ruido en la fuente (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espesador de Concentrados</td>
<td>Espesador de alta compresión (HCT), diámetro = 18 m</td>
<td>75 – 87 dBA</td>
</tr>
<tr>
<td>Bombas de Descarga de Espesador de Concentrados</td>
<td>Bombas peristálticas de pulpa</td>
<td>< 85 dBA</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.161 Fuentes de ruido principales – Espesamiento, Filtración y Transporte de Relaves

<table>
<thead>
<tr>
<th>Fuente de ruido</th>
<th>Referencia</th>
<th>Niveles de ruido en la fuente (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espesador de Relaves filtrados inertes</td>
<td>Espesador de alta compresión, diámetro 41 m</td>
<td>75 – 87 dBA</td>
</tr>
<tr>
<td>Bombas de Descarga de Espesador de Relaves filtrados inertes</td>
<td>Bombas centrífugas de pulpa</td>
<td>< 85 dBA</td>
</tr>
<tr>
<td>Espesador de relaves con Pirita</td>
<td>Espesador de alta compresión, diámetro 23 m</td>
<td>75 – 87 dBA</td>
</tr>
<tr>
<td>Bomba de Descarga de Espesor de relaves con Pirita</td>
<td>Bomba centrífuga de pulpa</td>
<td>< 85 dBA</td>
</tr>
<tr>
<td>Compresores de Aire de Prensado de Filtros</td>
<td>Incluidos en paquete de filtros</td>
<td>97 dBA</td>
</tr>
<tr>
<td>Compresores de Aire de Secado de Filtros</td>
<td>Incluidos en paquete de filtros</td>
<td>97 dBA</td>
</tr>
<tr>
<td>Banda de Relaves filtrados inertes</td>
<td>Capacidad = 865 t/h, Ancho = 36 pulg, Longitud = 637 m</td>
<td>< 80 dBA</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.162 Fuentes de ruido principales – Servicios de Planta

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Referencia</th>
<th>Niveles de ruido en la fuente (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compresores de Aire de Planta</td>
<td>Capacidad = 1,000 Am³/min @ 950 kPa (cada uno)</td>
<td>97 dBA</td>
</tr>
<tr>
<td>Sopladores de Aire de Flotación Convencional</td>
<td>Capacidad = 165 Am³/min @ 60 kPa (cada uno)</td>
<td>90 dBA</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

3.3.8.1.1.6 Áreas para disposición de material (mineral y sobrantes)

Para la disposición del material sobrante de excavación se utilizarán seis ZODMEs (A, B, C, D, E y F), mientras que los sobrantes del proceso se dispondrán en el depósito de relaves filtrados. El suelo removido se almacenará en la Pila de suelo mientras se utiliza en los procesos de reconformación y revegetalización.

La descripción y el manejo de estas áreas se presentan en el numeral 3.6.2. En el apartado 3.6.2.2 se describen las zonas para depósitos de material estéril, y en el 3.6.2.3 las zonas de disposición de relaves.

De acuerdo con el balance de masas, la cantidad de material sobrante e inadecuado en el Proyecto se ha estimado para dos etapas: construcción y operación. En la primera, la suma de material común sobrante e inadecuado, en las obras superficiales...
es de 5.153.554 m³, incluyendo la expansión de un 20%; mientras que en la segunda se proyectan unos 3.451.734 m³. La cantidad de material a remover de la capa superficial del suelo para el proyecto ascenderá a los 1.642.587 m³, incluyendo la expansión de un 20%.

En cuanto a los volúmenes de relaves filtrados, estos se estiman en 62,59 Mm³ para los inertes y 3,08 Mm³ para los de pirita.

3.3.8.1.1.7 Sistema de bandas transportadoras

Este sistema se describe ampliamente en el numeral 3.3.7.11, de este mismo capítulo (Transporte de material mineral a superficie - Bandas transportadoras).

3.3.8.1.1.8 Polvorín superficial

El polvorín de superficie será tipo 4 en concordancia con el Decreto 1886 el cual estipula: “Polvorín tipo 4: Debe ser una estructura permanente, portátil o móvil tal como edificación, iglú, caja, semirremolque, u otro contenedor móvil resistente a fuego, robo, condiciones climáticas e intemperie”.

Para esto, se adaptará la cantidad necesaria de contenedores de 40’ que cumplan con normas de seguridad obligatorias y exigidas por la autoridad militar. En el diseño del área del polvorín se tuvieron en cuenta aspectos como:

- Posición geográfica del sitio de almacenamiento
 1. Debe estar dentro del título minero.
 2. Debe estar a 100 m de la bocamina o portal de entrada.
 3. Debe tener un acceso restringido.
 4. Debe tener 15,25 m libre de elementos combustibles.
 5. Debe estar a 100 m de población civil, teniendo en cuenta personas ajenas al Proyecto.
 6. En caso de que haya un cuerpo de agua cercano, el polvorín deberá conservar 30 metros libres de retiro.
 7. Vías adecuadas para el tránsito de equipos livianos, camiones y tracto – camiones.

- Para la construcción se requiere:
 1. Área descapotada y libre de maleza.
 2. Lugar con humedad mínima.
 3. Terreno firme y seco con material de relleno (recebo y compactación).
 4. Sistema de cunetas para fácil desagüe.
 5. Colocación de manto impermeable para prevención de hundimientos o derrumbes.
 6. Cimentación (Zapatas) de hormigón para soportar y nivelar la nivelación de los contenedores.
 7. La instalación general del polvorín deberá tener un enmallado exterior.
 8. Sistema de parapetos como medida de contención en caso de alguna explosión.
 9. Pararrayos para prevención de descargas por tormenta eléctrica.
10. Luminarias perimetrales con proyección hacia el interior del área.
11. Garita de vigilancia para control de acceso.
12. Portón metálico con candado que permita el paso de equipos livianos, camiones y tracto camiones.
13. Sistemas electrónicos de seguridad: sensores de movimiento, alarma, acceso digitalizado, circuito cerrado de TV, etc.
14. Sistemas electrónicos de comunicación: base fija, radios portátiles, celulares, etc.

- Respecto a los contenedores para el almacenamiento de material explosivo:
 1. Estructura tipo container semi móvil.
 2. Se deberá garantizar que el container no presente paso de agua con facilidad.
 3. Recubrimiento en madera sin tachuelas o clavos.
 4. Piso en madera con el uso de estibas de poliméricas de baja inflamabilidad.
 5. Estructura liviana, de acero calibre 20 con recubrimiento de 102 mm de madera o láminas de fibrocemento, con película impermeable y aislante del calor.
 6. Ventilación: aberturas de 500 mm X 200 mm elevadas a 1,3 m del piso, y en el piso con rejillas y mallas en alambre para garantizar el flujo de aire.
 7. Puertas metálicas con recubrimiento interno en madera, con apertura hacia el exterior y con cerraduras o candados de seguridad en triclave.
 8. Bisagras y cerrojos fijados por soldadura o mediante tornillos pasantes.
 9. Extintores PQS, pica, pala, balde, arena, etc.
10. Kit de primeros auxilios que contenga botiquín, camilla, etc.
11. Kit ambiental que contenga: pala no metálica, material absorbente, contenedores y bolsas para residuos, etc.

- Respecto al almacenamiento:
 1. Solo se ocupará el 60% del área del polvorín ya que el 40% es para transitar.
 2. El material próximo a vencer deberá estar en posición de salida.
 3. Las pilas de almacenamiento son máximo de 8 cajas arriba.
 4. Debe contar con estibas de seguridad de 10 a 15 cm de altura para el almacenamiento.
 5. Debe contar con ventilación natural.
 6. Cero contacto con electricidad interna.
 7. Debe tener señalización de seguridad específica para almacenamiento de polvorines.
 8. Alarma de entrada y salida con censor de movimiento.

- Capacidad de almacenamiento del polvorín principal

Para almacenar explosivo que garantice una autonomía de dos meses, se calculó la cantidad necesaria de contenedores marítimos de 40’ para componer la instalación del polvorín principal para la etapa de construcción. En cuanto a la etapa de producción, cuando la mina empiece operación se tendrá otra configuración del polvorín, debido al incremento en el consumo de material explosivo. Para esta etapa se tendrá una planta modular para la fabricación de emulsión a granel.
Todas las distancias de seguridad alrededor de los polvorines se calcularon tomando como base la norma NFPA 495 (Tabla 9.4.1). Para la conversión del peso de los explosivos a dinamita al 60% se tomó como referencia el “Listado referencial de equivalencias de productos explosivos” del Ministerio de Defensa de Chile.

A continuación, se indican las características de las instalaciones para almacenamiento de los explosivos según las fases de desarrollo del proyecto.

Etapas de construcción (desarrollos)

En la etapa de construcción, y en especial como requerimiento para la construcción de los túneles de acceso del proyecto, el polvorín de explosivos quedará ubicado en un sitio donde existen actualmente algunas instalaciones (véase la Figura 3.291), que serán adecuadas y remodeladas para permitir el almacenamiento temporal de explosivos en cumplimiento de la normativa vigente incluyendo las distancias de seguridad con relación a otras infraestructuras vecinas y las siguientes especificaciones técnicas:

- **Dimensiones:** 25,0 x 13,0 m
- **Área:** 325,0 m²
- **Cerramiento perimetral en malla eslabonada y concertina de seguridad**
- **Barricadas en gaviones perimetales de protección**
- **Contenedores equipados**
- **Pararrayos**
- **Equipamiento contraincendios**
Figura 3.291 Localización de áreas de polvorín. Etapa de construcción
Fuente: Minera de Cobre Quebradona, 2019

Los consumos máximos de explosivos se han tomado del Q3 año 3 de construcción, para una capacidad de almacenamiento de dos meses (véase la Tabla 3.163).

<table>
<thead>
<tr>
<th>Material</th>
<th>Unidad</th>
<th>Consumo trimestral</th>
<th>Consumo para dos meses</th>
<th>Unidades por caja</th>
<th>Total cajas requeridas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsión desarrollo</td>
<td>kg</td>
<td>215.502</td>
<td>143.668</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Booster desarrollo 80 g</td>
<td>Un</td>
<td>47.376</td>
<td>31.584</td>
<td>180</td>
<td>175</td>
</tr>
<tr>
<td>Detonador no eléctrico 4,8 m</td>
<td>Un</td>
<td>47.376</td>
<td>31.584</td>
<td>150</td>
<td>211</td>
</tr>
<tr>
<td>Precorte desarrollo</td>
<td>kg</td>
<td>13.502</td>
<td>9001</td>
<td>15,7</td>
<td>573</td>
</tr>
<tr>
<td>Cordón detonante desarrollo</td>
<td>m</td>
<td>43.263</td>
<td>28.842</td>
<td>600</td>
<td>48</td>
</tr>
<tr>
<td>Mecha de seguridad desarrollo</td>
<td>m</td>
<td>1.442</td>
<td>961</td>
<td>500</td>
<td>3</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Un contenedor de 40’ tiene la siguiente capacidad:
- Booster Desarrollo 80 g: 812 cajas
- Detonador no eléctrico 4,8 m: 665 cajas
- Precorte Desarrollo: 532 cajas
- Cordón detonante Desarrollo: 608 cajas
• Mecha de seguridad Desarrollo: 608 cajas

Para almacenamiento del material explosivo en la etapa de construcción según su compatibilidad, se requerirán cinco contenedores (véase la Tabla 3.164).

Tabla 3.164 Distribución de almacenamiento de materiales explosivos

<table>
<thead>
<tr>
<th>Contenedor para</th>
<th>Cantidad requerida</th>
<th>Peso equivalente en TNT al 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boosters</td>
<td>1</td>
<td>2.256</td>
</tr>
<tr>
<td>Precorte y emulsion encartuchada</td>
<td>1</td>
<td>148</td>
</tr>
<tr>
<td>Cordón y mecha</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>Detonadores</td>
<td>1</td>
<td>870</td>
</tr>
<tr>
<td>Stock de Emulind-E</td>
<td>1</td>
<td>4.400</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5</td>
<td>7.700</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Un esquema del polvorín se ilustra en la Figura 3.292.

Según la capacidad a manejar en el polvorín, los radios de seguridad, tomando en cuenta la norma NFPA 495, serán los que se relacionan en la Tabla 3.165.

Tabla 3.165 Radios de seguridad del polvorín de construcción

<table>
<thead>
<tr>
<th>Radio de seguridad a</th>
<th>Distancia mínima (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almacenamiento en peso equivalente a TNT 60% (kg)</td>
<td>7.700</td>
</tr>
<tr>
<td>Distancia a edificios habitados (m)</td>
<td>289</td>
</tr>
<tr>
<td>Distancia a Carretera tráfico <3000 veh /día (m)</td>
<td>87,3</td>
</tr>
<tr>
<td>Distancia a Carretera tráfico >3000 veh /día (m)</td>
<td>242</td>
</tr>
<tr>
<td>Distancia a Otros polvorines (m)</td>
<td>29</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

![Figura 3.292 Distribución del polvorín. Etapa de construcción](image)

Fuente: Minera de Cobre Quebradona, 2019
A pesar de que la emulsión a utilizar sería del tipo bombeable, se ha considerado un contenedor para emulsiones encartuchadas en caso de que se llegara a requerir, por ejemplo, al inicio de los portales de los túneles en donde se encuentra roca muy fracturada y la emulsión tiende a filtrarse por las grietas del terreno.

Etapas de operación (producción)

Este polvorín se construirá aprovechando los contenedores del polvorín de la etapa de construcción, adicionando cinco contenedores extra. Para el cálculo de la capacidad de esta etapa se consideró lo siguiente:

- Consumo máximo de explosivos por tipo de producto
- Un aprovisionamiento para tres meses
- Contingencias de un 15% extra

Respetando la incompatibilidad de productos que señala Indumil en sus fichas técnicas, y de acuerdo con la norma NFPA 495, se prevé la distribución de productos según se presenta en la Tabla 3.166.

Tabla 3.166 Distribución de almacenamiento de material explosivo en etapa de operación

<table>
<thead>
<tr>
<th>Producto</th>
<th>Contenedor No.</th>
<th>un</th>
<th>Consumo trimestral</th>
<th>Número de cajas de producto requeridas</th>
<th>Kg equivalente TNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Booster 80 g</td>
<td>1</td>
<td>kg</td>
<td>10.258</td>
<td>608</td>
<td>9.160</td>
</tr>
<tr>
<td>Booster 337.5 g</td>
<td>1</td>
<td>kg</td>
<td>2.940</td>
<td>204</td>
<td>2.625</td>
</tr>
<tr>
<td>Precorte 2</td>
<td>2</td>
<td>kg</td>
<td>8.352</td>
<td>532</td>
<td>4.059</td>
</tr>
<tr>
<td>Precorte 3</td>
<td>3</td>
<td>kg</td>
<td>8.352</td>
<td>532</td>
<td>4.059</td>
</tr>
<tr>
<td>Precorte 4</td>
<td>4</td>
<td>kg</td>
<td>8.352</td>
<td>532</td>
<td>4.059</td>
</tr>
<tr>
<td>Precorte 5</td>
<td>5</td>
<td>kg</td>
<td>8.352</td>
<td>532</td>
<td>4.059</td>
</tr>
<tr>
<td>Cordón 6</td>
<td>6</td>
<td>m</td>
<td>344.938</td>
<td>575</td>
<td>1.751</td>
</tr>
<tr>
<td>Mecha 6</td>
<td>6</td>
<td>m</td>
<td>16.552</td>
<td>33</td>
<td>28</td>
</tr>
<tr>
<td>Nonel 4,8 m</td>
<td>7</td>
<td>un</td>
<td>99.750</td>
<td>665</td>
<td>100</td>
</tr>
<tr>
<td>Nonel 4,8 m</td>
<td>8</td>
<td>un</td>
<td>37.457</td>
<td>250</td>
<td>38</td>
</tr>
<tr>
<td>Nonel 30,4</td>
<td>8</td>
<td>un</td>
<td>1.707</td>
<td>114</td>
<td>2</td>
</tr>
<tr>
<td>Nonel 24,4 m</td>
<td>8</td>
<td>un</td>
<td>5.120</td>
<td>171</td>
<td>5</td>
</tr>
<tr>
<td>Nonel 18,0 m</td>
<td>8</td>
<td>un</td>
<td>3.413</td>
<td>85</td>
<td>3</td>
</tr>
<tr>
<td>Nonel 15,2 m</td>
<td>8</td>
<td>un</td>
<td>853</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>Nonel 12,2 m</td>
<td>8</td>
<td>un</td>
<td>1.707</td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>Emulind E</td>
<td>9</td>
<td>kg</td>
<td>13.600</td>
<td>544</td>
<td>6.610</td>
</tr>
<tr>
<td>Emulind E</td>
<td>10</td>
<td>kg</td>
<td>13.600</td>
<td>544</td>
<td>6.610</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Durante la etapa de operación, se dispondrá de dos áreas para la ubicación de un Polvorín, un cobertizo y una planta de producción de emulsión a granel, la ubicación de estas instalaciones se observa en la Figura 3.293 (finca Candelaria), y sus características principales son:

- **Polvorín de Accesorios de Voladura**: Este polvorín se localizará en una plataforma diferente a la del polvorín para construcción, respetando los radios de seguridad respecto a la distancia de edificios habitados, carreteras y otros polvorines.
Adicionalmente, en esta plataforma se tendrá un cobertizo de almacenamiento de materias primas, para la fabricación de emulsiones a granel en una planta modular.

Figura 3.293 Ubicación de polvorín durante la etapa de operación
Fuente: Minera de Cobre Quebradona, 2019

- Planta de Emulsión a Granel: Esta planta estará ubicada en una plataforma independiente, y tendrá la capacidad de producir 240 t/mes de emulsión. Esta planta comprende los módulos operativos, caldera, generador eléctrico y silo de almacenamiento desarmable.

Estas instalaciones servirán de apoyo a la operación de mina y estarán ubicadas en la Finca Candelaria, próximas a la zona de los portales de acceso a la mina.

Los radios de seguridad del polvorín para la etapa de operación, la ubicación del cobertizo de almacenamiento de materias primas y la planta modular para la fabricación de emulsión a granel se ilustran en la Figura 3.294.
Figura 3.294 Plataforma polvorín de operación, Planta de emulsión y materias primas
Fuente: Minera de Cobre Quebradona, 2019

- Polvorín de accesorios de Voladura

Se tiene contemplado construir este polvorín con contenedores, similar al de la etapa de construcción, y será utilizado para el almacenamiento de los accesorios de voladura y emulsión encartuchada (véase la Figura 3.295).

Considerando el almacenamiento de explosivos y materia prima y tomando en cuenta la norma NFPA 495 los radios de seguridad para el polvorín son los mostrados en la Tabla 3.167.

Tabla 3.167 Radios de seguridad para polvorín etapa de explotación

<table>
<thead>
<tr>
<th>Radio de seguridad a</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almacenamiento en peso equivalente a TNT 60% (kg) - Polvorín</td>
<td>43,171</td>
</tr>
<tr>
<td>Almacenamiento Nitrato de Amonio equivalente a TNT 60% (kg)</td>
<td>11,775</td>
</tr>
<tr>
<td>Distancia a edificios habitados (m)</td>
<td>572</td>
</tr>
<tr>
<td>Distancia a Carretera tráfico <3000 veh /día (m)</td>
<td>174</td>
</tr>
<tr>
<td>Distancia a Carretera tráfico >3000 veh /día (m)</td>
<td>465</td>
</tr>
<tr>
<td>Distancia a Otros polvorines (m)</td>
<td>65,9</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019
- **Planta de producción de emulsión a granel**

La planta de producción de emulsiones a granel tendrá una capacidad estimada en 2t/h, con lo que se pueden producir 12 t/día en un turno diurno de trabajo, con esto se logra un nivel de producción mensual de 240 t/mes aproximadamente.

La planta comprende los módulos operativos, caldera, generador eléctrico y silo de almacenamiento desarmable. Su diseño modular facilita su instalación, ya que no requiere efectuar obras civiles para montaje ya que todos sus componentes llegan previamente construido desde taller.

La planta dispondrá de un sistema de control, un sistema de extinción de incendio automática no dañino e incluye un sistema de protección contra descargas atmosféricas.

El diseño de planta consiste en una serie módulos, lo cual otorga facilidad de desmontar en caso necesario o tuviera que disponer del espacio en donde se encontrara instalada. Dado lo anterior la planta no tendría restricciones para ser desarmada e instalada en otro sitio.

El espacio requerido para su instalación es de aproximadamente 31,2x45,1 metros, como se muestra en la Figura 3.296.
Figura 3.296 Esquema 3D de planta modular para producir emulsiones
Fuente: Minera de Cobre Quebradona, 2019

- **Cobertizo de almacenamiento de materias primas**

Para la fabricación de emulsiones son necesarias las siguientes materias primas (agentes, aditivos y emulsificantes):

- Nitrato de Amonio
- Nitrato de Sodio
- Tiourea
- Ácido Acético
- Aceite Mineral
- PIBSA NB2424
- Monoleato de Sorbitán
- Agua para procesos

Las materias primas listadas anteriormente requieren ser dispuestas y almacenadas correctamente. Teniendo en cuenta la forma en la que se almacenan estas materias primas, se ha desarrollado la siguiente distribución.
Esta área de almacenamiento considera lo siguiente:

- Espacios de circulación y radios de giro para equipos montacarga
- Pretiles de contención en caso de derrames
- Carpa para el almacenamiento de nitrato de amonio
- Distancias de seguridad del nitrato de amonio

Las distancias de seguridad para el almacenamiento de nitrato de amonio también están dadas por la NFPA 495.

3.3.8.1.9 Aspectos ambientales de la producción de emulsiones a granel

En la Tabla 3.168 se indican las características de demanda de recursos asociadas a la planta de producción de emulsiones:

- **Consumo de agua:** El consumo de agua que se contempla para la fabricación de emulsión y el sistema de enfriamiento, es de aproximadamente un 16,7% del total de emulsión a producir. El volumen diario estimado es de alrededor de 100 litros, los cuales están incluidos en los consumos de agua cruda requeridos en la Demanda del sistema de acueducto (numeral 3.3.8.1.2.).

- **Residuos sólidos peligrosos:** La planta de emulsión a granel producirá aproximadamente un 0,01% de residuos líquidos, que se limpiarán con paños absorbentes. Estos paños se almacenarán en recipientes de su tratamiento y disposición.

- **Emisiones:** No se contemplan mayores emisiones.
Tabla 3.168 Resumen de aspectos ambientales para producción de emulsiones

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Consumo (%)</th>
<th>Cantidad</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantidad de emulsión a producir</td>
<td>na</td>
<td>59.091</td>
<td>T</td>
</tr>
<tr>
<td>Consumo de agua</td>
<td>16.70%</td>
<td>9.868</td>
<td>T</td>
</tr>
<tr>
<td>Residuos sólidos peligrosos</td>
<td>0.01%</td>
<td>6</td>
<td>T</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

3.3.8.1.2 Instalaciones auxiliares

Las instalaciones auxiliares corresponden a todas las obras, servicios y edificaciones requeridas para el funcionamiento adecuado de la mina, pero donde no se maneja el material mineral ni el material sobrante del proceso minero. A continuación, se describen estas instalaciones tanto en superficie como en la zona subterránea.

3.3.8.1.2.1 Área integrada de operaciones (AIO)

3.3.8.1.2.1.1 Oficinas superficiales

Las oficinas principales (superficiales) serán un edificio modular de una planta con espacio suficiente para que trabajen 91 personas. Tendrán espacios para un área de recepción, oficinas de administración, estaciones de trabajo, cocinetas, baños para trabajadores de sexo masculino y femenino, salas de reuniones, instalaciones de capacitación e inducción (personal compartido con la oficina principal) y otros componentes esenciales para la oficina.

Este edificio tendrá un área mínima de 700 m² y una altura de espacio libre mínima (techo de piso a techo) de 3,00 m. El requerimiento de espacio básico para las oficinas principales se ha calculado en función del número de trabajadores y el tamaño de sus estaciones de trabajo. El número total de personas que trabajarán en la oficina principal es de 91.

Por lo tanto, se requieren 578,2 m² teniendo en cuenta el espacio para estaciones de trabajo y espacios comunes solamente. Se considerará un área adicional de aproximadamente 130 m² (22% adicional calculado) para asignar el mostrador de recepción, las salas de reuniones y la cocina. Los baños para empleados masculinos y femeninos se ubicarán junto a la sala de capacitación e inducción. El diseño del baño debe considerar una proporción de 2:1 entre hombres y mujeres, este punto de referencia se basa en estadísticas. En la Tabla 3.169 se muestran las dimensiones y datos específicos sobre este espacio.

Tabla 3.169 Especificaciones para la oficina principal del Proyecto

<table>
<thead>
<tr>
<th>Longitud (m)</th>
<th>Ancho (m)</th>
<th>Área (m²)</th>
<th>Capacidad</th>
<th>Componentes principales</th>
<th>Especificaciones de construcción</th>
</tr>
</thead>
</table>
| 49,2 | 17,5 | 861 | Diseñado para albergar 91 empleados | Recepción
Salas de reunión
Oficinas de 4 x 4 m (7 oficinas)
Oficinas de 3 x 3 m (12 oficinas)
Puestos de trabajo de 1,48 x 1,48 (72 puestos)
Sala de impresión
Cocineta
Cuarto de archivo y de equipos | Sistema de paneles modulares semiprefabricados, en edificio con aislamiento tipo sánduche con paredes y techos aislados. Podría tener una estructura de acero complementaria para garantizar que la estructura...
Longitud | Ancho | Area | Capacidad | Componentes principales | Especificaciones de construcciones
(m) | (m) | (m²) | | eléctricos y de TI Baños | tenga condiciones óptimas durante toda la vida útil.

Fuente: Ausenco, 2018

Para los diseños mecánicos, eléctricos e hidrosanitarios de las oficinas, se deben tener los siguientes criterios:

- Las oficinas principales tendrán un ambiente con aire acondicionado, luces y demás componentes requeridos.
- Deben proporcionarse sistemas hidrosanitarios y redes de abastecimiento y desagüe internos para el suministro de agua y recolección de aguas residuales.

Contiguo al edificio se tendrá un área de estacionamiento ubicada a las afueras. Estos deben considerar 14 espacios con posibilidad de expansión, ocho de estos espacios deben usarse para empleados sénior y los seis restantes se deben usar para visitantes, contratistas, proveedores y otros.

3.3.8.1.2.1.2 Taller de mantenimiento superficial

El taller de mantenimiento en superficie se localiza en la denominada “Área Integrada de Operaciones”, en una plataforma cercana al campamento, a la planta de beneficio, a los portales de acceso y a las vías principales.

En general la zona de taller en superficie servirá para atender las reparaciones mayores a equipos e incluye los siguientes componentes principales:

- Bahías de mantenimiento de equipos pesados.
- Bahías de mantenimiento de equipos livianos.
- Bodega.
- Zona administrativa.
- Llantería.
- Lavadero de equipos.
- Parqueaderos.

El vehículo designado para el diseño del taller es el Sandvik DS411, ya que es el vehículo más grande de toda la flota; luego, los otros dos vehículos considerados para el diseño fueron el LH621 y el TH551.

En la Tabla 3.170 se indican las especificaciones de los principales componentes del taller.
Tabla 3.170 Especificaciones para el taller de mantenimiento

<table>
<thead>
<tr>
<th>Instalación</th>
<th>L</th>
<th>A</th>
<th>Área</th>
<th>Dimensión/áreas</th>
<th>Capacidad</th>
<th>Componentes principales</th>
<th>Especificaciones constructivas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taller HV</td>
<td>32</td>
<td>16</td>
<td>512</td>
<td>512 m²</td>
<td>Diseñado para atender tres vehículos pesados</td>
<td>Bahías de mantenimiento y soldadura, oficinas, almacenamiento de lubricante, plataforma,</td>
<td>Edificio de acero estructural con revestimiento de chapa de acero y losa de concreto diseñada para resistir el peso de los camiones.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>de forma simultánea, dos para mantenimiento y uno para soldadura.</td>
<td>drenaje del techo, sistema de protección contra incendios, sistema de iluminación y</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ventilación,</td>
<td></td>
</tr>
<tr>
<td>Taller LV</td>
<td>12,3</td>
<td>8</td>
<td>98,4</td>
<td>98,4 m²</td>
<td>Diseñado para atender tres vehículos ligeros</td>
<td>Bahías de mantenimiento</td>
<td></td>
</tr>
<tr>
<td>Almacen de</td>
<td>37</td>
<td>30</td>
<td>1110</td>
<td>1110 m²</td>
<td>Diseñado para cambiar los neumáticos de un vehículo a la vez, utilizando elevadores con</td>
<td>Losa de cambio de llantas, almacenamiento de llantas HV, área de compresores</td>
<td>No hay estructura</td>
</tr>
<tr>
<td>neumáticos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>accesorios para la manipulación de llantas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estacionamiento</td>
<td>24</td>
<td>16</td>
<td>384</td>
<td>385 m²</td>
<td>Capacidad para vehículos pesados</td>
<td>NA</td>
<td>No hay estructura</td>
</tr>
<tr>
<td>HV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahía de lavado</td>
<td>27</td>
<td>17</td>
<td>459</td>
<td>460 m²</td>
<td>Diseñado para un vehículo a la vez</td>
<td>NA</td>
<td>No hay estructura</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depósito</td>
<td>47,9</td>
<td>16,6</td>
<td>795,14</td>
<td>796 m²</td>
<td>Diseñado para 460 pallets de almacenamiento</td>
<td>Oficinas de tecnología 3x3 (una posición), estaciones de trabajo 1,48x1,48 (un posición),</td>
<td>Edificio de acero estructural con revestimiento de chapa de acero y losa de concreto diseñada para resistir la carga posterior del bastidor. Contenedor modular para oficinas tipo edificio semi-prefabricado con paredes y techos aislados tipo sándwich. Podría tener una estructura de acero suplementaria para extender su vida útil.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>almacén de herramientas, almacén de repuestos, almacenamiento general, almacenamiento de</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>residuos, cocina, baños, cuarto eléctrico, área de descanso exterior, estacionamientos</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estación de</td>
<td>46</td>
<td>34</td>
<td>1564</td>
<td>1600 m²</td>
<td>Diseñado para atender dos vehículos al tiempo; también tanques de almacenamiento para 200.000 galones de gasolina.</td>
<td>Bomba de gasolina, tanque y piscina de almacenamiento de combustible, caseta de vigilancia.</td>
<td>No hay estructura</td>
</tr>
<tr>
<td>combustible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cercado y</td>
<td>23</td>
<td>16,4</td>
<td>377,2</td>
<td>380 m²</td>
<td>Diseñado para proveer acceso y seguridad para todo el personal, así como para atender la inducción de 20 visitantes</td>
<td>Puerta de acceso, asuntos internos de construcción</td>
<td>Contenedor modular para oficinas tipo edificio semiprefabricado con paredes y techos aislados tipo sándwich. Podría tener una estructura de acero suplementaria para extender su vida útil.</td>
</tr>
<tr>
<td>seguridad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2018
3.3.8.1.2.1.3 Almacén

El almacén es un edificio que se utilizará para almacenar piezas de repuesto de vehículos pequeños, medianos, pesados, livianos y equipos para laboratorios de metalurgia e instalaciones geológicas; y, bienes de consumo para las diferentes áreas del proyecto. Este edificio cerrado tendrá un ancho de 22,20 m, una longitud de 45 m y una altura libre de 5,40 m; estas dimensiones se basan en los supuestos:

- Una unidad de espacio de almacenamiento tiene las dimensiones de una estibada estándar americana (1,20 x 1,00 m).
- Se utilizarán estantes de tres pisos para el almacenamiento de estibas. La altura estándar para cada estante es de 1,80 m.
- El espacio libre entre los estantes debe ser de un ancho de pasillo / pasillo de al menos 4,00 m, que es un espacio diseñado exclusivamente para la circulación de una carretilla elevadora de servicio pesado.
- Los estantes de almacenamiento tendrán capacidad para 25 unidades por piso.
- Se otorga una longitud adicional al almacén para proporcionar espacio de carga / descarga.

En la Tabla 3.171 se presentan algunas instalaciones subterráneas y sus componentes, en donde se incluye el almacén.

<table>
<thead>
<tr>
<th>Instalación</th>
<th>Componente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almacén de la mina</td>
<td>Almacén de explosivos</td>
</tr>
<tr>
<td></td>
<td>Almacenamiento de gas</td>
</tr>
<tr>
<td></td>
<td>Almacenamiento de empaquetados</td>
</tr>
<tr>
<td></td>
<td>Almacenamiento de cordones detonadores y accesorios</td>
</tr>
<tr>
<td>Administración</td>
<td>Oficinas subterráneas de la mina (incluidas en las instalaciones de taller de mina)</td>
</tr>
<tr>
<td>Casino</td>
<td>Casino de la mina (incluido en las instalaciones de mina)</td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2018

3.3.8.1.2.1.4 Laboratorio químico

El laboratorio químico está diseñado para que puedan trabajar tres técnicos o supervisores y un administrador. Este laboratorio tendrá un área de 610,20 m² y contará con los siguientes componentes:

- Almacen de productos consumibles.
- Almacen de ensayos.
- Sala para ensayos con fuego.
- Sala de digestión húmeda.
- Sala de preparación de las muestras.
- Equipos de extracción de aire.
- Instalaciones de protección contraincendios.
- Biblioteca.
- Cocineta.
- Baños para hombres y mujeres.
- Sala de reuniones (para cinco personas).
- Ventilación.
- Aire acondicionado para las oficinas.

En la Tabla 3.172 se presentan las especificaciones de esta y otras estructuras, mientras que en la Figura 3.298 se muestra el planteamiento general para el Área integrada de operaciones –AIO- (véase el Anexo Planos_Diseno_AIO_Area_integrada_operaciones)

3.3.8.1.2.1.5 Bodega de geología

La bodega de geología consta de una estructura para almacenar las muestras de las actividades mineras subterráneas. De acuerdo con la experiencia del consultor, esta bodega debe tener un área mínima de 1.240 m² y una altura de piso a techo de por lo menos 4,0 m. La estructura contará con estanterías para el almacenamiento de las muestras, cuyas bandejas tienen un tamaño de 4,00 x 0,40 m.

Esta bodega contará con un área de recepción, un área para recibir las muestras (de brocas y bastidores), área de registro (para rastrear las muestras y sus núcleos), área de corte, área de almacenamiento de los núcleos (a largo plazo) y de muestras de operaciones (a corto plazo) y un área para la inspección de las muestras (con mesas).

En esta estructura no se contará con aire acondicionado, se instalarán ventanas para garantizar la ventilación natural.

3.3.8.1.2.1.6 Área de acopio

El propósito para las áreas de acopio es proporcionar espacio para el almacenamiento de equipo pesado / repuestos. Se considerará un área de 500 m² justo al lado del almacén para las áreas de descanso. Este espacio debe dar cuenta del almacenamiento y recepción de carga pesada y de gran tamaño. Se considerará un área abierta protegida con estructura y techos.

3.3.8.1.2.1.7 Instalaciones de formación e inducción

Las instalaciones de entrenamiento e inducción están diseñadas para albergar a 40 personas. Este edificio será portátil y estará hecho de paneles modulares. Estas instalaciones se ubicarán en el edificio de la Oficina Principal.

Para determinar los requerimientos mínimos de espacio se tuvo en cuenta que el volumen efectivo de la sala de inducción sea de al menos 4,5 m³ por persona. Se debe tener en cuenta que se debe proporcionar un área adicional para fines de seguridad y evacuación, ya que este es un lugar donde se reunirá una gran cantidad de personas. Las especificaciones de esta estructura se presentan en la Tabla 3.173.
Tabla 3.172 Especificaciones del laboratorio, bodega de geología y otras estructuras

<table>
<thead>
<tr>
<th>Instalación</th>
<th>L</th>
<th>A</th>
<th>Área</th>
<th>Dimensión/ área</th>
<th>Capacidad</th>
<th>Componentes principales</th>
<th>Especificaciones constructivas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oficina principal</td>
<td>49,2</td>
<td>18</td>
<td>861</td>
<td>861 m²</td>
<td>Designado para empleados</td>
<td>Recepción, salas de reunión, oficinas 4x4 (siete), oficinas 3x3 (16), estaciones de trabajo 1,48x1,48 (72 posiciones), estaciones de impresión, cocina, cuartos eléctrico, de sistemas y de archivo, baños de hombres y mujeres, estacionamientos.</td>
<td>Contenedores modulares semi-prefabricados, con muros y techos con aislamiento tipo sándwich. Pueden suplementarse con estructura de acero para extender su vida útil.</td>
</tr>
<tr>
<td>Instalaciones de entrenamiento e inducción</td>
<td>8,5</td>
<td>6,4</td>
<td>54,4</td>
<td>54,40 m²</td>
<td>Diseñado para 45 asistentes a inducción</td>
<td>Recepción, salas de conferencia, caseta y baños</td>
<td></td>
</tr>
<tr>
<td>Laboratorio químico</td>
<td>33,9</td>
<td>18</td>
<td>610,2</td>
<td>610.20 m²</td>
<td>Diseñado por tres técnicos/supervisores y un administrador</td>
<td>Almacén de consumibles, cuarto de ensayo por fuego, con fuego, cuarto de digestión húmeda, cuarto de preparación de muestras, equipo de extracción de aire, instalaciones de protección contra incendios, biblioteca, cocina, baños, sala de reunión (cinco puestos), iluminación y ventilación, aire acondicionado para las oficinas</td>
<td>Construcción de acero estructural, revestimiento exterior de chapas onduladas de acero y tabiques interiores de drywall.</td>
</tr>
<tr>
<td>Cobertizo de núcleo (instalaciones de geología)</td>
<td>50</td>
<td>20</td>
<td>1000</td>
<td>1000 m²</td>
<td>Diseñado para el almacenamiento de cajas portastestigos (core trays), cuyo tamaño estándar es 1,00x0,40 m.</td>
<td>Área de recepción y recibimiento de muestras (muestras de taladro y bastidor), área de registro de núcleos, área de corte de núcleos, área de almacenamiento de núcleos a largo plazo y muestras operacionales a corto plazo, área de registro (con mesas para la inspección de cajas de muestras), baños para hombres y mujeres, equipo para extracción de aire, y una sala de reuniones con cinco puestos.</td>
<td></td>
</tr>
<tr>
<td>Oficinas de geología</td>
<td>20</td>
<td>12</td>
<td>240</td>
<td>240 m²</td>
<td>Diseñado para 80 personas</td>
<td>Recepción, oficinas administrativas 4x4 (de un puesto), biblioteca, baños, estación de trabajo de 1,48x1,48 (cuatro posiciones), sala de reuniones de cinco puestos, vestidores, cocina, aire acondicionado para oficinas y sistemas de iluminación y ventilación.</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2018
Figura 3.298 Diseño del Área integrada de operaciones –AIO-
Las salas de inducción y entrenamiento deberán estar equipadas con barreras de aislamiento acústico para mitigar los ruidos recurrentes provenientes del exterior y estarán climatizadas. Se suministrará energía eléctrica para iluminación y computadoras y televisores / pantallas, CCTV. El suministro de agua potable y el sistema de recolección de aguas residuales para los baños se compartirán con el que se encuentra en la oficina principal.

3.3.8.1.2.2 Áreas auxiliares multipropósito

El Proyecto contará con cinco áreas auxiliares multipropósito, una en la zona superficial sobre la montaña y cuatro en la zona superficial en el valle, cabe aclarar que en estas áreas auxiliares no se llevará a cabo cortes ni llenos, por lo cual no fueron considerados dentro del balance de materiales del proyecto. Las áreas auxiliares son las siguientes:

- Área auxiliar multipropósito sector planta de beneficio y portales: en esta área auxiliar se ubicarán como zonas de almacenamiento, acopio de materiales y equipos tanto de los portales como de la planta de beneficio y sus plataformas, así mismo se podrán implementar elementos de arquitectura de paisaje.

- Área auxiliar multipropósito sector vía principal y redes de servicio: en esta área auxiliar se tendrá un almacenamiento de materiales para la instalación de las conducciones como tuberías y accesorios, formaletas y demás obras de concreto de la vía, así mismo se podrán implementar elementos de arquitectura de paisaje. En esta zona también se podrá disponer de manera temporal y acorde a las buenas prácticas el material proveniente de las zanjas para la instalación de las tuberías para el posterior lleno y compactación.

- Área auxiliar multipropósito sector ZODME C y relaves: en esta área auxiliar ubicarán zonas para el almacenamiento temporal de materiales como geomembranas, tuberías y accesorios para la conducción de aguas, formaletas para la construcción de obras hidráulicas, entre otros. así mismo se podrán implementar elementos de arquitectura de paisaje, se dispondrá de manera temporal el material proveniente de las zanjas para la instalación de las tuberías para su posterior lleno.

- Área auxiliar multipropósito sector ZODMES, vías y contrafuertes: en esta área auxiliar se almacenarán, formaletas para las obras en concreto, materiales para obras en piedra pegada y demás materiales requeridos para las obras que se encuentren en las inmediaciones de la misma, así mismo se podrán implementar elementos de arquitectura de paisaje.

- Área auxiliar multipropósito sector ZODMES, vías y pozos de ventilación: esta área auxiliar, ubicada en la zona superficial sobre la montaña, albergará sitios en donde se almacenará aquellos equipos requeridos para el proceso de raise boring (utilizados para la construcción de los pozos de ventilación). Además, en estas áreas se tendrán zonas de acopio de materiales, tuberías, formaletas y demás instrumentos requeridos.

Se resalta que en todas la áreas auxiliares multipropósito se podrá implementar las medidas de manejo y control paisajístico que permitan: la restauración del paisaje mediante la siembra de...
especies nativas, y la instalación de unidades arquitectónicas que se puedan adaptar a las diferentes etapas de desarrollo temporal de construcción y montaje, operación y abandono y cierre de la mina. Las áreas auxiliares multipropósito del proyecto se muestran en la Figura 3.299 y en la Figura 3.300.
Figura 3.300 Área auxiliar multipropósito en la zona superficial sobre la montaña
Fuente: Integral, 2019

3.3.8.1.2.3 Planta de trituración y concretos
De acuerdo con el tipo de requerimientos de las actividades a ejecutar durante las fases de construcción y operación del Proyecto, se concluye que se hace necesario tanto por razones
técnicas como económicas disponer en el sitio de instalaciones para la producción de agregados y concretos. Especificamente se han incluido dentro de las instalaciones auxiliares de la mina una planta móvil de trituración de agregados y una planta móvil de producción de concretos, cuyas especificaciones generales se describen a continuación. Cabe destacar que para la instalación de dichas plantas se tendrá especial cuidado en asegurar las obras de control ambiental requeridas tales como estabilidad de plataformas, drenajes, sitios de acopio de materiales y de disposición de residuos sólidos, obras para almacenamiento y recirculación de aguas, trampas de grasas, entre otros.

3.3.8.1.2.3.1 Planta de Trituración de Agregados

Durante la etapa de construcción del proyecto se requerirán agregados finos y gruesos para su uso en diferentes tipos de obras tales como rellenos para vías, plataformas y canales y material de filtro para distintas obras de drenaje; adicionalmente se requerirán estos materiales como insumos para la producción de concreto en sitio tanto durante construcción como durante operación. Cabe resaltar que dicha planta de trituración procesará materiales provenientes principalmente de canteras externas al Proyecto y de ciertos tipos de materiales extraídos de las excavaciones superficiales y subterráneas de la obra (véase la Fotografía 3.9).

La planta de trituración será estándar de tipo móvil y de tamaño mediano. Esta sería ensamblada sobre una cama baja para facilitar el traslado, y contaría con sistemas hidráulicos de apoyo y nivelación para garantizar su estabilidad. A continuación, algunas especificaciones estándar típicas de este tipo de plantas:

- Capacidad Nominal: 30-90 t/h, dependiendo del tamaño de material requerido
- Autonomía energética
- Trituradora cónica
- Criba Vibratoria
- Transportador de banda para descarga de material
- Dimensión total: aproximadamente 13,70x2,80x5,70 m
- Peso: 34 toneladas aproximadamente
- Fácil integración con la planta de concreto premezclado
La planta de trituración se localizará estratégicamente en una plataforma contigua a la planta de concreto, cerca de las áreas de mayor consumo de estos materiales como lo son la zona de portales de acceso a los túneles, la planta de beneficio y el área integrada de operaciones (véase la Figura 3.301). En esta plataforma también se adecuará un sitio de acopio para el material granular o rocoso crudo proveniente de las excavaciones en sitio o de canteras externas.
3.3.8.1.2.3.2 Planta de Concreto

El Proyecto requerirá concretos tanto en la etapa de construcción para los distintos tipos de edificaciones y estructuras y para el revestimiento de túneles, como para la operación, específicamente en labores de adecuación de sistemas de sostenimiento en las obras de desarrollo minero subterráneo.

Para el efecto se adoptará el sistema de silos. Este es un sistema central de mezcla instalado sobre una camabaja que cuenta con silos de almacenamiento de cemento, agua y arenas. Requiere una loza de cimentación, para instalar los silos y una grúa para su instalación. Consta de tolva para áridos, silos para almacenamiento de agua, arena y cemento, sistema central de mezclado (mezcladora, panel de control, banda transportadora, sistema de bombeo y energía).
3.3.8.1.2.4 Estación de combustible

La estación de combustible deberá considerar dos bahías para el suministro de combustible. El diseño debe considerar una carretera de acceso con un radio de giro mínimo de 12,00 m para permitir maniobras para camiones cisterna de combustible. La estación de combustible solo dará servicio a camiones cisterna, autobuses y camionetas pick-up. Se debe proporcionar un sistema de extinción de incendios de acuerdo con NFPA 30A.

El suministro de combustible para equipo minero que opera dentro de la mina se hará de la siguiente manera:

- El equipo rodante que durante su ciclo de trabajo sale a superficie será tanqueado en las instalaciones de combustible ubicadas en superficie.
- El equipo minero que no sale a superficie durante su ciclo normal de trabajo será tanqueado dentro de la mina. El combustible utilizado por este equipo será transportado a la mina por una unidad móvil que se desplazará a cada uno de los frentes de trabajo.

Los tanques de almacenamiento se colocarán por encima de los cimientos de concreto y se diseñarán considerando una capacidad de almacenamiento de 200.000 galones para combustible. Los tanques de acero deben estar provistos para el almacenamiento de combustible y deben diseñarse de acuerdo con la API 650. Se debe proporcionar el empaquetado para contener cualquier derrame accidental. El volumen contenido debe ser igual a 1,10 veces el volumen de fluido almacenado.

El combustible para vehículos pesados y livianos se suministrará a una tasa de 6.700 gal/día; para este caso, un vehículo dispensador con la misma o mayor capacidad de tanque deberá reabastecer de combustible la instalación en una frecuencia diaria. En el caso de los depósitos de lubricantes; se asume que la tasa de consumo es 112,5 gal/mes, la instalación de almacenamiento de lubricante se reabastecerá al menos dos veces al mes.

Se proporcionará un seguimiento del combustible basado en un sistema de control de consumo diario para monitorear el rendimiento diario del vehículo y las tasas de consumo de combustible. Se proporcionará una pequeña oficina para dos personas (un operador y un trabajador) por turno.

En la Tabla 3.174 se presentan las dimensiones y capacidades de la estación de combustible y en la Figura 3.302 se muestra la vista en planta de esta estación.
Figura 3.302 Vista en planta de la estación de combustible
Fuente: Minera de Cobre Quebradona, 2019
Tabla 3.174 Especificaciones de la estación de combustible

<table>
<thead>
<tr>
<th>Longitud (m)</th>
<th>Ancho (m)</th>
<th>Area (m²)</th>
<th>Capacidad</th>
<th>Componentes principales</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>34</td>
<td>1600</td>
<td>Diseñado para dos vehículos simultáneos y tanques de almacenamiento de combustible de 200.000 galones.</td>
<td>Bomba de combustible. Piscina de almacenamiento de combustible. Tanque de almacenamiento de combustible. Casa de guardia.</td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2018

3.3.8.1.2.5 Campamento

El campamento se diseñó para albergar un pico de 1.012 personas en total durante la etapa de construcción y montaje; sin embargo, una vez finalizada la construcción, la instalación se reducirá y modificará para acomodar a 532 empleados en la etapa de operación. La capacidad del campamento se definió a partir del análisis de requerimientos de personal calificado y no calificado en las etapas de construcción y montaje y operación, y considerando la potencial oferta de recursos humanos en las poblaciones cercanas al proyecto (véase el Anexo Planos_Diseno_Campamento).

El campamento se localizará en superficie en la zona del valle cerca del Área Integrada de Operaciones.

El campamento de construcción será una instalación temporal diseñada para una vida útil de 3 a 5 años; por su parte, el campamento de operaciones será una instalación permanente diseñada para la vida útil de la mina (21 años).

Los edificios de servicio, tanto permanentes como temporales, como lavandería, oficinas de administración del campamento y áreas recreativas tendrán el tamaño adecuado para la población total del campamento.

Las edificaciones del campamento se construirán con módulos portátiles parcialmente prefabricados que permitirán un fácil montaje, reubicación y desmontaje, según las necesidades de alojamiento y servicios en las etapas de construcción y operación. Estas edificaciones se diseñaron para cumplir la normativa existente y las buenas prácticas y estándares de la industria, en especial en lo concerniente a aspectos de seguridad, medio ambiente, confort y funcionalidad.

Como se mencionó anteriormente, el campamento contendrá áreas de alojamiento de personal, complementadas con áreas administrativas, áreas de servicios generales y zonas recreacionales, diseñadas para garantizar el bienestar de los usuarios. El área total de construcción del campamento es de aproximadamente 39.200 m².

En la siguiente tabla (véase la Tabla 3.175) se indican las especificaciones generales de las edificaciones que componen el campamento.
Tabla 3.175 Componentes y especificaciones del Campamento

<table>
<thead>
<tr>
<th>Instalación</th>
<th>Tipo de designación</th>
<th>L</th>
<th>A</th>
<th>Área (m²)</th>
<th>Dimensión/ Áreas</th>
<th>Capacidad</th>
<th>Componentes principales</th>
<th>Especificaciones constructivas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estructuras de alojamiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administradores</td>
<td>Tipo I (permanente)</td>
<td>29,1</td>
<td>7,3</td>
<td>211</td>
<td>Estructuras: 211 m² x 1 pisos x unidad</td>
<td>12 habitaciones (un ocupante): 12 habitaciones/piso, un piso/una estructura</td>
<td>Habitaciones + Baños, cuartos auxiliares y de limpieza</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,73</td>
<td>2,8</td>
<td>13,24</td>
<td>Estructuras: (12): 4,73 x 2,80 m (13,24 m²). Incluye un piso/una estructura</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superintendentes y profesionales</td>
<td>Tipo II (permanente)</td>
<td>46,00</td>
<td>7,25</td>
<td>333,50</td>
<td>Estructuras: 333,50 m² x dos pisos x cuatro unidades</td>
<td>160 habitaciones (un ocupante): 20 habitaciones / piso x dos pisos x cuatro estructuras</td>
<td>Habitaciones + Baños, cuartos auxiliares y de limpieza</td>
<td>Estructuras de contenedor modular, con muros y techos aislados tipo sándwich.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,49</td>
<td>2,8</td>
<td>12,57</td>
<td>Estructuras: (20): 4,49 x 2,8 m (12,57 m²), incluye un baño</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supervisores y personal</td>
<td>Tipo III (permanente)</td>
<td>39,8</td>
<td>7,25</td>
<td>288,20</td>
<td>Estructuras: 228,20 m² x tres pisos x 12 unidades</td>
<td>360 habitaciones (un ocupante): 20 habitaciones / piso x 3 pisos x 6 estructuras</td>
<td>Habitaciones + Baños, cuartos auxiliares y de limpieza</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,97</td>
<td>2,6</td>
<td>11,12</td>
<td>Habitaciones: 4,02 x 2,8 m (11.12 m²), baño compartido (interno, 1,2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trabajadores</td>
<td>Tipo IV (temporal)</td>
<td>50,20</td>
<td>7,25</td>
<td>64,04</td>
<td>Estructuras: 364,0 m² x 2 pisos.</td>
<td>460 habitaciones (dos ocupantes: 48 habitaciones / piso x dos pisos x cinco estructuras</td>
<td>Habitaciones, baños comunes externos, cuartos auxiliares y de limpieza</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,1</td>
<td>2,9</td>
<td>9,0</td>
<td>Cuartos: 3,1 x 2,9 m (9,0 m²). Sin baños internos</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Estudio de Impacto Ambiental
Noviembre, 2019
<table>
<thead>
<tr>
<th>Instalación</th>
<th>Tipo de designación</th>
<th>L</th>
<th>A</th>
<th>Área (m²)</th>
<th>Dimensión/ Áreas</th>
<th>Capacidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vestuario</td>
<td>NA</td>
<td>18,6</td>
<td>9,6</td>
<td>178,60</td>
<td>178,60 m²</td>
<td>420 lockers para hombres, 90 lockers para mujeres, diseñados para atender 520 usuarios en dos rondas por turno</td>
</tr>
<tr>
<td>Comedor</td>
<td>NA</td>
<td>31,9</td>
<td>15</td>
<td>472,1</td>
<td>472,10 m²</td>
<td>126 asientos, diseñados para atender 504 usuarios en dos rondas por turno (diurno / nocturno)</td>
</tr>
<tr>
<td>Cocina</td>
<td>NA</td>
<td>19,5</td>
<td>15</td>
<td>288,6</td>
<td>288,60 m²</td>
<td>Diseñado para proveer 1200 comidas por turno (diurno y nocturno)</td>
</tr>
<tr>
<td>Estructuras de uso administrativo</td>
<td>NA</td>
<td>14,8</td>
<td>12</td>
<td>177,6</td>
<td>177,60 m²</td>
<td>Cuatro estaciones de trabajo para empleados de MCQ. Ocho estaciones de trabajo para contratistas.</td>
</tr>
<tr>
<td>Personal</td>
<td>32</td>
<td>12</td>
<td>390,4</td>
<td>Un edificio x 390 m²</td>
<td>Un edificio diseñado para atender 217 ocupantes del campamento</td>
<td></td>
</tr>
<tr>
<td>Trabajadores</td>
<td>38</td>
<td>12</td>
<td>463,6</td>
<td>Un edificio x 464 m²</td>
<td>Un edificio diseñados para atender 795 ocupantes del campamento</td>
<td></td>
</tr>
<tr>
<td>Canchas deportivas</td>
<td>NA</td>
<td>28</td>
<td>15</td>
<td>420</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Componentes principales:
- Vestuario: Baños, duchas, cuarto para el secado de ropa, y cuarto para la carga de las linternas.
- Comedor: Mesas comedor, baños, cuarto eléctrico, baños del personal de cocina, área de comedor del personal de cocina y área de almacenamiento.
- Cocina: Almacenamiento de comida y áreas de preparación, equipamientos especiales y área de servicio.
- Estructuras de uso administrativo: Estaciones de trabajo, baños, salas de reunión, archivo, depósito, cafetería pequeña, cuarto eléctrico, área de expansión.
- Estructuras de uso recreacional: Áreas de mesas de billar, ping pong y juegos. Cuartos de televisión.
- Trabajadores: Áreas de mesas de billar, ping pong y juegos. Cuartos de televisión y lectura.
- Canchas deportivas: Placa de concreto.
<table>
<thead>
<tr>
<th>Instalación</th>
<th>Tipo de designación</th>
<th>L</th>
<th>A</th>
<th>Área (m²)</th>
<th>Dimensión/ Áreas</th>
<th>Capacidad</th>
<th>Componentes principales</th>
<th>Especificaciones constructivas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavandería</td>
<td>NA</td>
<td>15</td>
<td>15</td>
<td>225</td>
<td>225 m²</td>
<td>Designada para atender 1000 ocupantes del campamento</td>
<td>Área de recepción y despacho. Áreas de lavado, secado y planchado. Cuartos de almacenamiento, baños y cuarto eléctrico.</td>
<td></td>
</tr>
<tr>
<td>Depósito</td>
<td>NA</td>
<td>15</td>
<td>15</td>
<td>225</td>
<td>225 m²</td>
<td>NA</td>
<td>Áreas de almacenamiento</td>
<td></td>
</tr>
<tr>
<td>Zona de estacionamiento - vehículos ligeros</td>
<td>NA</td>
<td>5</td>
<td>2,5</td>
<td>12,5</td>
<td>Estacionamientos 962,5 m² x 77 vehículos</td>
<td>NA</td>
<td>Estacionamientos</td>
<td>Contenedores modulares semiprefabricados, con muros y techos con aislamiento tipo sándwich.</td>
</tr>
<tr>
<td>Zona de estacionamiento - buses</td>
<td>NA</td>
<td>5</td>
<td>15</td>
<td>75</td>
<td>Estacionamientos 525 m² x siete vehículos</td>
<td>NA</td>
<td>Estacionamientos</td>
<td></td>
</tr>
<tr>
<td>Cuarto eléctrico</td>
<td>NA</td>
<td>15</td>
<td>13</td>
<td>195</td>
<td>195 m²</td>
<td>NA</td>
<td>Transformadores y conmutadores</td>
<td></td>
</tr>
<tr>
<td>Estación de bomberos</td>
<td>NA</td>
<td>13</td>
<td>7,5</td>
<td>97,5</td>
<td>98 m²</td>
<td>NA</td>
<td>Estacionamientos y oficinas</td>
<td></td>
</tr>
<tr>
<td>Puerta y cercado</td>
<td>NA</td>
<td>19,5</td>
<td>4,5</td>
<td>87,8</td>
<td>88 m²</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Área de almacenamiento de residuos y compresores</td>
<td>NA</td>
<td>12</td>
<td>11</td>
<td>132</td>
<td>132 m²</td>
<td>NA</td>
<td>Áreas de residuos orgánicos y no-orgánicos</td>
<td></td>
</tr>
<tr>
<td>Gimnasio</td>
<td>NA</td>
<td>25</td>
<td>8,5</td>
<td>212,5</td>
<td>212,5 m²</td>
<td>NA</td>
<td>Gimnasio y baños</td>
<td></td>
</tr>
<tr>
<td>Centro médico</td>
<td>NA</td>
<td>27,1</td>
<td>11</td>
<td>284,6</td>
<td>284,60 m²</td>
<td>Diseñado para atender de forma simultánea a dos pacientes en consulta; seis en pabellón y uno en farmacia.</td>
<td>Recepción, sala de espera, área de almacenamiento, pabellón (seis pacientes); oficina del médico, salón del médico, baños para hombres y mujeres, área de gestión de residuos y estacionamiento para ambulancia.</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2018
3.3.8.1.2.5.1 Alojamientos

Para las edificaciones de alojamiento se definieron cuatro tipos de habitaciones según una clasificación basada en los distintos niveles jerárquicos del personal que ocupará el campamento. Las características de cada tipo de habitación se describen a continuación:

Habitación tipo I (gerentes)

Las habitaciones para gerentes deben tener capacidad para el alojamiento de una persona y debe tener baño privado. El dormitorio debe tener una cama doble, un armario, un escritorio y un televisor.

Las habitaciones tipo I deberán tener un equipo de rotación de aire que funcione de 6 a 8 veces al día.

Habitación tipo II (superintendentes)

Las habitaciones tipo II para superintendentes deben tener capacidad para alojar una persona y un baño privado. El dormitorio debe tener una cama doble, un escritorio y un televisor.

Las habitaciones de tipo II deberán tener un equipo de rotación de aire que funcione de 6 a 8 veces al día.

Habitación tipo III (profesionales y supervisores)

Las habitaciones tipo III se asignarán a profesionales y supervisores (ingenieros, supervisores, personal regular y supervisores de construcción). Las habitaciones deben ser privadas, sin
embargo, el baño debe compartirse con la habitación adyacente. El dormitorio debe incluir una cama doble, un escritorio, un armario y un televisor.

Las habitaciones tipo III deberán tener un equipo de rotación de aire que funcione de 6 a 8 veces al día.

Habitación tipo IV (trabajadores)

Las habitaciones tipo IV se asignarán a los trabajadores y operarios (operación y construcción). Una habitación individual debe estar diseñada para albergar a dos trabajadores y no debe tener baño privado. Los baños deben ser de uso común y deben tener suficientes duchas, lavabos e inodoros para atender los requisitos en las horas pico. Este edificio modular será temporal y se usará solo durante la fase de construcción.

Las habitaciones serán de dos camas individuales; tendrán dos casilleros para sus habitantes y su propio sistema de refrigeración.

3.3.8.1.2.5.2 Comedor superficial

Las instalaciones del edificio de comedor están diseñadas para tener la capacidad de recibir el 25% de las personas que trabajan en las instalaciones de superficie (126 personas atendidas en dos turnos por cada turno de trabajo, 1.012 personas por turno simultáneamente en hora pico). Las instalaciones de comedor se encontrarán en un edificio hecho de paneles modulares (al igual que las oficinas principales).

El espacio dentro de la instalación debe contar con un comedor, baños para empleados masculinos y femeninos, línea de servicio, cocina, almacenamiento de alimentos y un cuarto de basura para la eliminación y el control de desechos. Esta instalación se colocará en la plataforma del campamento de construcción. La distribución de las áreas del comedor superficial se muestra en la Tabla 3.176.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Número de personas</th>
<th>Espacio requerido</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comedor</td>
<td>126</td>
<td>350</td>
<td>m²</td>
</tr>
<tr>
<td>Cocina</td>
<td>4</td>
<td>70</td>
<td>m²</td>
</tr>
<tr>
<td>Cuarto de residuos</td>
<td>1</td>
<td>15</td>
<td>m²</td>
</tr>
<tr>
<td>Congelador, almacenamiento de alimentos y despensa</td>
<td>1</td>
<td>45</td>
<td>m²</td>
</tr>
<tr>
<td>Área de lavado</td>
<td>2</td>
<td>15</td>
<td>m²</td>
</tr>
<tr>
<td>U/G (300 comidas servidas para el personal U/G)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>134</td>
<td>495</td>
<td>m²</td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2018

Se requerirán 50 m² adicionales para asignar pasillos, baños y oficinas del administrador del comedor superficial. Por lo cual, la instalación de comedor debe tener en cuenta un área mínima de 550 m².

La capacidad de diseño de la cocina considera la cocción de las comidas para los trabajadores de U/G durante la etapa de construcción y de operación.

Para los sistemas mecánicos, eléctricos e hidrosanitarios se tendrán los siguientes criterios:

- En el comedor principal se utilizará ventilación natural, se proporcionarán ventanas abiertas a lo largo del perímetro del comedor para lograr este propósito. Las habitaciones interiores como la cocina, el área de lavado de platos y la oficina deberán tener aire acondicionado.
Si está disponible, las cocinas funcionarán con el combustible que proviene de una conexión de gas natural doméstico. Si esto no fuera posible, se considerará el suministro mensual y el excedente de los tanques de propano. Las cocinas eléctricas se deben considerar solo como respaldo cuando no hay combustible disponible.

El cuarto de residuos debe tener un sistema de extracción de aire y debe ubicarse lo más lejos posible del área de almacenamiento de alimentos, que tendrá ventanas para proporcionar ventilación natural.

El agua potable y el agua residual se conducirá a través de una red de tuberías interna.

3.3.8.1.2.5.3 Centro médico

El centro médico se ubicará en las plataformas superficiales. La instalación es un edificio de un piso hecho de paneles modulares. Esta instalación considera un área para brindar atención médica de primeros auxilios e incluye una sala con al menos seis camas (se debe incluir un baño para uso exclusivo de los ocupantes), una sala para materiales peligrosos y manejo de desechos, un baño para hombres y mujeres (un juego para cada uno), dos consultorios médicos, una oficina de gestión, una sala de almacenamiento para suministros médicos y archivo. En la Tabla 3.177 se muestra el espacio mínimo requerido.

Tabla 3.177 Espacio mínimo requerido para el centro médico

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Espacio requerido</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sala (6 camas)</td>
<td>75</td>
<td>m²</td>
</tr>
<tr>
<td>Oficina para doctores</td>
<td>18</td>
<td>m²</td>
</tr>
<tr>
<td>Administración</td>
<td>9</td>
<td>m²</td>
</tr>
<tr>
<td>Baños</td>
<td>7</td>
<td>m²</td>
</tr>
<tr>
<td>Zona de almacenamiento</td>
<td>20</td>
<td>m²</td>
</tr>
<tr>
<td>Admisiones</td>
<td>25</td>
<td>m²</td>
</tr>
<tr>
<td>Cuarto de residuos</td>
<td>15</td>
<td>m²</td>
</tr>
<tr>
<td>Total</td>
<td>169</td>
<td>m²</td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2018

Este edificio tendrá dos puertas de acceso; una para admisiones normales y otra para emergencias especiales, esta última puerta se abre directamente a la sala y contará con 300 m² adicionales. Habrá plazas de aparcamiento para vehículos ligeros y se ubicarán al lado del edificio. En el lado de la puerta de emergencia debe haber un espacio de estacionamiento especial para una ambulancia o un vehículo de evacuación similar.

Las zonas de atención, área de admisión y oficinas estarán climatizadas. Los sistemas eléctricos deben suministrar suficiente energía para mantener esta instalación completamente funcional. Debe haber una red de tuberías internas para la distribución de agua y un tanque de almacenamiento de agua con capacidad suficiente para suministrar agua durante al menos 36 horas seguidas. Esta instalación también tendrá un silo para la recolección de aguas residuales.

3.3.8.1.2.5.4 Oficinas

Las oficinas principales serán un edificio modular de una planta con espacio suficiente para que trabajen 91 personas; contará con espacios para un área de recepción, oficinas para administración, estaciones de trabajo, cocineta y baños para trabajadores masculinos y femeninos, salas de reuniones y otros componentes esenciales. Este edificio debe tener un área mínima de 800 m² y una altura de espacio libre mínima (techo de piso a fondo) de 3,00 m.
El diseño de los estacionamientos debe considerar 21 espacios con posibilidad de expansión. Siete de estos espacios se deben usar para empleados sénior y los 14 restantes se deben usar para visitantes, contratistas, proveedores y otros.

3.3.8.1.2.5.5 Estación de bomberos

Corresponde a un hangar con capacidad para un camión cisterna con acceso directo hacia el patio de maniobras, dos ambulancias, equipos de recuperación, oficinas operativas con panel de alarma, baños para hombres y mujeres con vestidores, sala de bomberos con cocineta y terraza, implementado con todas las instalaciones para atención de emergencias.

Se contará con aire acondicionado para oficinas y bomberos, las estaciones de trabajo estarán dispuestas con puertas y cajones con llave. Mesas, sillones y sillas ergonómicas con ruedas. Se considerarán los espacios aislados y presurizados para racks de comunicaciones y extinción de incendios con rociadores.

3.3.8.1.2.6 Portería principal

En la entrada del Proyecto se ubicará un edificio de seguridad y un sistema de puertas de seguridad, en donde se llevará a cabo el primer control de seguridad para quienes ingresen a la mina. El sistema de puertas se instalará para permitir o bloquear los vehículos que vienen del exterior; y el edificio de seguridad o portería permitirá realizar el control de seguridad de los recién llegados.

De acuerdo con la experiencia del consultor, el edificio de la portería tendrá un área mínima de 120 m², pues debe tener un espacio suficiente para ubicar un cuarto de seguridad con un scan de rayos x, una sala de espera y una sala de inducción con capacidad para 10 personas (visitas cortas). Para este edificio, la altura de techo a piso debe ser de al menos 2,4 m.

El movimiento de personal estimado en la portería (ingreso y egreso en un turno regulat) fue definido con la base de turnos diurnos y nocturnos. En este sentido, el movimiento de personal debe ser inferior a 520 personas durante la etapa de operación, de los cuales el 50% habitará dentro de la mina (50% * 520 personas = 300 personas en movimiento).

Para estimar la cantidad de espacios de parqueadero para los buses, se consideró que se moverá el 50% de este personal hacia el exterior de la mina, lo cual indica que se despalzarán 150 personas en 3 buses de 12 m de largo (cada bus con capacidad para 50 personas).

En este edificio no se contará con aire acondicionado, la ventilación se realizará a través de las ventanas. El abastecimiento de agua se realizará a través de carro cisterna, por lo cual la estructura deberá contar con tanques de almacenamiento de agua con una capacidad mínima para proveer el servicio durante 24 horas. En la Tabla 3.178 se presentan las especificaciones para la portería del Proyecto

<table>
<thead>
<tr>
<th>Tabla 3.178 Especificaciones para la portería</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud (m)</td>
</tr>
<tr>
<td>23</td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2018

Estudio de Impacto Ambiental

I-0010371-MQC-EIA-V1-FA
Noviembre, 2019
3.3.8.1.2.7 Instalaciones subterráneas

La infraestructura subterránea está dividida en tres grupos: operacional (minera), administrativa (auxiliar) y de mantenimiento (auxiliar). La operacional comprende fundamentalmente la estación de trituración y el sistema de bandas transportadoras de mineral; la administrativa incluye oficinas, comedor y sitios para el cambio de turno del personal, en tanto que la infraestructura de mantenimiento incluye un taller con instalaciones para servicios de mantenimiento a la flota minera e instalaciones para almacenamiento de explosivos para el consumo diario.

El tamaño de las áreas administrativas se determinó en función del área requerida por cada trabajador en la hora pico más el área adicional para circulación, mientras que las áreas de mantenimiento se dimensionaron en función del tamaño del equipo más grande que ha de ser atendido.

Las edificaciones subterráneas de oficinas, comedor y taller de mantenimiento se localizan en el mismo cuadrante, mientras que el polvorín o almacenamiento de explosivos se ubica a una distancia tal que se cumpla con todas las regulaciones de seguridad aplicables. Las instalaciones subterráneas se relacionan en la Tabla 3.179.

<table>
<thead>
<tr>
<th>Tabla 3.179 Instalaciones subterráneas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instalación</td>
</tr>
<tr>
<td>Taller</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Explosivos</td>
</tr>
<tr>
<td>Administración</td>
</tr>
<tr>
<td>Casino</td>
</tr>
<tr>
<td>Estación de Trituración</td>
</tr>
<tr>
<td>Polvorín</td>
</tr>
<tr>
<td>Sistema de Banda Transportadora</td>
</tr>
<tr>
<td>Sistema de Suministro de energía</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

El propósito de las instalaciones operativas es proporcionar oficinas e instalaciones de cambio de turnos para el personal que está realizando operaciones al interior de la mina. Las instalaciones de mantenimiento tienen el objetivo de proporcionar lugares para dar servicio a la flota de la mina y almacenamiento de explosivos.

Ambos tipos de infraestructura se organizarán a lo largo de una serie de túneles. La disposición de las instalaciones subterráneas se muestra en la Figura 3.304.

Algunas consideraciones para los diseños de las instalaciones a implementar incluyen:

- El diseño debe esforzarse por minimizar los impactos del ruido y la vibración, y cumplirá con las regulaciones pertinentes.

- Se empleará una combinación de supresión y colección de polvo para controlar el polvo dentro de las instalaciones subterráneas.

- El polvo húmedo se convertirá en lodo y será removido a través del sistema de desagüe de la mina.
• Se debe realizar supresión de polvo en la estación de descarga de la trituradora, en la estación de carga de la banda transportadora y en la base de cada pique de traspaso de mineral.
• El agua usada se debe descargar en los sumideros del sistema de desagüe de la mina.
• Las aguas residuales serán bombeadas y transportadas fuera de la mina para su posterior tratamiento.
• El agua de la mina será bombeada a la superficie, ya sea para su tratamiento, reutilización o descarga.
• Todos los equipos deberán ser capaces de operar en condiciones de humedad y niveles bajos de pH.
• La infraestructura subterránea debe ser capaz de soportar el lavado con manguera a alta presión.
• Los equipos subterráneos requerirán monitoreo para vibración y temperatura.
Figura 3.304 Instalaciones subterráneas
Fuente: Minera de Cobre Quebradona, 2019
3.3.8.1.2.7.1 Taller Subterráneo

El taller subterráneo será un taller satélite para servicios menores, como los son el reabastecimiento de combustible, engrase, lubricación, inflado de neumáticos y lavado de vehículos; esta instalación se asignará y distribuirá en un arreglo especial de túneles, no tendrá particiones arquitectónicas ni periféricas.

El taller se ubicará cerca del nivel de transferencia de mineral (Nivel 1.152), la trituradora y las instalaciones de carga de mineral. Los equipos de desarrollo y rotura secundaria accederán al taller mediante un túnel de acceso. El acceso del personal y los vehículos ligeros se mantendrá separado del acceso de vehículos pesados a las áreas del taller, mediante accesos independientes que conducen a las instalaciones del comedor del taller. Las instalaciones del taller y el comedor se conectarán a través de las instalaciones de ablución comunes.

Todos los componentes que requieran reparaciones especializadas importantes, como motores electrónicos, componentes electrónicos y otros; se enviarán al taller de superficie para reparaciones mayores. Todo el mantenimiento asociado con el nivel de transferencia, la trituradora, la producción y las actividades de desarrollo de mineral se llevarán a cabo en este taller, ubicado en el nivel 1.135.

De ser aplicables, el taller cubre y/o permite las siguientes instalaciones:

- Un área separada para operaciones de soldadura con extracción de aire.
- Un área separada y cerrada para recargar las baterías.
- Se deben instalar pisos de concreto (con pendiente hacia el sumidero) en todas las áreas del taller para contener y controlar posibles derrames.
- Los compartimentos de lavado deben estar equipados con un separador de aceite / agua para aislar los hidrocarburos del agua de lavado.
- El taller de vehículos pesados será de entrada y salida.
- El piso / losa del taller drenará toda la escorrentía y el agua sucia hacia la recolección de agua sucia y la planta de tratamiento de agua aceitosa.
- Edificio prefabricado de dos pisos para almacenaje y oficinas.
- Una grúa puente de 20 toneladas.
- Un área separada y equipo para el montaje y reparación de neumáticos.
- Un área para el lavado y limpieza de equipos a vapor.
- Un pozo de inspección o una estructura alternativa para facilitar la inspección de la parte inferior de los vehículos.
- Una oficina para el capataz del taller con una vista del área principal del taller, el almacén y la sala de registros, manuales, catálogos y dibujos.
- Las instalaciones deberán ser edificios portátiles con aire acondicionado con protección de insonorización.
• El taller tendrá dos bahías (bahías de camiones) para dar cabida a los camiones Sandvik TH540.

• Una fosa de motor y un área de servicio para las lubricaciones programadas realizadas como parte del programa de mantenimiento preventivo.

Otras instalaciones asociadas a ser consideradas en el taller subterráneo son las siguientes:

• Oficinas.

• Comunicaciones.

• Puntos de reunión de emergencia.

• Recogida y entrega de artículos consumibles.

• Bodegas y almacenes de consumibles.

• Estacionamiento de vehículos.

• Contenedores de residuos (recogida y separación).

• Salas de informática.

• Las bahías y las salas de almacenamiento se ubicarán junto a los túneles de acceso.

La altura de las bahías de servicio del taller debe estar diseñada para permitir la entrada de un camión levantado por una grúa.

3.3.8.1.2.7.2 Bodega Subterránea de Mina

La bodega deberá tener en cuenta los espacios que se ocuparán para almacenar piezas de repuestos y consumibles de tamaño pequeño a mediano. Se considerarán las siguientes características e instalaciones:

• Se empleará para el almacenamiento de algunos vehículos pesados y livianos, piezas de repuesto pequeñas y medianas.

• El diseño del piso de concreto para el almacén debe basarse en el ACI 360R-06 y debe considerar una carga máxima por eje de 330 kN proveniente de un montacargas completamente cargado. El diseño del almacén subterráneo se muestra en la Figura 3.305.
3.3.8.1.2.7.3 Oficinas de Mina Subterráneas

Las oficinas subterráneas de la mina deben ser un edificio modular con espacio suficiente para albergar a 6 trabajadores, debe tener espacios suficientes para oficinas, puestos de trabajo, sala de reuniones o de capacitación, sala de informática / electricidad y un pequeño salón que puede o no incluir un área de cocina.

Hay un requisito de 37,70 m² solo para puestos de trabajo. Teniendo en cuenta que los túneles son de 6 m de ancho; se proporcionará una longitud mínima aproximada de 11,00 m.

Los baños para esta instalación deben ser cabinas portátiles y debe haber al menos 1 cabina para las empleadas. Las cabinas de baño para empleados varones se suministrarán según sea necesario. Los muros divisorios en el interior del edificio serán muros livianos hechos de perfiles conformados en frío y paneles de yeso ignífugos, comúnmente conocidos como paneles de yeso.

Las oficinas principales tendrán aire acondicionado, luces y demás componentes requeridos. Los sistemas de plomería internos deben proporcionarse para el suministro de agua y recolección de alcantarillado (para áreas de lavado específicamente); si el sitio no tiene una red de agua potable y / o alcantarillado, se deben tomar medidas para colocar tanques de agua y silos para la recolección de aguas residuales.

La red de fibra óptica se proporcionará según sea necesario por cada empleado. Se considerará una sala de TI / Eléctrica. El diseño de las oficinas se muestra en la Figura 3.306.
3.3.8.1.2.7.4 Comedor de mina subterráneo

El comedor subterráneo de mina es un centro de almuerzo y debe estar diseñado para permitir una capacidad máxima de 25 a 30 personas (el número máximo en el turno de la mina es de 50 personas, incluidos los contratistas). Se ha asumido que cada mitad de los trabajadores de la mina se turnarán para almorzar en cada turno (dos turnos para la hora del almuerzo). Las instalaciones del almuerzo deben ser un edificio hecho de paneles modulares (similar a la oficina de la mina). A esta instalación se suma la cafetería, la cual es considerada como una instalación para almorzar.

Dentro de la instalación debe haber un comedor, baños para empleados masculinos y femeninos, línea de servicio, cocina, almacenamiento de alimentos y un cuarto de basura para la eliminación y el control de desechos. La altura del edificio será de al menos 3 m.

La construcción del comedor consta de un edificio con tres áreas principales:

- Área de cocina e instalaciones de almacenamiento de alimentos;
- área de cocina de 3,0 m x 6,0 m.
- zona de lavavajillas.
- Área de almacenamiento de alimentos 3,0m x10,0 m.
- Área de servicio.

- Un comedor,
- Área de comedor de 10 mx 5,50 m, para 30 trabajadores, 24 empleados y seis asientos adicionales; que representan un superávit del 20% para el comedor.
- Zona de lavado (para lavado de manos y botas de goma).
- Estante de almacenamiento de herramientas de casco / mano.
- Área de recogida de residuos.
- Aseo / lavadero (zonas de letrina),
- tres baños para empleadas y al menos cinco baños para empleados.

Las instalaciones interiores como cocina, área de lavado de platos y la oficina deberán tener aire acondicionado. El cuarto de basura debe tener un sistema de extracción de aire y debe colocarse lo más lejos posible del área de almacenamiento de alimentos. El suministro de agua en el comedor se suministrará con una red de tuberías interna, lo mismo se aplica a la gestión de aguas residuales. El diseño del comedor se muestra en la Figura 3.307.

![Figura 3.307 Diseño de comedor subterráneo](image)

Fuente: Minera de Cobre Quebradona, 2019

3.3.8.1.2.7.5 Polvorín Subterráneo

Se requerirá un polvorín subterráneo para almacenar temporalmente una cierta cantidad de emulsión, gas, detonadores y accesorios de voladura; mientras se transportan al frente.

Esta instalación se diseñará de acuerdo con el “Código de regulaciones federales (CFR) de los Estados Unidos de América; sección 75.1312” y el “Decreto 1886 del 21 de septiembre del 2015” (reglamento de seguridad en las labores mineras subterráneas).
Los explosivos y accesorios se almacenarán en diferentes salas. Cerca de allí, se consideran tres áreas de apoyo para oficinas, carga / traslado y estacionamiento (véase la Figura 3.308).

Cada polvorín se ubicará fuera de vías subterráneas que hagan parte del circuito principal de ventilación de la mina o de labores mineras activas. Cada polvorín estará equipado con extintor de incendios, pisos de concreto, sumideros de aguas residuales y puertas seguras de acero.

Los polvorines deberán cumplir con lo siguiente:
- Estar ubicado al menos a 7,62 metros (25 pies) de las vías y cualquier fuente de corriente eléctrica.
- Estar ubicado fuera de la línea directa de la voladura.
- Todo el tiempo estará lo más seco posible.
- Solo los materiales y equipos que se usarán el mismo día en las actividades de voladura se pueden almacenar temporalmente dentro del polvorín.
- La distancia mínima a otras instalaciones debe cumplir con NFPA 495.
- El polvorín debe estar ubicado a una distancia de al menos 100 m de cualquier bocamina.

3.3.8.1.2.8 Redes y servicios

3.3.8.1.2.8.1 Redes de acueducto y alcantarillado

Para el suministro de agua y los vertimientos de aguas residuales domésticas e industriales durante las etapas de construcción, de operación y de cierre del proyecto Quebradora, se identificaron dos zonas que deben ser atendidas de manera independiente así:
- Parte baja o Zona superficial en el valle, la cual incluye Campamento, Área integrada de operaciones (AIO), laboratorio y geología, estación de combustible,
planta de concreto, planta de beneficio, subestación eléctrica, plataformas 1 a 9, plataforma explosivos operación y planta emulsión, y portería.

- Parte alta o Zona superficial sobre la montaña, donde se construirán los pozos de ventilación de la mina subterránea, se requieren servicios para atender plataformas A, B, C y D y en la etapa de operación una caseta de vigilancia.

Estos sistemas de suministro y evacuación de aguas se ilustran para las etapas de construcción, operación y cierre de la mina, en los planos 0010368-MQC-AC-010, 0010368-MQC-AC-020 y 0010368-MQC-AC-025 (véase el Anexo_3_10_Redes_servicios), donde se indican los orígenes y destinos de cada uno de estos sistemas.

3.3.8.1.2.8.1.1 Sistema de acueducto

3.3.8.1.2.8.1.1.1 Demanda del sistema de acueducto

- Requerimientos de agua para uso doméstico

En la etapa de construcción, para la zona de infraestructura de la mina para consumo doméstico, se consideró una población de 2.190 personas para la etapa pico de construcción, con una dotación bruta de 233 l/hab/día para la zona del campamento y 120 l/hab/día para las zonas de las instalaciones para la operación de la mina, obteniéndose un caudal máximo diario en la parte baja de la mina de 7,65 l/s. El caudal para uso doméstico en la etapa de construcción se estimó como se indica en la Tabla 3.180:

<table>
<thead>
<tr>
<th>Zona</th>
<th>Población (hab)</th>
<th>Dotación bruta (l/hab/día)</th>
<th>Caudal medio diario - Qmd (l/s)</th>
<th>Caudal máximo diario solicitado en concesión (l/s) K1=1,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campamento</td>
<td>2.170</td>
<td>233,33</td>
<td>5,86</td>
<td>7,618</td>
</tr>
<tr>
<td>Portería</td>
<td>2</td>
<td>120,00</td>
<td>0,003</td>
<td>0,004</td>
</tr>
<tr>
<td>Plataformas y portal túneles</td>
<td>18</td>
<td>120,00</td>
<td>0,025</td>
<td>0,033</td>
</tr>
<tr>
<td>Total demanda agua uso doméstico – Parte baja</td>
<td>2.190</td>
<td>---</td>
<td>5,89</td>
<td>7,655</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

En la zona superficial sobre la montaña (parte alta), durante la etapa de construcción, tanto el personal de obra como de la caseta de vigilancia utilizará baños portátiles, y el agua para consumo le será suministrada mediante botellones.

En la etapa de operación el caudal de agua para uso doméstico en la zona superficial en el valle (parte baja) se estimó en un caudal máximo diario de 2,55 l/s, de acuerdo con lo indicado en la Tabla 3.181.

En la zona superficial sobre la montaña (parte alta), durante la etapa de operación, tanto el personal de obra como el de la caseta de vigilancia, utilizará baños portátiles, y el agua para consumo les será suministrada mediante botellones.
En la etapa de cierre, en la parte baja, se requiere suministro de agua para el personal que desarrollará las actividades de demoliciones y revegetalización de las zonas del proyecto. La demanda estimada para el consumo doméstico en la etapa de cierre se indica en la Tabla 3.181.

<table>
<thead>
<tr>
<th>Zona</th>
<th>Población (hab)</th>
<th>Dot. Bruta (l/hab/día)</th>
<th>Caudal medio diario – Qmd (l/s)</th>
<th>Caudal máximo diario solicitado en concesión (l/s) K1=1,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campamento</td>
<td>424</td>
<td>233</td>
<td>1,145</td>
<td>1,489</td>
</tr>
<tr>
<td>Polvorín</td>
<td>1</td>
<td>120</td>
<td>0,001</td>
<td>0,002</td>
</tr>
<tr>
<td>Portería y plataformas</td>
<td>10</td>
<td>120</td>
<td>0,014</td>
<td>0,018</td>
</tr>
<tr>
<td>Plataforma de facilidades mineras (AIO)</td>
<td>136</td>
<td>120</td>
<td>0,189</td>
<td>0,246</td>
</tr>
<tr>
<td>Laboratorio</td>
<td>4</td>
<td>120</td>
<td>0,006</td>
<td>0,007</td>
</tr>
<tr>
<td>Estación de combustible</td>
<td>2</td>
<td>120</td>
<td>0,003</td>
<td>0,004</td>
</tr>
<tr>
<td>Planta de concreto y trituración</td>
<td>4</td>
<td>120</td>
<td>0,006</td>
<td>0,007</td>
</tr>
<tr>
<td>Plataforma túneles</td>
<td>1</td>
<td>120</td>
<td>0,001</td>
<td>0,002</td>
</tr>
<tr>
<td>Planta de beneficio</td>
<td>332</td>
<td>120</td>
<td>0,461</td>
<td>0,599</td>
</tr>
<tr>
<td>Mina subterránea</td>
<td>100</td>
<td>120</td>
<td>0,139</td>
<td>0,181</td>
</tr>
<tr>
<td>Total demanda agua uso doméstico – Parte baja</td>
<td></td>
<td></td>
<td>1,520</td>
<td>2,554</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

Requerimientos de agua para uso no doméstico

En la etapa de construcción, en la zona superficial en el valle (parte baja), el agua para uso no doméstico es la requerida para los siguientes usos:

<table>
<thead>
<tr>
<th>Zona</th>
<th>Caudal medio diario solicitado en concesión - Qmd (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta de concretos, trituración, refrigeración, lavado y otros procesos constructivos</td>
<td>2,080</td>
</tr>
<tr>
<td>Construcción de los túneles de acceso</td>
<td>4,000</td>
</tr>
<tr>
<td>Construcción y humectación de vías</td>
<td>13,625</td>
</tr>
<tr>
<td>Total demanda agua uso no doméstico parte baja</td>
<td>19,705</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019
La demanda de agua para la planta de concretos se estimó con base en una producción total de concreto de 87.982 m³, así como del agua requerida para producción de agregados y lavado de equipos a una tasa de 40 t/h.

Para la construcción de los túneles de acceso a la mina se tuvo en cuenta el agua de reposición requerida para el sistema de refrigeramiento de los equipos perforadores, la cual es de 2 l/s, para un total de 4 l/s para los dos equipos.

Para el riego de vías se estimó el área total que ocuparán estas obras y una frecuencia de riego de una vez al día, de acuerdo con las necesidades de riego del modelo de aire para la zona baja del Proyecto.

Para la zona superficial sobre la montaña (parte alta), en la etapa de construcción se requiere agua para refrigeración de los equipos de construcción de los pozos de ventilación, así como para la humectación de vías; aplicando una lamina de agua de 1,0 mm. Se contará con cuatro tanques de almacenamiento y recirculación de agua, con una capacidad de 25 m³ cada uno.

Tabla 3.184 Estimación caudal de agua para uso no doméstico en construcción (parte alta)

<table>
<thead>
<tr>
<th>Zona</th>
<th>Caudal medio diario solicitado en concesión - Qmd (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigeración de equipos Raise boring, lavado de equipos</td>
<td>0,170</td>
</tr>
<tr>
<td>Humectación de vías</td>
<td>1,225</td>
</tr>
<tr>
<td>Total demanda agua uso no doméstico parte alta</td>
<td>1,395</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

El caudal requerido, de 0,609 l/s, será solicitado de la quebrada La Fea, en el mismo sitio donde hoy existe la concesión Chaquiró, utilizada para las actividades de exploración.

En la etapa de operación el caudal de agua para uso no doméstico, en la zona superficial en el valle (parte baja), se estimó de acuerdo con lo indicado en la Tabla 3.185.

Tabla 3.185 Demanda de agua para uso no doméstico. Fase de operación (parte baja)

<table>
<thead>
<tr>
<th>Zona</th>
<th>Caudal medio diario Qmd (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humectación de vías</td>
<td>2,028</td>
</tr>
<tr>
<td>Área integrada de operaciones (AIO)</td>
<td>0,990</td>
</tr>
<tr>
<td>Lavado vehículos minero</td>
<td>4,275</td>
</tr>
<tr>
<td>Planta de concretos y trituración</td>
<td>2,080</td>
</tr>
<tr>
<td>Plataforma túneles</td>
<td>0,288</td>
</tr>
<tr>
<td>Planta de beneficio</td>
<td>28,000</td>
</tr>
<tr>
<td>Mina subterránea</td>
<td>34,000</td>
</tr>
<tr>
<td>Estación de combustible</td>
<td>0,044</td>
</tr>
<tr>
<td>Laboratorio</td>
<td>0,042</td>
</tr>
<tr>
<td>Total demanda agua no doméstica</td>
<td>71,747</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018

Para la zona superficial sobre la montaña (parte alta), durante las etapas de operación y cierre no se requiere agua para uso no doméstico.
En la etapa de **cierre** el caudal de agua para uso no doméstico (industrial) en la zona superficial en el valle (parte baja), para humectación y riego, se estima en 3,02 l/s (véase la Tabla 3.186). Este caudal se estimó teniendo en cuenta que se aplicarán riegos de 1,0 mm/día en un área de extensión similar a la de la etapa de operación.

Tabla 3.186 Estimación caudal de agua para uso no doméstico en cierre (parte baja)

<table>
<thead>
<tr>
<th>Zona</th>
<th>Caudal máximo solicitado en concesión (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riego de áreas revegetalizadas y humectación de vías</td>
<td>2,028</td>
</tr>
<tr>
<td>Área integrada de operaciones (AiO)</td>
<td>0,990</td>
</tr>
<tr>
<td>Total demanda agua para uso no doméstico</td>
<td>3,018</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018

- Resumen de las demandas de agua requeridas para uso doméstico y no doméstico

En la Tabla 3.187 se indica el resumen de la demanda de agua requerida en el proyecto para las etapas de construcción, operación y cierre, la localización y el uso del recurso.

Tabla 3.187 Resumen de captaciones y usos del recurso solicitado en concesión

<table>
<thead>
<tr>
<th>Item</th>
<th>Etapa / Clase de uso</th>
<th>Fuente</th>
<th>Coordenadas Magna Sirgas Oeste</th>
<th>Caudal requerido(l/s)</th>
<th>Volumen diario (m³)</th>
<th>Horas bombeo diarias</th>
<th>Duración de la concesión</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>En construcción</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1-CI</td>
<td>Doméstico</td>
<td>Río Cauca</td>
<td>X: 1.154.634 Y: 1.135.106</td>
<td>7,655</td>
<td>661,39</td>
<td>3,13</td>
<td>1 año</td>
</tr>
<tr>
<td>C1-CI</td>
<td>No doméstico</td>
<td>Río Cauca</td>
<td>X: 1.154.634 Y: 1.135.106</td>
<td>19,705</td>
<td>1.702,51</td>
<td>3,13</td>
<td>1 año</td>
</tr>
<tr>
<td>C1-CO</td>
<td>Doméstico</td>
<td>Río Cauca</td>
<td>X: 1.154.634 Y: 1.135.106</td>
<td>7,655</td>
<td>661,39</td>
<td>2,63</td>
<td>3 años</td>
</tr>
<tr>
<td>C1-CO</td>
<td>No doméstico</td>
<td>Río Cauca</td>
<td>X: 1.154.634 Y: 1.135.106</td>
<td>19,705</td>
<td>1.702,51</td>
<td>2,63</td>
<td>3 años</td>
</tr>
<tr>
<td>C2</td>
<td>No doméstico</td>
<td>Q La Fea</td>
<td>X: 1.148.354 Y: 1.127.355</td>
<td>1,395</td>
<td>120,53</td>
<td>24</td>
<td>4 años</td>
</tr>
<tr>
<td></td>
<td>En operación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1-OP</td>
<td>Doméstico</td>
<td>Río Cauca</td>
<td>X: 1.154.634 Y: 1.135.106</td>
<td>2,554</td>
<td>220,67</td>
<td>7,13</td>
<td>21 años</td>
</tr>
<tr>
<td></td>
<td>En cierre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1-C</td>
<td>Doméstico</td>
<td>Río Cauca</td>
<td>X: 1.154.634 Y: 1.135.106</td>
<td>1,563</td>
<td>135,04</td>
<td>0,44</td>
<td>3 años</td>
</tr>
<tr>
<td>C1-C</td>
<td>No doméstico</td>
<td>Río Cauca</td>
<td>X: 1.154.634 Y: 1.135.106</td>
<td>3,018</td>
<td>268,53</td>
<td>0,44</td>
<td>3 años</td>
</tr>
<tr>
<td>C1-PC</td>
<td>No doméstico</td>
<td>Río Cauca</td>
<td>X: 1.154.634 Y: 1.135.106</td>
<td>3,018</td>
<td>268,53</td>
<td>0,29</td>
<td>10 años</td>
</tr>
</tbody>
</table>

Nota: CI: Construcción inicial, CO: Construcción, OP: Operación, C: Cierre, PC: Poscierre

Fuente: Integral, 2018 *Nota: Coordenadas MAGNA-SIRGAS, Colombia West Zone

Si bien la demanda máxima estimada de agua para uso doméstico y no doméstico (industrial), varía para cada etapa, todos los componentes del sistema de acueducto (captación, bombeos, desarenador y aducción), están diseñados para captar y transportar un caudal de 250 l/s en las tres etapas del proyecto, en la etapa de...
construcción se tendrá un sistema provisional, el cual será un caudal de 50 l/s bombeando durante 13 horas al día. Todo el recurso proviene del río Cauca, y el agua debe bombearse hasta la zona de la infraestructura del Proyecto, la cual está localizada en la parte alta del valle del río Cauca para luego ser distribuida a cada zona de la mina.

Para alimentar los tanques de almacenamiento y atender la demanda diaria del proyecto en cada etapa, en la zona superficial en el valle (parte baja), se requerirá un sistema de bombeo, el caudal total de captación, las horas de bombeo y el volumen total de agua requerido se indica en la Tabla 3.188.

<table>
<thead>
<tr>
<th>Etapa</th>
<th>Caudal total de captación (l/s)</th>
<th>Horas de bombeo/día</th>
<th>Volumen diario requerido (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construcción inicial (año 1)</td>
<td>50</td>
<td>13</td>
<td>2.363.90</td>
</tr>
<tr>
<td>Construcción (a partir del año 2)</td>
<td>250</td>
<td>2.63</td>
<td>2.363.90</td>
</tr>
<tr>
<td>Operación</td>
<td>250</td>
<td>7.13</td>
<td>6.419.61</td>
</tr>
<tr>
<td>Cierre</td>
<td>250</td>
<td>0.44</td>
<td>403.57</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

Para la zona superficial sobre la montaña (parte alta), durante las etapas de operación y cierre no se requiere agua para uso no doméstico.

La captación de agua durante estos doce meses iniciales, será equivalente o inferior a la solicitada para la etapa de construcción del proyecto, a saber:

- Agua para uso doméstico: 7,655 l/s
- Agua para uso no doméstico: 19,705 l/s

3.3.8.1.2.8.1.1.2 Descripción del sistema de acueducto Zona superficial en el valle (parte baja)

Para el primer año de construcción se construirá una captación provisional tipo barcaza flotante en la coordenada X:1.154.634, Y: 1.135.106 (ver detalle en el plano 0010368-MQC-AC-120), la cual bombará un caudal de 50 l/s por 13 horas, esta captación está conformada por dos bombas centrífugas cada una de 25 l/s de capacidad, con cabeza de operación máxima 230 m.c.a y con manejo de sólidos. La conducción será en tubería de 315 mm de polietileno reticulado clase 30 con una longitud de 5, 7 km y que llega hasta los tanques de 500 m³ de agua cruda. (véase detalle en el plano 0010368-MQC-AC-045)

El sistema de suministro de agua para el primer año de conducción contará con dos estaciones de bombeo, en cada estación de bombeo se tendrá un tanque de 75 m³, desde los cuales se distribuirá el agua a cada frente de obra durante el primer año de construcción y la conducción

El sistema de suministro de agua definitivo para la zona superficial en el Valle, se hará desde el río Cauca, en la margen izquierda del río en la coordenada X:1.154.634, Y: 1.135.106, con un caudal de captación de 250 l/s con el cual se diseñaron las obras del sistema de acueducto. Los tiempos de bombeo previstos se indican en la Tabla 3.188.
Desde allí se bombará el agua a un desarenador, posteriormente el agua, se impulsará a los tanques de almacenamiento de agua cruda y finalmente será distribuida a las instalaciones de la mina, como se muestra en los planos 0010368-MQC-AC-020, 0010368-MQC-AC-030, 0010368-MQC-AC-040 y 0010368-MQC-AC-050 (véase el Anexo_3_10_ Redes_servicios).

En la aducción ó impulsión de agua desde el desarenador hasta los tanques de almacenamiento de agua se tendrán cinco estaciones de bombeo en serie, de iguales características.

Desde los tanques de almacenamiento de agua se distribuirá el agua cruda a la planta de agua potable (PTAP) y a la planta de tratamiento de agua para los procesos industriales (PTAI) de la planta de beneficio, el sistema contra incendio, área integrada de operaciones (AIo) y planta de concreto y agregados.

La planta de potabilización atenderá el campamento, portería, servicios sanitarios de la planta de beneficio, Área integrada de operaciones (AIo), mina subterránea, la planta de concretos y agregados y las diferentes plataformas que requieran servicios, tanto en la etapa de operación como en la etapa de construcción.

Los sitios para la ubicación de la captación, tanques de agua cruda y plantas de tratamiento serán los mismos desde la etapa de construcción.

- Captación río Cauca

Para la etapa del primer año de construcción la captación será en el río Cauca con un caudal total de 50 l/s, tipo barcaza flotante será para el llenado de carro tanques y suministro de agua en los diferentes frentes de construcción del proyecto, en especial el sistema definitivo de captación. Ver Figura 3.309

![Figura 3.309 Capatación barcaza flotante](image)

Las características principales de los equipos de captación para el año 1 de construcción se presentan a continuación Ver Tabla 3.189.

<table>
<thead>
<tr>
<th>Características</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de bombas</td>
<td>Centrífugas</td>
</tr>
</tbody>
</table>

Estudio de Impacto Ambiental

Minera de Cobre Quebradona S.A.

Noviembre, 2019

I-0010371-MQC-EIA-V1-FA

3.458
La captación de agua para el proyecto en la etapa de operación y construcción estará localizada en la margen izquierda del río Cauca y será de tipo lateral, con un caudal de diseño de 250 l/s.

Durante la etapa de construcción atenderá el campamento, las plataformas, planta concreto y trituración, túneles de acceso y portería, en la etapa de operación atenderá el campamento, Área integrada de operaciones (AIO), laboratorios, estación de combustible, planta concreto y trituración, planta de beneficio, mina subterránea, subestación eléctrica, plataforma de explosivos operación y planta emulsión y portería (véanse los planos 0010368-MQC-AC-040, 0010368-MQC-AC-050 y 0010368-MQC-AC-070, del Anexo_3_10_Redes_servicios). Durante la etapa de Cierre se abastecerán el consumo doméstico para el personal del campamento, y actividades propias del cierre (humectación de vías y riego de áreas revegetalizadas).

Se capta el agua del río Cauca en la cota 557 msnm., por medio de un sistema de bombeo, el cual se ajustará de acuerdo con los niveles máximo y mínimo de aguas en el río Cauca, de modo que se garantice el ingreso permanente de caudales y que la estación de bombeo quede protegida contra las crecientes del río.

La captación estará provista de tres bombas sumergibles, con una capacidad nominal de 125 l/s cada una y una cabeza de diseño de 18 mca, aproximadamente, las cuales operaran dos en paralelo y una de reserva. Desde la captación se conduce el agua cruda a un desarenador compuesto por tres cámaras de sedimentación (véase la Figura 3.310, Figura 3.311 y el plano 0010368-MQC-AC-060 del Anexo_3_10_Redes_servicios).

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Dos en operación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presión nominal (mca)</td>
<td>250</td>
</tr>
<tr>
<td>Caudal (l/s)</td>
<td>25</td>
</tr>
<tr>
<td>Potencia (HP)</td>
<td>225</td>
</tr>
<tr>
<td>Diámetro de succión (pulgadas)</td>
<td>14</td>
</tr>
<tr>
<td>Diámetro de descarga (pulgadas)</td>
<td>12</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019
Las características principales de los equipos de captación a partir del año 2 de construcción se presentan a continuación.

Tabla 3.190 Características de los equipos de captación en construcción y operación

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Tipo de bombas</th>
<th>Cantidad</th>
<th>Presión nominal (mca)</th>
<th>Caudal (l/s)</th>
<th>Potencia (HP)</th>
<th>Velocidad de rotación (rpm)</th>
<th>Frecuencia (Hz)</th>
<th>Diámetro de succión (pulgadas)</th>
<th>Diámetro de descarga (pulgadas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumergible</td>
<td>Dos en operación y una en "stand by"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>125</td>
<td>13,5</td>
<td>1750</td>
<td>60</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018

Desde el desarenador se bombará hacia la primera estación de bombeo donde descarga en un tanque de 75 m³ aproximadamente, que a su vez es bombeado hacia la segunda estación de bombeo. Este bombeo se repite en cuatro estaciones ubicadas en serie hasta llegar al tanque de almacenamiento de agua cruda, ubicado en la cota 1.070 msnm en la etapa de operación.

La capacidad del tanque de almacenamiento de agua cruda en la mina es de 336 m³ para una reserva de agua equivalente a 48 horas y la reserva del sistema contra incendio es de 700 m³, para un total de almacenamiento de 1.036 m³ ubicados en la cota X=1.151.257 Y=1.132.400.

Cada estación de bombeo estará ubicada en caseta y serán bombeos en serie que contará con tres bombas centrífugas de carcasa partida, con una capacidad nominal de 125 l/s cada una y una cabeza de diseño de 85 mca, aproximadamente, las cuales operaran dos en forma paralela y una de reserva. La disposición es típica para todas las estaciones (Véase la Figura 3.312).
Las características principales de los equipos de las estaciones de bombeo de impulsión desde el desarenador hasta el tanque de almacenamiento de agua en la mina se presentan a continuación (véase la Tabla 3.191).

<table>
<thead>
<tr>
<th>Características</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de bombas</td>
<td>Centrífuga horizontal de carcasa partida</td>
</tr>
<tr>
<td>Cantidad</td>
<td>Dos en operación y una en “stand by”</td>
</tr>
<tr>
<td>Presión nominal (mca)</td>
<td>85</td>
</tr>
<tr>
<td>Caudal (l/s)</td>
<td>125</td>
</tr>
<tr>
<td>Potencia (HP)</td>
<td>225</td>
</tr>
<tr>
<td>Velocidad de rotación (rpm)</td>
<td>1750</td>
</tr>
<tr>
<td>Frecuencia (Hz)</td>
<td>60</td>
</tr>
<tr>
<td>Diámetro de succión (pulgadas)</td>
<td>10</td>
</tr>
<tr>
<td>Diámetro de descarga (pulgadas)</td>
<td>10</td>
</tr>
<tr>
<td>NSPHR (m)</td>
<td>3,3</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018

La planta general del sistema de acueducto y las estaciones de bombeo se presenta en los planos 0010368-MQC-AC-040 y 0010368-MQC-AC-050 (véase el Anexo_3_10_Redes_servicios).

Para conducir el agua cruda desde el río Cauca a los tanques de almacenamiento, tanto para la etapa de construcción como de operación, se utilizará la misma tubería de polietileno PN 16 de 630 mm.
3.3.8.1.2.8.1.1.3 Descripción del sistema de acueducto parte alta o zona superficial sobre la montaña

En esta zona se requiere agua en la etapa de construcción para los equipos de construcción de los pozos de ventilación ubicados en las plataformas A, B, C y D. El agua para consumo de los operarios de los equipos será suministrada en botellones de agua potable y se utilizarán baños portátiles para el servicio sanitario y de aseo. El agua cruda para refrigeración de los equipos de construcción puede ser recirculada en su gran mayoría y tendrá un caudal permanente para reposición de pérdidas.

Para el sistema de refrigeración se contará en cada plataforma con un tanque de almacenamiento de agua cruda de 25 m3, para un total de 100 m3. Para el llenado inicial de cada tanque se requiere un tiempo de bombeo de aproximadamente siete horas. En la zona superficial sobre la montaña (parte alta) para la etapa de construcción este recurso será solicitado en las mismas coordenadas de una concesión que actualmente está autorizada a Minera de Cobre Quebradona S.A. Colombia, denominada Chaquiro (en la Q. La Fea), y la cual está ubicada cerca a las plataformas para los pozos de ventilación en la coordenada X= 1.148.354 y Y= 1.127.355, y aporta un caudal total de 1,05 l/s. El agua será conducida a los tanques de almacenamiento en tubería de polietileno de alta densidad de 160 mm PN 16 (véanse los planos 0010368-MQC-AC-080, 0010368-MQC-AC-090 y 0010368-MQC-AC-100, del Anexo_3_10_Redes_servicios).

En la etapa de construcción se tendrá 30 operarios en cada plataforma, para un total de 120 personas, en tanto que para la etapa de operación solo funcionará una caseta de vigilancia. En todos los casos el suministro de agua para uso doméstico se hará por medio de botellones y se utilizarán baños móviles.

3.3.8.1.2.8.1.2 Plantas de tratamiento

3.3.8.1.2.8.1.2.1 Planta de tratamiento de agua industrial (PTAI)

Se instalará una única planta de tratamiento de agua industrial (PTAI) que se utilizará en las etapas de construcción y montaje y operación del proyecto. Esta planta se utilizará para el tratamiento de agua requerida para la construcción de los túneles de acceso a la mina subterránea, agua para la planta de concretos, planta de beneficio, entre otras actividades de construcción y operación.

El caudal a tratar en la etapa de construcción es de 6,08 l/s y se tendrán dos tanques de almacenamiento de 25 m3 para la reposición de agua causada por las pérdidas en el sistema de refrigeración de los equipos.

En la etapa de operación el caudal de agua cruda requerido para uso no doméstico que se debe tratar en la Planta de tratamiento de aguas industriales, será de 64,122 l/s.

Tabla 3.192 Requerimientos de tratamiento de agua no doméstica para la etapa de construcción

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Caudal estimado a tratar (Q_{max}) (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta concreto para construcción de edificaciones operación</td>
<td>2,08</td>
</tr>
<tr>
<td>Construcción de los túneles de acceso</td>
<td>4,00</td>
</tr>
<tr>
<td>Total de agua a tratar en PTAI en construcción</td>
<td>6,08</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018
Requerimientos de tratamiento de agua no doméstica para la etapa de Operación

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Caudal estimado a tratar (Q_{\text{max}}) (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta de beneficio</td>
<td>28,00</td>
</tr>
<tr>
<td>Mina subterránea</td>
<td>34,00</td>
</tr>
<tr>
<td>Planta de concretos</td>
<td>2,08</td>
</tr>
<tr>
<td>Laboratorio</td>
<td>0,042</td>
</tr>
<tr>
<td>Total de agua a tratar</td>
<td>64,122</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018

Los procesos de la PTAI serán floculación, sedimentación, filtros de arena y filtros de carbón activado y cloración según se requiera. El diseño de esta planta se presenta en el Anexo 3_10 Redes servicios plano 0010368-MQC-AL-110, diferenciado las unidades requeridas en la etapa de construcción y operación del proyecto.

La PTAI se localizará en las coordenadas X: 1.152.349 Y: 1.131.956, en la cota 1.060msnm.

3.3.8.1.2.8.1.2.2 Planta potabilizadora de agua (PTAP)

Se instalará una única planta de tratamiento de agua potable para abastecer la demanda de uso doméstico del Proyecto en las diferentes etapas. La PTAP se localizará en las coordenadas X: 1.151.257 Y: 1.132.397, en la cota 1.060 msnm; el agua que alimentará la planta será conducida por una tubería de polietileno PE 100 PN 20 Φ 200 mm proveniente de los tanques de agua cruda (coordeandand: X: 1.151.618 Y: 1.132.335); de allí se conducirá el agua potable hacia los tanques de almacenamiento ubicados cerca de la planta de tratamiento para distribuir el agua a las zonas de Campamento, Área integrada de operaciones (AIO), planta de beneficio, plataformas de explosivos, portería y se lleva agua por carro tanque a la mina subterránea y la parte alta de la mina.

El caudal de diseño de la planta potabilizadora será de 8 l/s; estará conformada por cuatro módulos, cada uno con capacidad para tratar 2 l/s. Acorde con los resultados de los análisis de agua realizados en el río Cauca, es necesario realizar un tratamiento convencional al agua cruda ya que no se evidenció presencia de metales pesados.

El detalle de la planta de tratamiento se muestra en el Anexo 3_10 Redes servicios plano 0010368-MQC-AL-055.

3.3.8.1.2.8.1.2.3 Resumen de las plantas de tratamiento

En la Tabla 3.194 se indican los datos principales de las plantas de tratamiento PTAP y PTAI del Proyecto.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Coordenada</th>
<th>Cota</th>
<th>Caudal durante construcción (l/s)</th>
<th>Caudal durante operación (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTAP</td>
<td>1.151.257</td>
<td>1.132.397</td>
<td>1.063</td>
<td>8,00</td>
</tr>
<tr>
<td>PTAI</td>
<td>1.152.349</td>
<td>1.131.956</td>
<td>1.064</td>
<td>6,08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64,122</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018
3.3.8.1.2.8.1.3 Tanques de almacenamiento de agua cruda

Los tanques de almacenamiento de agua cruda son dos tanques de 500 m3, cada uno, se utilizarán para el sistema de hidrantes de las red contra incendio del AIO, planta de beneficio y suministro de agua cruda a la planta de agua potable (PTAP) y a la planta de tratamiento de agua para los procesos industriales (PTAI) que suministra agua para la planta de beneficio, al área integrada de operaciones (AIO) y planta de concreto y agregados y suministro de agua cruda para las diferentes instalaciones de la mina y riego para humectación de vías y plataformas.

3.3.8.1.2.8.1.4 Tanques de almacenamiento de agua potable

Teniendo en cuenta la reserva para el sistema contra-incendio para el campamento, se proyectó un almacenamiento total de 2.000 m3, el cual será provisto mediante cuatro tanques, cada uno con una capacidad de 500 m3; estos tanques se ubicaron en las coordenadas X: 1.151.257 Y: 1.132.397, en la cota 1.060 msnm, aledaños a la PTAP, y cercanos al canal norte.

3.3.8.1.2.8.1.5 Redes de distribución

3.3.8.1.2.8.1.5.1 Redes de distribución de agua doméstica (Campamento)

La plataforma del Campamento estará en la cota 1.015 msnm. La red de distribución primaria estará conformada por tuberías con un diámetro de 160 mm y la red secundaria por tuberías de 110 mm de diámetro, a través de la cual se suministrará el caudal requerido en cada edificio (véase el plano 0010368-MQC-AC-070 del Anexo_3_10_Redes_servicios).

3.3.8.1.2.8.1.5.2 Redes de distribución de agua no doméstica

Desde la plataforma de los tanques de agua cruda se llevará agua a la planta de beneficio, Área integrada de operaciones (AIO), planta de concretos e infraestructura de la mina y la mina subterránea, mediante tuberías de polietileno de alta densidad desde 100 a 300 mm PN 16 (véase el plano 0010368-MQC-AC-070 del Anexo_3_10_Redes_servicios).

3.3.8.1.2.8.1.6 Sistema de aguas residuales

La construcción y operación del proyecto generará vertimientos de tipo doméstico y no doméstico (industrial). En el caso de la parte baja estos serán descargados al río Cauca. En la zona superficial sobre la montaña (parte alta) no se generarán vertimientos ya que se utilizarán baños, tanques y demás instalaciones portátiles para los servicios requeridos por el personal (véase el manejo general de las aguas residuales (véanse los planos 0010368-MQC-AC-010, 0010368-MQC-AC-110 y 0010368-MQC-AL-010 del Anexo_3_10_Redes_servicios)).

- Redes de recolección de aguas residuales domésticas (Campamento)

El sistema de recolección de aguas constará de tuberías de PVC de 8” de diámetro que conducirán las aguas servidas a la PTARD, estas provendrán de las diferentes zonas de la mina las cuales se indican en la Tabla 3.195. La conducción del efluente tratado se realizará mediante una tubería de características similares, hasta su punto de vertimiento sobre el río Cauca.
La PTARD se ubicará en el mismo sitio para todas las etapas, allí el agua tratada y se conducirá por una tubería de 8” hasta su descarga al río Cauca.

- Vertimientos de agua residual doméstica

Durante cada una de las etapas del Proyecto se generarán aguas residuales domésticas provenientes de baños, duchas, casino, y campamento de la mina, las cuales se caracterizan por tener mayor cantidad de carga orgánica y grasas y aceites.

Para la zona superficial en el valle (parte baja), el caudal de aguas residuales domésticas fue calculado considerando un coeficiente de retorno del 85%, aplicado sobre la demanda máxima promedio diaria requerida, resultando de esta manera en un caudal de vertimiento para la etapa de construcción de 6,506 l/s, descargando al río Cauca, en una tubería de 8” la cual se utilizará para la etapa de construcción y cierre (véanse los planos 0010368-MQC-AL-020 y 0010368-MQC-AL-090 del Anexo_3_10_Redes_servicios).

En la etapa de operación, aplicando el mismo criterio de afectar por el coeficiente de retorno el caudal máximo promedio diario de consumo, se obtuvo que el caudal total de descarga al río Cauca es de 2,171 l/s. Este caudal incluye el campamento y las aguas residuales domésticas generadas en la infraestructura de la mina, AIO, planta de concreto, planta de beneficio, mina subterránea y plataformas, descargando al río Cauca, en una tubería de 8” la cual se utilizará para la etapa de construcción y cierre. (véanse los planos 0010368-MQC-AL-010 y 0010368-MQC-AL-090 del Anexo_3_10_Redes_servicios).

En la etapa de cierre el caudal total de descarga al río Cauca será de 1,328 l/s, provenientes de la operación del campamento y la portería.

<table>
<thead>
<tr>
<th>Etapa</th>
<th>Zona atendida</th>
<th>Caudal l/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construcción</td>
<td>Campamento</td>
<td>6,476</td>
</tr>
<tr>
<td></td>
<td>Portería</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>Plataforma túneles</td>
<td>0,028</td>
</tr>
<tr>
<td></td>
<td>Total agua residual doméstica en Construcción</td>
<td>6,506</td>
</tr>
<tr>
<td>Operación</td>
<td>Campamento</td>
<td>1,265</td>
</tr>
<tr>
<td></td>
<td>Polvorín</td>
<td>0,002</td>
</tr>
<tr>
<td></td>
<td>Portería y plataformas</td>
<td>0,015</td>
</tr>
<tr>
<td></td>
<td>Área Integrada de Operaciones- AIO</td>
<td>0,209</td>
</tr>
<tr>
<td></td>
<td>Laboratorio</td>
<td>0,006</td>
</tr>
<tr>
<td></td>
<td>Estación de combustible</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>Planta de concreto y trituracion</td>
<td>0,006</td>
</tr>
<tr>
<td></td>
<td>Plataforma túneles</td>
<td>0,002</td>
</tr>
<tr>
<td></td>
<td>Planta de beneficio</td>
<td>0,510</td>
</tr>
<tr>
<td></td>
<td>Mina subterránea</td>
<td>0,153</td>
</tr>
<tr>
<td></td>
<td>Total agua residual doméstica en Operación</td>
<td>2,171</td>
</tr>
<tr>
<td>Cierre</td>
<td>Campamento</td>
<td>1,313</td>
</tr>
<tr>
<td></td>
<td>Portería</td>
<td>0,015</td>
</tr>
<tr>
<td></td>
<td>Total agua residual doméstica en Cierre</td>
<td>1,328</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018

El sistema de aguas residuales domésticas de la zona superficial en el valle (parte baja) en las etapas de construcción, operación y cierre está conformado por una planta...
de tratamiento aeróbica – PTARD, que atiende todas las instalaciones de la parte baja, ubicada según se indica en la Figura 3.313 (véanse los planos 0010368-MQC-AC-110 y 0010368-MQC-AL-010 del Anexo_3_10_Redes_servicios).

- Vertimientos de agua residual no doméstica (industrial)

En el Proyecto Minera de Cobre Quebradona las aguas residuales no domésticas (industriales) están constituidas por las siguientes clases de flujos, tanto de contacto como de no contacto:

- **Aguas residuales de distintas actividades** del proyecto (preparación de concretos, excavaciones subterráneas, lavado de vehículos, área integrada de operaciones – AIO, entre otras)

- **Aguas de escorrentía** provenientes de Zonas de disposición de material esteril – ZODMEs, Depósito de relaves filtrados, Pila de suelo, depósito de pirita, entre otros,
- **Aguas de infiltración** resultantes durante la construcción de los túneles y, posteriormente, durante la explotación del yacimiento.

Los caudales que se considerarán en adelante fueron estimados de la siguiente forma:

- **Aguas residuales de distintas actividades del Proyecto:** se aplicó un factor de disminución del 15% sobre el total de agua utilizada en la actividad generadora de vertimientos,

- **Aguas de escorrentía:** se tomó como base el estudio “Diseño hidráulico de estructuras de manejo de agua. Proyecto Minera de Cobre Quebradona” (véase el Anexo 3_11) y “Balance de Aguas. PROYECTO MINERA DE COBRE QUEBRADONA. DEPÓSITO DE RELAVES FILTRADOS Y MANEJO INTEGRAL DE AGUAS” (véase el Anexo_3_11).

- **Aguas de infiltración:** se tomó como base el estudio “REPORT. Quebradona Project. Hydrogeological Assessment, Golder Associates Colombia S.A.S” (véase el Anexo_3_4).

El caudal de vertimiento de aguas residuales no domésticas en la etapa de construcción, en la parte baja de la mina, se genera en distintas instalaciones del Proyecto, tal como se indica en la Tabla 3.196.

Tabla 3.196 Zonas generadoras de vertimientos de agua no doméstica y sistemas de tratamiento. Etapa de construcción

<table>
<thead>
<tr>
<th>Zona generadora de vertimiento</th>
<th>Nombre del sistema de tratamiento</th>
<th>Clase de tratamiento</th>
<th>Caudal que será tratado (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta de concreto y trituración</td>
<td>PTARND 5</td>
<td>Sedimentación</td>
<td>1,770</td>
</tr>
<tr>
<td>Desarrollo de túneles (materiales AGP), incluye aguas de contacto</td>
<td>PTARND 1</td>
<td>Sedimentación, remoción de grasas (4 años de construcción) y neutralización (a partir del año 3)</td>
<td>49,491</td>
</tr>
<tr>
<td>Stock de mineral (Depósito de pirita)</td>
<td>PTARND1 (Poza colectora 1)</td>
<td>Sedimentación y neutralización</td>
<td>198,610</td>
</tr>
<tr>
<td>ZODME C</td>
<td>Sedimentador 1</td>
<td>Sedimentación</td>
<td>44,000</td>
</tr>
<tr>
<td>Depósito de relaves filtrados</td>
<td>Sedimentador 2 (a partir de año 4)</td>
<td>Sedimentación</td>
<td>29,900</td>
</tr>
<tr>
<td>ZODME A</td>
<td>Sedimentador 3</td>
<td>Sedimentación</td>
<td>18,000</td>
</tr>
<tr>
<td>ZODME A</td>
<td>Sedimentador 4</td>
<td>Sedimentación</td>
<td>7,200</td>
</tr>
<tr>
<td>Depósito de relaves filtrados</td>
<td>Sedimentador 5</td>
<td>Sedimentación</td>
<td>25,700</td>
</tr>
<tr>
<td>Pila de suelo</td>
<td>Sedimentador 6</td>
<td>Sedimentación</td>
<td>33,200</td>
</tr>
<tr>
<td>Total vertimiento de agua no doméstica</td>
<td></td>
<td></td>
<td>407,871</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018

Los vertimientos de aguas no domésticas, resultantes de la planta de concreto y trituración, serán los excesos de la preparación del concreto, de lavado de equipos y de la trituradora, los cuales se estiman en un 0,85% del agua requerida por la planta.

En la construcción de los túneles los vertimientos no domésticos serán una mezcla de aguas con sedimentos de roca, con aguas de infiltración del túnel. El caudal de infiltración de los túneles se obtuvo a partir del modelo numérico hidrogeológico.
La estimación del caudal proveniente de los sedimentadores 1, 2, 3, 4 y 6 se describe en el apartado de manejo de la zona de disposición de relaves numeral 3.6.2.3.5.

El trazado de las líneas de conducción de aguas residuales (domésticas y no domésticas), que llevan el agua tratada desde cada zona hasta el río Cauca se indican en el plano 0010368-MQC-AL-010 del Anexo_3_10_Redes_servicios).

El caudal de vertimiento de aguas residuales no domésticas en la etapa de operación en la zona superficial en el valle (parte baja), se genera en distintas zonas del Proyecto, tal como se indica en la Tabla 3.197.

Tabla 3.197 Zonas generadoras de vertimientos de agua no doméstica y sistemas de tratamiento. Etapa de operación

<table>
<thead>
<tr>
<th>Zonas a atender</th>
<th>Sistema de tratamiento</th>
<th>Tratamiento antes de vertimiento</th>
<th>Caudal que será tratado (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIO</td>
<td>PTARND 2</td>
<td>Sedimentación y remoción de grasas</td>
<td>0,844</td>
</tr>
<tr>
<td>Lavado de vehículos minero</td>
<td>PTARND 3</td>
<td>Sedimentación, remoción de grasas</td>
<td>3,630</td>
</tr>
<tr>
<td>Estación de combustible</td>
<td>PTARND 4</td>
<td>Dique de contención de derrames y remoción de grasas</td>
<td>0,037</td>
</tr>
<tr>
<td>Planta de concreto y trituracion</td>
<td>PTARND 5</td>
<td>Sedimentación</td>
<td>1,770</td>
</tr>
<tr>
<td>Plataforma túneles</td>
<td>PTARND 1</td>
<td>Sedimentación, remoción de grasas y neutralización</td>
<td>0,246</td>
</tr>
<tr>
<td>Depósito de pirita (Pozas colectoras 1, 2, 3, 4)</td>
<td>PTARND 1</td>
<td>Sedimentación, remoción de grasas y neutralización</td>
<td>198,61</td>
</tr>
<tr>
<td>Mina subterránea</td>
<td>PTARND 1</td>
<td>Sedimentación, remoción de grasas y neutralización</td>
<td>119,206</td>
</tr>
<tr>
<td>ZODME C</td>
<td>Sedimentador 1</td>
<td>Sedimentación</td>
<td>44,300</td>
</tr>
<tr>
<td>Depósito de relaves filtrados</td>
<td>Sedimentador 2</td>
<td>Sedimentación</td>
<td>53,200</td>
</tr>
<tr>
<td>ZODME A</td>
<td>Sedimentador 3</td>
<td>Sedimentación</td>
<td>18,200</td>
</tr>
<tr>
<td>ZODME A</td>
<td>Sedimentador 4</td>
<td>Sedimentación</td>
<td>7,300</td>
</tr>
<tr>
<td>Depósito de relaves filtrados</td>
<td>Sedimentador 5</td>
<td>Sedimentación</td>
<td>41,700</td>
</tr>
<tr>
<td>Pla de suelo</td>
<td>Sedimentador 6</td>
<td>Sedimentación</td>
<td>33,400</td>
</tr>
<tr>
<td>Depósito relaves filtrados</td>
<td>Sedimentador 7</td>
<td>Sedimentación</td>
<td>68,300</td>
</tr>
<tr>
<td>Total vertimiento de agua no doméstica</td>
<td></td>
<td></td>
<td>590,743</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018

En la mina subterránea los vertimientos de agua no doméstica están compuestos por una mezcla de agua rica en sedimentos (resultante de los tratamientos en la roca), con aguas de contacto provenientes de la infiltración de los túneles, y de las áreas de explotación. Estos caudales se obtienen del modelo numérico hidrogeológico.

Los sistemas de tratamiento de la planta de concreto y trituración, AIO, lavado de vehículos mineros, estación de combustible, se describen mas adelante, en este numeral.
El trazado de las líneas de conducción que llevan el agua tratada desde cada zona hasta el río Cauca se indica en el plano 0010368-MQC-AL-010 y 0010368-MQC-AL-090 del Anexo_3_10_Redes_servicios).

Durante la etapa de cierre y poscierre los vertimientos de agua no doméstica están asociados principalmente a los flujos de agua de infiltración provenientes del antiguo socavón de la mina.

Durante los primeros dos años del cierre la PTARND2 estará en funcionamiento para atender todas las actividades del Área integrada de operaciones (AIO) y hasta que se finalice el desmantelamiento de las instalaciones de la mina. Simultáneamente, y durante el primer año de cierre, la PTARND1 realizará la neutralización de las aguas de infiltración provenientes del antiguo socavón. Posteriormente, se diseñará un sistema de neutralización pasiva, utilizando algunos de los sedimentadores los cuales serán adecuados con lechos de roca que garanticen un tiempo de retención suficiente para neutralizar el caudal proveniente del área de la antigua mina.

En el Área integrada de operaciones (AIO) se generará agua residual no doméstica en la zona de mantenimiento de vehículos, estación de combustible, lavado de camiones, bodegas de cambio de neumáticos, polvorín y planta de concreto y agregados, descargando al río Cauca.

En la zona de la parte alta, para la etapa de operación, no se prevén actividades que generen descargas de aguas residuales no domésticas.

Tabla 3.198 Zonas generadoras de vertimientos de agua no doméstica y sistemas de tratamiento. Etapa de cierre

<table>
<thead>
<tr>
<th>Zona generadora de vertimiento</th>
<th>Nombre del sistema de tratamiento</th>
<th>Clase de tratamiento</th>
<th>Caudal que será tratado (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área integrada de operaciones (AIO)</td>
<td>PTARND 2</td>
<td>Sedimentación y remoción de grasas</td>
<td>0,840</td>
</tr>
<tr>
<td>Excavaciones subterráneas</td>
<td>PTARND 1</td>
<td>Tratamiento pasivo</td>
<td>111,930</td>
</tr>
<tr>
<td>Total vertimiento de agua no doméstica</td>
<td></td>
<td></td>
<td>112,770</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

En la Tabla 3.199 se presenta una síntesis de los caudales de vertimientos que serán generados por el proyecto en sus diferentes etapas.

Tabla 3.199 Resumen de vertimientos de tipo doméstico y no doméstico, durante las etapas de construcción, operación y cierre

<table>
<thead>
<tr>
<th>Item</th>
<th>Etapa / Clase de vertimiento</th>
<th>Fuente receptora</th>
<th>Coordenadas Magna Sirgas Oeste</th>
<th>Caudal vertimiento (l/s)</th>
<th>Duración de vertimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>En construcción</td>
<td>V1-CO Doméstico</td>
<td>Río Cauca</td>
<td>X: 1.154.489 Y: 1.135.142</td>
<td>6,506</td>
<td>4 años</td>
</tr>
<tr>
<td></td>
<td>V2-CO No doméstico</td>
<td>Río Cauca</td>
<td>X: 1.154.487 Y: 1.135.144</td>
<td>407,871</td>
<td>4 años</td>
</tr>
<tr>
<td>En operación</td>
<td>V1-OP Doméstico</td>
<td>Río Cauca</td>
<td>X: 1.154.489 Y: 1.135.142</td>
<td>2,171</td>
<td>21 años</td>
</tr>
</tbody>
</table>
La Planta de Tratamiento de Aguas Residuales domésticas (PTARD) será de tipo aeróbica para tratar las aguas residuales domésticas en la zona de la portería y plataformas.

El sistema de tratamiento para las aguas residuales domésticas de la parte baja de la mina, provenientes de la portería, campamento, planta de beneficio y plataforma de explosivos, se proyectó para atender los caudales máximos promedio diarios requeridos, afectados por un coeficiente de retorno de 0,85, como se indica en la Tabla 3.200.

Tabla 3.200 Caudal de diseño de la PTARD para construcción, operación y cierre

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Número de personas a atender</th>
<th>Caudal de diseño (m³/día)</th>
<th>Caudal de diseño (l/s)</th>
<th>Tipo de sistema de tratamiento</th>
<th>Etapa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portería y plataformas</td>
<td>2,190</td>
<td>562,15</td>
<td>6,506</td>
<td>Sistema aerobio</td>
<td>Construcción</td>
</tr>
<tr>
<td>Portería y plataformas 1 y 2 Campamento, Área integrada de operaciones (AIO), planta de concreto y trituración, laboratorio, estación de combustible, planta de beneficio, plataforma de explosivos operación y planta emulsión, mina subterránea, Plataforma 5</td>
<td>1,014</td>
<td>187,596</td>
<td>2,171</td>
<td>Sistema aerobio</td>
<td>Operación</td>
</tr>
<tr>
<td>Campamento y portería</td>
<td>450</td>
<td>114,773</td>
<td>1,328</td>
<td>Sistema aerobio</td>
<td>Cierre</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018

La planta de tratamiento de aguas residuales domésticas PTARD, estará compuesta por ocho módulos. Cada módulo tiene capacidad para tratar un caudal de 1,0 l/s.

Los elementos de la PTARD serán los siguientes (Véase el plano 0010368-MQC-AL-030 del Anexo_3_10_Redes_servicios):

- Caja con reja de retención de sólidos: Es una caja en concreto con rejilla inclinada con aberturas de tamaño uniforme utilizada para la retención de sólidos gruesos existentes en el agua residual. Los elementos separadores pueden estar constituidos por barras de acero o placas de acero inoxidable perforadas de forma rectangular u orificios circulares y serán de limpieza manual, con separación entre
barras de 15 mm, como mínimo, el material de construcción puede ser concreto o fibra de vidrio.

- Tanque de homogenización: A este tanque llega el agua residual proveniente del Campamento después de pasar por la caja de retención de sólidos o zona de cribado donde allí se regula el caudal de salida a los módulos de sedimentación en el cual se realizará el proceso aerobio.

- Reactor aerobio: Tiene como objeto retener las aguas por un período entre 18 a 24 horas e inyectar oxígeno atmosférico, con el fin de generar la mezcla completa y aireación requerida OD=2 mg/l al interior del reactor, digerir la materia orgánica y almacenar los sólidos digeridos durante el período de retención para luego ser recirculados al tanque de aireación; de esta manera se logra un clarificado del efluente antes de ser descargado para su eliminación final.

- Módulos de sedimentación secundaria: Comprende una cámara de sedimentación y digestión aerobia, una cámara de clarificación y el proceso final de desinfección.

- Tanque de contacto: En donde al agua tratada se le adiciona el desinfectante para dar cumplimiento a la Resolución 0631 de 2015.

Todas las cámaras se proyectaron en tanques fabricados en poliéster reforzado con fibra de vidrio (PRFV) y van expuestos instalados sobre una losa de concreto.

En la Tabla 3.201 presentan las principales características del proceso aerobio.

<table>
<thead>
<tr>
<th>Parámetros por evaluar</th>
<th>Sistema Aerobio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eficiencia de tratamiento</td>
<td>Se alcanzan eficiencias comprendidas entre el 95% y el 97%</td>
</tr>
<tr>
<td>Requerimiento de área para su instalación</td>
<td>Requiere poca área para su instalación</td>
</tr>
<tr>
<td>Generación de olores</td>
<td>No hay generación de olores</td>
</tr>
<tr>
<td>Requerimientos de energía eléctrica para funcionamiento</td>
<td>Requiere energía eléctrica para su funcionamiento.</td>
</tr>
<tr>
<td>Producción de lodos</td>
<td>Alta producción de lodos</td>
</tr>
<tr>
<td>Operación</td>
<td>Requiere la verificación de parámetros de operación como mínimo dos veces a la semana, la verificación la puede realizar una persona con una educación básica.</td>
</tr>
<tr>
<td>Nivel freático alto</td>
<td>El sistema se instala semienterrado</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018

El sistema aerobio según la Tabla 3.201 presenta mayores ventajas y garantiza el cumplimiento de los parámetros exigidos en la Resolución 0631 de 2015.

- Sistemas de tratamiento de las aguas no domésticas (industriales)

Las aguas residuales no domésticas que se generan en operación en el Área integrada de operaciones (AIO), y que provienen de las zonas que se indican a continuación, se conducen a sedimentador y a trampa de grasas:

- Bodega de neumáticos
- Taller de servicio
- Estación de combustible
- Taller de mantenimiento
- Áreas de aceites y lubricantes
- Subestación
- Laboratorio
- Planta de concreto

Estas aguas son tratadas y se descargan al sistema de alcantarillado de aguas residuales que conduce al Río Cauca (véanse los planos 0010368-MQC-AC-010 y 0010368-MQC-AL-020 del Anexo_3_10_Redes_servicios).

En caso de lluvias intensas, que superen la capacidad del sistema de tratamiento, los excedentes serán descargados igualmente a la red de drenaje de aguas lluvias.

El sistema de lavado de vehículos consta de un sistema de decantación, filtración y remoción de grasas Oil Skimmer, que permite la reutilización del 100% agua para el lavado. Se espera que no haya descargas aunque podría requerirse la reposición de aproximadamente un 25% del volumen de agua. En caso de generarse alguna descarga, se conducirá a la trampa de grasas.

- **Trampas de grasas para aguas residuales no domésticas.** Área integrada de operaciones (AIO) - PTARND 2 y PTARND 4

El sistema para el tratamiento de las aguas no domésticas contaminadas con aceites y combustibles se proyecta en concreto reforzado y contará con dos tabiques que retendrán los aceites y grasas en suspensión, los cuales serán removidos mediante tuberías perforadas que se encuentran a lo ancho de la trampa de grasas y paralelas a los tabiques. Las tuberías perforadas estarán conectadas a un tanque donde se almacenarán las grasas y aceites que serán removidos por un *Oil Skimmer* (véase la Figura 3.315), ubicado en la parte superior del tanque, que tendrá como finalidad evacuar los aceites y grasas acumulados, a un depósito móvil, que se podrá transportar al sitio de disposición o tratamiento de dichos residuos.

- Trampa de grasas

El caudal producido se afectará por un factor de seguridad FS=1,5 para los diseños de las estructuras, el cual se estima con la siguiente expresión:

\[
Q_d = Q \times FS
\]

\[
Q_d = 0,844 \times 1,5 = 1,266 \text{ l/s}
\]

Para la PTARND 4 que es requerida para la estación de combustible se asumen las mismas dimensiones de la PTARND2, por ser un caudal pequeño de 0,037 l/s para garantizar dimensiones mínimas construibles.

Para efectos del diseño de la trampa de grasas se asume un tiempo de retención de 15 min. Normalmente se asumen tiempos de retención entre 15 y 30 min (Romero 2005. Tratamientos de Aguas Residuales) para obtener altas eficiencias en la remoción.

\[
Q_d = \text{Volumen / tiempo de detención}
\]

Volumen =Qd * Td = 0,00127 m³ * 15 min x (60 s/1 min) = 1,134 m³

Volumen = L*h*a
Se asumirán unas dimensiones así:

Alto: 0,75 m Ancho: 1,00 m Largo: 2,00 m

El detalle de la trampa de grasas se indica en la figura Figura 3.314.

La capacidad de la trampa de grasas es de 1,27 l/s que corresponde al caudal esperado de aguas no domésticas, que afectan las áreas de manejo de aceites y combustibles. La trampa de grasas se dimensionó para un tiempo de detención de 15 min y su localización se muestra en 0010368-MQC-AL-030 del Anexo_3_10_redes_servicios.

Figura 3.314 PTARND2 y PTARND4. Trampa de grasas aguas residuales no domésticas AIO
Fuente: Integral, 2018
- **Sistema de tratamiento zona lavado de camiones mineros** - PTARND 3

El lavadero de los camiones mineros comprende un módulo de lavado que se encuentra a nivel del piso del Área integrada de operaciones (AIO). El sistema para el lavado de los camiones consiste en cañones a presión distribuidos longitudinalmente, con dos cañones ubicados en el nivel 1 y tres en el nivel 2.

El módulo de lavado cuenta con un sistema de drenaje para evacuar el agua, y conducirla hacia el sistema de recirculación, compuesto por unidades de tratamiento que depurarán las aguas de lavado para su posterior reutilización. En los numerales siguientes se describen estas unidades de tratamiento.

- **Sistema de desarenado**

El desarenador removerá los materiales gruesos y algunos finos que transporta el agua de lavado con el fin de evitar la entrada de partículas indeseables que puedan colmar rápidamente el sistema de filtrado. El desarenado está compuesto por dos módulos, cada uno con una plataforma de acceso que permitirá el ingreso de maquinaria a los para su mantenimiento; sus dimensiones se estimaron asumiendo un diámetro de partícula de 0,0015 cm de diámetro; el detalle del desarenador se indica en el plano 0010368-MQC-AL-030 (véase el Anexo_3_10_Redes_servicios).

- **Sistema de remoción de grasas y aceites**

Luego de pasar por el desarenador, el agua llega a un tanque que contará con un sistema de separación de grasas y aceites tipo OIL SKIMMER, consistente en un tubo que forma un aro cerrado y que está compuesto de materiales que facilitan la adherencia del aceite a sus paredes; el tubo se mueve lentamente sobre y alrededor de los residuos flotantes atrayendo únicamente los aceites para luego pasar por unos raspadores que los eliminan; el ciclo se repite nuevamente volviendo a la superficie del agua para recoger más aceites.

- **Sistema de filtración**

La filtración se efectúa mediante un sistema a presión que elimina las partículas que no se removieron en el desarenador, con el fin de evitar daños o deterioro en el sistema
de bombeo que presuriza la red de agua que alimenta los cañones para el lavado de los vehículos mineros.

- **Sistema de contención de combustible**

El sistema de contención de combustibles está conformado por unos diques perimetrales en concreto ubicados alrededor de los tanques de almacenamiento de combustible, con geotextiles impermeables en el subsuelo como puede apreciarse en los planos. Este sistema impide que se derrame el combustible por fuera del área confinada por el dique de protección, ante eventuales fugas o daños en los tanques. Adicionalmente se cuenta con drenajes de evacuación de aguas lluvias y válvulas que controlan la hermeticidad del sistema, las cuales deben permanecer cerradas y que solo se abrirán durante eventos de lluvia cuando sea necesario drenar el agua recolectada en el interior del dique y conducirla hacia la red de drenajes de agua lluvia, o en los eventos de pequeñas fugas o lavado de la zona de los diques y el agua se tenga que dirigir a la red de aguas no domésticas hacia la trampa de grasas.

- **Sistema de tratamiento planta de concretos** - PTARND 5

Las aguas residuales no domésticas en la planta de concretos son aguas que provienen de lavado de los equipos y las zonas donde se prepara el concreto, cuyo principal contenido son la mezcla de agua con material granular y cemento, elementos utilizados para la preparación del concreto.

Para tratar estas aguas se requiere la implementación de un canal perimetral impermeable que conduzca el agua hacia un sistema de tratamiento de sedimentación, según sea el caso, para darle un adecuado tratamiento a las aguas antes de ser vertidas a las fuentes de agua y de esta forma evitar la contaminación de estas.

Para la planta de concretos el tratamiento de las aguas no domésticas está compuesto de los siguientes elementos:

- Cárcamo recolector con rejilla
- Sedimentador
- Piscinas de sedimentación
- Tubería de descarga
- El sistema propuesto se diseñó para tratar un caudal de 2,08 l/s, caudal requerido para la planta de concretos.
- El tiempo de retención de las piscinas se consideró de mínimo 10 horas.
- Cárcamo recolector con rejilla

Su función principal es recoger las aguas de la zona de mezclado, hangares y trituradora para conducirlas al sistema de sedimentación y evitar que hojas y residuos gruesos ingresen al sistema.
El cárcamo es de concreto de sección rectangular de 0,30 m x 0,40 m y la rejilla metálica removible (véase el plano 0010368-MQC-AL-070 del Anexo_3_10_Redes_servicios).

♦ Sedimentador

La función principal del sedimentador en la zona de las mezcladoras o preparación de concretos es retener la mayor cantidad posible de arenas y gravas que se encuentra en las aguas de lavado de los equipos de la concretadora los cuales se lavaran sobre una rampa de concreto que descarga al sedimentador (Véase la Figura 3.316).

![Figura 3.316 Planta típica de sedimentador. Planta de concretos](Fuente: Integral, 2018)

El sedimentador es un tanque en concreto de 6,0 m de ancho, 8,30 m de largo y profundidad de 1,10 m, este sedimentador se compone de un módulo de sedimentación produciendo la sedimentación de las partículas más gruesas y el agua clarificada se recolecta en un canal el cual conduce el agua a las piscinas de sedimentación como se indica en la Figura 3.317.

El agua que sale del sedimentador se conducirá a una piscina de sedimentación, con capacidad para almacenar el caudal que requiere la planta trituradora para un día de operación, esto con el fin de aprovechar el agua utilizada y recircularla.

El caudal de diseño proveniente de la planta de concretos es de 1,77 l/s y está acorde con lo que se requiere en el manejo de plantas de concreto y las trituradoras.

Por lo tanto, el volumen de almacenamiento de las piscinas deberá ser como mínimo de:
La piscina que recibe directamente el agua de la planta trituradora se diseñará para que allí se sedimite gran parte de las partículas que no pasaron por el sedimentador. La relación largo ancho será de 3:1.

La relación entre la longitud efectiva/ la altura efectiva debe estar alrededor de 10.

Por lo tanto, si \(L=10 \) m y \(H=1,60 \) m para que se cumpla la relación.

Las dimensiones de las piscinas son:

Piscina de sedimentación principal de Ancho=4,50 m y Largo 13,10 H=2,00 m

Piscinas de sedimentación secundaria: Ancho =4,50 y longitud de 6,10 m y H=2,00 m.

Los detalles de la piscina de sedimentación indican en el plano 0010368-MQC-AL-070 (véase el Anexo_3_10_Redes_servicios).

- **Planta de neutralización** - PTARND1

Para el diseño se tiene los siguientes parámetros de entrada:

Caudal conforme al máximo presentado en la etapa de operación, correspondiente a 318 litros por segundo y su procedencia se indica en la Tabla 3.202.

<table>
<thead>
<tr>
<th>Afluentes</th>
<th>Valor</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudal Agua de Infiltración proveniente de la mina (Aguas Acidas)</td>
<td>119,206</td>
<td>l/s</td>
</tr>
<tr>
<td>Caudal Agua de Contacto de los depósitos de piritas (Aguas Acidas)</td>
<td>198,611</td>
<td>l/s</td>
</tr>
<tr>
<td>Caudal Agua de Escorrentía Túneles</td>
<td>0,246</td>
<td>l/s</td>
</tr>
<tr>
<td>Caudal Total PTARND ((Q_{PTARND}))</td>
<td>318,063</td>
<td>l/s</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

La PTARND1 tendrá los siguientes componentes dependiendo de la etapa del Proyecto.
♦ Etapa de construcción

Para la etapa de construcción las aguas residuales no domésticas generadas de acuerdo al modelo predictivo de calidad del agua no requiere de procesos de neutralización durante los dos primeros años, para ello se tratarían las aguas provenientes de infiltración en plataforma y túneles, las cuales son propias de las excavaciones y escorrentías de galerías o depósitos subfluviales, de acuerdo a ello se plantea un tratamiento preliminar o primario mediante sedimentador-separador de Grasas y Aceites, donde el efluente con calidad de vertimiento sería llevado luego del tratamiento hasta la descarga al río Cauca. (Ver Plano 0010368-MQC- AL-120), estas unidades serán dos módulos cada uno con una capacidad de tratar 300 l/s.

Durante la etapa de construcción, a partir del año 3 la planta de neutralización debe estar construida al 100% de su capacidad, año en el cual comienza a aparecer aguas acidas (PAC).

♦ Etapa de operación

En el año 3 y durante toda la etapa de operación y extracción del mineral se producen las aguas acidas (PAC), con las características de calidad descritas en el modelo predictivo de calidad de agua, estas aguas requieren del sistema de neutralización, precipitación y reducción de sulfatos y metales pesados, los sistemas de sedimentación y separador de grasas y aceites que se construyen desde el inicio del proyecto deben ser conectados a la entrada del sistema de tanques de homogenización para ser tratadas en la PTARND1.

Aunque el caudal varía en el tiempo el diseño de la planta de neutralización se estimó para el pico máximo reportado en el balance de agua, dicho sistema se estimó con un caudal de 318,063 l/s, por esta razón la PTARND1, se diseñó con dos módulos cada uno tendrá la capacidad de tratar 300 l/s.

♦ Etapa de cierre

Para esta fase aunque ha terminado la extracción de mineral y con el cierre de la mina dejan de producirse las aguas de contacto en los depósitos de piritas, siguen produciéndose efluentes de las infiltraciones que se generan con el cierre de la mina y presentan calidad de agua acida, la cual se espera que mejore su calidad con el pasar del tiempo; estas infiltraciones varían con el régimen hidrológico de la zona, por lo que se contará con un sistema de tratamiento de aguas residuales no domésticas acorde a dicha calidad y que cumpla con los requerimientos normativos, por lo que se plantea un tratamiento pasivo natural, el cual requiere de bajo costo operativo y de fácil y mantenimiento, por lo tanto la planta de neutralización debe desmotarse en esta etapa.

♦ Descripción del proceso de la planta de neutralización

Las aguas residuales provenientes de los procesos productivos y/o extractivos de la mina durante la fase de operación confluyen en la planta de tratamiento de la siguiente manera:
• Por gravedad de la plataforma en túneles ($Q=0.246 l/s$) estas aguas llegan a los sedimentadores y separadores de grasas y aceites para posteriormente pasar a los tanques de igualación-homogenización.

• Por bombeo proveniente de las aguas de infiltración de túneles ($Q_{max}=119,206 l/s$) estas aguas confluyen a los sedimentadores y separadores de grasas y aceites para posteriormente pasar a los tanques de igualación-homogenización.

• Por bombeo provenientes de las pozas colectoras de los depósitos de piritas ($Q_{max}=198,611 l/s$), y que llegan directamente a los tanques de igualación-homogenización, allí se debe mantener una agitación para mezcla, debido a los grandes volúmenes de agua, la mezcla se hará con inyección de aire, esto se hace por medio de difusores que se instalarán en el fondo de los tanques; cada tanque tendrá una capacidad amortiguar las variaciones de caudal, desde estos tanques por medio de electrobombardeos cuya capacidad total de bombeo es de 600 l/s se alimentarán los reactores de neutralización, los cuales constan de un tanque de mezcla rápida donde se dosifica el PAC (Policloruro de aluminio) y la CAL, para luego pasar a gravedad a un distribuidor de caudales y llegar a las cámaras de neutralización en serie y con flujo a pistón, los cuales cuentan con mezcladores mecánicos; a gravedad se alimenta un floculador sedimentador de manto de lodos tecnología tipo Accelerator o similar en el cual se puede realizar clarificación con o sin ayuda de un polímero floculante y así mejorar la calidad del efluente el cual pasará al canal de salida y aforo para ser descargado con calidad de normativa al río cauca.

• El sistema tiene una capacidad total de tratamiento de 600 l/s, de manera que pueda operar intermitentemente poco más de 12 horas, para poder realizar trabajos de mantenimiento y ajustes en la planta.

La PTARND1 tiene un tiempo de residencia suficiente para maximizar la precipitación de lodo y cal, y minimizar las concentraciones de sulfato en la descarga al medio ambiente. Los metales precipitados se espesarán y filtrarán antes de su disposición, en el depósito de relaves filtrados. El agua tratada, y en cumplimiento de los estándares ambientales, se devolverá al río Cauca, ya que no es viable su reuso en el proceso porque afecta el rendimiento de la flotación.

• Deshidratadores de lodos, para mejorar la concentración de sólidos hasta un 25% y teniendo en cuenta que el volumen a tratar es de 567 m3/día, se propone sistemas de deshidratación mecánicos con capacidad de tratar 34 m3/hora, así como para los equipos de bombeo se recomienda tener equipo de respaldo y fraccionar la capacidad a la mitad, no se especifica algún tipo en particular sin embargo existen equipos con tecnología tipo centrífuga, tornillo, filtros rotativos entre otros que pueden simplificar el tratamiento así como el espacio, estos equipos son alimentados por bombeo y con posibilidad de inyección de polímero para mejorar la deshidratación, el rechazo es retornado al inicio del tratamiento y los sólidos son dispuestos en una zona para su recolección y disposición, las dimensiones dependen de la frecuencia de evacuación, inicialmente se dispone de un área de 30 m2, para disponer...
26Ton/día de lodo deshidratado. Estos lodos serán dispuestos en la celda de pirita.

La descarga máxima estimada de la PTARND1 será de 318,062 l/s (véase el plano 0010368-MQC-AL-110 y 0010368-MQC-AL-120, del Anexo 3_10_Redes_servicios).

- Sistema de tratamiento de aguas ácidas (neutralización) - PTARND 1 etapa de cierre (tratamiento pasivo)

El caudal de diseño del tratamiento pasivo será de 114,47 l/s para el año 1 de cierre (véase el plano 0010368-MQC-AL-130 y 131, del Anexo 3_10_Redes_servicios), sin embargo el caudal disminuirá a 11,93 l/s a partir de los 5 años de cierre.

Para esta fase aunque ha terminado la extracción de mineral y con el cierre de la mina dejan de producirse las aguas de contacto en los depósitos de piritas, pero sigue produciéndose efluentes de las infiltraciones que se generen con el cierre de la mina que presentan calidad de agua acida, la cual se espera que mejore su calidad con el pasar del tiempo, estas infiltraciones varían con el régimen hidrológico de la zona, por lo que se contará con un sistema de tratamiento de aguas residuales no domésticas acorde a dicha calidad y que cumpla con los requerimientos normativos, por lo que se plantea un tratamiento pasivo natural, el cual requiere de bajo costo operativo y de fácil operación y mantenimiento.

El sistema propuesto para tratar de forma natural o pasiva en fase de cierre contempla utilizar estructuras existentes de la fase de operación que cuentan con el volumen requerido para minimizar intervenciones en el terreno, por las características de operación se propende porque todas las unidades funcionen a gravedad y así disminuir o anular los consumos energéticos, para ellos se seleccionan los sedimentadores existentes 1, 2 y 3, que de acuerdo a la geometría, localización y capacidad de almacenamiento son ideales.

Los sedimentadores 1 y 2 se adaptarán para una línea de tratamiento la cual está compuesta del reactor de neutralización con medio calizo DAS y dos sedimentadores o decantadores secundarios, cuyos lodos descargan al sedimentador 3 cada cuatro años.

El sedimentador 3 será adaptado como lecho de secado y almacenamiento de lodos.

Con la implementación del reactor en medio calizo-DAS, se eliminaría la dosificación diaria de insumos o reactivos químicos, adicionalmente se eliminan actividades rutinarias de transporte, almacenamiento y preparación de estos, las propiedades del medio garantizan la neutralización de los drenajes acidos efluientes de la mina en la etapa de cierre, cabe resaltar que todo tratamiento por simple que se presente requiere de un seguimiento en la operación y actividades de mantenimiento, con la neutralización del efluente se produce precipitación de metales, sulfatos, entre otros compuestos generando sedimentos o lodos en las tolvas de las unidades, las cuales deben ser purgadas con alguna frecuencia a un lecho de secado con capacidad de almacenamiento y así aprovechar la radiación solar para deshidratar o retirar humedad.
del lodo, el percolado de este está conducido hasta el canal de salida para ser conducido a la descarga existente hacia el río Cauca.

Tabla 3.203 Resumen de sistemas de tratamiento aguas residuales no domésticas

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Zona que atiende</th>
<th>Caudal a tratar (l/s)</th>
<th>Tratamiento</th>
<th>Etapa</th>
<th>Coordenadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTARND 1</td>
<td>Desarrollo de túneles, depósito temporal de mineral</td>
<td>248,101</td>
<td>D, Tg, N</td>
<td>Construcción</td>
<td>X: 1.152.388</td>
</tr>
<tr>
<td></td>
<td>Mina subterránea, depósito de piritas, plataforma túneles</td>
<td>318,062</td>
<td>D, Tg, N</td>
<td>Operación</td>
<td>Y: 1.132.035</td>
</tr>
<tr>
<td></td>
<td>Mina Subterránea</td>
<td>111,930</td>
<td>D, Tg, N</td>
<td>Cierre**</td>
<td></td>
</tr>
<tr>
<td>PTARND 2</td>
<td>AIO (incluye plataforma)</td>
<td>0,844</td>
<td>D, Tg</td>
<td>Operación</td>
<td>X: 1.151.313</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,840</td>
<td>D, Tg</td>
<td>Cierre***</td>
<td>Y: 1.132.553</td>
</tr>
<tr>
<td>PTARND 3</td>
<td>Lavado de Vehículos mineros</td>
<td>3,630</td>
<td>D, Tg</td>
<td>Operación</td>
<td>X: 1.151.451</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y: 1.132.469</td>
</tr>
<tr>
<td>PTARND 4</td>
<td>Estación de combustible</td>
<td>0,037</td>
<td>Dique de contención de derrames y Tg.</td>
<td>Operación</td>
<td>X: 1.151.414</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y: 1.132.423</td>
</tr>
<tr>
<td>PTARND 5</td>
<td>Planta de concreto y trituración</td>
<td>1,770</td>
<td>D</td>
<td>Construcción</td>
<td>X: 1.151.553</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,770</td>
<td>D</td>
<td>Operación</td>
<td>Y: 1.132.407</td>
</tr>
<tr>
<td>Sedimentador 1</td>
<td>Zodme C</td>
<td>44,000</td>
<td>D</td>
<td>Construcción</td>
<td>X: 1.152.019</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44,300</td>
<td>D</td>
<td>Operación</td>
<td>Y: 1.133.510</td>
</tr>
<tr>
<td>Sedimentador 2</td>
<td>Depósito de relaves filtrados (TSF)</td>
<td>29,900</td>
<td>D</td>
<td>Construcción</td>
<td>X: 1.152.502</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53,200</td>
<td>D</td>
<td>Operación</td>
<td>Y: 1.133.759</td>
</tr>
<tr>
<td>Sedimentador 3</td>
<td>Zodme A</td>
<td>18,000</td>
<td>D</td>
<td>Construcción</td>
<td>X: 1.152.993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18,200</td>
<td>D</td>
<td>Operación</td>
<td>Y: 1.134.039</td>
</tr>
<tr>
<td>Sedimentador 4</td>
<td>Zodme A</td>
<td>7,200</td>
<td>D</td>
<td>Construcción</td>
<td>X: 1.153.435</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,300</td>
<td>D</td>
<td>Operación</td>
<td>Y: 1.137.745</td>
</tr>
<tr>
<td>Sedimentador 5</td>
<td>Depósito de relaves filtrados (TSF)</td>
<td>25,700</td>
<td>D</td>
<td>Construcción</td>
<td>X: 1.153.247</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41,700</td>
<td>D</td>
<td>Operación</td>
<td>Y: 1.133.460</td>
</tr>
<tr>
<td>Sedimentador 6</td>
<td>Pila de suelo y Zodme B</td>
<td>33,200</td>
<td>D</td>
<td>Construcción</td>
<td>X: 1.153.695</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33,400</td>
<td>D</td>
<td>Operación</td>
<td>Y: 1.133.405</td>
</tr>
<tr>
<td>Sedimentador 7</td>
<td>Depósito de relaves filtrados (TSF)</td>
<td>68,300</td>
<td>D</td>
<td>Operación</td>
<td>X: 1.153.730</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y: 1.132.619</td>
</tr>
<tr>
<td>Sistema de tratamiento pasivo</td>
<td>Túneles y mina subterránea</td>
<td>111,930</td>
<td>D, Tg, N</td>
<td>Cierre</td>
<td>X: 1.152.993</td>
</tr>
</tbody>
</table>

*: D: Desarenador; Tg: Trampa de grasas; N: sistema de neutralización

**Durante el primer año de cierre aproximadamente.

***Durante los primeros tres años de cierre, aproximadamente.

Fuente: Integral, 2019

- Estructuras de entrega de los vertimientos (descarga)

El Proyecto tiene contemplado realizar dos vertimientos sobre el río Cauca, el vertimiento V1 corresponde a las aguas residuales domésticas y el vertimiento V2 para las aguas residuales no domésticas.
• Alcantarillado de aguas residuales domésticas

El sistema de aguas residuales domésticas de la zona baja del Proyecto, tanto en construcción como en operación, estará conformado por una planta de tratamiento aeróbica -PTARD (ya descrita) y una conducción en tubería de PVC enterrada, de 200 mm de diámetro, con cámaras de inspección cada 80 m y una pendiente promedio de la tubería de 10%, para una velocidad de flujo variando desde 1,00 m/s a 2,00 m/s (Véanse los planos 0010368-MQC-AL-090, 0010368-MQC-AL-100, y 0010368-MQC-AL-105).

Para la descarga al río Cauca, la tubería tendrá un cabezote y posteriormente un canal escalonado de 40% de pendiente y una velocidad máxima de 3,00 m/s.

Figura 3.318 Canal escalonado para descarga y niveles en el río Cauca ARD
Fuente: Integral, 2018

- Canal de descarga de las aguas residuales no domésticas

El canal para conducir las aguas residuales no domésticas fue dimensionado para un caudal de 7,45 m³/s, correspondiente a la suma de los caudales de salida de las PTARND y de los sedimentadores, luego de transitar en éstos últimos las crecientes de 25 años de período de retorno. El canal tendrá una sección de 2,00 m de ancho y 1,50 m de altura, incluyendo borde libre, y una longitud 1.930 m; para ajustarse a la pendiente a lo largo de su recorrido tendrá escalones con contrahuellas de 0,50 m, definidas considerando un flujo tipo *skimming* o rasante; las pendientes variarán desde un 8% hasta un máximo de 40% en la zona de la descarga en el río Cauca, donde el flujo alcanza una velocidad máxima de 7,8 m/s, aceptable para el paso de crecientes en estructuras de concreto según el Manual de Drenajes del INVÍAS (2009).
El canal tendrá la capacidad de contener el agua hasta en una condición de flujo crítico, con una profundidad del flujo de 1,08 m, el vertimiento al llegar al río Cauca disipará por completo su energía en la lámina de agua del río.

Figura 3.319 Canal escalonado para descarga y niveles en el río Cauca ARnD
Fuente: Integral, 2019

3.3.8.1.2.8.2 Salidas de emergencia

La mina tendrá dos accesos independientes al cuerpo mineral separados por lo menos 50 m: los túneles gemelos que dan acceso al inicio del HSN y el túnel de transporte de mineral (TTM).

Adicionalmente, una rampa en espiral conectará los dos accesos (HSN y TTM), permitiendo que todo el personal que se encuentre dentro de la mina pueda desplazarse entre el sistema de manejo de materiales y los niveles de producción del HSN. Una serie de puertas de control de ventilación localizadas en el acceso a la trituradora permitirá separar la ventilación en dos zonas:

Área de manejo de materiales

Esta zona puede accederse desde el portal del túnel principal localizado en el valle, desde la galería de acceso a la trituradora y desde la escalera de la cámara de bombas hacia el nivel de transferencia de mineral.

Área de producción

Esta zona puede accederse desde el portal del túnel principal localizado en el valle, desde la galería de acceso a la trituradora y por la escalera de la cámara de bombas desde el nivel de transferencia de mineral.

La mina tendrá dos circuitos de ventilación independientes:
Por debajo del nivel de transferencia de mineral una escalera interna estará localizada al final de la rampa después de la estación de bombeo. Esta vía permitirá al personal evacuar el sistema de manejo de materiales por detrás de la estación de carga en el caso de un incendio en la banda transportadora. El resto del personal puede evacuar el área a través de las puertas de acceso a la trituradora que conectan con el portal del Valle. El personal que trabaja detrás de la estación de carga de la banda transportadora y de la cámara de bombeo evacuará la mina utilizando la escalera que comunica con el nivel de transferencia en la otra zona de ventilación.

Los refugios subterráneos estarán localizados en cada zona activa de producción y serán relocalizados/reutilizados a medida que los niveles de minería descendenten en el cuerpo mineral. Los frentes de desarrollo tendrán una cámara de refugio localizada a no más de 900 m medidos entre el frente activo y la cámara de refugio más cercana. Las bases dedicadas de aire fresco serán localizadas/instaladas en las conexiones de la rampa con las tomas de aire fresco (cada dos niveles de producción) y en el taller de mantenimiento subterráneo.

3.3.8.1.2.8.3 Sistema contra-incendios

Este numeral describe las características generales que enmarcan los sistemas de protección contra incendio que se implementarán en todas las áreas e instalaciones del Proyecto con el objeto de proteger la vida de todo el personal incluidos quienes conforman la brigada de emergencia, proteger los activos de la compañía y minimizar las interrupciones del negocio.

Los sistemas de protección deben asegurar que sean ágiles, confiables y provistos de sistemas de alarma adecuados conectados a puntos centrales de control, identificando sistemas automáticos en puntos críticos y asegurando que cumplen con estándares nacionales e internacionales reconocidos. Se han contemplado los siguientes sistemas:

- Sistemas y alarmas de detección de fuego
- Sistemas de distribución y suministro de agua
- Sistemas de protección basados en manejo de agua
- Sistemas de protección basados en manejos especiales
- Red de equipos manuales de extinción de fuego
- Sistemas de protección pasiva (sistemas de prevención de incendios)

En adición a los sistemas mencionados, los planes de prevención y control de incendios contarán con brigadas debidamente entrenadas y con equipos y herramientas especializados.

- Instalaciones subterráneas

A continuación, se describen los sistemas de protección contra-incendios en las instalaciones subterráneas del proyecto:

La planta trituradora contará con los siguientes sistemas de control del fuego:

- Sistemas dispersores de agua (sprinklers)
- Alarmas manuales
- Alarmas sonoras y visuales
- Estaciones Clase II para control de fuego (sistemas de 1½" de salida de agua para manejo de personal experto)
- Extintores portátiles tipo DCP

Dado el limitado acceso al sistema de bandas subterráneas para combatir el fuego y el riesgo significativo de alta emisión de humo, el sistema de bandas transportadoras contará con un sistema de aspersores de agua (sprinkler system) ubicados en el centro de la banda, con una capacidad hidráulica para atender los 10 aspersores de agua más lejanos de manera simultánea.

Las estaciones de almacenamiento de combustibles y lubricantes contarán con los siguientes sistemas de control del fuego:
- Alarmas manuales
- Alarmas sonoras y visuales
- Estaciones Clase II para control de fuego
- Extintores portátiles tipo DCP

Los talleres y áreas de soporte al personal incluyen los siguientes sistemas de control del fuego:
- Aspersores de agua
- Detectores de humo y calor
- Alarmas manuales
- Alarmas sonoras y visuales
- Estaciones Clase II para control de fuego
- Extinguidores portátiles tipo DCP
- Demanda de agua total para talleres: 960 gpm @ psi

El polvorín incluye los siguientes sistemas de control del fuego:
- Aspersores de agua
- Alarmas manuales
- Alarmas sonoras y visuales
- Estaciones Clase II para control de fuego
- Extinguidores portátiles tipo DCP
- Demanda de agua total para polvorín: 1,362 gpm @ psi
Las instalaciones administrativas incluyen los siguientes sistemas de control del fuego:

- Detectores de humo y calor
- Alarmas manuales
- Alarmas sonoras y visuales
- Estaciones Clase II para control de fuego
- Extinguidores portátiles tipo DCP

Las áreas de soporte vital (Casino) incluyen los siguientes sistemas de control del fuego:

- Sistemas de supresión química
- Detectores de humo y calor
- Alarmas manuales
- Alarmas sonoras y visuales
- Estaciones Clase II para control de fuego
- Extinguidores portátiles tipo DCP & CO₂
- Sistema de suministro de agua

El sistema de suministro subterráneo será alimentado desde un sumidero subterráneo que surtirá también el sistema de protección del fuego. Las estaciones de bombeo estarán protegidas con estaciones para control de fuego y red de extintores portátiles.

Los requerimientos de almacenamiento de agua subterránea están basados en cálculos ajustados a las guías NFPA 122 (National Fire Protection Association) asumiendo el peor escenario (véase la Tabla 3.204).

<table>
<thead>
<tr>
<th>Demanda</th>
<th>Almacenamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total aspersores (862 gpm x 60 minutos)</td>
<td>51.720 gal</td>
</tr>
<tr>
<td>Total hidrantes (500 gpm x 60 minutos)</td>
<td>30.000 gal</td>
</tr>
<tr>
<td>Total almacenamiento requerido</td>
<td>81.720 gal</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Las áreas de manejo de residuos incluyen los siguientes sistemas de control del fuego:

- Alarmas manuales
- Alarmas sonoras y visuales
- Estaciones Clase II para control de fuego
- Extinguidores portátiles tipo DCP & CO₂

Los drenajes de mina incluyen los siguientes sistemas de control condenlra fuego:

- Alarmas manuales
Alarmas sonoras y visuales

Distribución eléctrica

Subestaciones eléctricas: estarán provistas de los siguientes sistemas de protección contra fuego:

- Construidas con materiales no combustibles (Subestaciones tipo contenedor)
- Construcción de paredes adyacentes a los transformadores que resistan 2 horas de fuego (cuando sean transformadores en aceite) y cumplan los requerimientos de espacio de NFPA 850
- Parada pasiva del fuego de las entradas del cable entre las áreas de la extensión del suelo y del cable y entre las salas de alto y bajo voltaje
- Supresión pasiva de fuego entre los cables subterráneos y los cables aéreos y entre líneas de bajo y alto voltaje
- Sistemas de detección de humo en todas las áreas cerradas
- Alarmas sonoras y visuales
- Estaciones Clase II para control de fuego
- Mínimo dos extintores portátiles de CO₂ y tipo DCP ubicados junto a las puertas de salida.

Instalaciones superficiales

Los diseños de las instalaciones superficiales tienen en cuenta aspectos que garantizarán la seguridad del personal residente o visitantes de las instalaciones, de acuerdo con regulaciones y requisitos específicos, tales como:

- Sistema de pararrayos.
- Mallas de puesta a tierra.
- Sistemas de detección de humo.
- Redes a prueba de fuego.
- Extintores de incendios.
- Señalización.
- Elementos de emergencia / evacuación

Resistencia al fuego (detección y supresión)

Se cumplirá con la normativa vigente sobre incendios (NFPA 1) en todas las áreas y edificios que forman parte del proyecto.

El objetivo fundamental de la protección contra incendios será que el diseño de los edificios garantice que se cumplen las siguientes condiciones:

- Minimizar el riesgo de incendio.
• Evitar la propagación de incendios, tanto dentro de edificios como en edificios cercanos.
• Facilitar la evacuación de los ocupantes de los edificios.
• Facilitar la extinción de incendios.

Se utilizarán materiales que no generen o contengan gases tóxicos para las paredes, divisiones o elementos de acabado. En caso de eventuales procesos de combustión se utilizarán materiales eléctricos resistentes al fuego, así como cables retardantes y con baja emisión de humo.

Con respecto a los almacenes para documentos y otros, deben limitarse al mínimo necesario para mantener una operación eficiente, preferiblemente utilizando espacios no habitados tales como salas de archivo, armarios o armarios metálicos.

Para las áreas de personal, se instalarán elementos para control y respuesta ante el fuego, tales como: sensores de temperatura, rejillas húmedas, detectores de humo, alarmas contra incendios y extintores portátiles, según lo definido por el estudio de seguridad del Proyecto.

Rutas de escape

La distancia máxima medida desde cualquier estación de trabajo hasta la salida de escape más cercana será menor de 40 m para la planta baja y cuando el edificio tiene más de un piso, la distancia máxima de escape más cercana será inferior a 20 m.

La distancia máxima desde el primer escalón de una escalera hasta un espacio exterior no será mayor 20 m, esta longitud puede alcanzar los 40 m cuando el espacio al que se accede tiene una carga de combustible inferior a 100 Mjoules / m².

En pisos con escapes más cercanos, diferentes a las salidas, la distancia máxima desde la puerta de una habitación a la escalera de evacuación en el mismo piso será de 40 m. Todas las rutas de escape deberán tener un ancho libre mínimo de 1,20 m.

Cada puerta de escape debe tener un ancho de hoja de no menos de 1,00 m y una altura no menor de 2,00 m.

Las hojas de escape de la puerta deben abrirse hacia el exterior.

Las puertas de escape deberán contar con una barra antipánico, cierrapuertas hidráulicos y una ventana de vidrio laminado transparente.

Señalización

Todos los elementos asociados con la seguridad, como rutas de evacuación, escaleras, accesos / salidas, puertas de escape, gabinetes de mangueras de cables húmedos y las alarmas contra incendios estarán debidamente señalizados.

3.3.8.1.2.8.4 Subestaciones eléctricas

El suministro de energía de la mina estará conformado por una subestación eléctrica principal y subestaciones secundarias. Estas subestaciones estarán totalmente equipadas con sus correspondientes transformadores y tableros, según las
neceidades de energía, especialmente ventilacion, iluminación e instalaciones internas de la mina.

Tanto la subestación principal como las subestaciones secundarias, contarán con sus protecciones, rejas y mallas de aislamiento, y cumplirán con las normas de seguridad RETIE (reglamento técnico de instalaciones eléctricas), NTC 2050 y europeas IEC (International Electric Code), las cuales garantizan que se cumpla con las especificaciones para ambientes y de protección contra incendios en instalaciones subterráneas y superficiales, y trabajos con equipos mayores de minería.

En la Tabla 3.205 se presenta la estimación de los principales consumos unitarios de energía dentro de la operación subterránea de la mina.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Actividad</th>
<th>kW</th>
<th>Fuente Principal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta de trituración + banda transportadora</td>
<td>1,250 t/h</td>
<td>861</td>
<td>Molienda primaria</td>
</tr>
<tr>
<td>Instalaciones subterráneas mina</td>
<td>Equipos de perforación, instalaciones, talleres y otros</td>
<td>4,450</td>
<td>Talleres, oficinas internas, bahías de mantenimiento, comedores, Ventilacion principal</td>
</tr>
<tr>
<td>Bombas, sumideros y otras instalaciones</td>
<td>Desagüe de mina</td>
<td>1,575</td>
<td>16 bombas de 110 kW y 2 de 90 Kw</td>
</tr>
<tr>
<td>Consumo total de energía</td>
<td></td>
<td>6,886</td>
<td>"Ausenco, Electric load list & demand, Agosto de 2018"</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

3.3.8.1.2.8.5 Salidas de Pozos de ventilación

Para la ventilación de la mina se requieren cuatro pozos de ventilación principal. Dos de ellos serán dedicados para la inyección de aire fresco y otros dos para la extracción de aire viciado. Estos pozos de ventilación son de sección circular, de 6 metros de diámetro, y serán construidos mediante la técnica “Raise Boring” (véase el numeral 3.3.6.3.3 Método constructivo con Raise Boring Convencional).

La ubicación de estos piques y sus longitudes se muestran en la Figura 3.320.

3.3.8.1.2.8.6 Estación de bombeo

La mina estará provista de un sistema de bombeo compuesto por una bomba de 110 kW y dos bombas de 90 kW que conducirán el agua de la mina hasta el tanque de almacenamiento de agua cruda. Posteriormente, el agua cruda será transportada hasta la planta de neutralización, cuyo efluente será descargado al río Cauca. La Figura 3.321 muestra el sistema de drenaje de la mina.
3.3.8.1.2.9 Canales norte y sur

Los canales Sur y Norte serán diseñados para un periodo de retorno de 100 años con un borde libre y 500 años sin borde libre con el fin de recolectar las aguas en la parte superior de la Plataforma principal y el depósito de relaves filtrados. El canal sur tomará las aguas de la parte alta de la quebrada La Vainillala y las descargará aguas abajo luego de proteger de la escorrentía el portal de los túneles de la mina, y luego cruza la plataforma de explosivos de operación, evitando que las aguas de la quebrada la Vainillala entren en contacto con el depósito de Arenas. El canal estará constituido por un canal escalonado en concreto de 0,15 km, y tendrá una sección de 3,00 m x 3,00 m en concreto (véase el mapa MQC-INT-EIA-DESC-03-CYM).

El canal norte tendrá la misma función del canal Sur, y recolectará las aguas de la parte alta de las quebrada Las Palmeras y un afluente de la quebrada Dosquebradas y las descargará, más abajo en el cauce principal de la quebrada Dosquebradas. El canal estará constituido por dos tramos de canales de concreto rectangulares los primeros 0,37 km tendrán una sección de 3,00 m x 3,50 m, y el segundo tramo tendrá 1,90 km con una sección de 4,00 m x 4,50 m.

Una descripción más detallada de estos canales se encuentra en el numeral 3.6.2.3.5.
Figura 3.321 Sistema de desagüe de la mina
Fuente: Minera de Cobre Quebradona, 2019
3.3.8.1.2.10 Cerramientos perimetrales

Para efectos preventivos y de manejo de seguridad de las instalaciones de la mina (zona superficial sobre la montaña y zona superficial en el valle), se delimitarán todas las áreas donde se desarrollen actividades mineras o se generen intervenciones del Proyecto.

Se construirá un cerramiento perimetral con alambre calibre # 12, de doble hebra entorchada, con puntos de púa de 4 puntas colocados a 4 pulgadas de intervalo. La distancia vertical entre hiladas no debe exceder las 6 pulgadas, preferiblemente menos, y la distancia entre postes no debe superar los 10 pies.

Los tramos de malla eslabonada tendrán 7 pies de altura y una guarda de altura. Los postes serán metálicos y con una separación máxima de 6 pies.

3.3.8.2 Infraestructura de transporte

3.3.8.2.1 Infraestructura para transporte del producto final (concentrado)

A raíz de un estudio de alternativas, desarrollado por Ausenco, se definió que el medio de transporte para los materiales del Proyecto será vía terrestre con conexión a un puerto marítimo en Buenaventura (véase la Tabla 3.206). Este fue elegido a partir de una evaluación comparativa, centrada en la consideración en torno a infraestructura disponible en una menor distancia (véase el Anexo 3 _12_Transporte_producto_final (Opciones de Logística de Concentrado. Comparación Trade – Off. 102512-01-RPT-0002. Rev C. AUSENCO. Julio 2018).

Tabla 3.206 Elementos asociados al transporte terrestre en relación con el proyecto

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Escenario previsto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitio de carga en mina</td>
<td>Del cargador frontal al contenedor o el camión</td>
</tr>
<tr>
<td>Contención del producto</td>
<td>En contenedor</td>
</tr>
<tr>
<td>Ruta del camión</td>
<td>Sistema nacional de vías</td>
</tr>
<tr>
<td>Manejo de la ruta</td>
<td>Contratista de transporte</td>
</tr>
<tr>
<td>Puerto</td>
<td>Un puerto en Buenaventura</td>
</tr>
<tr>
<td>Almacenamiento en puerto</td>
<td>Se almacena en contenedores hasta cubrir el cupo de carga</td>
</tr>
<tr>
<td>Descargue en embarcación</td>
<td>Contenedor rotativo</td>
</tr>
<tr>
<td>Manejo del puerto</td>
<td>Operador de puerto</td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2018

También, desde el Proyecto se adelantaron cálculos que contemplan la demanda de contenedores para asegurar el almacenamiento adecuado de los rendimientos y productos del proyecto. Este se relaciona en la Tabla 3.207, como resultado de la consideración de las condiciones de la carga, la frecuencia de producción y las capacidades de transporte.

Tabla 3.207 Sumario de criterios de diseño para el transporte de mercancía

<table>
<thead>
<tr>
<th>General</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercancía - concentrado</td>
<td>wmt/tpa</td>
<td>281,19</td>
</tr>
<tr>
<td>Días productivos anuales</td>
<td>Días</td>
<td>365</td>
</tr>
<tr>
<td>Densidad - concentrado a granel</td>
<td>t/m³</td>
<td>2,0-2,2</td>
</tr>
<tr>
<td>Objetivo - tonelaje de producción de mina</td>
<td>wmt/día</td>
<td>770</td>
</tr>
<tr>
<td>Disponibilidad del sistema de transporte</td>
<td>%</td>
<td>90</td>
</tr>
<tr>
<td>Operación del transporte</td>
<td>Días</td>
<td>329</td>
</tr>
<tr>
<td>Objetivo - tonelaje transportado</td>
<td>wmt/día</td>
<td>855</td>
</tr>
</tbody>
</table>
El proceso se fundamenta, a su vez, en una serie de etapas que se describen a continuación.

- Carga en sitio de mina

En el sitio de la mina las operaciones de carga se componen de las siguientes:

- Almacenamiento del concentrado a granel
- Sistema de carga de contenedores
- Administración de camiones

Una vez el camión ha llegado al sitio de mina para ser cargado, será manejado a través de los siguientes componentes.

- Llegada del camión

El conductor, tractor, tráiler y contenedor deberán ser registrados para su ingreso. Esto puede hacerse de forma manual o mediante un lector automático. Esto confirmará que el equipo y conductor han sido propiamente inspeccionados, y que cuentan con autorización para entrar al sitio de mina. El proceso de llegada también está diseñado para confirmar la ausencia de sustituciones no autorizadas del equipo, o modificaciones en la ruta.

- Manejo de la cubierta del contenedor

El camión será llevado al área de carga, y su cubierta será removida en preparación para el proceso. Este método será desarrollado en una etapa posterior, basada en las condiciones de los limitantes del espacio en sitio de carga, y los rendimientos que se obtengan en la producción de material a transportar. Posterior a la carga, lavado de neumáticos, aspiración y proceso de prueba, el camión regresará a la estación de cubierta para que esta le sea reemplazada, y se apliquen las etiquetas de seguridad correspondientes (véase la Fotografía 3.10).

<table>
<thead>
<tr>
<th>General</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad del contenedor</td>
<td>wmt</td>
<td>30</td>
</tr>
<tr>
<td>Contenedores calculados por día</td>
<td>Unidades</td>
<td>28,5</td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2018
Carga

El rendimiento requerido del proceso de carga no garantiza un sistema de mayor complejidad (transportadores, alimentadores, recipientes y otros por el estilo). Se implementará un sistema de carga FEL, lo que involucra una báscula de puente para camiones, con una lectura visible para el operador de carga, y una lectura de la carga en el cargador, para ayudar a que el operador administre la misma.

El sistema de báscula integrado al sistema de carga podría producir la documentación de hoja de ruta requerida para el transporte terrestre. Esto incluye los detalles de tara y peso de carga del camión, así como la identificación del vehículo, su tráiler y el contenedor asociado a la carga.

Luego, el camión pasaría a las áreas de muestreo, aspiración del eje del contenedor y lavado de ruedas en su camino al área de manejo de cubierta, en donde se añaden las etiquetas de seguridad y, con ellas, la información asociada a la documentación del camión (véase la Fotografía 3.11).

![Fotografía 3.11 Proceso de cargado FEL](image)

Fuente: Ausenco, 2018

Salida

El camión, luego, atravesaría las puertas de seguridad para emprender camino al puerto. Ahí, su salida del sitio de mina será registrada. En este punto, la documentación del camión podrá ser validada con la información de la etiqueta de seguridad.

Camionaje

Contratistas locales para el camionaje fueron contactados, con el fin de asegurar un mejor entendimiento de las prácticas operativas y regulaciones actuales que afectarían el transporte de este tipo de mercancías. Siendo así, se tomó en cuenta la Circular 015-2013, sobre “Normatividad vigente en transporte terrestre automotor de carga”. Parte de la información identificada en este proceso se asocia en la Tabla 3.208.
Tabla 3.208 Datos sobre las condiciones para el camionaje

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmación de la Masa Máxima Autorizada para los camiones en las rutas estimadas</td>
<td>t</td>
<td>52</td>
</tr>
<tr>
<td>Tiempo de tránsito estimado entre la mina y el puerto</td>
<td>Horas</td>
<td>12</td>
</tr>
<tr>
<td>Límites de tiempo en los turnos de conducción</td>
<td>Horas</td>
<td>12</td>
</tr>
<tr>
<td>Restricciones semanales para la conducción</td>
<td>Horas</td>
<td>60</td>
</tr>
<tr>
<td>Límite de turnos semanales</td>
<td>Turnos</td>
<td>5</td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2018

- Camiones para operaciones básicas

Los camiones saldrán del sitio de mina con la documentación requerida. Esto, luego de la inspección previa del equipo, y operar bajo la premisa de “salir cuando se esté listo”, permitiendo que los camiones salgan de forma individual, con base en la disponibilidad del conductor y el vehículo, al igual que la idoneidad del papeleo y el haber asegurado la carga en su totalidad.

Toda la gestión de camionaje estará a cargo de un contratista que será responsable del mantenimiento y aspectos legales de su flota, así como del entrenamiento y administración del equipo de conductores.

Los camiones serán equipados con sistemas de rastreo GPS, que permitirán la gestión del transporte, así como el cumplimiento de los indicadores clave de desempeño.

Los camiones llegarán al puerto y serán sometidos a los procedimientos de llegada de las instalaciones portuarias. Los movimientos del camión serán gestionados por el operador hasta que se dé la descarga, y el contenedor vacío haya sido devuelto para el viaje de retorno al sitio de mina (véase la Tabla 3.209).

Tabla 3.209 Línea de ruta y distancias

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta Procesadora a Concesión Pacífico 2</td>
<td>km</td>
<td>5,5</td>
</tr>
<tr>
<td>JCT a La Pintada</td>
<td>km</td>
<td>11,25</td>
</tr>
<tr>
<td>La Pintada a Buenaventura</td>
<td>km</td>
<td>388,0</td>
</tr>
<tr>
<td>Distancia total</td>
<td>km</td>
<td>404,25</td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2018

Con base en conversaciones preliminares con operadores de camionaje, se estima que el tiempo de conducción en un sentido para los camiones, del sitio de mina al puerto, sería de 12 horas. Con esta información, se estimó el tiempo del ciclo para calcular los requerimientos de una flota (véase la Tabla 3.210).

Tabla 3.210 Ciclo estimado para el camión, de la mina al puerto

<table>
<thead>
<tr>
<th>Sección del ciclo</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga</td>
<td>1,0</td>
</tr>
<tr>
<td>Tránsito con carga hacia el puerto (404 km a 34 km/h)</td>
<td>11,9</td>
</tr>
<tr>
<td>Descargue</td>
<td>1,0</td>
</tr>
<tr>
<td>Tránsito sin carga hacia el sitio de mina (404 km a 34 km/h)</td>
<td>11,9</td>
</tr>
<tr>
<td>Reposo en línea vacío</td>
<td>10,0</td>
</tr>
<tr>
<td>Reposo en línea cargado</td>
<td>10,0</td>
</tr>
<tr>
<td>Inspecciones mecánicas</td>
<td>1,0</td>
</tr>
<tr>
<td>Total</td>
<td>46,8</td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2018
• Equipamientos

Poner en contenedores el producto del proyecto permite al contratista utilizar los equipos disponibles. El criterio de diseño para este sistema asociado al camionaje se describe en la Tabla 3.211.

Tabla 3.211 Resumen del diseño de la operación de camiones

<table>
<thead>
<tr>
<th>Dato camionaje</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camión tractor</td>
<td>Tipo</td>
<td>6x4</td>
</tr>
<tr>
<td>Camión tractor – poder</td>
<td>HP</td>
<td>450</td>
</tr>
<tr>
<td>Categoría del camión – Colombia</td>
<td>Tipo</td>
<td>C5</td>
</tr>
<tr>
<td>Designación del camión</td>
<td>Tipo</td>
<td>3S3</td>
</tr>
<tr>
<td>Tipo de camión</td>
<td>Tipo</td>
<td>Tractor / Trailer plano</td>
</tr>
<tr>
<td>Capacidad de diseño por camión (GWW)</td>
<td>t</td>
<td>52</td>
</tr>
<tr>
<td>Capacidad de diseño por camión (+/- Tolerancia)</td>
<td>t</td>
<td>1,3</td>
</tr>
<tr>
<td># camiones diarios</td>
<td>#</td>
<td>29</td>
</tr>
<tr>
<td># cambios por hora</td>
<td>#</td>
<td>~3</td>
</tr>
<tr>
<td>Máximo de peso neto</td>
<td>Tipo</td>
<td>48,5</td>
</tr>
<tr>
<td>Máximo de longitud</td>
<td>m</td>
<td>18,5</td>
</tr>
<tr>
<td>Máximo de ancho</td>
<td>m</td>
<td>2,6</td>
</tr>
<tr>
<td>Máximo de Altura</td>
<td>m</td>
<td>4,4</td>
</tr>
<tr>
<td>Peso de la tara del camión</td>
<td>t</td>
<td>9,5</td>
</tr>
<tr>
<td>Peso de la tara del tráiler</td>
<td>t</td>
<td>5,5</td>
</tr>
<tr>
<td>Eje de carga promedio</td>
<td>t</td>
<td>8,08</td>
</tr>
<tr>
<td>Ejes del camión</td>
<td>#</td>
<td>6</td>
</tr>
<tr>
<td>Contenedores de concentrado por camión</td>
<td>#</td>
<td>1</td>
</tr>
<tr>
<td>Factor de orden negativo en el sistema del camión</td>
<td>%</td>
<td>10</td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2018

En cuanto a las estimaciones del volumen de la flota, siguiendo los lineamientos descritos en la Tabla 3.212, se proyectó la necesidad para este ítem dentro del proyecto. Este cálculo se basó en cuántas veces puede un camión ir y venir del sitio de mina al puerto en un día, factorizado por el número de camiones requeridos para mover el producto diario de la mina.

Tabla 3.212 Estimados para la flota de transporte

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toneladas producidas al año</td>
<td>281.000</td>
</tr>
<tr>
<td>Costo de la unidad de tractor (USD)</td>
<td>100.000</td>
</tr>
<tr>
<td>Costo de la unidad de tráiler (USD)</td>
<td>25.000</td>
</tr>
<tr>
<td>Flota requerida de tractores/tráileres</td>
<td>58</td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2018

• Instalaciones portuarias

La ciudad de Buenaventura alberga dos puertos mayores que tienen la capacidad para atender las embarcaciones destinadas para la mercancía del Proyecto: el Puerto Industrial Aguadulce y la Sociedad Portuaria Regional de Buenaventura.

- Almacenamiento de contenedores

Los requerimientos para el almacenamiento de contenedores en ambos puertos se basan en los tamaños de los lotes que serán enviados regularmente. El tamaño de la carga que podría atender cada puerto es un 5 hold-Handymax con un peso muerto total, en toneladas de peso muerto (DWT), de 45.000-55.000.
Los transportistas individuales de cobre generalmente llenan un buque completo debido al riesgo financiero, y los lotes de embarcación generales van de 10.000 a 20.000 toneladas, lo que equivale a 333 o 666 contenedores de 30 toneladas.

Esta operación requeriría de una flota constante de contenedores en puerto, bien sea en uso o vacíos. A medida que el porcentaje de contenedores cargados se eleva, un buque sería despachado para cargar los contenedores. La Tabla 3.213 ilustra el número de contenedores cuyo almacenamiento sería requerido en puerto a tiempo completo para las dos magnitudes de lote de buque más comunes.

Tabla 3.213 Contenedores en puerto

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Unidad</th>
<th>Valor 1</th>
<th>Valor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño del lote de embarque</td>
<td>Tonelada</td>
<td>10,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Contenedores de 30 toneladas por día</td>
<td>Unidad</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Días para descargar contenedores apilados</td>
<td>Días</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>Días de carga en puerto</td>
<td>Días</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Contenedores por carga de embarque</td>
<td>Unidad</td>
<td>333</td>
<td>667</td>
</tr>
<tr>
<td>Contenedores ocupados en Puerto</td>
<td>Unidad</td>
<td>168</td>
<td>168</td>
</tr>
<tr>
<td>Requerimientos de almacenaje en puerto</td>
<td>M^*</td>
<td>1,452</td>
<td>2,44</td>
</tr>
<tr>
<td>Contenedores en Puerto</td>
<td>Unidad</td>
<td>501</td>
<td>835</td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2018

Seis días para la carga en puerto fueron añadidos. Esto, para compensar la demora potencial en la llegada de los buques, así como los retrasos durante la carga, las posibles dificultades para el amarre o las restricciones de clima.

En cuanto a los contenedores en sí, estos deben tener especificaciones adecuadas para la mercancía a transportar: el concentrado. A manera de ilustración, se presentan la Figura 3.322 y la Figura 3.323.
Los contenedores deben cumplir la certificación BK2 según el Código Marítimo Internacional de Mercancías Peligrosas (IMDG por sus siglas en inglés). Otras especificaciones asociadas a las características de los contenedores se presentan en la Tabla 3.214.

Tabla 3.214 Contenedores para concentrado

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud externa</td>
<td>m</td>
<td>6,06</td>
</tr>
<tr>
<td>Anchura externa</td>
<td>m</td>
<td>2,44</td>
</tr>
<tr>
<td>Altura externa</td>
<td>m</td>
<td>2,20</td>
</tr>
<tr>
<td>Máximo peso neto</td>
<td>t</td>
<td>33,50</td>
</tr>
<tr>
<td>Peso de tara</td>
<td>t</td>
<td>3,45</td>
</tr>
<tr>
<td>Máximo peso de carga</td>
<td>t</td>
<td>30,05</td>
</tr>
<tr>
<td>Capacidad</td>
<td>m³</td>
<td>20,50</td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2018

- **Carga de embarcación**

Con base en las previsiones de operación del proyecto, se organizará la llegada de un buque según la disponibilidad de contenedores cargados en puerto. El operador de puerto gestionará la llegada del buque, y hacer los arreglos necesarios en el Revolver para la carga del buque.

El operador de puerto tiene la opción de gestionar la carga del buque, bien sea con el equipo de la embarcación, una grúa de la embarcación a la orilla, o alguna grúa de portal disponible. El Revolver es un esparcidor de contenedores especializado, que funciona con sistemas de unión estandarizados (véase la Figura 3.324).
Con el uso de un apilador estándar de 45t de alcance, y una flotilla de tractores portuarios, el operador de puerto transportaría los contenedores cargados al puerto apropiado para la carga del buque, y regresaría con el contenedor vacío al punto de almacenaje designado.

El espacio requerido para gestionar los contenedores cargados y vacíos en puerto se basará en el máximo de altura para apilar contenedores cargados (cinco de altura) y contenedores vacíos (siete de altura).

Algunas etapas del proceso se ilustran a continuación (véanse la Figura 3.325 a la Figura 3.332).
Figura 3.326 Grúa de puerto levanta el contenedor y lo ubica en el buque
Fuente: Ausenco, 2018

Figura 3.327 Sistema de empañamiento activado
Fuente: Ausenco, 2018
Figura 3.328 Contenedor vaciado en la bodega del buque utilizando el Revolver
Fuente: Ausenco, 2018

Figura 3.329 Gestión de contenedores esparcidos de Revolver y grúa de puerto
Fuente: Ausenco, 2018
Figura 3.330 Contenedor vacío ubicado en la cubierta y aspirado
Fuente: Ausenco, 2018

Figura 3.331 La máquina elevadora ubica el contenedor en el tráiler
Fuente: Ausenco, 2018
Los operadores de los puertos considerados para esta operación actualmente cuentan con las grúas requeridas. También, con los apiladores, elevadores, y combinaciones de grúas de entrada y grúas de embarcación a orilla. Con el fin de cargar los buques con el sistema de contenedores, los puertos deberán gestionar el sistema Revolver. Adicionalmente, un sistema de empañamiento y una aspiradora portable están disponibles en el puerto. También se encuentran disponibles la energía demandada (aproximadamente 20 kW por aspiradora y 20 kW por sistema de empañamiento), y servicios de agua.

3.3.8.2.2 Corredores de acceso existentes

3.3.8.2.2.1 Localización

El acceso a la zona baja del Proyecto se encuentra sobre la ruta nacional 25B-01, que en la actualidad hace parte del primer grupo de concesiones viales de Cuarta Generación de las denominadas Autopistas de la Prosperidad que conecta con la red vial primaria del país, dicha concesión es la llamada “Concesión Pacífico 2”, que comunica los municipios de La Pintada - Bolombolo. Al ser una vía de primer orden debe cumplir con todas las características requeridas por el INVÍAS, entre ellas una capa de rodadura totalmente pavimentada. A partir de la “Concesión Pacífico 2” a la altura del sector conocido como Puente Iglesias, se desprende una vía de categoría terciaria permitiendo la comunicación con el municipio de Támesis, la cual permite ingresar a la zona baja del proyecto; y a unos 10 km de Puente Iglesias, en dirección a Bolombolo, se encuentra la vía de acceso a la cabecera de Jericó, que permite el acceso a la zona de influencia en la parte alta del Proyecto (véase la Figura 3.7).
En general, estas vías serán usadas para transporte de maquinaria y equipos en la etapa de construcción y montaje, dado que son las que comunican al Proyecto con el puerto de Buenaventura (véase la Figura 3.73).

3.3.8.2.2 Aprovechamiento de las vías existentes zona baja del Proyecto

En la Tabla 3.215 se presentan las vías existentes mencionadas en el numeral 3.2.1.1 que se aprovecharán en el Proyecto, ajustándolas de forma que cumplan los criterios de diseño geométrico en cuanto a radios mínimos en curvas horizontales, pendientes longitudinales y anchos de la sección transversal. En la tabla se indica la vía del Proyecto (tanto para construcción como operación), su longitud total, longitud de mejoramiento de las vías existentes, longitud de vía nueva y la vía existente a aprovechar. Los detalles se presentan en el mapa MQC-INT-EIA-DESC-03-INFRA y en los planos 0010368-MQC-LY-010 al 0010368-MQC-LY-060.

<table>
<thead>
<tr>
<th>Vías del proyecto</th>
<th>Vía existente aprovechada</th>
<th>Long. total (m)</th>
<th>Longitud mejoramiento vía existente (m)</th>
<th>Coordenadas del tramo(s) mejoramiento Magna Sirgas Oeste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vía Construcción 1 (La Mancha)</td>
<td>Vía La Mancha</td>
<td>2.890</td>
<td>1.351</td>
<td>1.154.028</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.133.350</td>
</tr>
<tr>
<td>Vía Construcción 4 (San Antonio)</td>
<td>Vía San Antonio</td>
<td>3.394</td>
<td>3.158</td>
<td>1.153.100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.134.320</td>
</tr>
<tr>
<td>Vía Construcción 7 (Candelaria)</td>
<td>Vía Peñalinda - Vía Candelaria</td>
<td>3.200</td>
<td>2.733</td>
<td>1.154.059</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.132.743</td>
</tr>
<tr>
<td>Vía Construcción 8 (Candelaria)</td>
<td></td>
<td>150</td>
<td>150</td>
<td>1.152.834</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.131.722</td>
</tr>
<tr>
<td>Vía Construcción 9 (Candelaria)</td>
<td></td>
<td>100</td>
<td>100</td>
<td>1.153.035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.131.958</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018

3.3.8.2.2.3 Características principales de las vías existentes

En los numerales 3.2.1.1 y 3.2.1.2 se muestran con mayor detalle las características geométricas de cada una de las vías existentes.

En cuanto a la utilización de los usuarios de estas vías y la tipología de vehículos predominantes se realizó un Estudio de tránsito cuyos resultados se presentan en el Anexo_3_13_Estudio_transito, y se resumen a continuación.

Las actividades de aforo se realizaron entre los días 21 a 25 de febrero de 2019, en seis puntos diferentes, ubicados tanto en el casco urbano del municipio de Jericó como a las afueras del mismo (véase la Figura 3.333 y la Figura 3.334):

1. **Intersección vía Jericó Variante**: intersección que da ingreso al municipio de Jericó, en el sector llamado Guacamayal.
2. **Palo Cabildo**: caserío donde se encuentra la cancha, en el desvío al sector de La Hermosa.
3. **Pacífico 2**: peaje de la doble calzada Pacífico II.
4. **Palermo**: vía a San Antonio.
5. **Rieles**: inicio de los rieles de la vía que conduce hacia la finca la Galilea.
6. **Chaquiro**: en el acceso a Chaquiro.
Estos aforos se realizaron un día hábil y un día festivo (sábado o domingo) durante las 24 horas del día; la información se discriminó por tipología vehicular entre: autos, motos, buses, camiones, estos últimos a su vez discriminados de acuerdo con el número de ejes.

Intersección vía Jericó Variante

Palo Cabildo

Pacífico 2

Palermo
Como era de esperarse, los puntos con mayor flujo vehicular fueron los ubicados cerca al casco urbano del municipio (Variante y Rieles) y en el peaje de la Concesión Pacifico II. Los puntos veredales por otro lado presentan muy poco flujo, especialmente el punto ubicado en la vía a Chaquiero.
La moto es el vehículo que más circula por los diferentes puntos aforados, los pesados de más de dos ejes solo registran un flujo importante en Pacífico II, esto asociado entre otros factores a las condiciones de las vías.

Tabla 3.216 TPD en los diferentes puntos de aforo

<table>
<thead>
<tr>
<th>Punto de aforo</th>
<th>TPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersección vía Jericó-Variante</td>
<td>2.138</td>
</tr>
<tr>
<td>Palo Cabildo</td>
<td>304</td>
</tr>
<tr>
<td>Pacífico II</td>
<td>1.809</td>
</tr>
<tr>
<td>Palermo</td>
<td>282</td>
</tr>
<tr>
<td>Rieles</td>
<td>1.885</td>
</tr>
<tr>
<td>Chaquiro</td>
<td>17</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

En general, en todos los puntos se registraron volúmenes muy similares tanto en el día típico como en el atípico (sábado o domingo), existían en algunas diferencias mínimas asociadas al turismo que atrae el municipio de Jericó o a actividades comerciales y laborales que se desarrollan en puntos específicos.

3.3.8.2.2.4 Propuesta de mejoramiento y mantenimiento de las vías existentes

En términos generales, las vías existentes que se aprovecharán para el desarrollo del Proyecto se encuentran en buenas condiciones, incluyendo puentes y taludes. Sin embargo, será necesario efectuar algunos cortes y llenos para su adecuación.

Tabla 3.217 Volumen estimado de corte y lleno para vías zona baja del proyecto (accesos existentes)

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Longitud (km)</th>
<th>Volumen Corte (m3)</th>
<th>Volumen Lleno (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vía construcción 1 (La Mancha)</td>
<td>2,89</td>
<td>31.950</td>
<td>46.800</td>
</tr>
<tr>
<td>Vía construcción 4 (San Antonio)</td>
<td>3,40</td>
<td>83.950</td>
<td>3.000</td>
</tr>
<tr>
<td>Vía construcción 7 (Candelaria)</td>
<td>3,20</td>
<td>43.550</td>
<td>5.400</td>
</tr>
<tr>
<td>Vía construcción 8 (Candelaria)</td>
<td>0,15</td>
<td>1.450</td>
<td>600</td>
</tr>
<tr>
<td>Vía construcción 9 (Candelaria)</td>
<td>0,10</td>
<td>50</td>
<td>1.250</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

No obstante, se requiere realizar mejoramientos principalmente a la calidad de la superficie que servirá como capa de rodadura, condiciones de drenaje, señalización y seguridad y ancho de vía, para satisfacer los requerimientos de transitabilidad de los vehículos que harán uso de estos corredores, los cuales se describen a continuación.

Mejoramientos

- **Mejoramiento de la subrasante**

Para el mejoramiento de la superficie de la calzada, es necesario verificar la calidad de los materiales que van a servir como fundación de las obras a proyectar. Específicamente se debe revisar la capacidad portante del material que va a funcionar como subrasante.

Según las especificaciones del INVIAS, resultados menores al 3% en el ensayo de relación de soporte del suelo (Norma INVIAS I.N.V E-148), caracterizan suelos de baja
calidad para comportamiento como subrasante. En el caso que se presente esta condición, es necesario considerar procedimientos de mejoramiento o estabilización del suelo, de acuerdo con las especificaciones señaladas en dicha norma.

- **Subbase granular**
 Como parte del mejoramiento de la calzada se incluye el suministro, colocación y compactación de material de subbase granular aprobado sobre una superficie debidamente preparada. Lo anterior deberá ceñirse a las especificaciones del INVIAS, capítulo 2 Explanaciones y capítulo 3 Afirmados, subbases y bases.

- **Base granular**
 Teniendo en cuenta la calidad del material de la subrasante, se puede considerar, en caso de que se requiera, la posibilidad de realizar estabilización mecánica mediante la combinación del suelo de la subrasante natural con agregados pétreos para mejorar la granulometría del suelo y, en consecuencia, su respuesta mecánica ante los esfuerzos producidos por las cargas de tránsito.

- **Drenaje**
 Se deberán construir cunetas, alcantarillas o box culvert para incrementar la seguridad y durabilidad en las vías existentes, protegiendo la capa de rodadura del lavado de material o empozamiento de agua que dé lugar a baches o irregularidades.

De igual manera, se deben construir alcantarillas y box culvert que permitan el paso de los drenajes que cruzan la vía y la evacuación de agua recolectada por las cunetas, evitando alterar el flujo de los cauces naturales.

En algunos casos se requerirá de disipadores de energía para evitar la socavación en la descarga de las obras.

- **Señalización y seguridad**
 Donde se requiera, se deberá instalar señalización y estructuras de protecciones que mejoren las condiciones de seguridad y eviten accidentes.

- **Ancho de vía**
 En varios sectores será necesario ampliar la calzada para satisfacer los requerimientos de los vehículos que transitarán por estos corredores.

Es claro que estos mejoramientos conllevan la ejecución de obras de corte, llenos y estabilización de taludes. Al respecto se realizan recomendaciones en el numeral 3.3.7.17.3 donde se analiza la estabilidad de los taludes y llenos de todas las vías del proyecto.

Mantenimiento

A continuación, se brindan algunas recomendaciones y se listan varias actividades para el manteamiento rutinario y periódico de las vías no pavimentadas, enfocadas no sólo a la conservación de la superficie vial o capa de rodadura, sino también a todas las obras civiles, incluyendo los cauces hídricos.
Limpieza del derecho de vía
Eliminación de basura, piedras, desperdicios, toda vegetación que crezca en taludes, terraplenes y obstáculos como pequeños derrumbes que estén dentro del derecho de vía, permitiendo el buen funcionamiento de las obras de drenaje, una buena visibilidad a los conductores y facilitando la circulación de los usuarios, brindando comodidad y seguridad.

Limpieza de la corona
Eliminación de basura, piedras, desperdicios, obstáculos, pequeños derrumbes, etc., que estén dentro de la superficie de rodadura o calzada y bermas.

Bacheo y reparación de la superficie de rodadura o calzada y bermas en vías no pavimentadas
Mantener las condiciones y especificaciones iniciales de la vía, reparando, rellenando, y compactando con equipo liviano o manual, pequeñas áreas de la superficie de rodadura o calzada y bermas, que presentan deterioro como baches y zonas blandas, producto del desgaste por tránsito de vehículos y arrastre de los materiales por las aguas superficiales.

Limpieza y reconformación de cunetas
Reconformar y retirar de forma manual o con herramientas manuales, basura, material depositado o sedimento, manteniendo la sección típica de la cuneta, garantizando la capacidad hidráulica de las mismas y el libre flujo del agua.

Reparación de cunetas revestidas
Realizar la reparación de cunetas revestidas de forma manual o con herramientas manuales, con el fin de mantener la sección inicial de cuando fueron construidas.

Limpieza y reparación de zanjas o rondas de coronación.
Retirar de forma manual o con herramientas manuales, basura, material caído o sedimentado, reconformando para mantener la sección inicial para las no revestidas y reparando los sectores deteriorados de las revestidas, garantizando la capacidad hidráulica de las mismas y el libre flujo del agua, sin estancarse ni infiltrarse.

Limpieza de alcantarillas
Inspección y retiro manual de todo tipo de material extraño depositado, sedimentado y/o vegetación que obstruya el paso del agua a través de la alcantarilla, además se debe realizar la limpieza de la entrada del agua a la alcantarilla (encole) y la salida (descole).

Reparación de alcantarillas
Realizar reparaciones menores de los elementos de entrada y salida de las alcantarillas incluyendo los cabezales, con el fin de garantizar las características y especificaciones iniciales de construcción.
• Limpieza de canales y aliviaderos
Retirar de forma manual o con herramientas manuales, basura, material depositado o sedimentado, manteniendo la sección típica de los canales y aliviaderos, garantizando la capacidad hidráulica de los mismos y el libre flujo del agua.

• Reparación de canales y aliviaderos
Realizar reparaciones menores de forma manual o con herramientas manuales de canales y aliviaderos, con el fin de garantizar las características y especificaciones iniciales de construcción.

• Limpieza de disipadores de energía
Retirar de forma manual o con herramientas manuales, basura, material depositado o sedimentado, garantizando en los disipadores de energía la capacidad hidráulica y el libre flujo del agua.

• Reparación de disipadores de energía
Realizar reparaciones menores de forma manual o con herramientas manuales de los disipadores de energía, con el fin de garantizar las características y especificaciones iniciales de construcción.

• Mantenimiento de subdrenajes o filtros
Realizar el mantenimiento y retiro de forma manual o con herramientas manuales, basura o cualquier material extraño que se encuentre a la salida de los subdrenajes o filtros, manteniéndola despejada y garantizando el libre flujo del agua.

• Limpieza de puentes y pontones
Inspección y retiro manual de todo tipo de material extraño, depositado, sedimentado y/o vegetación, que se encuentre sobre los elementos del puente o pontón o que obstruya el paso del agua a través de éste.

• Limpieza de cauces
Inspección y retiro manual de todo tipo de material extraño, depositado, sedimentado y/o vegetación que obstruya el paso del agua, y que en temporadas de invierno pueden ocasionar crecientes causando daños graves a puentes, pontones o el desbordamiento sobre la vía.

• Limpieza de badenes o vados
Inspección y retiro manual de todo tipo de material extraño, depositado, sedimentado y/o vegetación que obstruya el paso del agua a través de los badenes o vados.

• Mantenimiento de la señalización vial
Inspección, reparación, remplazo parcial o total y limpieza manual de todo tipo de material extraño y/o vegetación que impida observar claramente la señalización vial.
• Mantenimiento de barreras o defensas viales
Inspección, reparación, remplazo parcial o total y limpieza manual de todo tipo de material extraño y/o vegetación que impida observar claramente las barreras o defensas viales.

3.3.8.2.2.5 Referencia descriptiva de las vías con mejoramiento
En la Tabla 3.215 se indican las coordenadas de los tramos de vías existentes objeto de mejoramiento.

3.3.8.2.2.6 Propuesta de manejo de taludes accesos existentes
De acuerdo con las observaciones realizadas en los recorridos por las diferentes vías existentes, en general se tienen las siguientes consideraciones y recomendaciones:

• A lo largo de las vías existentes, se identifican taludes de corte en promedio de 5,0 m de altura, alcanzando en casos puntuales alturas hasta de 12,0 m. A pesar de que la mayoría de los cortes exhiben depósitos de vertiente o suelos residuales de la formación Combia o Amagá, no se identifican en general procesos morfodinámicos ni erosivos que estén afectando su estabilidad.

• En algunas zonas de la vía entre Puente Iglesias y La Mancha, los depósitos de vertiente están fragmentados y en algunos sectores se presentan deformaciones que indican movimientos asociados a la reptación. La vía por no tener estructura de pavimento enmascara estas deformaciones.

• Como se mencionó previamente, durante el proceso de mejoramiento de las vías existentes, será necesario intervenir algunos taludes o laderas de la vía para alcanzar el ancho de vía requerido. En estos casos se realizarán cortes y terraplenes debidamente estabilizados de acuerdo con las recomendaciones dadas en el numeral 3.3.7.17.3 del capítulo 3 donde se analiza la estabilidad de los taludes y llenos de todas las vías del proyecto.

• Tal como se menciona en el numeral citado, para la estabilización de los taludes se implementará el manejo de la geometría de corte adecuada de acuerdo con los análisis de estabilidad, además, en caso de requerirse, se implementarán tratamientos geotécnicos para alcanzar los factores de seguridad establecidos por la normativa.

Por otro lado, en los taludes que no requieran tratamientos, la cara del talud se protegerá ante los agentes erosivos, mediante la implementación de revegetalización y rondas de coronación.

Las dimensiones de las obras de adecuación de las vías existentes son relativamente menores y pueden acometerse desde la infraestructura de construcción del Proyecto. Por tanto, los métodos constructivos son los mismos de las vías nuevas y no ameritan la instalación de campamentos adicionales. Las cantidades de cortes y llenos resultantes de estas obras de adecuación se indican en la Tabla 3.217.
3.3.8.2.7 Aspectos relevantes de construcción y mejoramiento de accesos

No se identificaron aspectos de importancia particular en las actividades de construcción y mejoramiento de los accesos existentes.

3.3.8.2.3 Corredores de acceso nuevos

Las vías requeridas para el planteamiento del Proyecto minero se diseñaron para velocidades entre 20 km/h y 30 km/h, teniendo en cuenta las normas colombianas para el Diseño de Carreteras (versión 2008), y A Policy on Geometric Design of Highways and Streets (AASHTO, 2011), así como los requerimientos específicos del proyecto. Según estos parámetros y criterios de diseño, las vías se clasifican en vías para construcción y vías para operación. A continuación, se explicará cada uno de este tipo de vías.

3.3.8.2.3.1 Localización

Los nuevos accesos o vías del proyecto se presentan agrupados de acuerdo al diseño general del Proyecto. Además del diseño general correspondiente a la configuración inicial y final de la operación del Proyecto minero, se presentan de manera independiente las vías para construcción de las obras civiles. A continuación, se especifican los detalles para cada tipo de vía de acuerdo con el uso requerido por el Proyecto.

- Vías de construcción zona superficial en el valle (parte baja)

En la Tabla 3.218, el mapa MQC-INT-EIA-DESC-03-INFRA y en el plano 0010368-MQC-LY-010, se presentan las vías que serán utilizadas en la etapa de construcción y montaje. Como se mencionó anteriormente, serán utilizadas y adecuadas algunas de las vías existentes que antes servían de accesos privados de las fincas ubicadas en la zona del Proyecto, además estas vías de construcción están conectadas entre sí, formando un circuito que permite tener un desplazamiento fácil y rápido a los diferentes frentes de obra.

Algunas de las vías para construcción quedarán inutilizables al iniciarse la etapa de operación de la mina y otras seguirán en uso hasta cierta parte de la etapa operativa.

Tablas 3.218 — Vías para construcción (parte baja)

<table>
<thead>
<tr>
<th>No</th>
<th>Nombre</th>
<th>Longitud (km)</th>
<th>Ancho banca (m)</th>
<th>Origen</th>
<th>Destino</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vía construcción 1 (La Mancha)</td>
<td>2,89</td>
<td>7,0</td>
<td>Vía Puente Iglesias - Palermo</td>
<td>Vía principal / Vía portales</td>
</tr>
<tr>
<td>2</td>
<td>Vía construcción 2</td>
<td>0,95</td>
<td>7,0</td>
<td>Vía construcción 1</td>
<td>Plataforma túneles</td>
</tr>
<tr>
<td>3</td>
<td>Vía construcción 3</td>
<td>0,71</td>
<td>7,0</td>
<td>Vía construcción 1</td>
<td>Vía construcción 4</td>
</tr>
<tr>
<td>4</td>
<td>Vía construcción 4 (San Antonio)</td>
<td>3,40</td>
<td>7,0</td>
<td>Vía Puente Iglesias - Palermo</td>
<td>Vía principal 7 Vía construcción 1</td>
</tr>
<tr>
<td>5</td>
<td>Vía construcción 5</td>
<td>1,06</td>
<td>7,0</td>
<td>Vía construcción 1</td>
<td>Vía construcción 4</td>
</tr>
<tr>
<td>6</td>
<td>Vía construcción 6</td>
<td>0,11</td>
<td>7,0</td>
<td>Vía construcción 2</td>
<td>Plataforma 6</td>
</tr>
<tr>
<td>7</td>
<td>Vía construcción 7 (Candelaria)</td>
<td>3,20</td>
<td>7,0</td>
<td>Vía Puente Iglesias - Palermo</td>
<td>Vía construcción 2</td>
</tr>
<tr>
<td>8</td>
<td>Vía construcción 8 (Candelaria)</td>
<td>0,15</td>
<td>7,0</td>
<td>Vía construcción 7 (Candelaria)</td>
<td>Plataforma explosivos operación y planta de emulsión</td>
</tr>
<tr>
<td>9</td>
<td>Vía construcción 9</td>
<td>0,10</td>
<td>7,0</td>
<td>Vía construcción 7</td>
<td>Plataforma 7</td>
</tr>
</tbody>
</table>
Vías operación zona superficial en el valle (parte baja)

Esta es la red vial que debe estar construida para comenzar el proceso de extracción del material, están compuestas por la vía de acceso (que comunica la zona del proyecto con la concesión Pacífico 2), la vía a captación y descarga (desde la concesión Pacífico 2), vía principal la cual permite el ingreso a toda la zona de operaciones y las vías internas que conectan las diferentes obras o plataformas dentro de la zona del Proyecto. Estas vías serán pavimentadas para las etapas de construcción y operación del Proyecto. El planteamiento del tipo de pavimento a utilizar (flexible o rígido), se hará con base en la metodología que aplique y a partir de la proyección de tránsito vehicular, cumpliendo lo definido en las “Especificaciones generales de construcción de carreteras” (INVIAS, 2013).

Para el ingreso al Proyecto por la vía de acceso, se diseñaron carriles de cambio de velocidad adyacentes a la calzada de la concesión Pacífico 2, los cuales permiten a los usuarios que requieran ingresar o salir del Proyecto realizar cambios de velocidad de una forma gradual, cómoda y segura. Para el efecto la empresa tramitará ante la Agencia Nacional de Infraestructura – ANI-, el correspondiente permiso para intervención de la infraestructura vial establecido por la Resolución 716 de 2015.2

La sección transversal de la vía canal norte es menor, ya que solo se requiere para supervisión y mantenimiento de dicho canal y por este sector no ingresara ningún equipo pesado como si se requiere en otros sectores de la etapa de operación.

En la Tabla 3.219 se observan las vías correspondientes a la configuración de la etapa de operación, las cuales se presentan en el mapa MQC-INT-EIA-DESC-03-CYM y en los planos 0010368-MQC-LY-020 y 0010368-MQC-LY-030.

<table>
<thead>
<tr>
<th>No</th>
<th>Nombre</th>
<th>Longitud (km)</th>
<th>Ancho banca (m)</th>
<th>Origen</th>
<th>Destino</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vía acceso</td>
<td>1,83</td>
<td>7,2</td>
<td>Concesión Pacífico 2</td>
<td>Vía principal</td>
</tr>
<tr>
<td>2</td>
<td>Vía principal</td>
<td>3,61</td>
<td>8,6</td>
<td>Vía acceso</td>
<td>Vía portales</td>
</tr>
<tr>
<td>3</td>
<td>Vía portales</td>
<td>1,10</td>
<td>8,6</td>
<td>Vía principal / Vía campamento - planta</td>
<td>Plataforma túneles</td>
</tr>
<tr>
<td>4</td>
<td>Vía canal norte</td>
<td>0,51</td>
<td>5,6</td>
<td>Vía portales</td>
<td>NA</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

Tabla 3.219 Vías para operación (parte baja)

2 Permiso para el uso, la ocupación y la intervención temporal de la infraestructura vial carretera concesionada y férrea (Resolución 716 de 2015). https://www.ani.gov.co/basic-page/permiso-para-el-uso-la-ocupacion-y-la-intervencion-temporal-de-la-infraestructura-vial

Instrucciones trámite del otorgamiento de los permisos para el uso, la ocupación y la intervención temporal de la infraestructura vial carretera concesionada y férrea que se encuentran a cargo de la entidad. Código: GCSP-I-008. https://www.devimed.com.co/descarga/INSTRUCTIVO%20PARA%20OTORGAR%20EL%20PERMISO%20RESOLUCI%C3%B3N%20716.pdf
Vías zona alta del Proyecto

En la zona superficial sobre la montaña (parte alta del proyecto), se requiere la construcción de tres vías que permitan el acceso a las plataformas A, C y D, requeridas en dicho sector, las cuales se diseñaron para velocidades de 20 km/h. En la Tabla 3.220 se observan las vías en cuestión (véase también el mapa MQC-INT-EIA-DESC-03-CYM y los planos 0010368-MQC-LY-040 al 0010368-MQC-LY-060).

<table>
<thead>
<tr>
<th>No</th>
<th>Nombre</th>
<th>Longitud (km)</th>
<th>Ancho Banca (m)</th>
<th>Origen</th>
<th>Destino</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vía conexión plataformas</td>
<td>0,56</td>
<td>7,0</td>
<td>Plataforma A</td>
<td>Vía existente</td>
</tr>
<tr>
<td>2</td>
<td>Vía plataforma C</td>
<td>0,39</td>
<td>7,0</td>
<td>Vía existente</td>
<td>Plataforma C</td>
</tr>
<tr>
<td>3</td>
<td>Vía plataforma D</td>
<td>0,26</td>
<td>7,0</td>
<td>Plataforma D</td>
<td>Plataforma D</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

3.3.8.2.3.2 Especificaciones técnicas

Vías construcción

Las vías para construcción se proyectan y deben de ejecutarse en los primeros años del Proyecto, con el fin de permitir el acceso rápido a los diferentes puntos de las obras del Proyecto.

Estas vías se concibieron para una velocidad de diseño de 20 km/h, presentando condiciones óptimas en su geometría para cumplir su objetivo principal. Además, para facilitar y agilizar la operación del proyecto se utilizaron (siempre y cuando cumplieran con los criterios) las vías existentes tales como la vía Puente Iglesias – Palermo, vía San Antonio, vía La Mancha por Vía Peñalinda y Candelaria. Para las últimas tres vías se proponen adecuaciones para cumplir con los criterios establecidos.

Las especificaciones técnicas se presentan en la Tabla 3.221 y su sección típica en la Figura 3.335 y Figura 3.336.
Tabla 3.221 Criterios de diseño vías para construcción

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocidad de diseño</td>
<td>20 km/h</td>
</tr>
<tr>
<td>Vehículo de diseño</td>
<td>C3S3 (WB-15 Standard AASHTO)</td>
</tr>
<tr>
<td>Radio mínimo en curva</td>
<td>15 m</td>
</tr>
<tr>
<td>Longitud de curva horizontal</td>
<td>11,11 m</td>
</tr>
<tr>
<td>Bombeo</td>
<td>2%</td>
</tr>
<tr>
<td>Pendiente longitudinal</td>
<td></td>
</tr>
<tr>
<td>Máxima</td>
<td>12%* - 14%**</td>
</tr>
<tr>
<td>Mínima</td>
<td>0,50%</td>
</tr>
<tr>
<td>Longitud de curva vertical</td>
<td>20 m</td>
</tr>
<tr>
<td>k mínimo</td>
<td></td>
</tr>
<tr>
<td>Convexa</td>
<td>1</td>
</tr>
<tr>
<td>Cóncava</td>
<td>3</td>
</tr>
<tr>
<td>Ancho de carriles</td>
<td>3,50 m / 2,00 m***</td>
</tr>
<tr>
<td>Número de carriles</td>
<td>2</td>
</tr>
<tr>
<td>Ancho de bermas</td>
<td>0,50</td>
</tr>
<tr>
<td>Número de bermas</td>
<td>2</td>
</tr>
<tr>
<td>Ancho de calzada</td>
<td>7,00 m / 5,00 m***</td>
</tr>
</tbody>
</table>

*Requerimiento de Minera de Cobre Quebradona.

**La pendiente indicada se utilizó para las vías de construcción 4 (San Antonio), 7 (Candelaria) y la vía de conexión plataforma en la zona alta del proyecto.

*** Los anchos indicados corresponden a las vía a descarga y captación y es menor al utilizado en las otras vías del proyecto puesto que para los equipos de construcción y los vehículos que ingresaran a dichas zonas en la etapa de operación, no requieren una sección mayor a la planteada.

Fuente: Integral, 2019

![Figura 3.335 Sección típica vías construcción](image_url)

Fuente: Integral, 2019
Las vías de operación son aquellas que se utilizaran en toda la vida útil del proyecto, es decir en su etapa operativa y servirán para el ingreso al proyecto y otras para dar conexión a los diferentes puntos de operación como la Planta de beneficio, Campamento, portales de los túneles, entre otros. Estas vías fueron concebidas para velocidades de diseño entre 20 km/h y 30 km/h con anchos de calzada que varían entre 5,60 m a 8,60 m, que cumplen con los criterios de diseño. Estas vías de operación se pueden dividir en dos tipos, una vía principal que permite el ingreso de tráfico externo hasta cierto punto del proyecto y otras vías internas por las cuales se desplazarán vehículos livianos del proyecto y la flota minera necesaria.

Tabla 3.222 Criterios de diseño vías operación

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocidad de diseño</td>
<td>20 km/h</td>
</tr>
<tr>
<td>Vehículo de diseño*</td>
<td>C3S3 (WB-15 Standard AASHTO) – Vehículos livianos – Flota minera</td>
</tr>
<tr>
<td>Radio mínimo en curva</td>
<td>15 m</td>
</tr>
<tr>
<td>Longitud de curva horizontal</td>
<td>11,11 m</td>
</tr>
<tr>
<td>Bombeo</td>
<td>2%</td>
</tr>
<tr>
<td>Pendiente longitudinal*</td>
<td>Máxima</td>
</tr>
<tr>
<td></td>
<td>Mínima</td>
</tr>
<tr>
<td>Longitud de curva vertical</td>
<td>20 m</td>
</tr>
<tr>
<td>k mínimo</td>
<td>Convexa</td>
</tr>
<tr>
<td></td>
<td>Cóncava</td>
</tr>
<tr>
<td>Ancho de carriles*</td>
<td>2,50 m a 4,00 m</td>
</tr>
<tr>
<td>Criterio</td>
<td>Valores</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Número de carriles</td>
<td>2</td>
</tr>
<tr>
<td>Ancho de bermas*</td>
<td>0,10 m a 0,30 m</td>
</tr>
<tr>
<td>Número de bermas</td>
<td>2</td>
</tr>
<tr>
<td>Ancho de calzada*</td>
<td>5,60 m a 8,60 m</td>
</tr>
</tbody>
</table>

*Requerimiento de Minera de Cobre Quebradona.
Fuente: Integral, 2019

En la Tabla 3.223 se presentan los volúmenes de los cortes y llenos generados por la construcción de cada una de las vías requeridas en las diferentes etapas del proyecto en la zona baja, y en la Tabla 3.224 para la zona alta del proyecto.

Figura 3.337 Sección típica vías de operación con ancho de calzada 5,60 m
Fuente: Minera de Cobre Quebradona, 2019

Figura 3.338 Sección típica vías de operación con ancho de calzada 7,20 m
Fuente: Minera de Cobre Quebradona, 2019
Figura 3.339 Sección típica vías de operación con ancho de calzada 8,60 m
Fuente: Minera de Cobre Quebradona, 2019

Figura 3.340 Sección típica de la vía con ancho de calzada 5,00 m
Fuente: Integral, 2019

Tabla 3.223 Volumen estimado de corte y lleno para vías zona baja del proyecto

<table>
<thead>
<tr>
<th>No</th>
<th>Nombre</th>
<th>Longitud (km)</th>
<th>Volumen Corte (m3)</th>
<th>Volumen Lleno (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vía construcción 1 (La Mancha)</td>
<td>2.89</td>
<td>31.950</td>
<td>46.800</td>
</tr>
<tr>
<td>2</td>
<td>Vía construcción 2</td>
<td>0.95</td>
<td>31.300</td>
<td>10.750</td>
</tr>
<tr>
<td>3</td>
<td>Vía construcción 3</td>
<td>0.71</td>
<td>8.600</td>
<td>7.500</td>
</tr>
<tr>
<td>4</td>
<td>Vía construcción 4 (San Antonio)</td>
<td>3.40</td>
<td>83.950</td>
<td>3.000</td>
</tr>
<tr>
<td>5</td>
<td>Vía construcción 5</td>
<td>1.06</td>
<td>7.400</td>
<td>24.250</td>
</tr>
<tr>
<td>6</td>
<td>Vía construcción 6</td>
<td>0.11</td>
<td>10</td>
<td>12.900</td>
</tr>
<tr>
<td>7</td>
<td>Vía construcción 7 (Candelaria)</td>
<td>3.20</td>
<td>43.550</td>
<td>5.400</td>
</tr>
<tr>
<td>8</td>
<td>Vía construcción 8 (Candelaria)</td>
<td>0.15</td>
<td>1.450</td>
<td>600</td>
</tr>
<tr>
<td>No</td>
<td>Nombre</td>
<td>Longitud (km)</td>
<td>Volumen Corte (m3)</td>
<td>Volumen Lleno (m3)</td>
</tr>
<tr>
<td>----</td>
<td>---------------------------</td>
<td>---------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>9</td>
<td>Vía construcción 9 (Candelaria)</td>
<td>0,10</td>
<td>50</td>
<td>1,250</td>
</tr>
<tr>
<td>10</td>
<td>Vía acceso</td>
<td>1,83</td>
<td>13,850</td>
<td>93,850</td>
</tr>
<tr>
<td>11</td>
<td>Vía principal</td>
<td>3,61</td>
<td>141,500</td>
<td>141,800</td>
</tr>
<tr>
<td>12</td>
<td>Vía portales</td>
<td>1,10</td>
<td>95,000</td>
<td>3,150</td>
</tr>
<tr>
<td>13</td>
<td>Vía canal norte</td>
<td>0,51</td>
<td>19,833</td>
<td>751</td>
</tr>
<tr>
<td>14</td>
<td>Vía campamento - planta</td>
<td>0,65</td>
<td>43,942</td>
<td>923</td>
</tr>
<tr>
<td>15</td>
<td>Vía depósito pirita</td>
<td>1,10</td>
<td>46,858</td>
<td>2,243</td>
</tr>
<tr>
<td>16</td>
<td>Vía depósito de relaves filtrados</td>
<td>6,39</td>
<td>350,387</td>
<td>43,373</td>
</tr>
<tr>
<td>17</td>
<td>Vía a descarga</td>
<td>0,26</td>
<td>300</td>
<td>330</td>
</tr>
<tr>
<td>18</td>
<td>Vía a captación</td>
<td>0,21</td>
<td>200</td>
<td>450</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018

<table>
<thead>
<tr>
<th>No</th>
<th>Nombre</th>
<th>Longitud (km)</th>
<th>Volumen Corte (m3)</th>
<th>Volumen Lleno (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vía conexión plataformas</td>
<td>0,56</td>
<td>71,150</td>
<td>2,990</td>
</tr>
<tr>
<td>2</td>
<td>Vía plataforma C</td>
<td>0,39</td>
<td>29,800</td>
<td>60,100</td>
</tr>
<tr>
<td>3</td>
<td>Vía plataforma D</td>
<td>0,26</td>
<td>35,200</td>
<td>0</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

3.3.8.2.3.3 Criterios de diseño obras de drenaje

Para el diseño de obras de drenaje longitudinales y de cruce, de acuerdo con el tipo de vía, se utilizaron los caudales para los periodos de retorno que se indican en la Tabla 3.225.

<table>
<thead>
<tr>
<th>Obra</th>
<th>Tipo de vía</th>
<th>Vías internas</th>
<th>Vías Externas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Departamentales, Municipales o Veredales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Para construcción</td>
<td>Para operación</td>
</tr>
<tr>
<td>Cunetas</td>
<td></td>
<td>2,33</td>
<td>5</td>
</tr>
<tr>
<td>Rondas de coronación</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Obra de cruce</td>
<td></td>
<td>25 años a flujo libre y 100 años con flujo a presión</td>
<td></td>
</tr>
<tr>
<td>Puentes</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Estructuras de caída</td>
<td></td>
<td></td>
<td>Según obra de cruce</td>
</tr>
<tr>
<td>Drenaje sub superficial</td>
<td></td>
<td>No se requiere</td>
<td>2</td>
</tr>
<tr>
<td>Canal Sur y Canal Norte</td>
<td></td>
<td>100 con un borde libre y 500 sin borde libre</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

Para los cruces menores se utilizaron las obras típicas relacionadas en la Tabla 3.226. En dicha tabla se indica además la capacidad hidráulica de cada obra para flujo crítico.

<table>
<thead>
<tr>
<th>Obra</th>
<th>Capacidad (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubería concreto ø 900 mm</td>
<td>1,71</td>
</tr>
<tr>
<td>Tubería concreto ø 1200 mm</td>
<td>3,51</td>
</tr>
<tr>
<td>Concreto Alcantarilla de cañón de 1,50 x 1,50</td>
<td>7,37</td>
</tr>
<tr>
<td>Concreto Alcantarilla de cañón de 1,75 x 1,75</td>
<td>10,83</td>
</tr>
<tr>
<td>Concreto Alcantarilla de cañón de 2,00 x 2,00</td>
<td>15,13</td>
</tr>
<tr>
<td>Concreto Alcantarilla de cañón de 2,25 x 2,25</td>
<td>20,31</td>
</tr>
</tbody>
</table>
Vale la pena señalar que las capacidades presentadas en la Tabla 3.226 se estimaron para las condiciones usuales de la zona del Proyecto Minera de Cobre Quebradona correspondientes a cuencas de montaña, en las que los cruces presentan una pendiente longitudinal supercrítica (pendiente mayor que la crítica -Yc) y asumiendo que la obra opera hidráulicamente a flujo libre a la entrada con una relación de Yc/H (siendo H la altura o el diámetro de la obra de cruce) menor o igual al 90%. En aquellos casos donde no se presentó tal condición de flujo supercrítico, se analizaron y justificaron criterios diferentes que tuvieron en cuenta los controles hidráulicos que pueda generar la condición de flujo subcrítico al interior de la obra de cruce o el mismo cauce natural de drenaje que se estuviera cruzando.

También con el fin de verificar el funcionamiento de estas obras bajo condiciones extremas se verificó el funcionamiento de las obras de drenaje con caudales para un periodo de retorno de 100 años, y con condiciones hasta de flujo a presión.

De acuerdo con la condición topográfica de los cauces de la zona, la mayoría de las obras de cruce menores serán en corte correspondientes a la secuencia (Véanse los planos 0010368-MQC-DR-10 al 0010368-MQC-DR-30):

Las obras de encole y descole, tuberías y alcantarillas de cajón, las cunetas revestidas, pocetas y cabezotes serán construidos con concreto de 280 kg/cm².

En la Tabla 3.227 se presentan los tipos de obras proyectadas en los drenajes de las vías y plataformas.

Tabla 3.227 Obras de drenaje para las vías y plataformas

<table>
<thead>
<tr>
<th>Obra</th>
<th>Características</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rondas de coronación (Para taludes con alturas mayores a 5 m)</td>
<td>Ubicación Donde se requiera para dar estabilidad a los taludes; la necesidad de su implementación se definirá directamente durante el desarrollo de los trabajos de campo.</td>
</tr>
<tr>
<td>Descripción Cunetas trapezoidales en piedra pegada, concreto o sacos de suelo cemento, etc.</td>
<td></td>
</tr>
<tr>
<td>Criterio hidrológico Creciente de 2,33 años de período de retorno, asumiendo un tiempo de concentración de 5 minutos y un coeficiente de escorrentía típico de 0,60.</td>
<td></td>
</tr>
</tbody>
</table>
| **Dimensiones** Sección trapezoidal con taludes 05H:1V, con dimensiones variables según los planos 0010368-MQC-DR-10 al 0010368-MQC-DR-30, donde:
 - El ancho varía entre 0,40 y 1,10 m
 - La altura varía entre 0,30 y 0,80 m |
| **Cunetas** Ubicación En la base o pata del talud de corte |
Tabla 3.228 Cantidades resumidas de las obras de drenaje

<table>
<thead>
<tr>
<th>Estructuras de drenajes y ocupaciones de cauce</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal de Concreto de 3,00 x 3,00 m</td>
<td>8</td>
</tr>
<tr>
<td>Canal de Concreto de 3,00 x 3,50 m</td>
<td>14</td>
</tr>
<tr>
<td>Canal de Concreto de 4,00 x 4,50 m</td>
<td>1</td>
</tr>
<tr>
<td>Canales de descarga Sédimentadores</td>
<td>9</td>
</tr>
<tr>
<td>Concreto Alcantarilla de cajón de 1,00 x 1,00 m</td>
<td>45</td>
</tr>
<tr>
<td>Concreto Alcantarilla de cajón de 1,50 x 1,50 m</td>
<td>17</td>
</tr>
<tr>
<td>Concreto Alcantarilla de cajón de 1,75 x 1,75 m</td>
<td>6</td>
</tr>
<tr>
<td>Concreto Alcantarilla de cajón de 2,00 x 2,00 m</td>
<td>19</td>
</tr>
<tr>
<td>Concreto Alcantarilla de cajón de 2,25 x 2,25 m</td>
<td>1</td>
</tr>
<tr>
<td>Concreto Alcantarilla de cajón doble de 2,25 x 2,25 m</td>
<td>1</td>
</tr>
<tr>
<td>Concreto Alcantarilla de cajón de 2,50 x 2,50 m</td>
<td>3</td>
</tr>
<tr>
<td>Concreto Alcantarilla de cajón de 2,75 x 2,75 m</td>
<td>1</td>
</tr>
<tr>
<td>Sistema de alcantarillado de aguas lluvias conformado por tuberías y cunetas (On Montain)</td>
<td>23</td>
</tr>
<tr>
<td>Sistema de drenajes del depósito de Arenas</td>
<td>11</td>
</tr>
<tr>
<td>Sistema de drenajes del ZODME conformado por canales en concreto tipo 1 y 2, cunetas en suelo cemento tipo 1, cunetas en piedra pegada tipo 2, filtros primarios y secundarios</td>
<td>5</td>
</tr>
</tbody>
</table>
Sistema de drenajes del ZODME conformado por canales en concreto tipo 1 y 2, cunetas en suelo cemento tipo 2, cunetas en piedra pegada tipo 1, filtros primarios y secundarios | 1
Sistema de drenajes del ZODME conformado por canales en concreto tipo 1, cunetas en suelo cemento tipo 1, cunetas en piedra pegada tipo 1, filtros primarios y secundarios | 10
Sistema de drenajes del ZODME conformado por canales en concreto tipo 2 y 3, cunetas en suelo cemento tipo 1, cunetas en piedra pegada tipo 2, filtros primarios y secundarios | 7
Sistema de drenajes del ZODME conformado por canales en concreto, cunetas en suelo cemento, cunetas en piedra pegada, filtros primarios y secundarios | 2
Tubería concreto ø 1200 mm | 22
Tubería concreto ø 900 mm | 81
Tuberías subfluviales sin afectación de la sección natural del cauce | 7

Fuente: Integral, 2019

3.3.8.2.3.4 Geotecnia vial y manejo de taludes

Las recomendaciones generales para la adecuación de accesos nuevos se describen en el numeral 3.3.7.17.3 Modelación de estabilidad geotécnica (superficial), los cuales corresponden a los resúmenes de los análisis presentados en el Anexo_3_9A_Anexo_geotecnico.

Ya que las plataformas corresponden a parte de la infraestructura vial, se emitieron un grupo de recomendaciones en el numeral 3.3.7.17.3 Modelación de estabilidad geotécnica (superficial).

3.3.8.2.3.5 Tramos de vías donde se presentan cruces de cuerpos de agua

Tabla 3.229 Identificación de las obras de cruce de cuerpos de agua asociados a las vías del proyecto

<table>
<thead>
<tr>
<th>Obra de cruce</th>
<th>Coordenadas Magna Colombia Oeste</th>
<th>Cota aprox. (msnm)</th>
<th>Abscisa</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAcarr.1</td>
<td>1.152.643 1.133.266</td>
<td>854,72</td>
<td>km 0+093,0</td>
</tr>
<tr>
<td>VAcarr.10</td>
<td>1.152.623 1.133.200</td>
<td>866,72</td>
<td>km 0+763,0</td>
</tr>
<tr>
<td>VAcarr.11</td>
<td>1.152.509 1.133.295</td>
<td>865,93</td>
<td>km 0+912,0</td>
</tr>
<tr>
<td>VAcarr.12</td>
<td>1.152.523 1.133.224</td>
<td>874,73</td>
<td>km 1+068,0</td>
</tr>
<tr>
<td>VAcarr.13</td>
<td>1.152.599 1.133.153</td>
<td>877,23</td>
<td>km 1+172,0</td>
</tr>
<tr>
<td>VAcarr.14</td>
<td>1.152.656 1.133.104</td>
<td>876,28</td>
<td>km 1+247,0</td>
</tr>
<tr>
<td>VAcarr.15</td>
<td>1.152.761 1.133.077</td>
<td>874,48</td>
<td>km 1+356,0</td>
</tr>
<tr>
<td>VAcarr.16</td>
<td>1.152.798 1.133.071</td>
<td>878,43</td>
<td>km 1+394,0</td>
</tr>
<tr>
<td>VAcarr.17</td>
<td>1.152.778 1.133.032</td>
<td>884,57</td>
<td>km 1+467,0</td>
</tr>
<tr>
<td>VAcarr.18</td>
<td>1.152.744 1.133.044</td>
<td>882,79</td>
<td>km 1+503,0</td>
</tr>
<tr>
<td>VAcarr.19</td>
<td>1.152.648 1.133.079</td>
<td>882,03</td>
<td>km 1+606,0</td>
</tr>
<tr>
<td>VAcarr.2</td>
<td>1.152.765 1.133.211</td>
<td>855,94</td>
<td>km 0+227,0</td>
</tr>
<tr>
<td>VAcarr.20</td>
<td>1.152.583 1.133.131</td>
<td>882,93</td>
<td>km 1+692,0</td>
</tr>
<tr>
<td>VAcarr.21</td>
<td>1.152.450 1.133.200</td>
<td>883,24</td>
<td>km 1+845,0</td>
</tr>
<tr>
<td>VAcarr.22</td>
<td>1.152.336 1.133.161</td>
<td>890,87</td>
<td>km 2+106,0</td>
</tr>
<tr>
<td>VAcarr.23</td>
<td>1.152.281 1.133.253</td>
<td>890,04</td>
<td>km 2+217,0</td>
</tr>
<tr>
<td>VAcarr.24</td>
<td>1.152.330 1.133.107</td>
<td>899,69</td>
<td>km 2+533,0</td>
</tr>
<tr>
<td>VAcarr.25</td>
<td>1.152.401 1.133.084</td>
<td>899,69</td>
<td>km 2+606,0</td>
</tr>
<tr>
<td>Obra de cruce</td>
<td>Coordenadas Magna Colombia Oeste</td>
<td>Cota aprox. (msnm)</td>
<td>Abscisa</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>VAcarr.26</td>
<td>1.152.480 1.132.942</td>
<td>903.78</td>
<td>km 2+779,0</td>
</tr>
<tr>
<td>VAcarr.27</td>
<td>1.152.716 1.132.890</td>
<td>909.91</td>
<td>km 0+777,0</td>
</tr>
<tr>
<td>VAcarr.28</td>
<td>1.152.779 1.132.903</td>
<td>913.97</td>
<td>km 0+843,0</td>
</tr>
<tr>
<td>VAcarr.29</td>
<td>1.152.848 1.132.895</td>
<td>915.58</td>
<td>km 0+914,0</td>
</tr>
<tr>
<td>VAcarr.3</td>
<td>1.152.793 1.133.200</td>
<td>856.8</td>
<td>km 0+256,0</td>
</tr>
<tr>
<td>VAcarr.30</td>
<td>1.152.923 1.132.685</td>
<td>911.5</td>
<td>km 0+989,0</td>
</tr>
<tr>
<td>VAcarr.31</td>
<td>1.153.018 1.132.855</td>
<td>907.78</td>
<td>km 1+090,0</td>
</tr>
<tr>
<td>VAcarr.32</td>
<td>1.152.946 1.132.710</td>
<td>895.79</td>
<td>km 1+306,0</td>
</tr>
<tr>
<td>VAcarr.33</td>
<td>1.152.985 1.132.663</td>
<td>893.39</td>
<td>km 1+367,0</td>
</tr>
<tr>
<td>VAcarr.4</td>
<td>1.152.861 1.133.172</td>
<td>852.87</td>
<td>km 0+331,0</td>
</tr>
<tr>
<td>VAcarr.5</td>
<td>1.152.900 1.133.158</td>
<td>853.97</td>
<td>km 0+372,0</td>
</tr>
<tr>
<td>VAcarr.6</td>
<td>1.152.904 1.133.098</td>
<td>866.96</td>
<td>km 0+457,0</td>
</tr>
<tr>
<td>VAcarr.7</td>
<td>1.152.830 1.133.112</td>
<td>871.19</td>
<td>km 0+533,0</td>
</tr>
<tr>
<td>VAcarr.8</td>
<td>1.152.761 1.133.130</td>
<td>866.69</td>
<td>km 0+604,0</td>
</tr>
<tr>
<td>VAcarr.9</td>
<td>1.152.676 1.133.158</td>
<td>866.45</td>
<td>km 0+695,0</td>
</tr>
<tr>
<td>VConst1_1</td>
<td>1.152.681 1.132.780</td>
<td>921.13</td>
<td>km 1+652,0</td>
</tr>
<tr>
<td>VConst1_2</td>
<td>1.152.594 1.132.719</td>
<td>935.24</td>
<td>km 1+758,0</td>
</tr>
<tr>
<td>VConst1_3</td>
<td>1.152.540 1.132.686</td>
<td>937.81</td>
<td>km 1+823,0</td>
</tr>
<tr>
<td>VConst1_4</td>
<td>1.152.460 1.132.633</td>
<td>949.27</td>
<td>km 1+918,0</td>
</tr>
<tr>
<td>VConst1_5</td>
<td>1.152.197 1.132.604</td>
<td>979.44</td>
<td>km 2+186,0</td>
</tr>
<tr>
<td>VConst1_6</td>
<td>1.152.036 1.132.591</td>
<td>1002.4</td>
<td>km 2+344,0</td>
</tr>
<tr>
<td>VConst1_7</td>
<td>1.151.928 1.132.612</td>
<td>1002.87</td>
<td>km 2+454,0</td>
</tr>
<tr>
<td>VConst1_8</td>
<td>1.151.895 1.132.624</td>
<td>1006.13</td>
<td>km 2+492,0</td>
</tr>
<tr>
<td>VConst1_9</td>
<td>1.151.666 1.132.579</td>
<td>1035.78</td>
<td>km 2+744,0</td>
</tr>
<tr>
<td>VConst2_1</td>
<td>1.151.369 1.132.540</td>
<td>974.07</td>
<td>km 0+104,0</td>
</tr>
<tr>
<td>VConst2_10</td>
<td>1.152.383 1.131.983</td>
<td>1063.27</td>
<td>km 0+814,0</td>
</tr>
<tr>
<td>VConst2_11</td>
<td>1.152.307 1.131.984</td>
<td>1072.46</td>
<td>km 0+895,0</td>
</tr>
<tr>
<td>VConst2_2</td>
<td>1.152.378 1.132.494</td>
<td>981.45</td>
<td>km 0+149,0</td>
</tr>
<tr>
<td>VConst2_3</td>
<td>1.152.396 1.132.341</td>
<td>998.66</td>
<td>km 0+306,0</td>
</tr>
<tr>
<td>VConst2_4</td>
<td>1.152.415 1.132.193</td>
<td>1017.23</td>
<td>km 0+452,0</td>
</tr>
<tr>
<td>VConst2_5</td>
<td>1.152.423 1.132.118</td>
<td>1029.95</td>
<td>km 0+527,0</td>
</tr>
<tr>
<td>VConst2_6</td>
<td>1.152.430 1.132.072</td>
<td>1039.59</td>
<td>km 0+577,0</td>
</tr>
<tr>
<td>VConst2_7</td>
<td>1.152.446 1.132.048</td>
<td>1038.56</td>
<td>km 0+603,0</td>
</tr>
<tr>
<td>VConst2_8</td>
<td>1.152.467 1.132.020</td>
<td>1047.83</td>
<td>km 0+639,0</td>
</tr>
<tr>
<td>VConst2_9</td>
<td>1.152.421 1.131.965</td>
<td>1066.78</td>
<td>km 0+774,0</td>
</tr>
<tr>
<td>VConst3_1</td>
<td>1.152.251 1.133.053</td>
<td>916.79</td>
<td>km 0+552,0</td>
</tr>
<tr>
<td>VConst3_2</td>
<td>1.152.302 1.133.034</td>
<td>917.67</td>
<td>km 0+498,0</td>
</tr>
<tr>
<td>VConst3_3</td>
<td>1.152.363 1.133.013</td>
<td>912.12</td>
<td>km 0+431,0</td>
</tr>
<tr>
<td>VConst3_4</td>
<td>1.152.486 1.132.874</td>
<td>910.65</td>
<td>km 0+244,0</td>
</tr>
<tr>
<td>VConst3_5</td>
<td>1.152.601 1.132.870</td>
<td>910.35</td>
<td>km 0+126,0</td>
</tr>
<tr>
<td>VConst4_1</td>
<td>1.152.739 1.133.452</td>
<td>826.21</td>
<td>km 1+223,0</td>
</tr>
<tr>
<td>VConst4_2</td>
<td>1.152.647 1.133.379</td>
<td>841.82</td>
<td>km 1+346,0</td>
</tr>
<tr>
<td>VConst4_3</td>
<td>1.152.519 1.133.256</td>
<td>869.95</td>
<td>km 1+603,0</td>
</tr>
<tr>
<td>VConst4_4</td>
<td>1.152.330 1.133.118</td>
<td>897.1</td>
<td>km 1+854,0</td>
</tr>
<tr>
<td>VConst4_5</td>
<td>1.152.032 1.132.883</td>
<td>959.48</td>
<td>km 2+494,0</td>
</tr>
<tr>
<td>VConst4_6</td>
<td>1.151.546 1.132.766</td>
<td>1020,01</td>
<td>km 3+082,0</td>
</tr>
<tr>
<td>VConst5_1</td>
<td>1.153.749 1.133.317</td>
<td>780.34</td>
<td>km 0+066,0</td>
</tr>
<tr>
<td>VConst5_2</td>
<td>1.153.656 1.133.346</td>
<td>780.1</td>
<td>km 0+189,0</td>
</tr>
<tr>
<td>VConst5_3</td>
<td>1.153.351 1.133.440</td>
<td>783.88</td>
<td>km 0+333,0</td>
</tr>
<tr>
<td>VConst5_4</td>
<td>1.153.412 1.133.397</td>
<td>783.7</td>
<td>km 0+464,0</td>
</tr>
<tr>
<td>VConst5_5</td>
<td>1.153.351 1.133.440</td>
<td>783.88</td>
<td>km 0+535,0</td>
</tr>
<tr>
<td>VConst5_6</td>
<td>1.153.214 1.133.565</td>
<td>787.35</td>
<td>km 0+745,0</td>
</tr>
<tr>
<td>Obra de cruce</td>
<td>Coordenadas Magna Colombia Oeste</td>
<td>Cota aprox. (msnm)</td>
<td>Abscisa</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>VConst5_7</td>
<td>1.153.126 1.133.581</td>
<td>792,69</td>
<td>km 0+832,0</td>
</tr>
<tr>
<td>VConst5_8</td>
<td>1.152.988 1.133.605</td>
<td>803,2</td>
<td>km 0+969,0</td>
</tr>
<tr>
<td>VConst6_1</td>
<td>1.152.394 1.132.514</td>
<td>975,87</td>
<td>km 0+022,0</td>
</tr>
<tr>
<td>VConst7_1</td>
<td>1.152.515 1.131.962</td>
<td>1049,91</td>
<td>km 3+176,0</td>
</tr>
<tr>
<td>VConst7_10</td>
<td>1.152.982 1.132.282</td>
<td>935,69</td>
<td>km 1+752,0</td>
</tr>
<tr>
<td>VConst7_11</td>
<td>1.153.012 1.132.177</td>
<td>930,05</td>
<td>km 1+606,0</td>
</tr>
<tr>
<td>VConst7_12</td>
<td>1.153.046 1.132.185</td>
<td>924,41</td>
<td>km 1+568,0</td>
</tr>
<tr>
<td>VConst7_13</td>
<td>1.153.091 1.132.184</td>
<td>919,78</td>
<td>km 1+519,0</td>
</tr>
<tr>
<td>VConst7_14</td>
<td>1.153.218 1.132.308</td>
<td>883,41</td>
<td>km 1+230,0</td>
</tr>
<tr>
<td>VConst7_15</td>
<td>1.153.556 1.132.501</td>
<td>824,28</td>
<td>km 0+729,0</td>
</tr>
<tr>
<td>VConst7_16</td>
<td>1.153.616 1.132.641</td>
<td>824,32</td>
<td>km 0+570,0</td>
</tr>
<tr>
<td>VConst7_17</td>
<td>1.153.641 1.132.671</td>
<td>824,76</td>
<td>km 0+531,0</td>
</tr>
<tr>
<td>VConst7_18</td>
<td>1.153.983 1.132.688</td>
<td>817,4</td>
<td>km 0+103,0</td>
</tr>
<tr>
<td>VConst7_2</td>
<td>1.152.555 1.131.955</td>
<td>1054,32</td>
<td>km 3+135,0</td>
</tr>
<tr>
<td>VConst7_3</td>
<td>1.152.604 1.131.932</td>
<td>1058,07</td>
<td>km 3+076,0</td>
</tr>
<tr>
<td>VConst7_4</td>
<td>1.152.644 1.131.915</td>
<td>1059,72</td>
<td>km 3+027,0</td>
</tr>
<tr>
<td>VConst7_5</td>
<td>1.152.660 1.131.858</td>
<td>1058,01</td>
<td>km 2+968,0</td>
</tr>
<tr>
<td>VConst7_6</td>
<td>1.153.038 1.131.951</td>
<td>981,28</td>
<td>km 2+262,0</td>
</tr>
<tr>
<td>VConst7_7</td>
<td>1.153.004 1.131.995</td>
<td>984,98</td>
<td>km 2+204,0</td>
</tr>
<tr>
<td>VConst7_8</td>
<td>1.152.966 1.132.031</td>
<td>984,91</td>
<td>km 2+151,0</td>
</tr>
<tr>
<td>VConst7_9</td>
<td>1.152.912 1.132.100</td>
<td>975,98</td>
<td>km 2+049,0</td>
</tr>
<tr>
<td>VCPt_AB.1</td>
<td>1.148.219 1.127.816</td>
<td>2117,44</td>
<td>km 0+210,0</td>
</tr>
<tr>
<td>VCPt_AB.2</td>
<td>1.148.176 1.127.832</td>
<td>2128,06</td>
<td>km 0+255,0</td>
</tr>
<tr>
<td>VCPt_AB.3</td>
<td>1.148.104 1.127.898</td>
<td>2098,59</td>
<td>km 0+018,0</td>
</tr>
<tr>
<td>VCPtC_D.1</td>
<td>1.148.740 1.127.639</td>
<td>2162,32</td>
<td>km 0+168,0</td>
</tr>
<tr>
<td>VCPtC_D.2</td>
<td>1.148.702 1.127.635</td>
<td>2161,87</td>
<td>km 0+205,0</td>
</tr>
<tr>
<td>VCPtC_D.3</td>
<td>1.148.564 1.127.653</td>
<td>2172,21</td>
<td>km 0+033,0</td>
</tr>
<tr>
<td>VCPtC_D.4</td>
<td>1.148.464 1.127.700</td>
<td>2167,28</td>
<td>km 0+154,0</td>
</tr>
<tr>
<td>ViaAcces.1</td>
<td>1.153.650 1.134.582</td>
<td>625,15</td>
<td>km 0+713,0</td>
</tr>
<tr>
<td>ViaAcces.2</td>
<td>1.153.543 1.134.386</td>
<td>651,25</td>
<td>km 0+950,0</td>
</tr>
<tr>
<td>ViaAcces.3</td>
<td>1.153.520 1.134.269</td>
<td>658,75</td>
<td>km 1+067,0</td>
</tr>
<tr>
<td>ViaAcces.4</td>
<td>1.153.337 1.134.290</td>
<td>684,96</td>
<td>km 1+311,0</td>
</tr>
<tr>
<td>ViaAcces.5</td>
<td>1.153.246 1.134.353</td>
<td>697,59</td>
<td>km 1+424,0</td>
</tr>
<tr>
<td>ViaAcces.6</td>
<td>1.153.169 1.134.316</td>
<td>710,75</td>
<td>km 1+544,0</td>
</tr>
<tr>
<td>ViaAcces.7</td>
<td>1.153.215 1.134.259</td>
<td>707,48</td>
<td>km 1+615,0</td>
</tr>
<tr>
<td>VPpal.1</td>
<td>1.151.576 1.132.311</td>
<td>1069,96</td>
<td>km 3+918,0</td>
</tr>
<tr>
<td>VPpal.10</td>
<td>1.151.496 1.132.713</td>
<td>1036,28</td>
<td>km 3+320,0</td>
</tr>
<tr>
<td>VPpal.11</td>
<td>1.151.479 1.132.759</td>
<td>1034,22</td>
<td>km 3+273,0</td>
</tr>
<tr>
<td>VPpal.12</td>
<td>1.151.467 1.132.787</td>
<td>1033,71</td>
<td>km 3+243,0</td>
</tr>
<tr>
<td>VPpal.13</td>
<td>1.151.452 1.132.822</td>
<td>1035,48</td>
<td>km 3+204,0</td>
</tr>
<tr>
<td>VPpal.14</td>
<td>1.151.434 1.132.864</td>
<td>1034,37</td>
<td>km 3+159,0</td>
</tr>
<tr>
<td>VPpal.15</td>
<td>1.151.372 1.133.012</td>
<td>1025,69</td>
<td>km 3+137,0</td>
</tr>
<tr>
<td>VPpal.16</td>
<td>1.151.425 1.132.886</td>
<td>1030,19</td>
<td>km 2+998,0</td>
</tr>
<tr>
<td>VPpal.17</td>
<td>1.151.281 1.133.089</td>
<td>1001,46</td>
<td>km 2+875,0</td>
</tr>
<tr>
<td>VPpal.18</td>
<td>1.151.261 1.133.093</td>
<td>1001,19</td>
<td>km 2+854,0</td>
</tr>
<tr>
<td>VPpal.19</td>
<td>1.151.206 1.133.096</td>
<td>995,74</td>
<td>km 2+800,0</td>
</tr>
<tr>
<td>VPpal.2</td>
<td>1.151.556 1.132.307</td>
<td>1068,85</td>
<td>km 3+897,0</td>
</tr>
<tr>
<td>VPpal.20</td>
<td>1.151.156 1.133.097</td>
<td>991,02</td>
<td>km 2+749,0</td>
</tr>
<tr>
<td>VPpal.21</td>
<td>1.151.108 1.133.101</td>
<td>983,07</td>
<td>km 2+703,0</td>
</tr>
<tr>
<td>VPpal.22</td>
<td>1.151.074 1.133.138</td>
<td>978,14</td>
<td>km 2+646,0</td>
</tr>
<tr>
<td>VPpal.23</td>
<td>1.151.141 1.133.197</td>
<td>964,09</td>
<td>km 2+548,0</td>
</tr>
<tr>
<td>VPpal.24</td>
<td>1.151.175 1.133.234</td>
<td>966,5</td>
<td>km 2+496,0</td>
</tr>
</tbody>
</table>
3.3.8.2.3.6 Poblaciones beneficiadas con los accesos nuevos

Los accesos nuevos construidos por el Proyecto servirán exclusivamente para desarrollar sus etapas de construcción y operación. Estarán localizados, en su totalidad, al interior de los predios de propiedad del Proyecto Minera de cobre Quebradona y serán utilizados para comunicar las distintas instalaciones de la parte baja de la mina (Zona superficial en el Valle) y permitir el acceso hacia y desde la autopista Pacífico 2. En la parte alta del Proyecto (Zona superficial sobre la montaña) se requieren tres vías para comunicar las plataformas de construcción de los pozos de ventilación. Por las razones descritas, estas vías no serán utilizadas por las comunidades.

3.3.8.2.3.7 Puente sobre la vía existente a Palermo

En este numeral se presenta un predimensionamiento estructural del puente proyectado en la vía de acceso entre las abscisas K1+730 y K1+765, en el tramo que cruza sobre la vía existente a Palermo.

El planteamiento estructural ha tenido en cuenta las necesidades de las diferentes disciplinas de consultoría del proyecto.

En la Figura 3.341 se presenta la ubicación general del puente.
Descripción de la estructura

La estructura tiene una longitud total de aproximadamente 5,0 m, conformada por una sola luz. Por condiciones topográficas, condiciones geológicas y geotécnicas, y buscando una estructura funcional y económica, se plantea un puente de placa en concreto y vigas postensadas. En la Figura 3.342 se presenta la geometría general de la estructura.
Superestructura

La superestructura tiene un ancho de 9,40 m y está conformada por dos calzadas de 3,60 m, dos barreras de tráfico tipo New Jersey de 0,35 m a cada costado y adicionalmente se ha dispuesto un andén peatonal de 1,50 m de ancho, considerando que al estar localizado en la zona de acceso al proyecto sea conveniente disponer de un acceso peatonal por fines de seguridad. La estructura está conformada por una placa en concreto de 0,20 m de espesor, apoyada sobre tres vigas postensadas de sección en la Figura 3.343 se muestra la sección transversal del tablero.

![Figura 3.343 Sección transversal del puente](image)

Fuente: Integral, 2019

Revisión de capacidad de las vigas postensadas

Se ha realizado una evaluación de la capacidad estructural de las vigas postensadas especificadas para la super estructura, con el propósito de estimar la cantidad de acero de preesfuerzo requerido para cumplir los requerimientos del Código Colombiano de construcción y diseño sísmico de puente CCP-14, con respecto a las cargas vivas de diseño. En la Figura 3.344 se presenta la geometría de la sección transversal de las vigas postensadas del predimensionamiento del puente.
Se estima que con las vigas para cumplir con los requerimientos normativos de diseño se requerían 4 cable de preesfuerzo, divididos en dos etapas de tensionamiento de la siguiente manera: Los cables 1 y 2 con 12 torones de 0,5" más el cable 3 con 9 Torones de 0,5" en una primera fase de tensionamiento y la segunda fase de tensionamiento con cable 4 el con 12 torones de 0,5".

En la Figura 3.345 se presentan la configuración longitudinal del predimensionamiento del preesfuerzo requerido para las vigas postensadas.

Con esta especiación de preesfuerzo será suficiente para atender adecuadamente las demandas de capacidad en las vigas postensadas en las condiciones de servicio y operación del puente de acuerdo con los requerimientos de la norma CCP-14.

En la Figura 3.346 se presenta la verificación de demanda capacidad tensiones en las vigas postensadas en condiciones de operación del puente.
Infraestructura

La infraestructura está compuesta por dos estribos que están conformado por estructuras de contención en muros tipo ménsula. El lleno en el trasdós de estos muros deberá conformarse en tierra armada reforzada con geosinteticos, esto con el propósito de disminuir sustancialmente la carga lateral que actuaría en los vástagos de los estribos, de tal manera que se mantengan controlados los esfuerzo flexurales y deflexiones en el vástago de los muros.

Figura 3.346 Verificación de envolvente de tensiones de las vigas postensadas en las condiciones de servicio

Fuente: Integral, 2019

- **Estribo 1**

El estribo localizado en el km 1+730 tiene proyectada una altura 14,00 m medidos desde la base de fundación a nivel de apoyo de las vigas, de tal manera que al sumar la altura de super-estructura tiene un total de 15,90 m de altura. Por tal razón se recomienda implementar en altura dos losas o bandejas de concreto, con el propósito de generar momentos estabilizadores en la altura vástago que ayuden controlar los esfuerzos y deflexiones de la estructura.

La Figura 3.347 presenta la geometría de la sección transversal del Estribo 1.
El estribo localizado en el km 1+730 tiene proyectada una altura 14,10 m medidas desde la base de fundación de este a nivel de apoyo de las vigas, que al sumar la altura de super-estructura se tiene un total de 10,0 m de altura para este estribo. Por tal razón se recomienda implementar una losa o bandeja de concreto en el trasdos del vástago a una altura intermedia, con el propósito de generar momento estabilizador en la altura vástago que ayude controlar los esfuerzos y deflexiones de la estructura.

La Figura 3.348 ilustra la geometría de la sección transversal del Estribo 2.
3.3.8.2.3.8 Propuesta de mantenimiento de las vías

Las actividades de mantenimiento para vías nuevas son las mismas descritas para los corredores de acceso existentes (numeral 3.3.8.2.2.).

3.4 BENEFICIO Y TRANSFORMACIÓN DE MINERALES

El Proyecto Minera de Cobre Quebradona contará con una Planta de beneficio que está diseñada para procesar nominalmente 6,2 Mt/año de mineral durante los 21 años de vida útil de la mina, que producirá un concentrado (Cu) con contenidos valiosos de oro (Au) y plata (Ag), estos dos últimos, subproductos del concentrado.

El producto de la trituradora primaria subterránea es transportado a través de un sistema de bandas transportadoras hacia una única pila de mineral triturado con una capacidad útil de 24 horas (18.500 toneladas aproximadamente). El circuito de trituración y molienda comprende una trituradora secundaria, un rodillo de molienda de alta presión o también denominado HPGR por sus siglas en inglés (High Pressure Grinding Rolls) y un molino de bolas operando en un circuito cerrado. Un circuito de flotación flash recibirá una fracción de la descarga de la batería de hidrociclones para producir un concentrado flash que será enviado hacia una remolienda de cobre y posterior limpieza, mientras que los relaves de la flotación flash son enviados de retorno al circuito de molino de bolas.

El rebose de la batería de hidrociclones será enviado hacia el circuito de flotación de cobre. Este circuito consiste en una etapa de flotación rougher, scavenger, remolienda y tres etapas de flotación de limpieza.

La planta de beneficio de Quebradona producirá concentrados de cobre, con concentrados de la tercera limpieza, con 27,9% Cu siendo espesados y filtrados antes de su almacenamiento y posterior despacho.

Debido a los niveles de los componentes sulfurados por presencia de pirita en los relaves, y las implicaciones ambientales de un potencial generador de ácidos en el depósito de relaves filtrados, se incluyó una etapa de flotación de pirita dentro del circuito para disponer este material de manera diferencial.

Los relaves de la etapa de flotación scavenger de cobre serán flotados para producir un concentrado de pirita, mientras que los relaves generados (inertes) serán espesados y alimentados a una serie de filtros de presión horizontal, para ser transportados a un punto de transferencia; desde este punto los camiones serán cargados y transportarán los relaves filtrados hasta la zona de disposición de relaves filtrados. El diagrama de flujo general para la Planta de beneficio de Quebradona se muestra en la Figura 3.349.
Figura 3.349 Diagrama de flujo general para la Planta de beneficio del Proyecto
Fuente: Minera de Cobre Quebradona, 2019
3.4.1 Operaciones unitarias implementadas en el procesamiento de minerales

En esta sección se presenta un resumen del esquema de proceso de la Planta de Beneficio y Transformación de minerales de Quebradona (véase la Tabla 3.230).

Tabla 3.230 Procesos para el beneficio y transformación de minerales

<table>
<thead>
<tr>
<th>Proceso</th>
<th>Definición/ Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trituración</td>
<td>Se realiza con el fin de disminuir el tamaño del mineral proveniente de las labores subterráneas hasta un tamaño establecido y de este modo facilitar el manejo del material en la planta. Una vez finalizado este proceso se transporta al circuito de molienda. En el Proyecto, este proceso se realiza en tres etapas: trituración primaria (en subterráneo), trituración secundaria y HPGR.</td>
</tr>
<tr>
<td>Molienda, clasificación por tamaño y flotación flash</td>
<td>Esta operación se realiza posterior al proceso de trituración, se realiza en húmedo y busca reducir el tamaño de las partículas con el fin de liberar el mineral de interés de la roca que lo contiene. En el Proyecto, para la planta de beneficio se tiene un circuito convencional con un molino de bolas. En la etapa de clasificación, la descarga del molino de bolas es alimentado a una batería de hidrociclones, donde las partículas gruesas o que no cumplen con el tamaño de corte, salen por la parte inferior de los ciclones y las partículas finas o que cumplen con el tamaño de corte salen por la parte superior y son transferidas al siguiente proceso. Las partículas que no cumplen con el tamaño son reprocesadas con el fin de disminuir su tamaño o pasan a una operación unitaria diferente. Una fracción del material grueso de la clasificación es enviado a una celda de flotación flash para recuperar el mineral de cobre que flota con mayor facilidad, el relave es retornado al molino de bolas mientras que el concentrado es enviado a remolienda de concentrados a fin de reducir el tamaño y obtener mayor liberación.</td>
</tr>
<tr>
<td>Flotación de cobre</td>
<td>En esta etapa, se busca separar los minerales de interés, esto es, con contenido de metales valiosos, de los minerales sin valores, aprovechando la fisicoquímica superficial de los minerales. Para esto, se emplean reactivos que promueven la selectividad de los minerales, haciendo que los minerales de interés floten y los de no interés, se depriman. Estos reactivos son espumantes, colectores y cal. El concentrado de la etapa rougher (minerales valiosos) pasa a una etapa de remolienda y posteriormente a las etapas de limpieza. Los relaves del proceso, o sea, los minerales sin valores son enviados a la flotación de pirita.</td>
</tr>
<tr>
<td>Flotación de pirita</td>
<td>En esta etapa se busca separar los componentes sulfuados, esto es, la pirita contenida en el mineral, para evitar implicaciones ambientales. Para esto, se emplean reactivos que promueven la selectividad del componente sulfurado, haciendo que la pirita flote y el resto se deprime. Este reactivo es el colector de pirita. El concentrado de la etapa rougher (relave con pirita) pasa a una etapa de espesamiento y filtrado donde posteriormente es transportado al depósito de pirita. Los relaves del proceso, o sea, los relaves filtrados inertes (sin pirita) son enviados al depósito de relaves filtrados.</td>
</tr>
<tr>
<td>Espesamiento y filtrado de concentrado</td>
<td>Este proceso, consiste en recuperar la mayor cantidad de agua contenida en la pulpa del concentrado mediante el espesamiento. Posteriormente, el concentrado espesado se filtra para obtener una torta filtrada con un mínimo contenido de humedad residual a fin de ser almacenado y posterior despacho.</td>
</tr>
<tr>
<td>Espesamiento y filtrado de relaves inertes y de pirita</td>
<td>Los relaves inertes y los de pirita serán enviados por separado a las etapas de espesamiento para reducir el contenido de agua en la pulpa y posteriormente a la etapa de filtrado a fin de obtener una torta con baja humedad residual para su disposición en sus respectivos depósitos de relaves filtrados.</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018
Los criterios de diseño de la planta, las capacidades de alimentación y las estadísticas principales de la planta se presentan en la Tabla 3.231. Es importante aclarar que los parámetros o criterios contenidos en la tabla, son los valores nominales de diseño, más no los de operación, los cuales estarán sujetos al desarrollo del plan minero.

Tabla 3.231 Principales parámetros estimados de diseño de la planta de beneficio del Proyecto

<table>
<thead>
<tr>
<th>Planta de beneficio</th>
<th>Parámetro</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capacidad nominal de procesamiento</td>
<td>t/a</td>
<td>6.200.000</td>
</tr>
<tr>
<td></td>
<td>Capacidad promedio de procesamiento</td>
<td>t/d</td>
<td>16.986</td>
</tr>
<tr>
<td></td>
<td>Ley promedio de alimentación de cobre (Cu), años 1-6</td>
<td>%</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>Ley promedio de alimentación de cobre (Cu), años 7-23</td>
<td>%</td>
<td>1.15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trituración primaria subterránea</th>
<th>Parámetro</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disponibilidad operacional</td>
<td>%</td>
<td>70,0</td>
</tr>
<tr>
<td></td>
<td>Tiempo de trabajo efectivo por año</td>
<td>h</td>
<td>6.132</td>
</tr>
<tr>
<td></td>
<td>Tasa de alimentación</td>
<td>t/h</td>
<td>1.011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trituración secundaria</th>
<th>Parámetro</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disponibilidad operacional</td>
<td>%</td>
<td>75,0</td>
</tr>
<tr>
<td></td>
<td>Tiempo de trabajo efectivo por año</td>
<td>h</td>
<td>6.570</td>
</tr>
<tr>
<td></td>
<td>Tasa de alimentación</td>
<td>t/h</td>
<td>944</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Molienda, flotación, filtración de concentrados y relaves</th>
<th>Parámetro</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disponibilidad operacional</td>
<td>%</td>
<td>92,0</td>
</tr>
<tr>
<td></td>
<td>Tiempo de trabajo efectivo por año</td>
<td>h</td>
<td>8.059</td>
</tr>
<tr>
<td></td>
<td>Tasa de alimentación</td>
<td>t/h</td>
<td>769</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Producción total de concentrado de la Planta de beneficio</th>
<th>Parámetro</th>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Producción de pirita</td>
<td>t/a</td>
<td>544.138</td>
</tr>
<tr>
<td></td>
<td>Producción de relaves filtrados inertes</td>
<td>t/a</td>
<td>5.383.412</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

3.4.1.1 Trituración primaria, transferencia de material hacia superficie y apilamiento de mineral triturado

El mineral de mina (ROM) es descargado en la tolva de alimentación de la trituradora primaria mediante vehículos de tipo LHD (carga, transporte, descarga). La tolva de alimentación está diseñada para permitir que los camiones descarguen desde tres lados.

El mineral ROM es enviado a la trituradora giratoria primaria desde la tolva de alimentación de mineral a través de un alimentador de placas. El material triturado (P$_{80}$ =122 mm) es retirado de la cámara de descarga mediante un alimentador de placas de velocidad variable y transferido a una banda de sacrificio la cual descarga en la banda...
principal de producción. Esta banda transporta el mineral hacia la superficie y lo descarga en la pila de almacenamiento de mineral grueso.

Los equipos auxiliares del área de trituración incluyen un rompedor de rocas, un puente grúa y un sistema de colección de polvo para controlar el polvo en la tolva de la trituración primaria y puntos de transferencia de las bandas transportadoras. La banda de descarga de la trituradora primaria y la banda de producción están equipadas con sistemas de pesaje y sistemas de monitoreo de banda.

Un electroimán está ubicado en el extremo de descarga del alimentador de placas que descarga sobre la trituradora primaria. Un electroimán de banda se ubica sobre la banda de sacrificio y otro en el extremo de descarga de dicha banda. También hay un detector de metales ubicado sobre el inicio de la banda transportadora del túnel. Se tiene un elevador o tecle sobre la banda de sacrificio para apoyar en la remoción de objetos metálicos de gran tamaño que serán desechados en un contenedor de residuos de metal. Cuando el detector de metales es activado, la banda transportadora se detiene y los operadores pueden remover manualmente el metal de la banda.

El área de trituración primaria está equipada con cámaras CCTV, por lo cual es supervisada y controlada de manera remota por el cuarto de control principal ubicado en la superficie.

La trituradora primaria cuenta con un sistema de aire comprimido que comprende un compresor de aire en superficie que realiza el suministro tanto a los servicios de minería subterránea como a la trituradora. El sistema está equipado con un secador y un sistema de filtros.

El material grueso proveniente de la trituración primaria es alimentado a una pila de almacenamiento, que tendrá una capacidad de 18.500 toneladas aproximadamente. La pila de almacenamiento proporciona una capacidad de reacción entre el circuito de trituración primaria y la Planta de beneficio.

La capacidad útil de la pila de almacenamiento proporciona una capacidad de aproximadamente 24 horas de alimento de mineral a molienda. La capacidad no útil puede ser recuperada utilizando equipos auxiliares como un bulldozer o un cargador frontal. El material grueso es recuperado de la pila de almacenamiento mediante dos alimentadores de placas con velocidad variable. Para el manejo del polvo generado en la descarga de los alimentadores de placas sobre la banda de alimento a molienda, se tendrá un sistema de supresión de polvo por pulverización de agua.

Los alimentadores de placas descargan sobre una banda de recuperación, que a su vez descarga a la banda de alimento a trituración secundaria, la cual transporta el material triturado de la tolva de alimento a la zaranda de clasificación secundaria. Se proporciona una tolva de recuperación complementaria y un sistema de alimentación a la banda de recuperación para cargar los derrames o la capacidad muerta de la pila de almacenamiento. El túnel de reclamo está equipado con un ventilador y un montacargas. Los montacargas se ubican estratégicamente para permitir la remoción de los objetos pesados del alimentador de placas.

La banda de alimento a trituración secundaria está equipada con un sistema de pesaje para medir la tasa de alimentación al circuito para fines de contabilidad metalúrgica.
En la Figura 3.350, se puede ver el diagrama de flujo propuesto del área de trituración de la planta de sulfuros y en la Tabla 3.232 se presenta el balance de masa estimado para las corrientes principales.

Figura 3.350 Diagrama de flujo básico – Área de trituración primaria en subterráneo y transferencia de mineral hacia superficie

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.232 Balance de masa general – Área de trituración primario subterráneo y transferencia de mineral hacia superficie

<table>
<thead>
<tr>
<th>Aspecto</th>
<th>Unidad</th>
<th>Alimentación trituradora</th>
<th>Salida a trituración secundaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantidad de material</td>
<td>t/h</td>
<td>793,1</td>
<td>813,1</td>
</tr>
<tr>
<td>Cantidad de sólidos</td>
<td>t/h</td>
<td>769,3</td>
<td>769,3</td>
</tr>
<tr>
<td>Cantidad de líquidos</td>
<td>t/h</td>
<td>23,8</td>
<td>43,8</td>
</tr>
<tr>
<td>Gravedad Específica de Sólidos</td>
<td>t/m³</td>
<td>2,92</td>
<td>2,92</td>
</tr>
<tr>
<td>% Sólidos</td>
<td>w/w</td>
<td>97,0</td>
<td>94,6</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

Nota: Se agrega agua para manejo de polvo en la trituradora primaria y en la pila de mineral grueso, lo cual modifica el contenido de humedad del mineral a su salida hacia la trituración secundaria.

3.4.1.2 Trituración secundaria, HPGR, molienda y flotación flash

El circuito de trituración y molienda está conformado por una trituración secundaria operando en circuito cerrado con tamizado en seco y un molino de rodillos de alta presión (HPGR) operando en circuito cerrado con tamizado en húmedo. A continuación, se ubica un molino de bolas operando en circuito cerrado con una batería de hidrociclones primarios. El producto del circuito de molienda (el rebose de los hidrociclones primarios) tiene un tamaño medio de 80% pasante (P_{80}) igual a 106 µm, con un porcentaje nominal de sólidos de 36.5% w/w.

Una celda de flotación flash procesa una fracción de la descarga del hidrociclón primario para capturar sulfuros metálicos y oro antes de ser procesados en el molino de bolas. El concentrado del sistema de flotación flash es bombeado hacia la...
Remolienda de cobre, mientras que los relaves de la flotación flash son retornados al circuito del molino de bolas.

Trituración Secundaria y HPGR

El mineral recuperado de la pila de almacenamiento es enviado a la tolva de alimento a la zaranda secundaria, y descargado a la zaranda por un alimentador vibratorio. El material de sobretamaño (mayor a 51 mm) es transportado hacia la tolva de alimento a la trituradora secundaria, cerrando de esta manera el circuito; y el material pasante es transportado hacia la tolva de alimento del HPGR. Los alimentos de la trituradora secundaria y HPGR son extraídos de sus respectivas tolvas mediante alimentadores de banda con velocidad variable. El producto del HPGR \((P_{80} = 4 \text{ mm}) \) es enviado a la tolva de alimento al sistema de tamizado húmedo a través de la pila de almacenamiento de mineral fino (FOS, por sus siglas en inglés).

En la Figura 3.351 se puede ver el diagrama de flujo del área de trituración secundaria, y en la Tabla 3.233 se presenta el balance de masa estimado para las corrientes principales.

![Diagrama de flujo básico – Área de trituración secundaria](image)

Figura 3.351 Diagrama de flujo básico – Área de trituración secundaria
Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.233 Balance de masa general – Área de trituración secundaria

<table>
<thead>
<tr>
<th></th>
<th>Unidad</th>
<th>Alimento a circuito de trituración secundaria</th>
<th>Alimento a trituradora secundaria</th>
<th>Alimento a circuito de HPGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantidad de material</td>
<td>t/h</td>
<td>813,1</td>
<td>857,3</td>
<td>813,1</td>
</tr>
<tr>
<td>Cantidad de sólidos</td>
<td>t/h</td>
<td>769,3</td>
<td>811,1</td>
<td>769,3</td>
</tr>
<tr>
<td>Cantidad de líquidos</td>
<td>t/h</td>
<td>43,8</td>
<td>46,2</td>
<td>43,8</td>
</tr>
<tr>
<td>Gravedad Específica de Sólidos</td>
<td>t/m³</td>
<td>2,92</td>
<td>2,92</td>
<td>2,92</td>
</tr>
<tr>
<td>% Sólidos</td>
<td>w/w</td>
<td>94,6</td>
<td>94,6</td>
<td>94,6</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

El tamizado en húmedo consiste en dos zarandas alimentadas a través de una tolva que es alimentada por una banda transportadora de velocidad variable, y se mezcla la
alimentación de material a la zaranda con agua en cajas de repulpeo ubicadas antes de cada una de las dos zarandas (una caja por zaranda). El material de sobretamaño es retornado hacia la tolva de alimento del HPGR, cerrando el circuito, mientras que el material pasante descarga en la tolva de alimento a la batería de hidrociclonen donde se mezcla con la descarga del molino de bolas. La bomba de alimento a la batería de hidrociclones envía la pulpa mezclada junto con los relaves diluidos de la etapa de flotación flash hacia la batería de hidrociclones primarios.

Pilas de Almacenamiento de Mineral Fuera de Línea

Dos pilas de almacenamiento de mineral fuera de línea serán ubicadas para acomodar potenciales paradas de producción en varias secciones de la planta, con el fin de mantener la planta con una alta utilización.

Pila de Almacenamiento de Mineral Fino (FOS)

La pila de almacenamiento de mineral fino (FOS, por sus siglas en inglés) se ubicará entre el HPGR y la molienda, convirtiéndose en la fuente de alimento del molino cuando el HPGR esté inoperativo. Esta pila recibe el producto del HPGR a través de un sistema de tamizado en seco, cuyo material pasante es enviado a la pila de almacenamiento mientras que el material de sobretamaño, junto con el producto del HPGR, es transportado al sistema de tamizado en húmedo. El alimento al HPGR es controlado por el nivel del lecho del tamizado en húmedo y la configuración de la velocidad variable del alimentador de la tolva de transferencia del FOS, de tal manera que la diferencia es el alimento requerido para el tamizado en seco.

El sistema de tamizado en seco tiene dos propósitos:

- Minimizar el tamaño de la pila para una determinada capacidad de alimento al molino – para el producto del HPGR sin tamizar, el volumen de la pila sería casi el doble para la misma cantidad de alimento al molino.

- Permite un alimento directo desde la FOS hacia el cajón de alimento al molino, por lo que la operación del molino puede continuar durante el mantenimiento de las zarandas en húmedo. Un sistema de by-pass se adecuará con este propósito.

El reclamo de material útil de la pila se da por un alimentador de banda de velocidad variable, la cual varía de acuerdo con la tasa de alimento nominal al HPGR. El material que se encuentra sobre la “zona no útil” de la pila es recogido por un cargador frontal y se dirige a una tolva de reclamo.

Pila de Almacenamiento Alimento al HPGR (HFS)

La pila de almacenamiento de alimento al HPGR (HFS, por sus siglas en inglés) se ubica entre la molienda y el HPGR y es un destino alternativo para los materiales pasantes de la zaranda secundaria (alimento fresco al HPGR) y los materiales de sobretamaño del tamizado en húmedo (carga circulante del circuito HPGR). El HFS se utiliza como destino del material cuando el HPGR está inoperativo, y su material es utilizado cuando la fuente de alimento al HPGR –tritución secundaria y tamizado- está inactiva.
En la Figura 3.352 se puede ver el diagrama de flujo propuesto del área de HPGR, y en la Tabla 3.234 se presenta el balance de masa estimado para las corrientes principales.

![Diagrama de flujo básico – Área de HPGR](image)

Figura 3.352 Diagrama de flujo básico – Área de HPGR
Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.234 Balance de masa general – Área de HPGR

<table>
<thead>
<tr>
<th></th>
<th>Unidad</th>
<th>Alimento a circuito de HPGR</th>
<th>Alimento a HPGR</th>
<th>Agua de proceso a zarandas HPGR</th>
<th>Alimento a circuito de molienda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantidad de material</td>
<td>t/h</td>
<td>813,1</td>
<td>1.501,4</td>
<td>975,0</td>
<td>1.788,1</td>
</tr>
<tr>
<td>Cantidad de sólidos</td>
<td>t/h</td>
<td>769,3</td>
<td>1.423,2</td>
<td>769,3</td>
<td></td>
</tr>
<tr>
<td>Cantidad de líquidos</td>
<td>t/h</td>
<td>43,8</td>
<td>78,2</td>
<td>975,0</td>
<td>1.018,8</td>
</tr>
<tr>
<td>Gravedad Específica de Sólidos</td>
<td>t/m³</td>
<td>2,92</td>
<td>2,92</td>
<td>-</td>
<td>2,92</td>
</tr>
<tr>
<td>% Sólidos</td>
<td>w/w</td>
<td>94,6</td>
<td>94,8</td>
<td>-</td>
<td>43,0</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

Molienda y Flotación Flash de Cobre

La descarga de la batería de hidrociclones, los relaves de la flotación flash y medios de molienda son enviados hasta la caja de alimento del molino de bolas. El mineral grueso es alimentado al molino de bolas para reducir el tamaño de partículas. El molino de bolas opera con un motor de rotor de bobina a través de reductores y accionamiento de doble piñón con arranque de resistencia líquida (LRS, por sus siglas en inglés). La descarga del molino de bolas pasa a través de un trommel de clasificación, en donde el material de sobretamaño descarga a un bunker adyacente y el material pasante es enviado al cajón de alimento a la batería de hidrociclones, cerrando el circuito.

Se adiciona agua de procesos en diferentes puntos del circuito de molino de bolas:
• Predominantemente a través de las tolvas de alimento al sistema de zarandas en húmedo y sprays en las zarandas, en una porción ajustable dirigida al cajón de alimento del hidrociclón, en caso de que la capacidad de drenaje de las zarandas sea un problema. El caudal total de estas dos fuentes es ajustado por el control de densidad de alimento a la batería de hidrociclones primarios.

• Al sistema de alimentación al molino de bolas para el control de densidad dentro del molino.

El rebosé de la batería de hidrociclones del molino va hacia el circuito de flotación de cobre a través de muestreadores de flujo transversales y cajas de ebullición.

Los medios de molienda son agregados al molino de bolas a través de un sistema automatizado que consiste en un electroimán tomando bolas de un bunker, transfiriendo los medios dentro de la estructura y descargándolos en el chute de alimento del molino.

La descarga de la batería de hidrociclones pasa a un distribuidor, desde el cual una fracción (40%) es enviado a una celda de flotación flash, y el remanente se envía al molino de bolas.

Un colector de cobre, un promotor (emulsión diésel), espumante y agua de proceso de dilución son adicionados a la etapa de flotación flash. En la celda de flotación flash, el mineral que flota rápidamente (concentrado flash) es enviado al circuito de remolienda, mientras que son manejados dos tipos de relaves, los gruesos (del fondo, con 70% w/w de sólidos) y los diluídos (de la parte superior, con un 5% w/w de sólidos). Los relaves gruesos son combinados con la descarga de los hidrociclones para alimentar al molino de bolas, mientras que los relaves diluídos son dirigidos hacia el cajón de alimentación a la batería de hidrociclones primarios.

Un analizador de flujo en línea (OSA, por sus siglas en inglés) es utilizado en la planta para monitorear el contenido de metales y la concentración de sólidos en los suministros, en el concentrado y en los relaves para permitir a los operadores optimizar el rendimiento del proceso de flotación y la adición de reactivos. El concentrado flash es muestreado, y la muestra es bombeada al OSA.

En la Figura 3.353 se puede ver el diagrama de flujo propuesto del área de molienda y flotación flash de cobre, y en la Tabla 3.235 se presenta el balance de masa estimado para las corrientes principales.
Figura 3.353 Diagrama de flujo básico – Área de Molienda y Flotación Flash
Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.235 Balance de masa general – Área de Molienda y Flotación Flash

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Alimento a circuito de molienda</th>
<th>Agua de proceso</th>
<th>Muestra de rebose de batería de ciclones</th>
<th>Muestra de conc. flash de Cu</th>
<th>Alimento a circuito de flotación Cu</th>
<th>Alimento a circuito de remolienda conc. Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantidad de material t/h</td>
<td>1.788,1</td>
<td>340,5</td>
<td>9,2</td>
<td>8,8</td>
<td>2.033,6</td>
<td>77,2</td>
</tr>
<tr>
<td>Cantidad de sólidos t/h</td>
<td>769,3</td>
<td>-</td>
<td>3,3</td>
<td>2,4</td>
<td>742,3</td>
<td>21,3</td>
</tr>
<tr>
<td>Cantidad de líquidos t/h</td>
<td>1.018,8</td>
<td>340,5</td>
<td>5,8</td>
<td>6,4</td>
<td>1.291,2</td>
<td>55,9</td>
</tr>
<tr>
<td>Gravedad Específica de Sólidos t/m³</td>
<td>2,92</td>
<td>-</td>
<td>2,90</td>
<td>3,84</td>
<td>2,90</td>
<td>3,84</td>
</tr>
<tr>
<td>% Sólidos w/w</td>
<td>43,0</td>
<td>-</td>
<td>36,5</td>
<td>27,6</td>
<td>36,5</td>
<td>27,6</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

3.4.1.3 Flotación de cobre y remolienda

Flotación Rougher y Scavenger

El alimento a flotación, proveniente del rebose de la batería de hidrociclones descarga en una zaranda de filtro previo a la flotación rougher, que consiste en tres celdas mecánicas de flotación de aire forzado.

La zaranda de filtro remueve el material grueso y objetos como alambres de voladuras que pueden dañar o interferir con la operación efectiva de los equipos aguas abajo. La zaranda levanta una advertencia rápidamente de cuando un hidrociclón está bloqueado. Los residuos de la zaranda son llevados a un contenedor a través de un ducto y las partículas menores (que pasan la zaranda) gravitan hasta la caja de alimentación de las celdas rougher.
El pH de la pulpa es ajustado al objetivo (pH 10,5) con adición de cal al inicio del tren de celdas rougher. La adición de espumante, colector de cobre sumado al rebosé del hidrociclón y el flujo de retorno de la muestra OSA alimentan la caja de alimentación de la flotación rougher. La cal es adicionada a la segunda celda rougher para mantener el pH objetivo.

Las celdas de flotación rougher producen un concentrado de baja ley que requiere mayores niveles de liberación y concentración. El concentrado rougher es bombeado al cajón de alimentación de la batería de hidrociclones de remolienda. Los relaves son enviados a la flotación scavenger.

La etapa de flotación scavenger consiste en dos celdas de flotación de aire forzado del mismo tamaño que las celdas de flotación rougher (200 m3). Los relaves del proceso de flotación rougher combinados con relaves de la etapa de limpieza más espumante y el colector de cobre son enviados al cajón de alimentación a la etapa de flotación scavenger.

Las celdas de flotación scavenger producen un cobre de baja ley (menor que el concentrado rougher), por lo cual se requieren mayores niveles de liberación y mejoramiento del mineral. El concentrado scavenger es bombeado al circuito de remolienda de concentrado, mientras que los relaves de la etapa de flotación scavenger (que produce pirita) son bombeadas al circuito de flotación de pirita. Las siguientes muestras son obtenidas y bombeadas al OSA:

- Rebose de hidrociclones (alimento a rougher) previo a la zaranda de filtro;
- Concentrado rougher;
- Concentrado scavenger;
- Relaves Scavenger (relaves del cobre)

En la Figura 3.354 se puede ver el diagrama de flujo propuesto del área de flotación rougher y scavenger de cobre y en la Tabla 3.236 se presenta el balance de masa estimado para las corrientes principales.
Tabla 3.236 Balance de masa general – Área de Flotación Rougher y Scavenger de Cobre

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Cantidad de material</th>
<th>Unidad</th>
<th>Cantidad de sólidos</th>
<th>Gravedad Específica de Sólidos</th>
<th>% Sólidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidad</td>
<td>t/h</td>
<td>Unidad</td>
<td>t/h</td>
<td>t/m³</td>
<td>w/w</td>
</tr>
<tr>
<td>Alimento a circuito de flotación rougher Cu</td>
<td>2.033,6</td>
<td>agua de proceso</td>
<td>2.077,4</td>
<td>2,90</td>
<td>36,5</td>
</tr>
<tr>
<td>Relaves Cleaner 1 Cu</td>
<td>407,4</td>
<td>Retorno muestras OSA</td>
<td>173,9</td>
<td>3,33</td>
<td>16,5</td>
</tr>
<tr>
<td>Agua de proceso</td>
<td>11,5</td>
<td>Relaves scavenger Cu</td>
<td>9,1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Conc. Scavenger Cu</td>
<td>27,5</td>
<td>Muestra relaves scavenger Cu</td>
<td>7,7</td>
<td>5,9</td>
<td>24,4</td>
</tr>
<tr>
<td>Unidad</td>
<td>t/h</td>
<td>Muestra conc. scavenger Cu</td>
<td>8,5</td>
<td>6,6</td>
<td>35,4</td>
</tr>
<tr>
<td>Conc. rougher Cu</td>
<td>203,3</td>
<td>Muestra conc. rougher Cu</td>
<td>3,2</td>
<td>2,88</td>
<td>14,8</td>
</tr>
<tr>
<td>Relaves scavenger Cu</td>
<td>742,3</td>
<td>Muestra conc. rougher Cu</td>
<td>1,1</td>
<td>2,86</td>
<td>24,4</td>
</tr>
<tr>
<td>Agua de proceso</td>
<td>67,1</td>
<td>Muestra conc. rougher Cu</td>
<td>2,1</td>
<td>2,86</td>
<td>35,4</td>
</tr>
<tr>
<td>Conc. Scavenger Cu</td>
<td>11,5</td>
<td>Muestra conc. rougher Cu</td>
<td>2,1</td>
<td>2,86</td>
<td>35,4</td>
</tr>
<tr>
<td>Unidad</td>
<td>t/h</td>
<td>Unidad</td>
<td>t/h</td>
<td>t/m³</td>
<td>w/w</td>
</tr>
<tr>
<td>Cantidad de líquidos</td>
<td>1.291,2</td>
<td>Unidad</td>
<td>153,6</td>
<td>3,85</td>
<td>24,4</td>
</tr>
<tr>
<td>Gravedad Específica de Sólidos</td>
<td>340,3</td>
<td>Unidad</td>
<td>5,9</td>
<td>2,88</td>
<td>14,8</td>
</tr>
<tr>
<td>% Sólidos</td>
<td>11,5</td>
<td>Unidad</td>
<td>6,6</td>
<td>2,88</td>
<td>24,4</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018
Remolienda de Concentrado

El molino de remolienda, el cual es un molino Isamill, opera en circuito abierto debido a que posee una clasificación interna. La descarga del molino de remolienda es mezclada con el rebose de la batería de hidrociclones de remolienda.

El primer sistema de clasificación consiste en una batería de hidrociclones del molino de remolienda que opera en un circuito abierto. El concentrado flash de cobre, el concentrado rougher de cobre, cal y la muestra OSA son el alimento fresco al cajón de alimento a la batería de hidrociclones del molino de remolienda.

Una bomba de alimentación al ciclón, la cual es de velocidad variable, transporta la pulpa a la batería de hidrociclones del molino de remolienda desde un tanque de almacenamiento de 90 m3 que recibe los tres flujos y estabiliza el caudal de entrada al ciclón.

Las partículas más finas, que no requieren un proceso adicional de remolienda, son enviadas por el rebose que es bombeado al cajón de descarga de remolienda, y la descarga gravitará hacia el cajón de alimentación del molino de remolienda.

El segundo sistema de clasificación consiste en una batería de hidrociclones del molino de remolienda para el concentrado scavenger, el cual opera en un circuito abierto. En modo similar a la batería de hidrociclones de los concentrados flash y rougher, una bomba de alimentación de velocidad variable transporta la pulpa hasta la batería de hidrociclones desde un tanque de almacenamiento de 90 m3 que colecta los diferentes flujos de alimento y estabiliza el flujo de entrada al ciclón. El rebose de esta batería de hidrociclones alimenta posteriormente la etapa de flotación de limpieza, mientras que la descarga hacia el cajón de alimentación del molino de remolienda.

La clasificación en ambas baterías de hidrociclones ha sido tenida en cuenta para lograr la densidad requerida en la descarga, para alimentar el molino de remolienda (48% w/w de sólidos, basado en 20% v/v en el alimento óptimo del Isamill). La batería de hidrociclones del scavenger está configurado para tener un tamaño de corte más fino que la batería de hidrociclones del concentrado rougher + flash. La intención es reducir la cantidad de medios en recirculación. Idealmente, el concentrado scavenger alimentaría el molino sin clasificación previa, pero esto no es posible debido a la baja densidad de pulpa.

El P$_{80}$ objetivo del rebose de las baterías de hidrociclones combinados de remolienda es de 38 µm

Los medios de molienda son almacenados en una tolva de almacenamiento y alimentados al cajón de alimento del molino de remolienda a través de un sistema de adición de medios. La tolva de almacenamiento de medios también es usada para colectar los medios del molino cuando el molino está abierto para inspección y mantenimiento.

En el área de remolienda se utiliza una grúa pescante para cargar los medios de molienda en la tolva de almacenamiento.

En la Figura 3.355 se puede ver el diagrama de flujo del área de remolienda y en la Tabla 3.237 se presenta el balance de masa estimado de las corrientes principales.
Flotación de Limpieza de Cobre

El producto del circuito de remolienda es enviado hacia la flotación de limpieza, que consta de tres etapas: las primeras dos etapas (cleaner y recleaner) están compuestas por tanques de flotación de aire forzado y la tercera etapa (tercer cleaner) es una celda Jameson. El colector de cobre es añadido al cajón de rebose de la batería de hidrociclones de remolienda antes de ingresar al circuito de limpieza.

La etapa de limpieza consta de cinco celdas tanque de aire forzado de 50 m³. El rebose del circuito de remolienda es combinado con los relaves de la etapa recleaner en el cajón de alimentación al cleaner para producir un concentrado que será alimentado a
las celdas de flotación recleaner. Los relaves cleaner son enviados hacia la etapa de flotación scavenger.

La flotación recleaner consta de cinco celdas tanque de aire forzado de 30 m3. El concentrado cleaner es combinado con la muestra OSA en el cajón de alimento a la etapa recleaner. Para ajustar la densidad de sólidos a 20% w/w, se adiciona agua de procesos. El concentrado recleaner es enviado al tercer cleaner, mientras que los relaves de la etapa recleaner son bombeados a la etapa cleaner.

La flotación de tercer cleaner consiste en una única celda Jameson B6500/24. El concentrado recleaner es combinado con el flujo de relave reciclado de la celda Jameson en el tanque de alimento y bombeados a la celda a través de un conjunto de 24 tuberías. El tercer cleaner produce un concentrado de alta ley de 27,9% de ley de Cu que gravita al cajón del concentrado final y al espesador de concentrado, mientras que los relaves gravitan a la etapa de recleaner.

Se utiliza agua de proceso para el lavado de concentrados, y el espumante es dosificado en la etapa cleaner y recleaner. Las siguientes muestras son recolectadas y bombeadas hacia el OSA:

- Concentrado cleaner.
- Concentrado recleaner.
- Concentrado de tercer cleaner.
- Relaves cleaner.

En la Figura 3.356 se puede ver el diagrama de flujo propuesto del área de flotación de limpiezas de cobre y en la Tabla 3.238 se presenta el balance de masa estimado para las corrientes principales.

![Diagrama de flujo básico – Área de Flotación de Limpieza de Cobre](image)

Fuente: Minera de Cobre Quebradona, 2019
Tabla 3.238
Balance de masa general – Área de Flotación de Limpieza de Cobre

-----------------------------	--------	-----------	------	---------	---------	---------						
		remolienda	proceso	de cleaner 2 Cu	muestra	de cleaner 1 Cu	cleaner 1	cleaner 2	cleaner 3			
Cantidad de material	t/h	492,3	93,3	120,4	26,2	407,4	t/h	8,5	7,9	8,6	8,2	
Cantidad de sólidos	t/h	102,2	-	16,2	5,8	67,1	t/h	2,1	1,3	2,1	1,6	
Cantidad de líquidos	t/h	390,1	93,3	104,3	20,4	340,3	t/h	6,4	6,6	6,5	6,6	
Gravedad Específica de Sólidos	t/m³	3,53	-	3,25	3,84	3,33	t/m³	3,72	3,33	3,85	4,0	
% Sólidos	w/w	20,8	-	13,4	22,2	16,5	w/w	24,5	16,5	24,5	19,8	

Fuente: Minera de Cobre Quebradona, 2018
3.4.1.4 Deshidratación, almacenamiento y despacho de concentrado

Deshidratación del Concentrado

El circuito de deshidratación de concentrado consta de un espesador de alta compresión, y un filtro a presión de placas horizontales.

El concentrado es alimentado al cajón de alimento del espesador de concentrado. También se añade a este cajón, polvo de concentrado lavado de camiones y el líquido filtrado del concentrado.

Se adiciona floculante al espesador para mejorar la sedimentación. El rebose del espesador de concentrado es enviado al tanque de agua de proceso. Los sólidos sedimentados del concentrado se recolectan en la corriente de descarga a una densidad de 52% w/w sólidos. La descarga del espesador se bombea al tanque agitado de alimento al filtro a través de bombas peristálticas.

El tanque de alimento al filtro proporciona 24 horas de tiempo de residencia, lo que permite realizar el mantenimiento del filtro sin afectar la capacidad de tratamiento de la molienda. El alimento al filtro se bombea al filtro a presión para producir una torta filtrada con una humedad residual apta para el carque, transporte y descargue. Con el fin de garantizar la humedad requerida para los procesos de transporte y comercialización del concentrado, adicional a la filtración, de ser necesario, por requerimientos comerciales y de logística, se implementarán métodos adicionales de secado.

El agua cruda se utiliza para el lavado de la tela filtrante. El agua de proceso se utiliza para lavar/enjuagar el manifold del filtro. El agua filtrada, agua de lavado de tela y agua de lavado del manifold son retornados al espesador de concentrado. El separador de filtrado remueve el exceso de aire de la corriente del filtro.

El aire de alta presión para el filtro de concentrado se suministra a través de dos compresores de aire dedicados para tal labor. El equipo auxiliar de filtración incluye un puente grúa.

En la Figura 3.357 se puede ver el diagrama de flujo propuesto de las etapas de espesamiento y filtración de concentrados. En la Tabla 3.239 se presenta el balance de masa estimado para esta sección.
Figura 3.357 Diagrama de flujo básico – Área de Espesamiento y Filtración de Concentrado de Cu
Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.239 Balance de masa general – Área de Espesamiento y Filtración de Concentrado

<table>
<thead>
<tr>
<th>Unidad de materias</th>
<th>Concentrado 3 Cu</th>
<th>Líquido filtrado</th>
<th>Agua de proceso</th>
<th>Agua cruda</th>
<th>Torta filtrada</th>
<th>Rebose espesador</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantidad de material t/h</td>
<td>171,2</td>
<td>38,0</td>
<td>18,0</td>
<td>3,0</td>
<td>37,0</td>
<td>156,2</td>
</tr>
<tr>
<td>Cantidad de sólidos t/h</td>
<td>33,8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>33,8</td>
<td>-</td>
</tr>
<tr>
<td>Cantidad de líquidos t/h</td>
<td>137,4</td>
<td>38,0</td>
<td>18,0</td>
<td>3,0</td>
<td>3,1</td>
<td>156,2</td>
</tr>
<tr>
<td>Gravedad Específica de Sólidos t/m³</td>
<td>4,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4,0</td>
<td>-</td>
</tr>
<tr>
<td>% Sólidos w/w</td>
<td>19,8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>91,5</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

Almacenamiento y Despacho del Concentrado

La torta filtrada de concentrado descarga por gravedad a una banda transportadora donde será pesada, muestreada y, en su momento, transportada a la pila de almacenamiento de concentrado.

Un cargador frontal (FEL) es utilizado para optimizar el almacenamiento del concentrado dentro del edificio cubierto. Esta estructura provee una capacidad de almacenamiento de 5,880 toneladas de concentrado durante aproximadamente siete a ocho días, a una tasa de producción nominal, y cinco días a la tasa de diseño.
El concentrado es cargado mediante el cargador a contenedores tipo ISO dedicados para manejo de minerales concentrados en tracto-camiones estacionados en una báscula para camiones dentro del edificio en posición para la carga. La lectura de carga del cargador y la pantalla de la báscula proveen información asociada al progreso y finalización del proceso de carga. El concentrado se transporta vía tracto-camiones del sitio de mina hacia el área de almacenamiento en las instalaciones portuarias, y se mantendrá en los contenedores dedicados hasta la llegada de la embarcación, momento en el cual los contenedores serán vaciados en bodegas de esta, utilizando esparcidores giratorios.

Un camión automático de lavado limpia el polvo del concentrado que se adhiere a los camiones, a medida que estos abandonan el edificio en donde se almacena el concentrado. El agua de lavado es reutilizada, y los sólidos se recupera en un sumidero, para luego ser bombeados al cajón de alimento al espesador de concentrado. Los contenedores exteriores se aspiran desde la plataforma elevada.

Los camiones también son pesados al ingreso y salida de la planta en una balanza ubicada cerca al edificio de almacenamiento de concentrado, antes de salir del sitio de mina rumbo al puerto. Todos los camiones deberán lavar sus ruedas antes y después de la carga de concentrado.

En la Figura 3.358 se puede ver el diagrama de flujo propuesto de la etapa de almacenamiento y despacho de concentrado. En la Tabla 3.240 se presenta el balance de masa estimado para el circuito en mención de la Planta de beneficio de minerales.

Figura 3.358 Diagrama de flujo básico – Área de Almacenamiento y Despacho de Concentrados
Fuente: Minera de Cobre Quebradona, 2019
Tabla 3.240 Balance de masa general – Área de Almacenamiento y Despacho de Concentrados

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Torta filtrada</th>
<th>Concentrado Cu a puerto</th>
<th>Agua de proceso</th>
<th>Agua de lavado camiones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantidad de material</td>
<td>t/h</td>
<td>37,0</td>
<td>37,0</td>
<td>10,0</td>
</tr>
<tr>
<td>Cantidad de sólidos</td>
<td>t/h</td>
<td>33,8</td>
<td>33,8</td>
<td>-</td>
</tr>
<tr>
<td>Cantidad de líquidos</td>
<td>t/h</td>
<td>3,1</td>
<td>3,1</td>
<td>10,0</td>
</tr>
<tr>
<td>Gravedad Específica de Sólidos</td>
<td>t/m³</td>
<td>4,0</td>
<td>4,0</td>
<td>-</td>
</tr>
<tr>
<td>% Sólidos</td>
<td>w/w</td>
<td>91,5</td>
<td>91,5</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

3.4.1.5 Flotación de pirita

Flotación Rougher de Pirita

Debido a los niveles de los componentes sulfurados en los relaves de cobre por presencia de pirita y las implicaciones ambientales de un potencial generador de ácidos en las pilas de relaves filtrados, se incluyó una etapa de flotación de pirita dentro del circuito para separar la disposición final de la pirita.

Los relaves de la etapa de flotación scavenger de cobre, serán flotados para producir un concentrado rougher de pirita la cual estará compuesta por cinco celdas de flotación mecánica de aire forzado de 200 m³.

El retorno de la muestra OSA, el colector de pirita (PAX) y el agua de proceso se combinan con los relaves de la etapa scavenger para alimentar a las celdas de la flotación rougher de pirita.

Las celdas de flotación rougher de pirita producen un concentrado de azufre de alta ley (relaves con la pirita). Los relaves finales de la flotación rougher de pirita corresponden a los relaves filtrados inertes y gravitan hacia el espesador de relaves filtrados inertes.

En la Figura 3.359 se puede ver el diagrama de flujo propuesto del área de flotación rougher de piritas y en la Tabla 3.241 se presenta el balance de masa estimado para las corrientes principales.

Tabla 3.241 Balance de masa general – Área de Flotación Rougher de Pirita

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Relaves scavenger Cu</th>
<th>Agua de proceso</th>
<th>Retorno muestra OSA</th>
<th>Relaves rougher pirita</th>
<th>Pirita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantidad de material</td>
<td>t/h</td>
<td>2,077,4</td>
<td>4,0</td>
<td>23,9</td>
<td>1,813,7</td>
</tr>
<tr>
<td>Cantidad de sólidos</td>
<td>t/h</td>
<td>735,5</td>
<td>-</td>
<td>7,4</td>
<td>669,9</td>
</tr>
<tr>
<td>Cantidad de líquidos</td>
<td>t/h</td>
<td>1,341,9</td>
<td>4,0</td>
<td>16,5</td>
<td>1,143,8</td>
</tr>
<tr>
<td>Gravedad Específica de Sólidos</td>
<td>t/m³</td>
<td>2,88</td>
<td>-</td>
<td>3,11</td>
<td>2,79</td>
</tr>
<tr>
<td>% Sólidos</td>
<td>w/w</td>
<td>35,4</td>
<td>-</td>
<td>31,1</td>
<td>36,9</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018
3.4.1.6 Disposición de relaves inertes y relaves con pirita

Espesamiento, Filtrado y Transporte de Relaves filtrados inertes

El circuito de espesamiento de relaves filtrados inertes consta de un cajón de alimento al espesor de relaves y un espesor de relaves de alta compresión (HCT, por sus siglas en inglés), para reducir el contenido de agua de los relaves filtrados inertes a un 70% w/w de sólidos, y recuperar el agua de proceso hacia el tanque de agua de proceso.

Se añade floculante al alimento del espesor para mejorar la sedimentación. El líquido filtrado de los relaves filtrados también es añadido al alimento del espesor. El rebose del espesor es bombeado a las instalaciones de filtración de relaves filtrados inertes, a dos tanques agitados de alimento a filtración. Cada tanque agitado es capaz de suministrar pulpa a tres filtros verticales a presión mediante una bomba por filtro.

El diseño del circuito de filtración de relaves requiere de cuatro filtros en condiciones normales de operación, y un quinto filtro tendrá dualidad de uso. Su principal propósito será filtrar los relaves con pirita, pero un tanque de alimento de gran tamaño permitirá que este filtro sea utilizado de manera intermitente para el filtrado de relaves filtrados inertes de igual manera. Uno de los cuatro filtros de relaves filtrados inertes también puede utilizarse como filtro de respaldo (back up) para la filtración de los relaves con pirita.

La torta filtrada de cada filtro descarga en un alimentador de banda a través de compuertas de descarga. El alimentador de banda opera continuamente, pero a baja velocidad para entregar lotes de torta filtrada a la banda de transferencia durante todo el ciclo de filtración. La banda de transferencia recibe los relaves filtrados de los alimentadores de banda.
Un solo banco de compresores de tornillo rotativo proporciona aire comprimido para el prensado y secado de la torta, y el soplar de núcleo para todos los cinco filtros. Los receptores de aire se utilizan para abastecer las altas demandas de aire instantáneas durante los ciclos de soplar y minimizar el ciclo de los compresores.

Las bombas del agua para el lavado de tela operan de forma paralela para suministrar agua para este fin, así como para el lavado de los cinco filtros, a través de un mismo manifold.

La banda de transferencia de relaves enviará los relaves filtrados inertes hacia una banda tripper, el cual alimentará a la pila de relaves filtrados inertes (con capacidad de 24 horas o 16.000 toneladas en total). Los cargadores frontales recogerán los relaves filtrados y cargarán los camiones de 40 toneladas para su transporte al depósito de relaves filtrados (TMF, por sus siglas en inglés).

En la Figura 3.360 se puede ver el diagrama de flujo del área de espesamiento, filtrado y transporte de relaves filtrados y en la Tabla 3.242 se presenta el balance de masa estimado para las corrientes principales.

Figura 3.360 Diagrama de flujo básico – Área de Espesamiento, Filtrado y Transporte de Relaves filtrados inertes
Fuente: Minera de Cobre Quebradona, 2019
Tabla 3.242 Balance de masa general – Área de Espesamiento, Filtrado y Transporte de Relaves filtrados inertes

<table>
<thead>
<tr>
<th></th>
<th>Unidad</th>
<th>Relaves rougher pirita</th>
<th>Líquido filtrado</th>
<th>Agua de proceso</th>
<th>Torta filtrada a depósito de relaves</th>
<th>Rebose espesador relaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantidad de material</td>
<td>t/h</td>
<td>1.813,7</td>
<td>209,7</td>
<td>37,2</td>
<td>776,7</td>
<td>1.069,0</td>
</tr>
<tr>
<td>Cantidad de sólidos</td>
<td>t/h</td>
<td>669,9</td>
<td>-</td>
<td>-</td>
<td>668,0</td>
<td>-</td>
</tr>
<tr>
<td>Cantidad de líquidos</td>
<td>t/h</td>
<td>1.143,8</td>
<td>209,7</td>
<td>37,2</td>
<td>108,7</td>
<td>1.069,0</td>
</tr>
<tr>
<td>Gravedad Específica de Sólidos</td>
<td>t/m³</td>
<td>2,79</td>
<td>-</td>
<td>-</td>
<td>2,79</td>
<td>-</td>
</tr>
<tr>
<td>% Sólidos</td>
<td>w/w</td>
<td>36,9</td>
<td>-</td>
<td>-</td>
<td>86,0</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

Espesamiento, Filtrado y Transporte de relaves con Pirita

El circuito de espesamiento de los relaves con pirita consta de un cajón de alimento al espesador y un espesador de alta compresión (HCT, por sus siglas en inglés), para reducir el contenido de agua a un 58% w/w de sólidos.

Se añade floculante al alimento del espesador para mejorar la sedimentación. El líquido filtrado de los relaves con pirita también es añadido al alimento del espesador. El rebose del espesador gravita hacia el tanque de agua de proceso. La descarga del espesador es bombeada a las instalaciones de filtración, a un tanque agitado de alimento a filtración. El tanque agitado es capaz de suministrar pulpa a un filtro vertical a presión mediante bombeo (1 en operación y 1 en reserva), y uno de los filtros verticales de relaves filtrados inertes podrá operar como respaldo del filtro de relaves con pirita.

La torta filtrada del filtro descarga en un alimentador de banda. Dicho alimentador de banda opera continuamente, pero a baja velocidad para entregar lotes de torta filtrada a la banda de transferencia durante todo el ciclo de filtración.

El líquido filtrado del filtro es enviado al tanque de agua filtrada por medio de una canaleta. Dicho filtrado es retornado al cajón de alimento al espesador de relaves con pirita.

Los requerimientos de aire, telas filtrantes y lavado del manifold son comunes para la instalación de filtración de relaves, en la cual el filtro de los relaves con pirita será ubicado, siendo tal como se indican en la subsección de filtrado de relaves filtrados.

La banda de transferencia enviará los relaves con pirita hacia una banda reversible de disposición, el cual alimentará a la pila cubierta de pirita (con capacidad de 24 horas o 1.600 toneladas en total). Los cargadores frontales recogerán los relaves con pirita y cargarán los camiones de 40 toneladas para su transporte al depósito recubierto dedicado exclusivamente para el manejo de pirita, el cual será encapsulado con polietileno de alta densidad (HDPE) y estará ubicado dentro del depósito de relaves filtrados (no potenciales generadores de ácido).

En la Figura 3.361 se puede ver el diagrama de flujo propuesto del área de disposición de relaves filtrados inertes y relaves con pirita y en la Tabla 3.243 se presenta el balance de masa estimado para las corrientes principales.
Figura 3.361 Diagrama de flujo básico – Área de Espesamiento, Filtrado y Transporte de Pirita

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.243 Balance de masa general – Área de Espesamiento, Filtrado y Transporte de relaves con pirita

<table>
<thead>
<tr>
<th></th>
<th>Unidad</th>
<th>Relave con Pirita</th>
<th>Líquido filtrado</th>
<th>Agua de proceso</th>
<th>Torta filtrada a depósito de pirita</th>
<th>Rebese espesador de relave con pirita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantidad de material</td>
<td>t/h</td>
<td>275,8</td>
<td>40,4</td>
<td>7,5</td>
<td>78,5</td>
<td>204,8</td>
</tr>
<tr>
<td>Cantidad de sólidos</td>
<td>t/h</td>
<td>67,5</td>
<td></td>
<td>67,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cantidad de líquidos</td>
<td>t/h</td>
<td>208,3</td>
<td>40,4</td>
<td>7,5</td>
<td>11,0</td>
<td>204,8</td>
</tr>
<tr>
<td>Gravedad Específica de Sólidos</td>
<td>t/m³</td>
<td>4,40</td>
<td></td>
<td>4,40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Sólidos</td>
<td>w/w</td>
<td>24,5</td>
<td></td>
<td>86,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

3.4.1.7 Balance de aguas de la Planta de beneficio

Se desarrolló un modelo de balance de agua para calcular la demanda y descarga promedio de agua por hora de la planta de beneficio. El balance de agua utiliza la información del balance de masa de la planta de beneficio.

Dentro de la Planta de beneficio hay diferentes demandas de agua que requieren diferentes calidades. Los tipos de agua se resumen en la Tabla 3.244.
El diseño de la planta es tal que se reutilizarán 397 l/s. La demanda de la planta de beneficio para cubrir la distribución de agua de proceso y los requerimientos específicos de agua cruda es de 425 l/s. El agua recuperada de la deshidratación del concentrado y los relaves es de 397 l/s, lo que representa el 94% de la demanda de la planta de beneficio. El requerimiento de agua cruda es de 28 l/s, la cual será suministrada directamente del río Cauca.

El balance de agua simplificado se muestra esquemáticamente en la Figura 3.362 y los valores de cada corriente se resumen en la Tabla 3.245.

Tabla 3.244 Balance de Agua de Planta de beneficio

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Uso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua de procesos</td>
<td>Reposición de pulpa y dilución en la flotación de cobre, y molienda. Flasheo de circuitos y equipos. Limpieza en general</td>
</tr>
<tr>
<td>Agua filtrada</td>
<td>Preparación de reactivos</td>
</tr>
<tr>
<td>Agua de sello</td>
<td>Sello de agua para bombas de pulpa</td>
</tr>
<tr>
<td>Agua contra incendios</td>
<td>Hidrantes de agua contra incendios</td>
</tr>
<tr>
<td>Agua potable</td>
<td>Fuentes de agua, cocinas, cuartos de control y lavatorios</td>
</tr>
</tbody>
</table>

Tabla 3.245 Balance de agua simplificado planta de beneficio

<table>
<thead>
<tr>
<th>Flujo</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Ingreso a planta</th>
<th>Distribución agua cruda</th>
<th>Demanda de planta</th>
<th>Reuso</th>
<th>Pérdidas</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>Humedad de mineral</td>
<td>l/s</td>
<td>6,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W2</td>
<td>Suministro de agua cruda</td>
<td>l/s</td>
<td>28,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W3</td>
<td>Agua de procesos de reposición a planta</td>
<td>l/s</td>
<td>3,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W4</td>
<td>Agua cruda de reposición</td>
<td>l/s</td>
<td>25,0</td>
<td></td>
<td>25,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W5</td>
<td>Recirculación de agua de procesos a planta</td>
<td>l/s</td>
<td>400,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W6</td>
<td>Recuperación de agua de procesos</td>
<td>l/s</td>
<td></td>
<td></td>
<td>397,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7</td>
<td>Humedad en concentrado</td>
<td>l/s</td>
<td></td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W8</td>
<td>Humedad en relave con pirita</td>
<td>l/s</td>
<td></td>
<td></td>
<td>3,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W9</td>
<td>Humedad en relaves filtrados inertes</td>
<td>l/s</td>
<td></td>
<td></td>
<td>30,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub totales</td>
<td></td>
<td></td>
<td>34,2</td>
<td>28,0</td>
<td>425,0</td>
<td>397,0</td>
<td>34,2</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018
Figura 3.362 Esquema simplificado de balance de agua de planta de beneficio de minerales
Fuente: Minera de Cobre Quebradona, 2018
3.4.2 Alternativas para el manejo de relaves

El estudio de evaluación de alternativas para la disposición de relaves fue desarrollado por Ausenco bajo la supervisión del Proyecto Minera de Cobre Quebradona y en él se determinaron la ubicación de instalaciones y las tecnologías a implementar en el proceso de deposición de relaves en un radio de 15 km desde la Planta de beneficio (véase el Anexo_3_14_Analisis_manejo_relaves) (Instalación del Depósito de Relaves. Estudio de Evaluación de Alternativas).

Se consideraron cuatro alternativas de tecnología de manejo de relaves. Estas fueron:

- Relaves convencionales.
- Relaves ciclonados.
- Relaves en pasta.
- Relaves filtrados.

Alternativa de Presa de Relaves Convencionales

Las presas de relaves convencionales son estructuras de contención, diseñadas para almacenar relaves y agua, con el objetivo de que la última recircule hacia la planta procesadora. El tipo más común de presa de relaves es un terraplén elevado, en donde la altura del terraplén crece a medida que se dispone el relave, con lo que el volumen de almacenamiento de agua y relave va incrementando.

La alternativa para la presa de relaves convencionales considera un terraplén para la contención de relaves, puntos para la descarga de relaves, una laguna de operación (sobrenadante) localizada aguas arriba de la presa, y un sistema de recuperación de agua para su reutilización en la planta procesadora. Los relaves serían bombeados desde la planta hacia la ubicación seleccionada, y se descargarian con una concentración de sólidos del 58% (w/w).

Alternativa de Presa de Relaves Ciclonados

Esta alternativa considera segregar el relave total producido por la planta de beneficio, utilizando hidrociclones para clasificarlos entre fracciones finas y gruesas, para luego usar una parte de las fracciones gruesas para construir el terraplén a medida que crezca el depósito. La fracción fina de los relaves se descargaría dentro de la presa de arena para la recuperación del agua, al igual que en la alternativa convencional para el manejo de relaves. Los relaves finos serían depositados de la misma manera que en un dique convencional, con puntos de descarga sobre la presa de relaves, una laguna de operación (sobrenadante) localizada aguas arriba de la presa, y un sistema de recuperación de agua.

Dos parámetros claves son necesarios para evaluar el desempeño del sistema de ciclones para la construcción de la presa de arena: el rendimiento de la fracción gruesa del relave, y la calidad de la fracción gruesa o el tamaño de las especificaciones en la fracción gruesa.

El rendimiento de la fracción gruesa define la eficiencia, y por lo tanto el costo y viabilidad de la producción de arena de adecuada calidad. Lo que más contribuye al
rendimiento de la arena es la fracción gruesa del relave siendo parte de este rendimiento determinado por cómo operan los ciclones.

La calidad de la fracción gruesa del relave está asociada con la permeabilidad de la arena producida, y se define por la fracción en masa de partículas menores a 75 μm. Con base en experiencias de construcción de presas de arena en Chile, se recomienda la adopción de un rango máximo de contenidos finos (% que pasa la malla de 75 μm) entre 15% y 18%, con gravedad específica en el rango de 2.7 a 2.8. Para gravedades específicas mayores, el máximo contenido de finos permitido también se incrementa.

Para garantizar el rendimiento y calidad de la arena, en el diseño se considera un sistema de ciclones de dos etapas, donde la primera etapa asegura la recuperación de partículas gruesas, y la segunda etapa busca mejorar alcanzar la calidad de arena requerida.

Finalmente, se deben tener consideraciones especiales entorno a la ubicación de la laguna de operación formada dentro de la presa, para evitar la resaturación de las arenas en la presa.

Alternativa de Relaves en Pasta

La tercera alternativa involucra el uso de un segundo espesador para incrementar el contenido sólido de los relaves previo a su deposición final en la presa. Los relaves que llegan vía flotación son espesados, en primer lugar, por un espesador de alta capacidad similar al implementado en la alternativa de presa convencional, para luego transportarse hacia la presa de relaves en pasta y, antes de descargarse, se espesan en un espesador de cono profundo, adoptando una concentración alta de sólidos en la descarga. En vista que los relaves en pasta tienen una filtración mínima de agua una vez descargada, la recuperación de agua en la presa de relaves no será posible.

Los relaves en pasta pueden descargarse utilizando torres de deposición o puntos sencillos de descarga ubicados en ladera. Generalmente las torres son utilizadas en áreas con una topografía relativamente plana y, en vista de que ninguna las ubicaciones consideradas para esta alternativa cuentan con esta característica, se recomendaría implementar puntos de disposición individuales, instalando múltiples puntos de descarga en la instalación de la presa relave.

Alternativa de Depósito de Relaves Filtrados

La última alternativa considera el uso de sistemas de filtración para la producción de relaves filtrados (con concentración final de sólidos del 85% por peso). Para el transporte de estos típicamente se considera el uso de bandas transportadoras o camiones, y la conformación posterior en un depósito de relave filtrado. Al igual que con los relaves en pasta, no se espera recuperar agua al usar este tipo de tecnología, dado que el producto es un material no-saturado con una conductividad hidráulica relativamente baja.

Para garantizar la estabilidad física del relave filtrado, se debe compactar el relave no saturado a lo largo del depósito (taludes exteriores) con el fin de conformar una zona estructural y dar confinamiento al relave seco. El depósito de relaves filtrados también tendrá un sistema de drenaje inferior y sumideros de recolección. El Proyecto
Considera una poza de recolección de aguas en el sitio, para captar drenajes del depósito.

Consideraciones para los depósitos de relaves filtrados en áreas de alta precipitación

Dado que las condiciones de alta precipitación complican el proceso de disposición de relaves filtrados, como se presenta en el proyecto, es necesario considerar ciertos aspectos técnicos y operativos que se describen a continuación:

- Desde un punto de vista técnico

 Se requiere un manejo adecuado de aguas lluvia (precipitación directa), y un control estricto de la disposición de relaves.

 Se deberán implementar sistemas de manejo de agua para aguas de contacto y no-contacto durante las etapas de operación y cierre.

Las siguientes son soluciones ingenieriles para el control de escorrentía:

- Uso de geo-membrana temporales de 1mm de grosor o lona de PVC en los frentes de relaves no compactados para controlar el agua de lluvia que se recolectará y descargará en una poza ubicada al pie de la instalación.

- La implementación del cierre progresivo con una cubierta de suelo orgánico (topsoil) para limitar lo más posible el área expuesta a la precipitación.

- Costos de la alternativa

La alternativa de relaves filtrados implica un costo de capital relativamente alto (principalmente por los costos asociados a la planta de filtración), y costos de operación.

Se debe considerar un plan de manejo de aguas de contacto y no-contacto, y para el manejo de aguas lluvias.

- Para la operación

Deberán considerarse equipos para la compactación y para el cierre progresivo durante toda la etapa de construcción, además del sistema de manejo de aguas de contacto y no-contacto y manejo de agua de lluvias.

El depósito de los relaves filtrados consistirá en colocar capas de 30 cm compactadas con la máxima densidad seca del 95% según el ensayo Proctor Estándar (ASTM D698).

Se deberá considerar la construcción de zanjas a lo largo del pie de los bancos del depósito de relaves para capturar agua de contacto proveniente de los relaves expuestos, que permita tomar el drenaje de la superficie final de los relaves y conducirlo hasta los canales perimetrales de aguas de contacto.

3.4.3 Alternativas de manejo de relaves filtrados (ubicaciones potenciales)

Las ubicaciones potenciales del estudio de Evaluación de Alternativas consideraron ocho espacios, todos con forma de valle y adaptados a los requerimientos de
capacidad para el almacenamiento de relaves (véase la Figura 3.363) (véase el Anexo_3_14_Analisis_manejo_relaves).

Además, tres alternativas adicionales de instalaciones de manejo de relaves se evaluaron, las cuales se describen junto con los ocho sitios considerados para las instalaciones principales:

- Sitio 1: localizado en la cuenca del río Poblanco, entre Fredonia y Santa Bárbara; está a 5 km de distancia del río Cauca, y a 10 km al este de la Planta Procesadora La Mancha, hacia la otra orilla del río Cauca. La elevación de la cresta de la presa sería aproximadamente de 710 msnm.

- Sitio 2: localizado entre Támesis y Valparaíso; está a 3,4 km de distancia del río Cauca y 8,5 km al sureste de la Planta Procesadora La Mancha. La elevación de la cresta de la presa sería aproximadamente de 680 msnm.

- Sitio 3: localizado en Valparaíso; está a 1,2 km del río Cauca y a 11,3 km al sureste de la Planta Procesadora La Mancha. La elevación de la cresta de la presa sería aproximadamente de 690 msnm.

- Sitio 4: localizado entre Fredonia y Santa Bárbara, dentro de la cuenca del río Poblanco, 8,5 km aguas arriba del Sitio 1. Está a 13,5 km de distancia del río Cauca y a 13,5 km al nordeste de la Planta Procesadora La Mancha, cruzando el río Cauca. La elevación de la cresta de la presa sería aproximadamente de 1.065msnm.

- Sitio 5: localizado en Jericó, en la cuenca del río Piedras. Está a 9,8 km del río Cauca y a 10,3 km al suroeste de la Planta Procesadora La Mancha. La elevación de la cresta de la presa sería aproximadamente de 1.890 msnm.

- Sitio 6: localizado en Jericó, en la cuenca del río Piedras. Está a 4,5 km aguas abajo del Sitio 5; está a 4,9 km de distancia del río Cauca y a 4,2 km al este de la Planta Procesadora La Mancha. La elevación de la cresta de la presa sería aproximadamente de 1.805 msnm.

- Sitio 7: localizado en Jericó, a 1,8 kilómetros del río Cauca y a 1,5 km al norte de la Planta Procesadora La Mancha. La elevación de la cresta de la presa sería aproximadamente de 860 msnm.

- Sitio 8: se localiza entre Fredonia y Santa Bárbara, dentro de la cuenca del río Piedras a 4 km aguas arriba del Sitio 1. Está a 9,3 km de distancia del río Cauca y 9,9 km al este de la Planta Procesadora La Mancha, cruzando el río Cauca. La elevación de la cresta de la presa sería aproximadamente de 800 msnm.

La instalación de manejo de relaves adicional (CT): se localiza en Jericó, a 10,5 km del río Cauca, y a 6,5 km al norte de la Planta Procesadora La Mancha.

La instalación de manejo de relaves adicional - Jericó: se localiza en Jericó, a 2,9 km de distancia del río Cauca y a 0,8 km al sur de la Planta Procesadora La Mancha.

La Instalación de manejo de relaves adicional - Támesis: se localizan en Támesis, a 6km del río Cauca y a 3,7 km al sur de la Planta Procesadora La Mancha.
Figura 3.363 Ubicaciones potenciales para la instalación de manejo de relaves
Fuente: Minera de Cobre Quebradona, 2019

Evaluación

Las evaluaciones entorno a la conveniencia de las alternativas propuestas, previendo su desempeño en los sitios considerados dentro del estudio, se realizaron para determinar la factibilidad de cada una dentro del contexto del Proyecto. Así, las alternativas fueron analizadas y comparadas sobre criterios técnicos, de permisos, ambientales, sociales, y financieros.

Para el estudio de evaluación de alternativas, se consideró lo siguiente:

- La selección de un sitio y tecnología socialmente aceptables y ambientalmente seguras, factores que son críticos para un proyecto de este tipo.
• La selección de una opción efectiva en términos de costos para la vida útil de las instalaciones para la disposición de relaves y el subsecuente cierre de estas.

Para la evaluación de estas alternativas, se procedió de la siguiente forma: entre las cuatro tecnologías, se consideró la aplicación del sistema de relaves convencionales en siete de los sitios, el sistema de relaves ciclonados en ocho sitios, el sistema de relaves en pasta en siete sitios, y la alternativa de relaves filtrados en un sitio. Como resultado de esta evaluación se identificaron dos tecnologías potenciales en el Sitio 3: relaves ciclonados y relaves convencionales, y sólo una en el Sitio 7: relaves filtrados.

Se evaluó también la alternativa de un depósito de relaves ciclonados en el Sitio 7, basada en el método de construcción aguas arriba, aguas abajo y línea central, sin restricciones prediales.

Se determinó que la construcción de una presa de relaves ciclonados por el método de construcción aguas abajo y línea central no son factibles por el requerimiento de volúmenes de material de préstamo excesivos que hacen costoso los métodos de construcción. Por el método de construcción aguas arriba, los resultados de los análisis de estabilidad determinaron que no cumple con el requerimiento mínimo de Factor de Seguridad.

Por último, las otras alternativas potenciales identificadas para el almacenamiento de relaves en el Sitio 3 se descartaron por la alta percepción al riesgo, dadas las dificultades desde el punto de vista social y ambiental para operar.

Alternativa seleccionada

Como resultado de la evaluación desde los puntos de vista técnico, económico, ambiental y social, se seleccionó la alternativa de relaves filtrados secos.

Los Relaves Filtrados en el Sitio 7 proporcionan la capacidad requerida, el menor riesgo para la cantidad de movimiento de tierras, y el menor riesgo en términos ambientales y sociales.

3.4.4 Descripción de Depósito de pirita

En el apartado 3.6.2.2.2 de este capítulo, se describen las características del depósito de pirita, así como el manejo previsto de las aguas de contacto asociadas a ellos.

3.4.5 Alternativas de transporte de los relaves

3.4.5.1 Alternativas de Transporte

Los relaves filtrados serán transportados en camiones de 21 m³ de capacidad, desde la pila de almacenamiento de relaves filtrados hacia el depósito final, localizado 750 m aguas abajo de la Planta de beneficio, a 930 msnm.

3.4.5.2 Análisis para la transferencia de relaves filtrados inertes y relaves con pirita

Para definir la conveniencia de utilizar torres de transferencia frente a la ruta de camiones, en contraposición a tener contenedores de transferencia frente a apiladores,
tanto para los relaves filtrados inertes como para los relaves con pirita, se realizó un estudio de alternativas, el cual se describe brevemente a continuación:

- **Alternativa uno: ubicación de las torres de transferencia frente a la ruta de camiones.**

La alternativa uno evaluó dos opciones, entre tener transportadores más largos frente a tener una ruta de camiones también de mayor longitud. Esencialmente, las transferencias del transportador de relaves filtrados inertes y con pirita fueron ubicadas en dos lugares en relación con la planta, y se evaluó la longitud de las rutas de acarreo de los camiones. Las rutas resultantes de longitudes alternativas del transportador fueron evaluadas anualmente, desde el primer año al año final.

Se recomendó utilizar transportadores más largos, lo que implica rutas de camión más cortas, lo cual implica beneficios adicionales, dada la baja en los requerimientos de camiones, y menores costos de mantenimiento de las vías, que serán cortas. El análisis mostró que entre el año 10 y el 15, el punto de transferencia podría ser trasladado a un transportador de menor longitud, para mantener las longitudes cortas para el acarreo en camiones.

- **Alternativa dos: tipos de transferencia de relaves filtrados inertes y relaves con pirita**

La alternativa dos evalúa opciones, entre adquirir contenedores de transferencia frente a apiladores para pirita y relaves filtrados inertes.

 a) **Opción uno: contenedores**

Contenedores de concreto y fondo plano, equipados con puertas de descarga, se utilizaron como opción uno. Capacidad de los contenedores: dos contenedores con capacidad total de 1.700 t para relaves filtrados inertes, y un contenedor con una capacidad total de 745 t para los relaves con pirita. Los contenedores son elevados y equipados con un mecanismo de paso para transferir el material a los camiones.

Un riesgo clave de esta solución es que la capacidad de los contenedores para la descarga por gravedad de los relaves se evaluó como altamente improbable sin más información y análisis de diseño. En la evaluación, se identificó que esto es un error potencial del concepto de contenedor. Adicionalmente, la capacidad de los contenedores es fija, lo que impide la flexibilidad para la Plataforma de relaves filtrados adicionales en eventos de lluvia intensa y prolongada.

 b) **Opción dos: pila/apiladores radiales**

Los relaves filtrados inertes y los relaves con pirita serán llevados a sus respectivas pilas a través de bandas transportadoras. El material se ubicará en pilas de techo cubierto, utilizando apiladores radiales. Durante la carga de las existencias, cargadores frontales ubicarán el material en camiones de 40 t. La capacidad en relación a estas existencias se estableció de la siguiente forma:

- **Relaves filtrados inertes: 4.445 t**
- **Relaves con pirita: 2.150 t**
Se observa una capacidad sustancialmente mayor en relación con las existencias, a un costo menor por tonelada.

3.4.5.3 Selección del método de transporte

Luego de todos los análisis descritos anteriormente, se recomendó la opción de pilas de almacenamiento, por las siguientes razones:

- Flexibilidad del sistema para expandir la pila a un costo reducido, por lo que se, incrementa la confiabilidad del sistema en eventos de lluvia.
- Costo de Capital menor.
- Representa mayor confiabilidad, facilidad de construcción, flexible en términos operacionales, y con mayores capacidades de almacenamiento.
- La capacidad para reubicar fácilmente la pila/estructura en el futuro para mantener una distancia de acarreo menor (véase la Figura 3.364).

![Modelo 3D de apilamientos](image_url)

Figura 3.364 Modelo 3D de apilamientos
Fuente: Ausenco, 2019
3.4.6 Análisis geotécnico de pilas de lixiviación

El Proyecto no considera operación alguna con pilas de lixiviación.

3.4.7 Porcentaje de producción de minerales

Con base en las diferentes pruebas metalúrgicas realizadas en el Proyecto Minera de Cobre Quebradona, se identificó que en total se recuperará contenidos metálicos valorizables de cobre, oro y plata en un concentrado a partir del mineral que ingresa a la Planta de beneficio. La comercialización de estos contenidos metálicos se da a través de la venta de concentrados de cobre, cuyos contenidos de oro y plata son tratados como subproductos dentro del concentrado.

Las secciones 3.4.7.1 y 3.4.7.2 presentan la distribución de la recuperación de acuerdo con el tipo de medios (físicos y químicos) empleados por el procesamiento.

3.4.7.1 Recuperación metalúrgica por medios físicos

Los procesos físicos para la recuperación de metales valiosos en el Proyecto son los circuitos de flotación (convencional y flash).

Tanto la flotación convencional como la flotación flash producen concentrados, que necesitan una mayor concentración para alcanzar leyes de cobre comercializables. Ambos tipos de concentrados se combinan y son dirigidos al circuito de remolienda, en donde se liberan las partículas valiosas y se facilita su separación de la ganga en la etapa de flotación de limpiezas.

La Tabla 3.246 presenta los porcentajes estimados de recuperación de cobre, oro y plata en el concentrado. Estos corresponden a recuperaciones globales, tomando como referencia el producto final (concentrado final) y la alimentación a planta (mineral fresco).

<table>
<thead>
<tr>
<th>Metal</th>
<th>Ley proyectada</th>
<th>Porcentaje de recuperación global (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>27,9 %</td>
<td>93,7</td>
</tr>
<tr>
<td>Au</td>
<td>9,99 g/t</td>
<td>57,6</td>
</tr>
<tr>
<td>Ag</td>
<td>115 g/t</td>
<td>85,9</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

3.4.7.2 Recuperación metalúrgica por medios químicos

No se contemplan operaciones unitarias de recuperación diferentes a la flotación convencional ni a la flotación flash.

3.5 INSUMOS DEL PROYECTO

A continuación, se describen y estiman los volúmenes de insumos necesarios para la ejecución del Proyecto, de acuerdo con los diseños mineros.

3.5.1 Materiales de construcción

El requerimiento de materiales de construcción e insumos se puede clasificar por grupos de la siguiente forma:
• Materiales de cantera

Se refiere al material granular (gravas y arenas) y seleccionado, para la preparación de los concretos, para la construcción de las vías y las plataformas. Estos materiales de construcción se obtendrán directamente de las canteras existentes en la región, y que puedan acreditar sus licencias de funcionamiento (Cantera Guerreros, Cantera Poblanco, entre otras).

El material se podrá emplear en la construcción de pavimentos, presas, obras de drenaje, plataformas para la Planta, Área Integrada de Operaciones (AIO) y obras de drenaje, entre otras.

En el Capítulo 7, “Demanda, uso, aprovechamiento y/o afectación de recursos naturales”, se describen de forma detallada las fuentes de materiales para la etapa constructiva y para la etapa operativa, haciendo énfasis en los volúmenes de material aprovechado.

• Insumos básicos de construcción

Se refiere a materiales como cemento, acero, elementos prefabricados para cruces de las vías sobre cuerpos de agua, tuberías y accesorios convencionales de PVC, polietileno de alta densidad, ladrillos, tejas metálicas, tuberías de acero convencionales, etc., los cuales serán adquiridos en el mercado nacional o internacional. Por el volumen y las condiciones específicas es posible que se acuerde con algunos proveedores la producción de estos insumos directamente en el sitio del Proyecto, como es el caso de los prefabricados de concreto.

• Insumos básicos del montaje

En este grupo se incluyen los elementos básicos para el montaje de las edificaciones que hacen parte de la planta y de las instalaciones de apoyo minero, tales como estructuras metálicas de techos, plataformas, racks de servicios, tanques convencionales de acero al carbón, acero inoxidable, fibra de vidrio, tuberías y ductos de acero al carbón o de acero inoxidable para servicios, ductos de aire acondicionado, componentes generales de las instalaciones eléctricas como transformadores, aisladores, postes, herrajes, tableros eléctricos, cableado, motores, bombas y equipos mecánicos convencionales, entre otros.

Estos elementos, al igual que los insumos básicos de construcción, podrían adquirirse en el mercado. Se tiene prevista la contratación de montajes según componente y la fabricación de algunos componentes directamente en el sitio del Proyecto, como es el caso de las redes y racks de servicios, ensamble de equipos de gran tamaño, etc.

En la Tabla 3.247 se muestran las características y volúmenes de los materiales de construcción (de origen externo), requeridos para las diferentes obras a desarrollar en el Proyecto Minera de Cobre Quebradona.
Tabla 3.247 Cantidad de material de fuentes externas necesarias para el Proyecto

<table>
<thead>
<tr>
<th>Componente del Proyecto</th>
<th>Uso en etapa de construcción</th>
<th>Tipo de material</th>
<th>Cantidad de material externo (m³)</th>
<th>Cantidad de material interno (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concreto para construcción de obras de infraestructura</td>
<td>Agregados finos y gruesos como insumos para concretos para construcción de: planta de beneficio, campamento, taller, bodega, túneles y demás obras de infraestructura</td>
<td>Gravas y arenas</td>
<td>87.982</td>
<td></td>
</tr>
<tr>
<td>Vías</td>
<td>Materiales para pavimento de vías en afirmado</td>
<td>Gravas y arenas</td>
<td>64.439</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terraplenes</td>
<td>Material seleccionado</td>
<td>328.963</td>
<td>133.447</td>
</tr>
<tr>
<td>Plataformas</td>
<td>Terraplenes</td>
<td>Material seleccionado</td>
<td>367.386</td>
<td>212.364</td>
</tr>
<tr>
<td>Sedimentadores</td>
<td>Terraplenes</td>
<td>Material seleccionado</td>
<td>50.644</td>
<td>80.123</td>
</tr>
<tr>
<td>Sistema acueducto y alcantarillado</td>
<td>Terraplenes</td>
<td>Material seleccionado</td>
<td>119.481</td>
<td>58.453</td>
</tr>
<tr>
<td>Depósito de relaves filtrados</td>
<td>Rellenos para contrafuertes y material para drenajes</td>
<td>Gravas y arenas</td>
<td>443.000</td>
<td>1.350.000</td>
</tr>
<tr>
<td>Total requerido</td>
<td></td>
<td></td>
<td>1.461.895</td>
<td>1.834.387</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

3.5.2 Aceites, grasas, disolventes y otros

3.5.2.1 Aceite Combustible (ACPM)

Requerido para alimentar todos los equipos de construcción y operación. Para la estimación de la cantidad de combustible necesaria para la maquinaria, se tomó un valor promedio de consumo de 7.56 l/h (2 gal/h) para todo vehículo con un factor de utilización del 100% (24 h/días) para la maquinaria pesada y del 33% (8h/día) para las camionetas Toyota Hilux.

El consumo total de combustible por día se estima en 14.000 l/día (3700 gal/día aproximadamente).

3.5.2.2 Aceite para motor

Se utiliza para lubricar todas las partes móviles de los motores de los vehículos.

De acuerdo con información obtenida de diversas empresas, el consumo de aceite lubricante para motores de maquinaria pesada puede variar entre 17 l a 65 l por cada 18.000 km recorridos. Para la estimación de la cantidad requerida se tomó un valor medio de consumo de 40 l/18.000 km por vehículo.

El almacenamiento de aceite necesario para el funcionamiento y mantenimiento de la totalidad de los vehículos (93) será entonces de 3720 l, los cuales podrán ser almacenados en cuatro tanques plásticos de capacidad de 1000 l cada uno.
3.5.2.3 **Aceite para los sistemas hidráulicos**

Necesario para alimentar los componentes móviles de la maquinaria como retroexcavadoras o martillos hidráulicos, frenos y sistemas de refrigeración.

Para el funcionamiento de los sistemas hidráulicos de la maquinaria considerada se estimó una demanda total de 15000 l de aceite. A partir de esto se consideró un almacenamiento para reparaciones de los sistemas hidráulicos en caso de daños y/o desgaste del 20% con respecto al total del volumen requerido (3000 l). Este porcentaje fue considerado en función de la capacidad de reabastecimiento suministrada por un vehículo de referencia tipo NPR (4,7 toneladas).

El almacenamiento podrá ser realizado a través de tanque de 1000 litros.

3.5.2.4 **Grasas para engranajes y sistemas de transmisión**

Necesarias para disminuir la fricción generada en el contacto entre dispositivos o elementos mecánicos.

Se estableció un almacenamiento de tres tambores metálicos para grasa de capacidad de 180 kg cada uno (540 kg en total). Cabe resaltar que esta información obedece a un estimado para la maquinaria requerida.

3.5.2.5 **Especificaciones de seguridad para los insumos**

En el Anexo_3_15_Hojas seguridad, se incluyen las hojas de seguridad de los aceites y grasas que se describen en los numerales subsiguientes.

3.5.2.5.1 **Información de seguridad para aceites hidráulicos Aw 68**

3.5.2.5.1.1 **Identificación de riesgos**

No se considera peligroso de acuerdo con las guías reguladoras.

- Inflamable: no
- Explosivo: no
- Irritante: no
- Oxidante: no
- Radiactivo: no
- Corrosivo: no
- Asfixiante: no

3.5.2.5.1.2 **Clasificación de riesgo NFPA**

- Salud: 0
- Inflamabilidad: 0
- Reactividad: 0

3.5.2.5.1.3 **Manejo y almacenamiento de fluidos hidráulicos**

- Manejo: Usar recipientes limpios y bien cerrados alejados de fuentes de ignición
- Almacenamiento: En áreas ventiladas alejadas de fuentes de calor e ignición, agentes oxidantes y corrosivos. Temperatura máxima de almacenamiento 80°C

3.5.2.5.1.4 **Medidas de liberación accidental**

- Suministrar adecuada ventilación
- Alejar posibles fuentes de ignición
• Absorber en arena o aserrín
• Recoger en un recipiente limpio para disposición final

3.5.2.5.1.5 Consideraciones sobre disposición
Este material tal como fue suministrado, puede ser quemado en un quemador cerrado y controlado por su valor combustible o para la eliminación por incineración supervisada a muy altas temperaturas para evitar la formación de productos indeseables de la combustión. En todo caso, se puede incinerar de acuerdo con la resolución 0415 del 13 de mayo de 1988, del ministerio del medio ambiente, siempre y cuando se sigan las condiciones técnicas previstas en esta resolución.

3.5.2.5.2 Información se seguridad para grasas de sistemas de lubricación (engranajes y sistemas de transmisión)

3.5.2.5.2.1 Identificación de riesgos
Este material es peligroso de acuerdo con las guías regulatorias (ver sección 15 de la HDS).

3.5.2.5.2.2 Clasificación de riesgo NFPA

Salud: 0
Inflamabilidad: 1
Reactividad: 0

3.5.2.5.2.3 Manejo y almacenamiento
• Manejo: Evite todo contacto personal. Evite pequeños derrames y fugas para evitar riesgos de resbalamiento.
• Acumulador estático: Este material no es un acumulador estático.
• Almacenamiento: No almacene en recipientes abiertos o sin identificar.
• Manténgase alejado de materiales incompatibles.

3.5.2.5.2.4 Medidas de liberación accidental
• Derrame en tierra: Retire el material derramado usando palas y colóquelo en un recipiente para recicló o desecho apropiado.
• Derrame en agua: Si puede hacerlo sin riesgo detenga la fuga. Confine el derrame inmediatamente usando barreras flotantes. Advierta a otras embarcaciones Desnatar de la superficie.
• Las recomendaciones para derrames en agua y en tierra se basan en el escenario más factible para este material; sin embargo, las condiciones geográficas, el viento, la temperatura, (y en caso de derrames en agua) la dirección y velocidad de olas, pueden influir en forma importante la acción apropiada que deba tomarse. Por esta razón, se deben consultar los expertos locales. Nota: Las regulaciones locales pueden prescribir o limitar la acción a tomar.
• En caso de liberación accidental, ruptura o fugas: Ventile el área. Evite respirar el vapor. Utilice equipo apropiado de protección personal, incluyendo protección.
respiratoria apropiada. Evite respirar el vapor. Si es posible contenga el derrame. Recoja el derrame por frotación o absorción en material adecuado y utilizando palas. Evite que entre a las alcantarillas y vías acuáticas. Evite el contacto con la piel, los ojos o la ropa.

3.5.2.5.2.5 Consideraciones sobre disposición

Las recomendaciones sobre disposición se basan en el material tal como fue suministrado. La disposición debe estar de acuerdo con las leyes y regulaciones vigentes y las características del material al momento de la disposición.

El producto es adecuado para ser quemado en un quemador cerrado y controlado por su valor combustible o disponerse por incineración supervisada a muy altas temperaturas para evitar la formación de productos indeseables de la combustión.

3.5.2.5.2.6 Información reguladora sobre disposición

Información de RCRA: En nuestra opinión, el producto sin usar no está incluido específicamente por la Agencia de Protección Ambiental EPA (por sus siglas en inglés) como un desperdicio peligroso (40 CFR, Part 261D), ni su fórmula contiene materiales que estén listados como residuos peligrosos. No muestra las características peligrosas de inflamabilidad, corrosividad o reactividad y no está formulado con contaminantes como lo define la TCLP - Toxicity Characteristic Leaching Procedure. Sin embargo, este producto puede ser regulado.

3.5.2.5.2.7 Advertencia de recipiente vacío

Aviso de contenedor vacío (donde sea aplicable): Los contenedores vacíos pueden contener residuos y ser por tanto peligrosos. No intente rellenar o limpiar contenedores sin poseer las instrucciones apropiadas. Los tambores vacíos deben drenarse completamente y almacenarse en lugar seguro hasta que se reacondicione o se dispongan adecuadamente. Los contenedores vacíos deben reciclarse, recuperarse o eliminarse a través de contratistas debidamente calificados o autorizados y en concordancia con las regulaciones oficiales.

No presurice, corte, suelde con metales duros ni blandos, taladre, triture o exponga esos contenedores a calor, llama, chispas, electricidad estática u otras fuentes de ignición. Pueden explotar y causar lesiones o la muerte.

3.5.2.5.3 Información de seguridad para combustible Diesel

3.5.2.5.3.1 Identificación de riesgos

Líquido inflamable, peligro moderado de incendio o explosión del líquido o el vapor en presencia de calor, chispas o llamas. La inhalación de vapor a altas concentraciones puede causar mareo y adormecimiento. El líquido puede producir irritación de la piel y los ojos. Puede absorberse por la piel. Peligro de aspiración si es ingerido. Posibles efectos retardados. Algunos de sus componentes pueden causar cáncer según ensayos en animales.

3.5.2.5.3.2 Clasificación de riesgo NFPA

Salud: 1
Inflamabilidad: 2
Inestabilidad: 0

3.5.2.5.3.3 Manejo y almacenamiento

- Evite toda fuente de ignición (chispas, llamas, calor, cigarrillos encendidos). Conecte a tierra contenedores y tuberías.
- Use sistemas a prueba de chispas y de explosión.
- Evite generar vapores o neblinas.
- Nunca realice operaciones de sifón con la boca.
- Nunca use este producto para lavarse manos o brazos.
- Lávese muy bien las manos después de su manipulación.
- Evite contacto con ojos, piel y ropa.
- Almacene bien cerrado en lugar bien ventilado, alejado de materiales incompatibles y calor, a temperatura ambiente (entre 15 y 25 °C).
- El almacenamiento interno debe hacerse en recinto estándar para líquidos inflamables.
- Señalice adecuadamente las áreas de almacenamiento y los contenedores.

3.5.2.5.3.4 Medidas de liberación accidental

- Derrames Pequeños: Evacúe y aíselo de 25 a 50 metros. Contenga el derrame con diques de poliuretano o calcetines especiales para aceites y absorba con absorbentes inertes como calcetines, almohadillas o tapetes para hidrocarburos, chemizorb o vermiculita.
- No use tierra, arena, ni aserrín. Deposite los residuos en contenedores cerrados y marcados. Lave el área con agua y jabón.
- Derrames Grandes: Evacúe y aíselo el área 300 metros en todas direcciones. Utilice agua en forma de rocío para enfriar y dispersar los vapores y proteger al personal. Evite que el material derramado caiga en fuentes de agua, desagües o espacios confinados. Para ello disponga de diques prefabricados. Active su plan de emergencias.
- Vertimiento en agua: Utilice absorbentes especiales tipo espagueti para retirar el hidrocarburho de la superficie. Consulte con las autoridades ambientales sobre la posibilidad de utilizar agentes dispersantes o de hundimiento.
- Absorbentes Recomendados: Calcetines, Almohadas y Tapetes.
3.5.2.5.3.5 Consideraciones sobre disposición

Recupérelo y reutilícelo o envíelo a incineración en un horno adecuado, que tenga Licencia Ambiental.

3.5.2.5.3.6 Información ecológica

- Tóxico para la vida acuática.
- No permita su entrada a desagües, ríos y otras fuentes de agua.
- Flota e impide la oxigenación de cuerpos de agua.

3.5.2.5.3.7 Medidas para extinción de incendios

- Consideraciones especiales: Líquido combustible. Puede formar mezclas explosivas a temperaturas iguales o superiores a su punto de inflamación. El líquido puede acumular cargas estáticas por transvase o agitación. Los vapores pueden desplazarse a nivel del suelo hasta una fuente de ignición y devolverse ardiendo hasta su lugar de origen. El líquido puede flotar sobre el agua hasta una fuente de ignición y regresar en llamas. El vertimiento del producto a desagües puede causar peligro de fuego o explosión. Produce gases tóxicos por combustión.

- Procedimiento: Evacúe el área del incendio en 25 a 50 metros en todas direcciones. Si hay un contenedor o carro tanque involucrado, evacuе en 800 metros. Si hay fuga del producto, deténgala antes de intentar apagar el fuego, si puede hacerlo en forma segura. Enfríe los contenedores con agua en forma de rocío, y retírelos del fuego si puede hacerlo sin peligro. No introduzca agua a los contenedores. El agua puede ser inefectiva para extinguir el fuego, dado que el producto es insoluble. Aproxímonse al fuego en la misma dirección del viento. Para incendios masivos utilice boquillas con soportes. Aléjese de los extremos de los contenedores.

- Utilice equipo de respiración autocontenido. La ropa normal de bomberos proporciona protección limitada para este producto y sólo se recomienda para operaciones rápidas de entrada-salida en casos especiales.

- Medios de extinción apropiados: Fuegos pequeños: dióxido de carbono, polvo químico seco, espuma regular.

- Fuegos grandes: espuma, agua en forma de rocío o niebla. No use agua en forma de chorro.

3.5.2.5.4 Información se seguridad aceites para motores (15W40)

3.5.2.5.4.1 Identificación de riesgos

Es considerado un material peligroso

3.5.2.5.4.2 Clasificación de riesgo NFPA

<table>
<thead>
<tr>
<th></th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salud</td>
<td></td>
</tr>
<tr>
<td>Inflamabilidad</td>
<td>1</td>
</tr>
<tr>
<td>Reactividad</td>
<td>0</td>
</tr>
</tbody>
</table>
3.5.2.5.4.3 Manejo y almacenamiento

- **Prevenciones de exposición del personal con el lubricante**
 - Usar ropa que proteja todo el cuerpo.
 - Evitar exposiciones prolongadas

- **Manejo del producto en tambores**
 - Usar ropa que proteja todo el cuerpo
 - Botas de seguridad y guantes que protejan de las esquirlas de metal
 - Use elementos apropiados para el acarreo y levante
 - Durante el uso de los tambores use recipientes limpios y asignados a cada lubricante para no contaminarlos, de esta manera también evitará contacto con el aceite y derrame al ambiente.
 - Los tambores en uso deben estar en posición horizontal provistos de grifos o válvulas (D = ¾ pulg.) que llenen los recipientes asignados.
 - Los tambores con producto en almacenamiento deben estar con las tapas hacia abajo, cubiertos o bajo techo, en lo posible evitar su contacto con el piso para evitar herrumbre. Si la disposición es horizontal sobre soportes, las tapas deben estar alineadas.

- **Condiciones de almacenamiento**
 - Mantener alejado de fuentes de calor
 - Mantener alejado de agentes oxidantes y corrosivos
 - Áreas ventiladas. Si las áreas están confinadas usar ventilación forzada.

- **Empaque utilizado**
 - Lámina de acero para contenedores de 275 gal
 - Lámina tambores de 55 gal
 - Polietileno alta densidad: contenedores de 275 gal, tambores minigraneles de 55 gal y garrafa 5 gal.
 - Cajas de cartón conteniendo envases de polietileno de 1, ¼ de galón.
 - Cuando el almacenamiento incluye apilado de productos en cajas de cartón, extremar medidas de seguridad de almacenamiento por el cartón.
 - Empaque no adecuado: PVC

3.5.2.5.4.4 Medidas de liberación accidental

- **Precauciones personales**: Eliminar posibles fuentes de calor. Proporcionar ventilación adecuada, detener la fuga.

- **Precauciones ambientales**: Evitar que el producto drene por alcantarillas o drenajes.
- **Método de limpieza**: Pequeñas fugas: Adsorber con material adecuado para derrame de sustancias orgánicas. Grandes Fugas: Hacer dique de tierra y aislar para posterior recuperación y disposición

3.5.2.5.4.5 Consideraciones sobre disposición

Los aceites usados o de desecho se puede incinerar de acuerdo con la Resolución 0415 del 13 de mayo de 1998, del Ministerio del Medio Ambiente, siempre y cuando se sigan las condiciones técnicas previstas en esta resolución en el Artículo Segundo: “Para calderas u hornos con una potencia térmica menor a 10 Megawattios, el aceite usado se podrá utilizar como combustible siempre que sea mezclado con otros combustibles, en una proporción menor o igual al 5% en volumen de aceite usado”.

Los aceites usados o de desecho se pueden reciclar en refinerías.

Los aceites usados o de desecho se pueden eliminar mediante Biotratamiento.

3.5.3 Sistemas y fuentes de generación de energía y combustibles

El Proyecto tiene requerimientos específicos de fuentes y sistemas de alimentación de energía para cada una de las dos fases de su desarrollo: la construcción de la infraestructura de la mina y la operación.

3.5.3.1 Energía para construcción

Durante la etapa de construcción del Proyecto se solicitará una conexión a las redes eléctricas de Empresas Públicas de Medellín (EPM), como Operador de Red del sistema de transmisión regional (STR) con circuitos de media tensión.

El trazado de las líneas para la energía de construcción podrá ir paralelo a carreteras y caminos existentes hasta llegar a la zona del Proyecto en la cual alimentara dos subestaciones para los frentes principales de construcción.

Para la construcción del Proyecto se estimó una demanda pico de 10 MW (Véase la Tabla 3.248). Las líneas de alimentación eléctrica estarán apoyadas sobre postería o torrecillas, el conductor será del tipo ACSR aislado o ecológico, su instalación se realizará de acuerdo con las normas y criterios del operador de red, el método constructivo será el normalmente utilizado en este tipo de infraestructura.

<table>
<thead>
<tr>
<th>Carga</th>
<th>KVA (Instalados)</th>
<th>Factor de Demanda</th>
<th>KVA (demandados)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oficina contratista</td>
<td>20</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Campamento contratista</td>
<td>150</td>
<td>1</td>
<td>150</td>
</tr>
<tr>
<td>2 jumbos</td>
<td>300</td>
<td>1</td>
<td>300</td>
</tr>
<tr>
<td>Ventilación para túnel durante construcción</td>
<td>1.500</td>
<td>0,7</td>
<td>1.050</td>
</tr>
<tr>
<td>Maquina tuneladora</td>
<td>5.000</td>
<td>1</td>
<td>5.000</td>
</tr>
<tr>
<td>Energía para primer año de operación</td>
<td>2.100</td>
<td>0</td>
<td>2.100</td>
</tr>
<tr>
<td>Máquinas para pozos de ventilación</td>
<td>2.200</td>
<td>1</td>
<td>2.200</td>
</tr>
<tr>
<td>Oficina principal</td>
<td>150</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Campamento principal de construcción</td>
<td>900</td>
<td>1</td>
<td>900</td>
</tr>
<tr>
<td>Planta de concreto</td>
<td>250</td>
<td>1</td>
<td>250</td>
</tr>
<tr>
<td>Energía para construcción de la Planta</td>
<td>620</td>
<td>0</td>
<td>620</td>
</tr>
<tr>
<td>Energía para construcción de facilidades</td>
<td>250</td>
<td>0</td>
<td>250</td>
</tr>
</tbody>
</table>
En los trabajos tempranos de construcción, donde el requerimiento de potencia es menor, y en caso de que la línea eléctrica llegue a presentar algún retraso, se emplearán generadores o plantas eléctricas para suministrar la energía eléctrica requerida. Estos generadores se podrían utilizar además para garantizar la ejecución de los trabajos ante cortes en el suministro de energía y en algunos casos en que los frentes de obra están muy retirados y ejecuten labores de corta duración que no ameriten la instalación de una línea de distribución (véase la Figura 3.365).

Según información de proveedores de generadores Diesel, se requieren 82,44 Galones para generar 1 MWh. El consumo promedio de los seis primeros meses de construcción sería de aproximadamente 2.730 MWh/mes, para un consumo Diesel...
promedio de 225.061 Galones mensuales, en caso de que se llegase a presentar alguna demora con la línea eléctrica.

3.5.3.2 Energía para operación

El suministro de energía eléctrica para el Proyecto Minera de Cobre Quebradona, se realizará mediante una conexión al Sistema de Transmisión Nacional (STN) con una línea a 230 kV en circuito sencillo, entre el punto de conexión que apruebe la UPME (se estima que es una subestación nueva que se origina con la apertura de la línea Ancón Sur - Esmeralda, propiedad de ISA), y la subestación Quebradona (nueva). Las obras tendientes a la conexión del proyecto serán contratadas con un transmisor nacional quien se encargará de hacer los diseños detallados, compras, trámites regulatorios y ambientales, servidumbres, ejecución de la obra, administración, operación, mantenimiento, cierre y pos-cierre de la infraestructura requerida para prestar el servicio de conexión a Quebradona.

La subestación Quebradona 230 kV, será una subestación con configuración de barra principal más transferencia (BPT). En general, estará compuesta por una bahía de línea, dos de transformación y una bahía de transferencia. En esta subestación se contemplan dos transformadores de potencia trifásicos, aislados en aceite, con tensiones nominales de 230/34,5 kV, y capacidad de transformación 65/75 MVA (ONAN/ONAF).

Para la subestación principal Quebradona de 230/34,5 kV, se considera como posible ubicación la plataforma de facilidades mineras, cerca de la zona de la planta, la cual puede cambiar según los criterios propios para la operación de subestaciones y líneas de alta tensión. Las subestaciones auxiliares atenderán planta, mina, campamento, etc.

La mina contará con un sistema de respaldo de energía de plantas diésel para alimentar las cargas esenciales y de emergencia del Proyecto, estas plantas serán conectadas al barraje de distribución principal de 34,5 kV a través de transformadores elevadores 0,480/34,5 kV, ubicados en la subestación principal de 230/34,5 kV.

El sistema eléctrico para la alimentación del Proyecto estará conformado, en general, por circuitos de alimentación desde las subestaciones o derivaciones de las líneas aéreas, las subestaciones reductoras, las redes eléctricas de media tensión (para la alimentación de las cargas de las diferentes edificaciones), las subestaciones asociadas, las fuentes de respaldo de energía, las redes de baja tensión, el sistema de alumbrado y fuerza de las edificaciones, el sistema de iluminación exterior de las áreas de trabajo, la malla de puesta a tierra de las subestaciones y el sistema de apantallamiento contra descargas atmosféricas en las edificaciones.

3.5.3.3 Requerimientos de energía

La potencia requerida para el Proyecto Minera de Cobre Quebradona es de 58,24 MW. El estudio de conexión realizado por el consultor Ingeniería Especializada S.A-IEB, bajo la metodología y procedimientos exigidos por la UPME, identificó las alternativas de conexión de la carga a las subestaciones, Nueva Hispania 230 kV, Ancón Sur 230 kV, Nueva Medellín 230 kV y apertura de la línea 230 kV Ancon Sur - Esmeralda.
Luego de los análisis y evaluaciones técnicas realizadas se recomendó la conexión a la subestación Ancon Sur 230 kV como la alternativa más viable (véase la Tabla 3.249).

Para el cálculo del requerimiento de energía se tuvieron en cuenta las instalaciones eléctricas de media y baja tensión, de alumbrado y fuerza, los sistemas de puesta a tierra y de apantallamiento contra descargas atmosféricas y el abastecimiento de la energía eléctrica de las instalaciones del proyecto.

En la estimación se calculó la demanda máxima requerida por los talleres de mantenimiento, la planta, el suministro de los servicios de acueducto y alcantarillado, el campamento y las oficinas definidas para el Proyecto. Con estos resultados se dimensionó la capacidad del transformador de la subestación principal.

3.5.3.3.1 Energía para la planta de beneficio

La transmisión eléctrica para el proyecto se dará a cabo desde la subestación eléctrica que se origina con la apertura de la línea Ancon – Esmeralda 230kV, hasta la subestación Quebradona la cual estaría ubicada cerca de la planta de beneficio con un recorrido de 5 km aproximadamente. La subestación eléctrica Quebradona contará con dos transformadores de potencia con una relación de tensión de 220 / 34,5 kV, esta última será la tensión de distribución para todas las facilidades a excepción del equipamiento y facilidades ubicadas al interior de la mina. Para estos últimos se considera el uso de una tensión eléctrica de 13,2 kV.
Tabla 3.249 Cálculo demanda de energía para operación

<table>
<thead>
<tr>
<th>ITEM</th>
<th>WBS</th>
<th>Etiqueta</th>
<th>Descripción</th>
<th>Demanda (kW)</th>
<th>Demanda promedio (kW)</th>
<th>Capacidad instalada (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22000</td>
<td>22000-SS-002</td>
<td>Molienda MV y subestación eléctrica LV</td>
<td>11.001,53</td>
<td>8.801,22</td>
<td>13.999,5</td>
</tr>
<tr>
<td>2</td>
<td>22000</td>
<td>22000-SS-003</td>
<td>Subestación eléctrica - Trituradora secundaria y HPGR</td>
<td>4.980,39</td>
<td>3.984,31</td>
<td>5.966,5</td>
</tr>
<tr>
<td>3</td>
<td>22000</td>
<td>22000-SS-004</td>
<td>Subestación eléctrica - Flotación</td>
<td>2.625,84</td>
<td>2.100,67</td>
<td>3.167,5</td>
</tr>
<tr>
<td>4</td>
<td>28000</td>
<td>28000-SS-005</td>
<td>Subestación Eléctrica - Espesamiento de Concentrado</td>
<td>1.451,51</td>
<td>1.161,2</td>
<td>1.877,1</td>
</tr>
<tr>
<td>5</td>
<td>28000</td>
<td>28000-SS-006</td>
<td>Subestación Eléctrica - Filtrado de Concentrado</td>
<td>765,32</td>
<td>612,25</td>
<td>1.022</td>
</tr>
<tr>
<td>6</td>
<td>28000</td>
<td>28000-SS-007</td>
<td>Subestación Eléctrica - Espesamiento de Relaves</td>
<td>1.297,32</td>
<td>1.037,85</td>
<td>1.703</td>
</tr>
<tr>
<td>7</td>
<td>28000</td>
<td>28000-SS-008</td>
<td>Subestación Eléctrica - Filtrado de Relaves</td>
<td>5.201,98</td>
<td>4.161,59</td>
<td>6.735,5</td>
</tr>
<tr>
<td>8</td>
<td>28000</td>
<td>28000-SS-009</td>
<td>Subestación eléctrica - Pila de relaves con pirita</td>
<td>119,34</td>
<td>95,47</td>
<td>133,75</td>
</tr>
<tr>
<td>9</td>
<td>28000</td>
<td>28000-SS-010</td>
<td>Subestación eléctrica - Pila de relaves filtrados</td>
<td>203,55</td>
<td>162,84</td>
<td>233,75</td>
</tr>
<tr>
<td>10</td>
<td>13750</td>
<td>13750-SS-011</td>
<td>Subestación eléctrica - Sala de control de la entrada y túnel transportador</td>
<td>937,68</td>
<td>750,14</td>
<td>1.107,5</td>
</tr>
<tr>
<td>11</td>
<td>12000</td>
<td>12000-SS-012</td>
<td>Subestación eléctrica - Trituradora primaria</td>
<td>727,1</td>
<td>581,68</td>
<td>861</td>
</tr>
<tr>
<td>12</td>
<td>13000</td>
<td>13000-SS-013</td>
<td>Subestación eléctrica - Utilidades de la mina</td>
<td>5.152,11</td>
<td>4.121,68</td>
<td>6.152,5</td>
</tr>
<tr>
<td>13</td>
<td>13000</td>
<td>13000-SS-014</td>
<td>Sistema de deslizamiento no°1</td>
<td>510</td>
<td>469,2</td>
<td>510</td>
</tr>
<tr>
<td>14</td>
<td>13000</td>
<td>13000-SS-015</td>
<td>Sistema de deslizamiento no°2</td>
<td>510</td>
<td>469,2</td>
<td>510</td>
</tr>
<tr>
<td>15</td>
<td>13000</td>
<td>13000-SS-016</td>
<td>Sistema de deslizamiento no°3</td>
<td>510</td>
<td>469,2</td>
<td>510</td>
</tr>
<tr>
<td>16</td>
<td>13000</td>
<td>13000-SS-017</td>
<td>Sistema de deslizamiento no°4</td>
<td>510</td>
<td>469,2</td>
<td>510</td>
</tr>
<tr>
<td>17</td>
<td>13000</td>
<td>13000-SS-018</td>
<td>Sistema de deslizamiento no°5</td>
<td>510</td>
<td>469,2</td>
<td>510</td>
</tr>
<tr>
<td>18</td>
<td>29210</td>
<td>29210-SS-019</td>
<td>Subestación eléctrica - Servicios hídricos</td>
<td>1.146,05</td>
<td>916,84</td>
<td>2.587,5</td>
</tr>
<tr>
<td>19</td>
<td>29600</td>
<td>29600-SS-020</td>
<td>Subestación eléctrica – Planta de neutralización</td>
<td>1.156,74</td>
<td>925,39</td>
<td>1.221</td>
</tr>
<tr>
<td>20</td>
<td>40000</td>
<td>40000-SS-021</td>
<td>Subestación eléctrica - Utilidades e instalaciones de infraestructura in situ</td>
<td>491,32</td>
<td>393,05</td>
<td>127,5</td>
</tr>
<tr>
<td>21</td>
<td>43000</td>
<td>43000-SS-022</td>
<td>Subestación eléctrica - Área integrada de operaciones (AIO)</td>
<td>478,42</td>
<td>382,74</td>
<td>425</td>
</tr>
<tr>
<td>22</td>
<td>43500</td>
<td>43500-SS-023</td>
<td>Subestación eléctrica - Almacén de explosivos</td>
<td>120,79</td>
<td>96,63</td>
<td>127,5</td>
</tr>
<tr>
<td>23</td>
<td>48110</td>
<td>48110-SS-024</td>
<td>Subestación eléctrica - Tratamiento y disposición de aguas negras</td>
<td>292,11</td>
<td>233,68</td>
<td>315</td>
</tr>
<tr>
<td>24</td>
<td>73100</td>
<td>73100-SS-025</td>
<td>Subestación eléctrica - Campamento</td>
<td>724,74</td>
<td>579,2</td>
<td>765</td>
</tr>
<tr>
<td>25</td>
<td>26000</td>
<td>26000-SS-026</td>
<td>Subestación eléctrica - Auxiliares</td>
<td>3.083,68</td>
<td>2.466,95</td>
<td>3.255</td>
</tr>
<tr>
<td>26</td>
<td>22000</td>
<td>22000-SS-027</td>
<td>Subestación eléctrica - Remolienda y flocculante</td>
<td>2.800,16</td>
<td>2.240,13</td>
<td>3.909,25</td>
</tr>
</tbody>
</table>

Sub total (Mw)
47,31
38,15
58,24

Fuente: Ausenco, 2018
3.5.3.3.1.1 Distribución eléctrica

Para administrar todo el equipamiento que necesita energía eléctrica, se considera la instalación de: 10 subestaciones eléctricas, distribuidas en toda la planta de beneficio; dos subestaciones eléctricas ubicadas en el pórtico de entrada del túnel y 14 subestaciones eléctricas para las facilidades adicionales como Área integrada de operaciones (AIO), campamento, almacén de explosivos y otras. La descripción y el número de cada subestación se muestran en la Tabla 3.250.

Tabla 3.250 Listado de Subestaciones eléctricas

<table>
<thead>
<tr>
<th>Item</th>
<th>TAG</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22000-SS-002</td>
<td>Subestación eléctrica de media y baja tensión de molienda</td>
</tr>
<tr>
<td>2</td>
<td>22000-SS-003</td>
<td>Subestación eléctrica de la trituración secundaria & HPGR</td>
</tr>
<tr>
<td>3</td>
<td>22000-SS-004</td>
<td>Subestación eléctrica de flotación</td>
</tr>
<tr>
<td>4</td>
<td>28000-SS-005</td>
<td>Subestación eléctrica de espesamiento de concentrado</td>
</tr>
<tr>
<td>5</td>
<td>28000-SS-006</td>
<td>Subestación eléctrica de filtrado de concentrado</td>
</tr>
<tr>
<td>6</td>
<td>28000-SS-007</td>
<td>Subestación eléctrica de espesamiento de relaves</td>
</tr>
<tr>
<td>7</td>
<td>28000-SS-008</td>
<td>Subestación eléctrica de filtrado de relaves</td>
</tr>
<tr>
<td>8</td>
<td>28000-SS-009</td>
<td>Subestación eléctrica de pila de relaves con pirita</td>
</tr>
<tr>
<td>9</td>
<td>28000-SS-010</td>
<td>Subestación eléctrica de pila de relaves filtrados inertes</td>
</tr>
<tr>
<td>10</td>
<td>13750-SS-011</td>
<td>Subestación eléctrica del cuarto de llaves del portal y de la banda transportadora del túnel</td>
</tr>
<tr>
<td>11</td>
<td>12000-SS-012</td>
<td>Subestación eléctrica de trituración primaria</td>
</tr>
<tr>
<td>12</td>
<td>13000-SS-013</td>
<td>Subestación eléctrica de utilidades mina</td>
</tr>
<tr>
<td>13</td>
<td>13000-SS-014</td>
<td>Subestación eléctrica Tipo SKID N°1</td>
</tr>
<tr>
<td>14</td>
<td>13000-SS-015</td>
<td>Subestación eléctrica Tipo SKID N°2</td>
</tr>
<tr>
<td>15</td>
<td>13000-SS-016</td>
<td>Subestación eléctrica Tipo SKID N°3</td>
</tr>
<tr>
<td>16</td>
<td>13000-SS-017</td>
<td>Subestación eléctrica Tipo SKID N°4</td>
</tr>
<tr>
<td>17</td>
<td>13000-SS-018</td>
<td>Subestación eléctrica Tipo SKID N°5</td>
</tr>
<tr>
<td>18</td>
<td>29210-SS-019</td>
<td>Subestación eléctrica de servicios de agua</td>
</tr>
<tr>
<td>19</td>
<td>29600-SS-020</td>
<td>Subestación eléctrica tratamiento de agua ácida</td>
</tr>
<tr>
<td>20</td>
<td>40000-SS-021</td>
<td>Subestación eléctrica de utilidades y facilidades mina</td>
</tr>
<tr>
<td>21</td>
<td>43000-SS-022</td>
<td>Subestación eléctrica del Área integrada de operaciones (AIO)</td>
</tr>
<tr>
<td>22</td>
<td>43500-SS-023</td>
<td>Subestación eléctrica del almacén de explosivos</td>
</tr>
<tr>
<td>23</td>
<td>48110-SS-024</td>
<td>Subestación eléctrica de tratamiento y desecho de aguas residuales</td>
</tr>
<tr>
<td>24</td>
<td>73100-SS-025</td>
<td>Subestación eléctrica del campamento</td>
</tr>
<tr>
<td>25</td>
<td>26000-SS-026</td>
<td>Subestación eléctrica de la planta de oro (asumida)</td>
</tr>
<tr>
<td>26</td>
<td>22000-SS-027</td>
<td>Subestación eléctrica de remolienda y flocculante</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

3.5.3.3.1.2 Cargas eléctricas

La estimación de carga instalada, máxima demanda, demanda promedio y las cargas de emergencias son calculadas en base al equipamiento mecánico del Proyecto. Un resumen de las cargas eléctricas por subestación se presenta en la Tabla 3.251.

Tabla 3.251 Listado de cargas por subestación

<table>
<thead>
<tr>
<th>ITEM</th>
<th>TAG</th>
<th>Potencia Instalada</th>
<th>Máxima Demanda</th>
<th>Demanda Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>kW</td>
<td>kW</td>
<td>kW</td>
</tr>
<tr>
<td>1</td>
<td>22000-SS-002</td>
<td>13.999,5</td>
<td>11.001,5</td>
<td>3.745,09</td>
</tr>
<tr>
<td>2</td>
<td>22000-SS-003</td>
<td>5.966,5</td>
<td>4.980,4</td>
<td>1.773,82</td>
</tr>
<tr>
<td>3</td>
<td>22000-SS-004</td>
<td>3.167,5</td>
<td>2.625,8</td>
<td>1.577,59</td>
</tr>
</tbody>
</table>
3.5.4 Consumo de reactivos e insumos químicos en el proceso minero

Los reactivos utilizados en la Planta de beneficio serán recibidos y almacenados en el sitio. Para cada reactivo se dispondrá de instalaciones para su preparación, almacenamiento y dosificación.

3.5.4.1 Cal

La cal se utilizará para incrementar el pH de la pulpa, y subsecuentemente deprimir la pirita en la flotación de cobre.

El sistema de apagado de la cal viva es un sistema patentado de apagamiento, y comprende un silo de almacenamiento, alimentadores y un molino de apagamiento.

La cal viva se llevará al sitio en camiones cisterna a granel (30 toneladas), y se descargará mediante un sistema neumático en el silo de almacenamiento de capacidad de 90 toneladas.

La cal viva se transferirá desde el silo de manera controlada por un alimentador de tornillo, para abastecer al molino de apagamiento. La cal viva se apagará en el molino con agua de proceso, para producir una lechada de cal al 20% w/w de sólidos. La operación de apagamiento será semi-batch, siendo la cal apagada transferida periódicamente hacia el tanque de almacenamiento de lechada de cal.

Fuente: Minera de Cobre Quebradona, 2018

<table>
<thead>
<tr>
<th>ITEM</th>
<th>TAG</th>
<th>Potencia Instalada</th>
<th>Máxima Demanda</th>
<th>Demanda Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>28000-SS-005</td>
<td>1.877,1</td>
<td>835,71</td>
<td>1.674,90</td>
</tr>
<tr>
<td>5</td>
<td>28000-SS-006</td>
<td>1.022,0</td>
<td>422,83</td>
<td>874,35</td>
</tr>
<tr>
<td>6</td>
<td>28000-SS-007</td>
<td>1.703,0</td>
<td>768,46</td>
<td>1.507,83</td>
</tr>
<tr>
<td>7</td>
<td>28000-SS-008</td>
<td>6.735,5</td>
<td>2.297,97</td>
<td>5.686,94</td>
</tr>
<tr>
<td>8</td>
<td>28000-SS-009</td>
<td>133,8</td>
<td>56,80</td>
<td>132,17</td>
</tr>
<tr>
<td>9</td>
<td>28000-SS-010</td>
<td>233,8</td>
<td>84,48</td>
<td>220,39</td>
</tr>
<tr>
<td>10</td>
<td>13750-SS-011</td>
<td>1.107,5</td>
<td>356,62</td>
<td>1.003,20</td>
</tr>
<tr>
<td>11</td>
<td>12000-SS-012</td>
<td>861,0</td>
<td>347,54</td>
<td>805,89</td>
</tr>
<tr>
<td>12</td>
<td>13000-SS-013</td>
<td>6.152,5</td>
<td>2.820,58</td>
<td>5.873,66</td>
</tr>
<tr>
<td>13</td>
<td>13000-SS-014</td>
<td>510,0</td>
<td>316,07</td>
<td>600,00</td>
</tr>
<tr>
<td>14</td>
<td>13000-SS-015</td>
<td>510,0</td>
<td>316,07</td>
<td>600,00</td>
</tr>
<tr>
<td>15</td>
<td>13000-SS-016</td>
<td>510,0</td>
<td>316,07</td>
<td>600,00</td>
</tr>
<tr>
<td>16</td>
<td>13000-SS-017</td>
<td>510,0</td>
<td>316,07</td>
<td>600,00</td>
</tr>
<tr>
<td>17</td>
<td>13000-SS-018</td>
<td>510,0</td>
<td>316,07</td>
<td>600,00</td>
</tr>
<tr>
<td>18</td>
<td>29210-SS-019</td>
<td>2.587,5</td>
<td>574,84</td>
<td>1.282,14</td>
</tr>
<tr>
<td>19</td>
<td>29600-SS-020</td>
<td>1.221,0</td>
<td>716,88</td>
<td>1.360,87</td>
</tr>
<tr>
<td>20</td>
<td>40000-SS-021</td>
<td>127,5</td>
<td>304,49</td>
<td>578,02</td>
</tr>
<tr>
<td>21</td>
<td>43000-SS-022</td>
<td>425,0</td>
<td>296,50</td>
<td>562,85</td>
</tr>
<tr>
<td>22</td>
<td>43500-SS-023</td>
<td>127,5</td>
<td>74,86</td>
<td>142,11</td>
</tr>
<tr>
<td>23</td>
<td>48110-SS-024</td>
<td>315,0</td>
<td>181,03</td>
<td>343,65</td>
</tr>
<tr>
<td>24</td>
<td>73100-SS-025</td>
<td>765,0</td>
<td>449,15</td>
<td>852,63</td>
</tr>
<tr>
<td>25</td>
<td>26000-SS-026</td>
<td>3.255,0</td>
<td>1.911,10</td>
<td>3.627,86</td>
</tr>
<tr>
<td>26</td>
<td>22000-SS-027</td>
<td>3.909,3</td>
<td>1.254,58</td>
<td>3.068,36</td>
</tr>
</tbody>
</table>

Estudio de Impacto Ambiental I-0010371-MQC-EIA-V1-FA
Noviembre, 2019
3.581
La lechada de cal del tanque de almacenamiento se dosificará a través de un anillo principal de bombeo a distintos puntos de dosificación en los circuitos de molienda y flotación.

En la Tabla 3.252 se pueden ver los consumos y dosis estimadas de Cal para los diferentes procesos de la planta.

Tabla 3.252 Consumo estimado de Cal

<table>
<thead>
<tr>
<th>Cal</th>
<th>Dosis de alimentación (kg/t sólidos)</th>
<th>Consumo anual (t/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>2.670</td>
<td>16.548</td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2019

El consumo con fines del estudio ha sido proyectado a partir de pruebas, pero la dosificación real en operación estará basada en la medición continua del pH y en los ajustes respectivos para mantener el punto de equilibrio del pH (>10,5). Mucho del hidróxido de calcio agregado reacciona con componentes del mineral y forma precipitados, tales como sulfato de calcio, que se reporta a la corriente de relaves en estado sólido. Debido a que la gran mayoría de la cal se agrega a la pulpa que entra al circuito de flotación, los precipitados terminarán en la ganga (mineral sin valor) con los relaves finalmente molidos, que se encuentran esencialmente encerrados en el depósito de relaves filtrados.

3.5.4.2 Colector de Cobre (Cytec A-3302)

Se prevé utilizar el A-3302 como colector de cobre en el circuito de flotación de cobre. Este se distribuirá en forma líquida en contenedores IBC de 1 m³ de capacidad. El A-3302 se almacenará en un tanque y se distribuirá a través de un anillo principal de bombeo.

En la Tabla 3.253 se pueden ver los consumos y dosificaciones estimadas de colector para los circuitos de flotación.

Tabla 3.253 Consumo Estimado de Colector de Cobre

<table>
<thead>
<tr>
<th>Colector de Cobre (A-3302)</th>
<th>Dosis de alimentación (kg/t sólidos)</th>
<th>Consumo anual (t/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0,0315</td>
<td>196</td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2019

El uso de la flotación usando aire se remonta a una patente de Australia en 1905 (Fuerstenau et al, 2007). El uso de xantatos como reactivos de flotación se remonta a una patente de 1925 por Keller y, junto con reactivos llamados ditiofosfatos, que revolucionaron la industria minera. Aunque muchos otros reactivos se han desarrollado ya para fines especializados, la gran mayoría de los minerales de cobre y oro son todavía flotados utilizando colectores de xantato.

El A-3302 es un xantato aceitoso no soluble en agua, con mayor selectividad que su xantato correspondiente, y puede ser usado en un rango de pH más amplio. Su dosificación por lo general es en la etapa de molienda.

La vida media de xantatos en condiciones ambientales es relativamente corta, con estimaciones basadas en la literatura de 2,5 a 11 días.
3.5.4.3 Promotor (Diésel)

El diésel se utiliza como promotor para ayudar a la flotación de minerales en el circuito de flotación de cobre.

El diésel se entrega en camiones cisterna a granel y se transfiere al tanque diésel de la planta. La bomba de transferencia de diésel transfiere el diésel al tanque de mezcla del promotor. También se agrega agua cruda al tanque de mezcla y un agente emulsionante durante la dilución y homogenización. El tanque de almacenamiento está conectado a un manifold fijo y la emulsión de diésel se bombea a puntos de adición a través de bombas dosificadoras.

En la Tabla 3.254 se pueden ver los consumos y dosificaciones estimadas de diésel para el circuito de flotación.

<table>
<thead>
<tr>
<th>Promotor (Diésel)</th>
<th>Dosis de alimentación (kg/t sólidos)</th>
<th>Consumo anual (t/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0.009</td>
<td>56</td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2019

3.5.4.4 Colector de Pirita (Amil Xantato de Potasio – PAX)

Se prevé utilizar PAX como colector de pirita en el circuito de flotación de pirita. Este se distribuirá como pellets en bolsas de 800 kg. El PAX se preparará para obtener una solución al 15% w/w, con agua cruda para dilución. A su vez, se almacenará en un tanque y se transportará a los puntos de adición a través de un anillo principal de bombeo.

En la Tabla 3.255 se pueden ver los consumos y dosis estimados de colector de pirita para el circuito de flotación.

<table>
<thead>
<tr>
<th>Colector de Pirita (PAX)</th>
<th>Dosis de alimentación (kg/t sólidos)</th>
<th>Consumo anual (t/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0.025</td>
<td>156</td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2019

El Xantato amílico de potasio se absorbe sobre las superficies de la pirita mineral donde se oxida a dixantógeno (\(C_6H_{10}O_2S_4\)). Este es el compuesto que crea la superficie hidrófoba (repelencia al agua) que permite la flotación.

Parte del xantato permanece en solución. La cantidad depende en gran medida del balance entre la cantidad de xantato agregado al proceso y al área superficial de la pirita y otros minerales en las cargas de xantato. La cantidad de xantato agregado se controla para maximizar la recuperación de la pirita en el circuito de flotación de pirita para poder reducir la cantidad de material potencialmente generador de ácido en la corriente de relaves filtrados, mientras que se minimiza la cantidad añadida a fin de minimizar costos. Esta estrategia minimizará indirectamente la cantidad de xantato en solución, que, en cualquier caso, dicha solución será recuperada a la planta para ser reutilizada como agua de procesos.
3.5.4.5 Espumante (Metil Isobutil Carbinol – MIBC)

El espumante se utilizará para proporcionar una espuma estable en celdas de flotación, tanto de pirita como de cobre. Se distribuirá como un líquido en contenedores IBC de 1m³. Se almacenará en un tanque y se transportará a los puntos de adición a través de un anillo principal de bombeo.

En la Tabla 3.256 se pueden visualizar los consumos y dosis estimados de espumante para los circuitos de flotación.

<table>
<thead>
<tr>
<th>Espumante (MIBC)</th>
<th>Dosis de alimentación (kg/t sólidos)</th>
<th>Consumo anual (t/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0,175</td>
<td>1.085</td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2019

La dosificación de espumante será controlada continuamente durante el funcionamiento de la planta para lograr las condiciones de espuma deseadas. Está dosificación puede que varíe durante la optimización de las operaciones en la planta de beneficio de acuerdo con el valor nominal determinado hasta la fecha. Por otra parte, se aclara que la dosificación de MIBC para el proceso de flotación ha sido determinado en pruebas metalúrgicas de laboratorio y ha sido durante mucho tiempo uno de los pilares de la práctica de flotación industrial a nivel mundial, sin embargo, en el futuro se explorarán alternativas que puedan reemplazar el MIBC con un producto que permita mayor eficiencia en el proceso de concentración de minerales por flotación.

Aunque conocido comúnmente como MIBC, Metil isobutil carbinol, el nombre IUPAC correcto para este producto es 4-metil-2-pentanol y es un alcohol con formula química C₆H₁₄O. Su densidad es de 0,81 g/cm³, punto de ebullición es 132°C y presión de vapor es baja a 0.698 kPa. El punto de inflamación es 41°C, la solubilidad en agua es baja de 1,7% en peso a 20°C, y a bajas dosificaciones en la flotación todo el MIBC se disolverá.

Los espumantes se absorben en la interfase aire-agua y así dejan el concentrado, predominantemente viajando con la espuma. Existe evidencia experimental (Davis et al, 1976) que los espumantes son adsorbidos por el colector de la superficie mineral recubierta. Sin embargo, no se han encontrado datos cuantitativos del comportamiento exacto del MIBC a lo largo del proceso. Es muy común encontrar que los espumantes se reciclan de nuevo a la planta en agua recuperada, y esto reduce la nueva tasa de adición. Sin embargo, el efecto es pequeño, no cuantificado e ignorado en el diseño.

3.5.4.6 Floculante

El floculante se utilizará para mejorar la sedimentación en los espesadores. El sistema de preparación consiste en una tolva de alimento, alimentador de tornillo, soplador, mezclador automático a chorro de agua, tanque mezclador, tanque de almacenamiento y bombas de dosificación.

El floculante se distribuirá en polvo seco en bolsas a granel de 800 kg. Se utilizará un montacargas para cargar bolsas al sistema de preparación de floculante.
El polvo seco se transferirá a un embudo caliente y luego hacia el cabezal humectante para producir una solución floculante de 0,25% w/w. El floculante se mezclará en un tanque agitado y se enviará a un tanque de almacenamiento.

Se utilizarán bombas dosificadoras para enviar la solución de floculante del tanque de almacenamiento a los espesadores, hasta obtener una solución al 0.025% w/w. Se instalará una bomba dosificadora de reserva en cada punto de dosificación del floculante.

En la Tabla 3.257 se pueden ver los consumos y dosis estimadas de floculante para los diferentes procesos de espesamiento en la Planta de beneficio.

<table>
<thead>
<tr>
<th>Floculante</th>
<th>Dosis de alimentación (kg/t sólidos)</th>
<th>Consumo anual (t/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espesador de Concentrados</td>
<td>0,045</td>
<td>12</td>
</tr>
<tr>
<td>Espesador de relaves con Pirita</td>
<td>0,020</td>
<td>11</td>
</tr>
<tr>
<td>Espesador de Relaves inertes</td>
<td>0,020</td>
<td>108</td>
</tr>
</tbody>
</table>

Fuente: Ausenco, 2019

Las largas cadenas moleculares de los floculantes de poliacrilamida actúan al adherirse a la superficie de la partícula mineral formando puentes entre las diferentes partículas, por lo que los grupos de partículas se agrupan como aglomerados o floculos, y así se asientan en la suspensión mucho más rápidamente de lo que lo haría con partículas individuales.

En condiciones de operación normales, las dosificaciones del polímero se controlan para lograr con lo justo y suficiente una floculación efectiva de los sólidos. Esto se logra con menos del 100% de la cobertura superficial de los sólidos por floculante. Por lo tanto, incluso si se añade más reactivo que el mínimo necesario, el exceso seguirá siendo ocupado por áreas libres de reactivo de las superficies de las partículas. Sólo si se añade un gran exceso de reactivo no habrá ninguna cantidad apreciable que permanezca en la fase acuosa.

Murgatroyd et al, suscribe que "En condiciones de operación normales y usando la dosificación óptima de polielectrolito, se espera que la concentración de polielectrolito residual sea muy baja".

En conclusión, prácticamente la totalidad de la poliacrilamida agregada en la planta permanece unida a los sólidos y se almacena en el depósito de relaves filtrados; y el monómero de acrilamida no interactúa con los sólidos de relaves y continuará como agua de procesos en la red de recirculación de agua recuperada.

3.5.4.7 Depresor de Pirita (Benefloat)

El Benefloat se utilizará para depresar la pirita desde la pulpa de concentrado en las etapas de flotación cleaner.

El depresor de pirita se suministrará en polvo seco y se preparará en planta, para ser dosificado a la etapa de flotación. El polvo seco se transferirá a un estanque agitado, donde se adicionará agua a una concentración de 20% w/w, la cual se podrá ajustar en base a requerimientos de operación. Desde este estanque agitado se enviará la
solución a un tanque de almacenamiento, desde donde se suministrará a los puntos de adición del circuito cleaner.

El almacenaje de este reactivo debe estar alejado de materiales oxidantes, en un lugar fresco y seco con ventilación adecuada. Una vez líquido, las temperaturas extremadamente bajas pueden afectar la viscosidad del reactivo, pero no las propiedades químicas. Las altas temperaturas pueden causar la generación de vapor y parcialmente evaporación del agua, afectando la concentración del reactivo y su rendimiento.

En la Tabla 3.258 se pueden visualizar los consumos y dosis estimados del depresor de pirita para el circuito de flotación cleaner.

Tabla 3.258 Consumo estimado de depresor de pirita

<table>
<thead>
<tr>
<th>Depresor de Pirita (Benefloat)</th>
<th>Dosis de alimentación (kg/ton sólidos)</th>
<th>Consumo anual (ton/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0,200</td>
<td>1.650</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

De acuerdo con el proveedor, el Benefloat es un aditivo orgánico a base de taninos, recogido de la naturaleza y procesado en sus instalaciones, cuyas propiedades iónicas actúan como depresor de metales. Debido a estas características, durante el proceso el producto pierde la carga con los iones bivalentes metálicos, formando un compuesto biodegradable que puede ser utilizado como bioestimulante en plantas y cultivos. Su dosificación será controlada continuamente en función del mineral alimentado a la planta y del control de leyes en línea de los distintos flujos de flotación. Su densidad es de 400 g/cm³ y presenta una solubilidad en el agua superior a 1,000 g/L. No presenta punto de ebullición y presenta una alta estabilidad química.

3.5.4.8 Dispersante (MINDP 150)

El dispersante MINDP 150 se utilizará para depresar la pirita desde la pulpa de concentrado en las etapas de flotación cleaner.

El dispersante se suministrará en forma líquida, en contenedores IBC de 1 m³, los que se almacenarán en un lugar que no reciba la luz solar directa y con adecuada ventilación. Posteriormente será traspasado a un tanque de distribución, desde donde se suministrará a los distintos puntos de adición del circuito cleaner.

En la Tabla 3.259 se pueden visualizar los consumos y dosis estimados del dispersante para el circuito de flotación cleaner.

Tabla 3.259 Consumo estimado de dispersante

<table>
<thead>
<tr>
<th>Depresor de Pirita (MINDP150)</th>
<th>Dosis de alimentación (kg/ton sólidos)</th>
<th>Consumo anual (ton/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0,200</td>
<td>1.650</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

La dosificación del dispersante será controlada continuamente en función del mineral alimentado a la planta y del control de leyes en línea de los distintos flujos de flotación. Su peso específico es de 1.3 a 1.5 y su punto de ebullición es de 102 °C.
De acuerdo con el proveedor, el MNDP150 es un compuesto líquido concentrado a base de dextrina de trigo más silicato de sodio y agua. Por lo que se convierte en una solución cuyos iones metálicos como el Sodio, Silice (no silicio) y el polisacarido (dextrina de trigo) van adheridos al concentrado y no a la solución que acompaña al relave. El material es estable bajo condiciones de temperatura y presión normal, sin producirse reacciones peligrosas.

3.5.4.9 Otros reactivos

Otros reactivos que son requeridos para las plantas de tratamiento de agua potable y residual, al igual que sistemas de refrigeración de agua, consisten en antiincrustantes y biocidas.

3.5.5 Explosivos

Durante la ejecución del proyecto se tienen previstas dos clases de voladuras: de desarrollo y de producción. La descripción detallada de los parámetros de diseño de las voladuras previstas para el Proyecto, así como los consumos de explosivos, equipos y logística de manejo de estos se presenta en el numeral 3.3.8.1.1.8 Polvorín superficial y en el numeral 3.3.8.1.2.7.5 Polvorín Subterráneo.

3.5.5.1 Tipos de voladura

- Voladuras de Desarrollo

Se definen como las voladuras en labores con secciones tipo bóveda que son horizontales o levemente inclinadas. Estas se caracterizan por los siguientes parámetros de perforación (véase la Tabla 3.260) y factores de carga (Tabla 3.261).

<table>
<thead>
<tr>
<th>Tabla 3.260</th>
<th>Parámetros de perforación para voladuras de desarrollo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro de perforación (mm)</td>
<td>51</td>
</tr>
<tr>
<td>Longitud de perforación(m)</td>
<td>4,0</td>
</tr>
<tr>
<td>Diámetro de perforación taladros de alivio (mm)</td>
<td>102</td>
</tr>
<tr>
<td>Avance efectivo estimado (%)</td>
<td>95</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

<table>
<thead>
<tr>
<th>Sección</th>
<th>Sección (m²)</th>
<th>Longitud de Perforación (m)</th>
<th>Volumen a remover (m³)</th>
<th>Explosivo emulsión (kg)</th>
<th>Factor de carga (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,50 x 4,50</td>
<td>20,25</td>
<td>4,00</td>
<td>77,0</td>
<td>256,1</td>
<td>3,3</td>
</tr>
<tr>
<td>5,00 x 5,00</td>
<td>25,00</td>
<td>4,00</td>
<td>95,0</td>
<td>260,8</td>
<td>2,7</td>
</tr>
<tr>
<td>5,50 x 5,50</td>
<td>30,25</td>
<td>4,00</td>
<td>115,0</td>
<td>304,5</td>
<td>2,6</td>
</tr>
<tr>
<td>5,50 x 6,00</td>
<td>33,00</td>
<td>4,00</td>
<td>125,4</td>
<td>304,5</td>
<td>2,4</td>
</tr>
<tr>
<td>6,00 x 4,75</td>
<td>28,50</td>
<td>4,00</td>
<td>108,3</td>
<td>265,0</td>
<td>2,4</td>
</tr>
<tr>
<td>6,00 x 5,00</td>
<td>30,00</td>
<td>4,00</td>
<td>114,0</td>
<td>272,1</td>
<td>2,4</td>
</tr>
<tr>
<td>6,00 x 6,00</td>
<td>36,00</td>
<td>4,00</td>
<td>136,8</td>
<td>312,5</td>
<td>2,3</td>
</tr>
<tr>
<td>6,00 x 7,00</td>
<td>42,00</td>
<td>4,00</td>
<td>159,6</td>
<td>353,9</td>
<td>2,2</td>
</tr>
<tr>
<td>6,25 x 5,00</td>
<td>31,25</td>
<td>4,00</td>
<td>118,8</td>
<td>322,4</td>
<td>2,7</td>
</tr>
<tr>
<td>7,00 x 6,00</td>
<td>42,00</td>
<td>4,00</td>
<td>159,6</td>
<td>396,6</td>
<td>2,5</td>
</tr>
<tr>
<td>7,00 x 7,00</td>
<td>49,00</td>
<td>4,00</td>
<td>186,2</td>
<td>445,0</td>
<td>2,4</td>
</tr>
<tr>
<td>8,00 x 7,00</td>
<td>56,00</td>
<td>4,00</td>
<td>212,8</td>
<td>452,5</td>
<td>2,1</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018
El consumo de explosivos previsto por tamaño de sección se indica en la Tabla 3.262.

Tabla 3.262 Explosivos y accesorios para perfiles de desarrollo

<table>
<thead>
<tr>
<th>Sección</th>
<th>Emulsión bombeable (kg)</th>
<th>Pentofex (80g) (Un)</th>
<th>Detonador No Eléctrico (Un)</th>
<th>Pre corte (kg)</th>
<th>Cordón Detonante (m)</th>
<th>Mecha seguridad (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,25 X 5,00</td>
<td>303,5</td>
<td>66</td>
<td>66</td>
<td>18,8</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>6,00 X 7,00</td>
<td>331,2</td>
<td>75</td>
<td>75</td>
<td>22,6</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>6,00 X 6,00</td>
<td>293,7</td>
<td>65</td>
<td>65</td>
<td>18,8</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>7,00 X 6,00</td>
<td>376,8</td>
<td>78</td>
<td>78</td>
<td>19,8</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>7,00 X 7,00</td>
<td>421,5</td>
<td>89</td>
<td>89</td>
<td>23,6</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>6,00 X 5,00</td>
<td>256,1</td>
<td>56</td>
<td>56</td>
<td>16,0</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>6,00 X 4,75</td>
<td>303,5</td>
<td>66</td>
<td>66</td>
<td>18,8</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>5,50 X 6,00</td>
<td>331,2</td>
<td>75</td>
<td>75</td>
<td>22,6</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>5,50 X 5,50</td>
<td>293,7</td>
<td>65</td>
<td>65</td>
<td>18,8</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>5,00 X 5,00</td>
<td>376,8</td>
<td>78</td>
<td>78</td>
<td>19,8</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>4,50 X 4,50</td>
<td>421,5</td>
<td>89</td>
<td>89</td>
<td>23,6</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>8,00 X 7,00</td>
<td>256,1</td>
<td>56</td>
<td>56</td>
<td>16,0</td>
<td>60</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

- Voladuras de Producción

Estas voladuras aplican para el método de explotación de hundimiento por subniveles (SLV), el cual consiste en una serie de patrones de anillos que son perforados en forma vertical, cargados de manera ascendente, y volados por subniveles. Tienen los siguientes parámetros de perforación (véase la Tabla 3.263) y factores de carga según el diseño de voladura (véanse la Tabla 3.264 y la Tabla 3.265).

Tabla 3.263 Parámetros de perforación para voladuras de producción

<table>
<thead>
<tr>
<th>Diámetro de perforación (mm)</th>
<th>102</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud de perforación (m)</td>
<td>Variable</td>
</tr>
<tr>
<td>Burden entre paradas (m)</td>
<td>2,6</td>
</tr>
<tr>
<td>Espaciamiento (m)</td>
<td>Variable</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

Tabla 3.264 Definición de los diseños para SLC

<table>
<thead>
<tr>
<th>Diseño</th>
<th>Definición de anillos / Caras libres</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Anillo de transición</td>
</tr>
<tr>
<td>B</td>
<td>Anillo de socavación alto</td>
</tr>
<tr>
<td>C</td>
<td>Anillo de producción</td>
</tr>
<tr>
<td>D</td>
<td>Anillo de socavación bajo</td>
</tr>
<tr>
<td>E</td>
<td>Anillo de cara libre</td>
</tr>
<tr>
<td>F</td>
<td>Desquinche</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

Tabla 3.265 Factores de carga por parada

<table>
<thead>
<tr>
<th>Ring/Slot</th>
<th>Sección (m²)</th>
<th>Volumen remover (m³)</th>
<th>Explosivo Emulsión (kg)</th>
<th>Factor de Carga (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transición alta (A)</td>
<td>395</td>
<td>1027</td>
<td>1326</td>
<td>1,29</td>
</tr>
<tr>
<td>Socavación alta (B)</td>
<td>306</td>
<td>796</td>
<td>1076</td>
<td>1,35</td>
</tr>
<tr>
<td>Producción (C)</td>
<td>383</td>
<td>995</td>
<td>1290</td>
<td>1,29</td>
</tr>
<tr>
<td>Socavación baja (D)</td>
<td>269</td>
<td>699</td>
<td>950</td>
<td>1,35</td>
</tr>
<tr>
<td>Slot drive (E)</td>
<td>173</td>
<td>450</td>
<td>735</td>
<td>1,63</td>
</tr>
<tr>
<td>Desquinche (F)</td>
<td>273</td>
<td>710</td>
<td>1074</td>
<td>1,51</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018
En la Tabla 3.266 se ilustra el consumo estimado de explosivos para los distintos diseños de voladura de producción.

Tabla 3.266 Consumo de explosivos por diseño

<table>
<thead>
<tr>
<th>Diseño</th>
<th>Emulsión bombeable (kg)</th>
<th>Pentotex (250 g) (Un)</th>
<th>Det no eléctrico 30.4 m (Un)</th>
<th>Det no eléctrico 24.4 m (Un)</th>
<th>Det no eléctrico 18.0 m (Un)</th>
<th>Det no eléctrico 15.2 m (Un)</th>
<th>Det no eléctrico 12.2 m (Un)</th>
<th>Det no eléctrico 10.0 m (Un)</th>
<th>Cordon Detonante (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1326</td>
<td>15</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>B</td>
<td>1076</td>
<td>12</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>C</td>
<td>1290</td>
<td>12</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>D</td>
<td>950</td>
<td>12</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>E</td>
<td>735</td>
<td>8</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>F</td>
<td>1074</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

3.5.5.2 Consumo de explosivos para voladuras

Tomando en cuenta los consumos citados anteriormente y las labores a ejecutar para las voladuras de desarrollo y producción, se estiman los siguientes consumos de explosivos y accesorios de voladura.

- **Voladuras de desarrollo**

Tabla 3.267 Consumo de explosivos y accesorios para voladuras de desarrollo

<table>
<thead>
<tr>
<th>Año</th>
<th>Emulsión Desarrollo (T)</th>
<th>Booster Desarrollo 80g (Un)</th>
<th>Detonador no eléctrico 4.8m (Un)</th>
<th>Precorte Desarrollo (T)</th>
<th>Cordón detonante Desarrollo (m)</th>
<th>Mecha de seguridad Desarrollo (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (O)*</td>
<td>307</td>
<td>68.084</td>
<td>68.084</td>
<td>20</td>
<td>62.944</td>
<td>2.098</td>
</tr>
<tr>
<td>2 (O)</td>
<td>975</td>
<td>215.801</td>
<td>215.801</td>
<td>62</td>
<td>199.454</td>
<td>6.648</td>
</tr>
<tr>
<td>3 (O)</td>
<td>949</td>
<td>208.883</td>
<td>208.883</td>
<td>60</td>
<td>192.298</td>
<td>6.410</td>
</tr>
<tr>
<td>4 (C)</td>
<td>1669</td>
<td>364.948</td>
<td>364.948</td>
<td>104</td>
<td>334.791</td>
<td>11.160</td>
</tr>
<tr>
<td>1 (O)</td>
<td>792</td>
<td>172.570</td>
<td>172.570</td>
<td>49</td>
<td>158.005</td>
<td>5.267</td>
</tr>
<tr>
<td>2 (O)</td>
<td>636</td>
<td>138.418</td>
<td>138.418</td>
<td>39</td>
<td>126.681</td>
<td>4.223</td>
</tr>
<tr>
<td>3 (O)</td>
<td>630</td>
<td>137.241</td>
<td>137.241</td>
<td>39</td>
<td>125.581</td>
<td>4.186</td>
</tr>
<tr>
<td>4 (O)</td>
<td>622</td>
<td>135.521</td>
<td>135.521</td>
<td>39</td>
<td>124.000</td>
<td>4.133</td>
</tr>
<tr>
<td>5 (O)</td>
<td>418</td>
<td>91.083</td>
<td>91.083</td>
<td>26</td>
<td>83.325</td>
<td>2.777</td>
</tr>
<tr>
<td>6 (O)</td>
<td>361</td>
<td>78.659</td>
<td>78.659</td>
<td>22</td>
<td>71.891</td>
<td>2.396</td>
</tr>
<tr>
<td>7 (O)</td>
<td>262</td>
<td>57.103</td>
<td>57.103</td>
<td>16</td>
<td>52.665</td>
<td>1.755</td>
</tr>
<tr>
<td>8 (O)</td>
<td>338</td>
<td>73.723</td>
<td>73.723</td>
<td>21</td>
<td>67.839</td>
<td>2.261</td>
</tr>
<tr>
<td>9 (O)</td>
<td>354</td>
<td>77.265</td>
<td>77.265</td>
<td>22</td>
<td>71.202</td>
<td>2.373</td>
</tr>
<tr>
<td>10 (O)</td>
<td>356</td>
<td>77.676</td>
<td>77.676</td>
<td>22</td>
<td>71.417</td>
<td>2.381</td>
</tr>
<tr>
<td>11 (O)</td>
<td>357</td>
<td>77.786</td>
<td>77.786</td>
<td>22</td>
<td>71.516</td>
<td>2.384</td>
</tr>
<tr>
<td>12 (O)</td>
<td>638</td>
<td>138.973</td>
<td>138.973</td>
<td>40</td>
<td>127.143</td>
<td>4.238</td>
</tr>
<tr>
<td>13 (O)</td>
<td>613</td>
<td>133.436</td>
<td>133.436</td>
<td>38</td>
<td>122.005</td>
<td>4.067</td>
</tr>
<tr>
<td>14 (O)</td>
<td>613</td>
<td>133.363</td>
<td>133.363</td>
<td>38</td>
<td>121.749</td>
<td>4.058</td>
</tr>
<tr>
<td>15 (O)</td>
<td>582</td>
<td>126.657</td>
<td>126.657</td>
<td>36</td>
<td>115.623</td>
<td>3.854</td>
</tr>
<tr>
<td>16 (O)</td>
<td>536</td>
<td>116.891</td>
<td>116.891</td>
<td>33</td>
<td>107.775</td>
<td>3.592</td>
</tr>
<tr>
<td>17 (O)</td>
<td>620</td>
<td>135.072</td>
<td>135.072</td>
<td>38</td>
<td>123.452</td>
<td>4.115</td>
</tr>
<tr>
<td>18 (O)</td>
<td>577</td>
<td>125.666</td>
<td>125.666</td>
<td>36</td>
<td>114.578</td>
<td>3.819</td>
</tr>
<tr>
<td>19 (O)</td>
<td>531</td>
<td>115.367</td>
<td>115.367</td>
<td>33</td>
<td>104.879</td>
<td>3.496</td>
</tr>
<tr>
<td>20 (O)</td>
<td>13</td>
<td>2.896</td>
<td>2.896</td>
<td>1</td>
<td>2.633</td>
<td>88</td>
</tr>
<tr>
<td>21 (O)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*: (C): Construcción, (O): Operación

Fuente: Minera de Cobre Quebradona, 2018

Estudio de Impacto Ambiental

I-0010371-MQC-EIA-V1-FA

Noviembre, 2019

3.5.89
Voladuras de producción

Tabla 3.268 Consumo de explosivos y accesorios para voladuras de producción

<table>
<thead>
<tr>
<th>Año</th>
<th>Emulsión Producción (T)</th>
<th>Booster Producción 337,5 g (Un)</th>
<th>Detonador eléctrico 30,4 m (Un)</th>
<th>Detonador eléctrico 24,4 m (Un)</th>
<th>Detonador eléctrico 18,0 m (Un)</th>
<th>Detonador eléctrico 15,2 m (Un)</th>
<th>Detonador eléctrico 12,2 m (Un)</th>
<th>Cordón detonante Producción (m)</th>
<th>Mecha de seguridad Producción (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (C)*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 (C)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 (C)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 (O)</td>
<td>2.757</td>
<td>29.296</td>
<td>3.906</td>
<td>11.718</td>
<td>7.812</td>
<td>1.953</td>
<td>3.906</td>
<td>156.246</td>
<td>11.718</td>
</tr>
<tr>
<td>3 (O)</td>
<td>1.123</td>
<td>12.739</td>
<td>1.699</td>
<td>5.096</td>
<td>3.397</td>
<td>0.649</td>
<td>1.699</td>
<td>67.941</td>
<td>5.096</td>
</tr>
<tr>
<td>4 (O)</td>
<td>1.008</td>
<td>11.444</td>
<td>1.526</td>
<td>4.578</td>
<td>3.052</td>
<td>0.763</td>
<td>1.526</td>
<td>61.037</td>
<td>4.578</td>
</tr>
<tr>
<td>5 (O)</td>
<td>1.136</td>
<td>12.907</td>
<td>1.721</td>
<td>5.163</td>
<td>3.442</td>
<td>0.860</td>
<td>1.721</td>
<td>68.840</td>
<td>5.163</td>
</tr>
<tr>
<td>6 (O)</td>
<td>1.241</td>
<td>14.093</td>
<td>1.879</td>
<td>5.637</td>
<td>3.758</td>
<td>0.940</td>
<td>1.879</td>
<td>75.165</td>
<td>5.637</td>
</tr>
<tr>
<td>7 (O)</td>
<td>1.555</td>
<td>17.658</td>
<td>2.354</td>
<td>7.063</td>
<td>4.709</td>
<td>1.777</td>
<td>2.354</td>
<td>94.176</td>
<td>7.063</td>
</tr>
<tr>
<td>9 (O)</td>
<td>2.490</td>
<td>28.281</td>
<td>3.771</td>
<td>11.312</td>
<td>7.541</td>
<td>1.885</td>
<td>3.771</td>
<td>150.829</td>
<td>11.312</td>
</tr>
<tr>
<td>10 (O)</td>
<td>2.584</td>
<td>29.348</td>
<td>3.913</td>
<td>11.739</td>
<td>7.826</td>
<td>1.957</td>
<td>3.913</td>
<td>156.523</td>
<td>11.739</td>
</tr>
<tr>
<td>11 (O)</td>
<td>2.553</td>
<td>29.024</td>
<td>3.870</td>
<td>11.810</td>
<td>7.740</td>
<td>1.925</td>
<td>3.870</td>
<td>154.797</td>
<td>11.810</td>
</tr>
<tr>
<td>12 (O)</td>
<td>2.721</td>
<td>30.901</td>
<td>4.120</td>
<td>12.361</td>
<td>8.240</td>
<td>2.060</td>
<td>4.120</td>
<td>164.807</td>
<td>12.361</td>
</tr>
<tr>
<td>17 (O)</td>
<td>2.401</td>
<td>27.268</td>
<td>3.636</td>
<td>10.907</td>
<td>7.272</td>
<td>1.818</td>
<td>3.636</td>
<td>145.432</td>
<td>10.907</td>
</tr>
<tr>
<td>21 (O)</td>
<td>1.543</td>
<td>17.543</td>
<td>2.339</td>
<td>7.017</td>
<td>4.678</td>
<td>1.170</td>
<td>2.339</td>
<td>93.563</td>
<td>7.017</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018 - (C): Construcción, (O): Operación

3.5.5.3 Estudio de vibraciones

Para determinar el impacto de las vibraciones producidas por el proyecto, se realizó un estudio de impacto de vibraciones en superficie (se presenta en el Anexo 3.6 Estudio vibraciones), el cual aplica criterios de daño según la norma alemana (DIN), pues es la más restrictiva y, en la práctica, es la de mayor utilización en la minería.

La herramienta para modelamiento numérico o avanzado que se utilizó en este estudio, está basada en elementos finitos, deformables y fracturables, como es el caso del programa ELFEN (Rockfield Software), el cual cuenta con dos módulos: Mechanistic Blastic Model (MBM) y Son of HeavyX (SoH), que permiten analizar distintos diseños de voladura y evaluar su influencia en el macizo rocoso, ya sea con el fin de verificar el daño efectuado en el talud, desplazamiento de material, generación de grietas entorno al pozo de voladura, y granulometría obtenida, para cada uno.

Este modelamiento conjuga tres métodos:

- FEA (Método de Elementos Finitos - Mecánica de Sólidos).
- CFD (Método de Volúmenes Finitos - Mecánica de Fluidos).
- DEM (Método de los Elementos Discretos - Dinámica de la Partícula).
La metodología utilizada para el estudio se esquematiza en la Figura 3.366.

![Diagrama de metodología aplicada en el estudio](image)

Figura 3.366 Metodología aplicada en el estudio

Fuente: Orica, 2018

Para el desarrollo de este estudio se realizaron las siguientes consideraciones:

1. Se considera la norma alemana como el límite de PPV, de modo se restringe a 4 mm/s el límite que no se debe superar.

2. Se consideran las propiedades de roca intacta, dado es la condición de mayor velocidad de onda. Por lo cual no considera los sistemas de amortización de ondas determinados por los planos de debilidad, planos de contacto, fallas principales, diaclasamiento, etc.

3. Se considera que la voladura de producción se ejecuta en un solo evento, dado es la condición de mayor generación de vibraciones.

Este estudio consideró de manera independiente las voladuras para construcción de túneles y las voladuras de producción. Teniendo en cuenta lo anterior, a continuación, se presentan los resultados:

Voladuras para construcción de túneles

- El nivel máximo de velocidad de partícula - PPV (Peak Particle Velocity) en las cercanías de los pozos (5 m) es sobre los 1000 mm/s, y esto tiene relación directa a que en torno a los pozos de voladura, el efecto de atenuación es casi nulo, y toma mucha relevancia la velocidad de detonación del explosivo. Adicionalmente, en torno a los pozos de voladura el objetivo único es el quiebre de la matriz rocosa.

- A los 50 m de distancia de los pozos de voladura, el valor de PPV es levemente menor a los 89 mm/s, donde el efecto de atenuación comienza a ser relevante.
A los 100 m el valor de PPV alcanza los 4 mm/s, valor considerado como límite para la generación de daño.

Voladuras de producción

- El nivel de PPV en las cercanías de los pozos (25,7 m), tanto para Anfo como Emulind-B, es cercano a los 65 mm/s, lo cual ya no debería generar quiebre de las grietas pero supera ampliamente el nivel de aceptabilidad propuesto por la norma alemana, de 4 mm/s.
- A los 200 m se aprecia que para el caso de la utilización de Anfo, se tiene niveles de PPV cercanos a los 4 mm/s, lo cual estaría cerca al límite de no daño determinado por la norma alemana. Sin embargo, al utilizar explosivo tipo emulsión, el límite es cercano a los 7 mm/s superando la norma Alemana, Española y muy cercana a la Suiza.

Para ambos explosivos, los valores de PPV a las mismas distancias son muy similares, aun cuando la emulsión tiene una VOD (velocity of detonation), casi el doble del Anfo, pero tienen ambos productos una capacidad energética relativa en volumen (Potencia relativa por volumen - RBS) muy similares.

3.5.6 Requerimientos de combustible

Los requerimientos de combustible para funcionamiento de los equipos durante las etapas de construcción y operación se elaboraron con base en el número de equipos, el consumo promedio indicado por el fabricante, un tiempo estimado de operación diaria y un factor de utilización.

3.5.6.1 Etapa de construcción

A continuación, en la Tabla 3.269, se presenta el consumo de combustible para la operación de los equipos para movimientos de tierras.

<table>
<thead>
<tr>
<th>Clase de maquinaria</th>
<th>Unidades</th>
<th>Consumo promedio (l/h)</th>
<th>Horas/día</th>
<th>Factor de utilización</th>
<th>Consumo día (l)</th>
<th>Consumo mes (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flota Maquinaria Movimientos de Tierra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excavadora CAT 390D L</td>
<td>5</td>
<td></td>
<td>9.5</td>
<td>0.8</td>
<td>340,20</td>
<td>7.484,40</td>
</tr>
<tr>
<td>Camión CAT 740B EJ</td>
<td>25</td>
<td></td>
<td>9</td>
<td>0.8</td>
<td>1701.00</td>
<td>37.422.00</td>
</tr>
<tr>
<td>Bulldozer CAT D10T</td>
<td>5</td>
<td></td>
<td>9</td>
<td>0.8</td>
<td>340,20</td>
<td>7.484.40</td>
</tr>
<tr>
<td>Niveladora CAT 16M</td>
<td>5</td>
<td></td>
<td>9</td>
<td>0.8</td>
<td>340,20</td>
<td>7.484.40</td>
</tr>
<tr>
<td>Cargador CAT 988H</td>
<td>5</td>
<td></td>
<td>9</td>
<td>0.8</td>
<td>340,20</td>
<td>7.484.40</td>
</tr>
<tr>
<td>Cilindro Vibrocompactador CAT CS56</td>
<td>5</td>
<td></td>
<td></td>
<td>0.8</td>
<td>340,20</td>
<td>7.484.40</td>
</tr>
<tr>
<td>Carro Cisterna</td>
<td>5</td>
<td></td>
<td></td>
<td>0.8</td>
<td>340,20</td>
<td>7.484.40</td>
</tr>
<tr>
<td>Grúa</td>
<td>1</td>
<td></td>
<td></td>
<td>0.3</td>
<td>25,52</td>
<td>561.33</td>
</tr>
<tr>
<td>Buses, Camionetas y Equipos de Soporte y Servicios Varios</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buses obreros</td>
<td>24</td>
<td>3.5</td>
<td></td>
<td>0.35</td>
<td>432.00</td>
<td>9.504.00</td>
</tr>
<tr>
<td>Camionetas personal MQC</td>
<td>10</td>
<td>12.0</td>
<td></td>
<td>0.5</td>
<td>75.00</td>
<td>1.650.00</td>
</tr>
<tr>
<td>Camioneta gerente Proyecto</td>
<td>1</td>
<td>12.0</td>
<td></td>
<td>0.5</td>
<td>7.50</td>
<td>165.00</td>
</tr>
</tbody>
</table>
Clase de maquinaria

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidades</th>
<th>Consumo promedio (l/h)</th>
<th>Horas/día</th>
<th>Factor de utilización</th>
<th>Consumo día (l)</th>
<th>Consumo mes (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camioneta seguridad física</td>
<td>2</td>
<td>12,0</td>
<td>0,5</td>
<td></td>
<td>15,00</td>
<td>330,00</td>
</tr>
<tr>
<td>Camioneta ejército/policía</td>
<td>2</td>
<td>12,0</td>
<td>0,7</td>
<td></td>
<td>21,00</td>
<td>462,00</td>
</tr>
<tr>
<td>Camioneta salud ocupacional</td>
<td>1</td>
<td>12,0</td>
<td>0,8</td>
<td></td>
<td>12,00</td>
<td>264,00</td>
</tr>
<tr>
<td>Camioneta para transporte de</td>
<td>1</td>
<td>12,0</td>
<td>0,5</td>
<td></td>
<td>7,50</td>
<td>165,00</td>
</tr>
<tr>
<td>ambulancia de probetas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camioneta para transporte de</td>
<td>1</td>
<td>12,0</td>
<td>0,3</td>
<td></td>
<td>4,50</td>
<td>99,00</td>
</tr>
<tr>
<td>explosivos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambulancia</td>
<td>2</td>
<td>12,0</td>
<td>0,2</td>
<td></td>
<td>6,00</td>
<td>132,00</td>
</tr>
<tr>
<td>Mensajería</td>
<td>1</td>
<td>12,0</td>
<td>0,6</td>
<td></td>
<td>9,00</td>
<td>198,00</td>
</tr>
<tr>
<td>Interventoria</td>
<td>2</td>
<td>12,0</td>
<td>0,8</td>
<td></td>
<td>24,00</td>
<td>528,00</td>
</tr>
</tbody>
</table>

RESUMEN DE CONSUMOS

---------------------	---------------------	---------------------	-----------	---------------------		
TOTAL MES PICO	106.025 l	28.049 Gal				
TOTAL MES TÍPICO	84.820 l	22.439 Gal				
TOTAL CONSUMO ANNUAL	1.060.254 l	280.490 Gal				

TOTAL CONSUMO ANNUAL se toman 2 meses picos y 10 meses típicos

3.5.6.2 **Etapas de operación**

El estimado de consumo de combustible de la flota minera, durante la etapa de operación se estima en 119 Ml de diesel (Véase la Tabla 3.270).

Tabla 3.270 Consumo de combustible de la flota minera. Etapa de operación

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Total litros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumbos de desarrollos</td>
<td>3.698.622</td>
</tr>
<tr>
<td>Jumbos de pozos largos verticales</td>
<td>2.891.700</td>
</tr>
<tr>
<td>Cargadores de producción</td>
<td>36.752.130</td>
</tr>
<tr>
<td>Cargadores del nivel de transferencia</td>
<td>16.152.210</td>
</tr>
<tr>
<td>Camiones mineros</td>
<td>11.444.400</td>
</tr>
<tr>
<td>Jumbo apernador</td>
<td>1.542.240</td>
</tr>
<tr>
<td>Jumbo para cable</td>
<td>1.542.240</td>
</tr>
<tr>
<td>Jumbo para reducción secundaria</td>
<td>1.487.160</td>
</tr>
<tr>
<td>Equipos de carga de explosivos en desarrollos</td>
<td>1.542.240</td>
</tr>
<tr>
<td>Equipos de carga de explosivos de producción</td>
<td>2.741.760</td>
</tr>
<tr>
<td>Martillo picaroca móvil</td>
<td>1.321.920</td>
</tr>
<tr>
<td>Vehículo para desabomde</td>
<td>2.998.800</td>
</tr>
<tr>
<td>Camión de servicios brazo telescópico</td>
<td>5.140.800</td>
</tr>
<tr>
<td>Alzador de Tijeras</td>
<td>5.140.800</td>
</tr>
<tr>
<td>Equipo de plataforma móvil</td>
<td>2.570.400</td>
</tr>
<tr>
<td>Equipo para lanzar concreto</td>
<td>749.700</td>
</tr>
<tr>
<td>Camión de concreto</td>
<td>3.084.480</td>
</tr>
<tr>
<td>Motoniveladora</td>
<td>2.142.000</td>
</tr>
<tr>
<td>Camión cama baja</td>
<td>1.071.000</td>
</tr>
<tr>
<td>Vagón regidor</td>
<td>3.194.640</td>
</tr>
<tr>
<td>Compactador</td>
<td>3.213.000</td>
</tr>
<tr>
<td>Bobcat</td>
<td>1.071.000</td>
</tr>
<tr>
<td>Camión de herramientas</td>
<td>1.071.000</td>
</tr>
<tr>
<td>Camionetas</td>
<td>6.349.500</td>
</tr>
<tr>
<td>Total consumo de combustible</td>
<td>118.913.742</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019
3.5.7 Otros insumos

A continuación, se describen otros insumos requeridos.

3.5.7.1 Materiales para circuitos de manejo hídrico

A continuación, se presenta una proyección de los materiales requeridos para los circuitos de manejo hídrico, basados en estudios hidrológicos e hidrogeológicos. Entre estos, se incluyen la gestión del flujo de agua, así como los circuitos de desagüe, agua cruda y aire comprimido. La Tabla 3.271 y la Tabla 3.272 presentan información asociada al tema (véase el Anexo_3_5_Redes_servicios_mina.).

<table>
<thead>
<tr>
<th>Tabla 3.271</th>
<th>Total de material requerido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de material</td>
<td>Unidad</td>
</tr>
<tr>
<td>Aislantes (315 mm)</td>
<td>Unidad</td>
</tr>
<tr>
<td>Aislantes (200 mm)</td>
<td>Unidad</td>
</tr>
<tr>
<td>Sistema de goteo 4"</td>
<td>Unidad</td>
</tr>
<tr>
<td>Sistema de goteo 2"</td>
<td>Unidad</td>
</tr>
<tr>
<td>Pieza DN315 T</td>
<td>Unidad</td>
</tr>
<tr>
<td>DN315 PN16-Poliétileno</td>
<td>m</td>
</tr>
<tr>
<td>DN315 PN10-Poliétileno</td>
<td>m</td>
</tr>
<tr>
<td>Juntas / Soldaduras DN315</td>
<td>Unidad</td>
</tr>
<tr>
<td>Reductor DN315 – DN160</td>
<td>Unidad</td>
</tr>
<tr>
<td>Reductor DN315 – DN110</td>
<td>Unidad</td>
</tr>
<tr>
<td>Tubo con brida DN200 SCH40</td>
<td>m</td>
</tr>
<tr>
<td>Reductor DN200 SCH40 – DN110</td>
<td>Unidad</td>
</tr>
<tr>
<td>DN160 PN10-Poliétileno</td>
<td>m</td>
</tr>
<tr>
<td>DN160 – DN110 Reductor</td>
<td>Unidad</td>
</tr>
<tr>
<td>Juntas / Soldaduras DN16</td>
<td>Unidad</td>
</tr>
<tr>
<td>Medidores de flujo DN150</td>
<td>Unidad</td>
</tr>
<tr>
<td>Respiradores</td>
<td>Unidad</td>
</tr>
<tr>
<td>Válvulas de purga (2")</td>
<td>Unidad</td>
</tr>
<tr>
<td>Piezas T – 200 mm</td>
<td>Unidad</td>
</tr>
<tr>
<td>Reductores de presión 200mm</td>
<td>Unidad</td>
</tr>
<tr>
<td>Poliétileno (m) 200 mm</td>
<td>m</td>
</tr>
<tr>
<td>Juntas 200 mm</td>
<td>Unidad</td>
</tr>
<tr>
<td>Aislantes 200 mm</td>
<td>Unidad</td>
</tr>
<tr>
<td>Reductores 200 > 110</td>
<td>Unidad</td>
</tr>
<tr>
<td>Poliétileno (m) 110 mm</td>
<td>m</td>
</tr>
<tr>
<td>Aislantes 110 mm</td>
<td>Unidad</td>
</tr>
<tr>
<td>Grifos 110 mm</td>
<td>Unidad</td>
</tr>
</tbody>
</table>

Fuente: Mining Plus, 2018

<table>
<thead>
<tr>
<th>Tabla 3.272</th>
<th>Total de bombas requeridas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de material</td>
<td>Unidad</td>
</tr>
<tr>
<td>Bomba centrífuga</td>
<td>Pioneer Prime PP86C17</td>
</tr>
<tr>
<td>Rotor helicoidal</td>
<td>WT106</td>
</tr>
<tr>
<td>Rotor helicoidal</td>
<td>WT103</td>
</tr>
</tbody>
</table>
3.5.7.2 **Materiales para Sostenimiento**

Los materiales que se utilizan en sostenimiento mina, básicamente, pernos de anclaje, malla y concreto lanzado se establecen en la Tabla 3.273.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sostenimiento de roca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pernos</td>
<td>Un</td>
<td>426.384</td>
</tr>
<tr>
<td>Malla</td>
<td>m²</td>
<td>3.150.655</td>
</tr>
<tr>
<td>Concreto lanzado</td>
<td>m³</td>
<td>6.822</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

3.5.7.3 **Medios de molienda**

Los medios de molienda son bolas usadas para el funcionamiento de los molinos (molino de bolas y molino de remolienda). Estos medios serán transportados por camión hasta el depósito de bolas de cada molino, y desde allí, serán cargados al chute de alimentación de cada uno de ellos.

El consumo de los medios de molienda para cada uno de los molinos mencionados se presenta en la Tabla 3.274.

<table>
<thead>
<tr>
<th>Tipo de molino</th>
<th>Material de medio de molienda</th>
<th>Diámetro (mm)</th>
<th>Consumo anual (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molino de bolas</td>
<td>Acero</td>
<td>60</td>
<td>6,970</td>
</tr>
<tr>
<td>Molino de remolienda</td>
<td>Cerámica</td>
<td>3-5</td>
<td>63</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2018

3.5.8 **Material sobrante**

De acuerdo con los diseños de las obras superficiales, se estima un total de materiales de excavación en banco de 7.408.858 m³, de los cuales se utilizarán como llenos en el Proyecto un total de 484.387 m³. El remanente de 5.626.747 m³ se llevará a las zonas de depósito (ZODMEs) y a la pila de suelo que considerando un factor de expansión del 20%, alcanzará los 8.309.365 m³ (véase la Tabla 3.275).

De los volúmenes mencionados anteriormente se excluye el material proveniente de las excavaciones de los túneles, del cual se estima que un 85% aproximadamente podría ser apto para obras, tales como contrafuertes, concretos, entre otros.
Tabla 3.275 Cantidad estimada de material sobrante de obras superficiales

MATERIAL ORGÁNICO Y COMÚN

<table>
<thead>
<tr>
<th>Obras</th>
<th>Material en banco</th>
<th>Corte material orgánico (m3)</th>
<th>Corte material común (m3)</th>
<th>Corte material común utilizado en llenos (m3)</th>
<th>Corte material orgánico a depositar (m3)</th>
<th>Corte material común a depositar expandido (m3)</th>
<th>Material para llenos que proviene de fuentes externas (m3)</th>
<th>Material para llenos que proviene de depósito temporal de estériles (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corte (m3)</td>
<td>Lleno (m3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vías</td>
<td>922.648</td>
<td>399.320</td>
<td>139.652</td>
<td>782.996</td>
<td>111.475</td>
<td>671.522</td>
<td>167.583</td>
<td>805.826</td>
</tr>
<tr>
<td>Plataformas</td>
<td>2.629.943</td>
<td>523.820</td>
<td>236.755</td>
<td>2.393.187</td>
<td>195.270</td>
<td>2.197.917</td>
<td>284.106</td>
<td>2.637.501</td>
</tr>
<tr>
<td>Sedimentadores</td>
<td>696.701</td>
<td>130.767</td>
<td>43.663</td>
<td>653.038</td>
<td>80.123</td>
<td>572.915</td>
<td>52.396</td>
<td>687.498</td>
</tr>
<tr>
<td>Relaves filtrados</td>
<td>2.229.890</td>
<td>1.793.000</td>
<td>514.590</td>
<td>1.715.300</td>
<td>0</td>
<td>1.715.300</td>
<td>617.508</td>
<td>2.058.360</td>
</tr>
<tr>
<td>Depósitos</td>
<td>310.850</td>
<td>0</td>
<td>295.456</td>
<td>15.394</td>
<td>0</td>
<td>15.394</td>
<td>354.547</td>
<td>18.473</td>
</tr>
<tr>
<td>Sistema general de drenaje</td>
<td>111.687</td>
<td>0</td>
<td>14.441</td>
<td>97.246</td>
<td>0</td>
<td>97.246</td>
<td>17.329</td>
<td>116.695</td>
</tr>
<tr>
<td>Sistema acueducto y alcantarillado</td>
<td>211.561</td>
<td>176.270</td>
<td>20.601</td>
<td>190.960</td>
<td>57.288</td>
<td>133.672</td>
<td>24.721</td>
<td>160.406</td>
</tr>
<tr>
<td>Sub-total</td>
<td>7.113.279</td>
<td>3.023.177</td>
<td>1.265.158</td>
<td>5.848.121</td>
<td>444.155</td>
<td>5.403.966</td>
<td>1.518.190</td>
<td>6.484.759</td>
</tr>
</tbody>
</table>

ZONA ALTA

<table>
<thead>
<tr>
<th>Obras</th>
<th>Material en banco</th>
<th>Corte material orgánico (m3)</th>
<th>Corte material común (m3)</th>
<th>Corte material común utilizado en llenos (m3)</th>
<th>Corte material orgánico a depositar (m3)</th>
<th>Corte material común a depositar expandido (m3)</th>
<th>Material para llenos que proviene de fuentes externas (m3)</th>
<th>Material para llenos que proviene de depósito temporal de estériles (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corte (m3)</td>
<td>Lleno (m3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vías</td>
<td>136.150</td>
<td>63.090</td>
<td>9.548</td>
<td>126.602</td>
<td>21.973</td>
<td>104.629</td>
<td>11.458</td>
<td>125.555</td>
</tr>
<tr>
<td>Plataformas</td>
<td>143.000</td>
<td>55.930</td>
<td>11.013</td>
<td>131.987</td>
<td>17.094</td>
<td>114.893</td>
<td>13.216</td>
<td>137.872</td>
</tr>
<tr>
<td>Sedimentadores</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Depósitos</td>
<td>10.745</td>
<td>0</td>
<td>10.745</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12.894</td>
<td>0</td>
</tr>
<tr>
<td>Sistema general de drenaje</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sistema acueducto y alcantarillado</td>
<td>5.684</td>
<td>1.665</td>
<td>1.260</td>
<td>4.424</td>
<td>1.166</td>
<td>3.259</td>
<td>1.512</td>
<td>3.910</td>
</tr>
<tr>
<td>Sub-total</td>
<td>295.579</td>
<td>120.685</td>
<td>32.566</td>
<td>263.013</td>
<td>40.232</td>
<td>222.781</td>
<td>39.080</td>
<td>267.337</td>
</tr>
<tr>
<td>Obras</td>
<td>Material en banco</td>
<td>Corte material orgánico (m³)</td>
<td>Corte material común utilizado en llenos (m³)</td>
<td>Corte material común a depositar (m³)</td>
<td>Corte material orgánico a depositar expandido (m³)</td>
<td>Corte material común a depositar expandido (m³)</td>
<td>Material para llenos que proviene de fuentes externas (m³)</td>
<td>Material para llenos que proviene de depósito temporal de estériles (m³)</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>--------------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Corte (m³)</td>
<td>Lleno (m³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>7.408.858</td>
<td>3.143.862</td>
<td>1.297.725</td>
<td>6.111.134</td>
<td>484.387</td>
<td>5.626.747</td>
<td>1.557.270</td>
<td>6.752.096</td>
</tr>
</tbody>
</table>

(*) El material a depositar considera un factor del expansión del 20%

Fuente: Integral, 2019
3.6 INFRAESTRUCTURA Y SERVICIOS INTERCEPTADOS POR EL PROYECTO

3.6.1 Infraestructura de redes y servicios

De acuerdo con los diseños del Proyecto, la ejecución y emplazamiento de las obras de la Mina de Cobre Quebradona no afectarán infraestructura y redes de servicios que hagan necesario su traslado, reubicación o protección, salvo por un circuito de energía eléctrica de 13,2 kV que alimenta un predio vecino.

La vía existente a Palermo, única infraestructura próxima al proyecto será usada en las etapas tempranas del proyecto para el desplazamiento de automotores y camiones pequeños que no afectarán sus condiciones actuales, ni interferirán con su funcionamiento.

Para etapas posteriores, el Proyecto construirá una vía particular que empalmará con la autopista Pacífico 2 mediante obras de conexión adecuadas a las especificaciones de una vía 4G. Así mismo, construirá un puente para el cruce con la vía existente a Palermo para ingresar al Proyecto sin generar riesgos para sus usuarios el cual fue descrito en detalle en el numeral 3.3.8.2.3, de este capítulo (Puente sobre la vía existente a Palermo).

3.6.2 Manejo y disposición de sobrantes

Duranle las etapas de construcción y operación del Proyecto se generarán materiales estériles y no estériles sobrantes provenientes de diferentes procesos y actividades de explotación, montaje y producción a ejecutarse en distintas zonas del complejo minero.

Cada uno de estos materiales sobrantes tendrá un origen, sistema de transporte, tratamiento y disposición en un destino final. Por lo tanto, inicialmente se describirá la clase de materiales que se producirán en las fases de construcción y operación, y posteriormente, se presentará el manejo que se dará a las zonas para depósitos de materiales estériles (ZODME) y a las Zonas de disposición de relaves.

3.6.2.1 Materiales sobrantes en construcción y operación

3.6.2.1.1 Etapa de Construcción

La etapa de construcción del Proyecto abarca los cuatro primeros años, y comprende tanto la ejecución de las obras civiles y de infraestructura superficial, a ejecutarse en la zona del valle y en la zona sobre la montaña, como también el desarrollo de los túneles de acceso al depósito de mineral, pozos de ventilación, rampas y demás obras para las instalaciones auxiliares subterráneas. Con respecto al material sobrante de los movimientos de tierra para las vías, plataformas y demás obras civiles superficiales, se han diseñado depósitos de material sobrante – ZODMEs - en puntos estratégicos del Proyecto, donde se dispondrán en condiciones aptas de drenaje, estabilidad geotécnica y otros controles ambientales como revegetalización.

La localización de los ZODMEs se ilustra en la Figura 3.229 a Figura 3.231, y en el Anexo Planos Diseño ZODMEs (0010368-MQC-ZO-001, 0010368-MQC-ZO-002, 0010368-MQC-ZO-010, 0010368-MQC-ZO-020, 0010368-MQC-ZO-030, 0010368-
Adicionalmente, se ha contemplado una Pila de suelo en la zona superficial en el valle (zona baja) para almacenar la capa vegetal que será removida en el proceso de descapote y usada en su totalidad para recuperar las áreas degradadas. El volumen de suelo orgánico a remover se estima en 32.566 m³ para la zona alta y en 1.265.158 m³ para la zona baja y las áreas para el almacenamiento del material son de 0,82 ha y 12,58 ha respectivamente.

Con relación a los materiales sobrantes de las obras mineras subterráneas que se desarrollarán en simultáneo durante la fase de construcción del Proyecto, se generarán dos clases de materiales: estériles y no estériles.

Los sobrantes estériles provendrán de la construcción de los túneles, rampas y galerías subterráneas, y se extraerán y transportarán hasta superficie a través de bandas transportadoras y volquetas de acarreo para ser finalmente almacenados en el denominado depósito temporal de estériles, localizado dentro del depósito de relaves seos, en la zona donde posteriormente se adecuará el depósito de pirita.

Estos materiales serán utilizados para la construcción de los contrafuertes del depósito de relaves filtrados y otras obras del Proyecto.

Por su parte, los materiales no estériles provenientes de las excavaciones para los pozos de ventilación y de los túneles y galerías más cercanas al cuerpo mineralizado, serán transportados a través de bandas transportadoras y volquetas de acarreo para disponerlos en el depósito de pirita, ubicado en un área definida dentro del depósito de relaves filtrados. Dicho depósito de pirita se construirá con las especificaciones técnicas y ambientales descritas en la sección 3.6.2.3.6 del presente documento (véase la Figura 3.388 a la Figura 3.389).

3.6.2.1.2 Etapa de Operación

La fase de operación del Proyecto dura 21 años e incluye principalmente los desarrollos de los subniveles de explotación de la mina subterránea y los procesos de beneficio y transformación del mineral extraído en la planta de beneficio ubicada en superficie. Estas dos actividades generarán materiales sobrantes con diferentes características y métodos de manejo, almacenamiento y disposición final.

Con respecto al material sobrante de la explotación minera (accesos, galerías, rampas), este se extraerá desde los puntos de desarrollo y se vaciará en un pique de traspaso dedicado para el manejo de estéril. El estéril se almacenará temporalmente en el nivel de trasferencia y se extraerá por la banda transportadora principal hasta un punto de acopio en superficie, asegurando las obras requeridas de manejo de aguas, estabilidad geotécnica y revegetalización. Para más información consultar la sección 3.3.7.11.1 “Sistema de transporte”, del presente documento.

Por su lado, como parte de los procesos de la planta de beneficio se generarán relaves filtrados secos desulfurados (no piritizados) y no desulfurados (piritizados). Los relaves desulfurados se almacenarán en el depósito de relaves filtrados; los relaves no desulfurados se depositarán en el denominado depósito de pirita, localizadas en zonas...
específicas encapsuladas dentro del depósito de relaves (véase el mapa MQC-INT-EIA-DESC-03-CYM y el plano 0010368-MQC-LY-020).

Las especificaciones técnicas de dicho depósito se describen en la sección 3.6.2.3 Zonas de disposición de relaves, del presente documento (véase también el Anexo_3_17_Deposito_relavesfiltrados_plan_manejo).

La siguiente tabla resume los orígenes y destinos del material sobrante a generarse durante las etapas de construcción y operación del Proyecto.

<table>
<thead>
<tr>
<th>Origen</th>
<th>Destino Construcción/ Desarrollo</th>
<th>Destino Operación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sobrantes No AGP de excavaciones para obras civiles (vías, plataformas, canales, ZODME, depósito de relaves filtrados, otros).</td>
<td>ZODMEs y pila de suelo</td>
<td>ZODMEs y pila de suelo</td>
</tr>
<tr>
<td>Sobrantes AGP de pozos de ventilación</td>
<td>Depósito de pira</td>
<td>Planta de Beneficio</td>
</tr>
<tr>
<td>Sobrantes No AGP de excavación de túneles y rampas de desarrollo subterráneas</td>
<td>Depósito temporal estérellas y construcción de contrafuertes y otros</td>
<td>NA</td>
</tr>
<tr>
<td>Sobrantes AGP de túneles de desarrollo subterráneos</td>
<td>Depósito de Pira</td>
<td>Planta de Beneficio</td>
</tr>
<tr>
<td>Sobrantes AGP del desarrollo minero de subniveles (accesos, galerías, rampas)</td>
<td>NA</td>
<td>Planta de Beneficio</td>
</tr>
<tr>
<td>Relaves filtrados inertes</td>
<td>NA</td>
<td>Depósito de Relaves filtrados</td>
</tr>
<tr>
<td>Relaves con pira</td>
<td>NA</td>
<td>Depósito de pira</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

3.6.2.2 Zonas para depósitos de material estéril

3.6.2.2.1 Análisis sobre la alternativa de disposición final de sobrantes (ZODMEs)

La descripción y al análisis de las cuatro zonas de disposición de estéreles ZODMEs se realizaron en detalle en la sección 3.3.7.17.3.

Para la selección de los sitios de disposición final de los materiales procedentes de las excavaciones del Proyecto en sus diferentes etapas, se tuvo en cuenta la capacidad volumétrica requerida, así como su cercanía a las zonas de influencia de las obras y a las vías de acceso o comunicación existentes y proyectadas para el Proyecto, con el objetivo de obtener las menores distancias de acarreo y minimizar el impacto al entorno.

Básicamente, para definir la geometría y los drenajes de los ZODMEs del Proyecto Minera de Cobre Quebradona se tomaron las siguientes consideraciones:

- Se analizaron las condiciones topográficas que caracterizaban cada sitio, buscando optimizar el volumen y disminuir las afectaciones a zonas boscosas existentes.
- Se buscó que el diseño disminuyera la afectación paisajística y se garantizará la estabilidad del lleno como tal.
Se proyectaron los taludes con pendientes 2,00H: 1,00 y V 3,00H: 1,00V con bermas de 3,00 a 5,00 m, dependiendo del ZODME.

Cada ZODME llevará su respectivo sistema de filtros, que permitan la recolección de los flujos sub-superficiales y los conduzcan fuera del lleno, buscando evitar la saturación y favorecer su estabilidad. Los filtros deberán construirse antes de comenzar la disposición de material a lo largo de zonas de vaguada o depresiones topográficas del terreno natural.

Se construirán las obras hidráulicas superficiales de los ZODMEs, compuestas básicamente por canales en concreto reforzado y piedra pegada, cuya función será interceptar las aguas superficiales antes de que tengan contacto con el material de excavación dispuesto, y conducirlas hasta cauces o vaguadas existentes.

3.6.2.2.2 Acciones para el manejo adecuado de ZODMEs

En los numerales 3.6.2.2.8 y 3.6.2.2.10 se describen las obras que deben construirse para garantizar la estabilidad de los ZODMEs, tanto para el manejo de aguas como para su recuperación y protección final en el cierre.

3.6.2.2.3 Descripción para el manejo y restitución de cuerpos de agua

En la etapa de construcción los cauces de diferentes quebradas serán intervenidos y desviados por los canales Norte y Sur, los cuales mantendrán secas las zonas de construcción de los ZODMEs, los contrafuertes del Depósito de rellenos filtrados y la Plataforma de la planta de beneficio. Estos canales se diseñarán para un periodo de retorno de 500 años con el fin de recolectar las aguas en la parte superior de la Plataforma Planta de beneficio y el Depósito de rellenos filtrados. El canal sur tomará las aguas de la parte alta de la quebrada la Vainillala y las descargará aguas abajo evitando que estas se contacten con el Depósito de rellenos filtrados. El canal norte recolectará las aguas de la parte alta de la quebrada Las Palmeras y la quebrada Dosquebradas y las descargará más abajo en el cauce principal de la quebrada Dosquebradas.

3.6.2.2.4 Volúmenes de material a disponer

- Zona superficial en el valle (Parte baja del Proyecto)

En esta zona, serán intervenidas 389,19 ha, donde se removerá la cobertura vegetal y el suelo, el cual se dispondrá en la Pila de suelo (véase la Tabla 3.278 y Tabla 3.279).

- Capacidad de las zonas de depósito parte baja

En la Tabla 3.277 se presentan las capacidades y las coordenadas de localización de los ZODMEs definidos para el Proyecto, los cuales se muestran en el Anexo Planos Diseño, igualmente se indica el plano en el que se presenta la geometría detallada y el drenaje respectivo.
<table>
<thead>
<tr>
<th>Nombre</th>
<th>Coordenadas Magna Sirgas Oeste</th>
<th>Área total de intervención (ha)</th>
<th>Capacidad volumétrica (m³)</th>
<th>Plano</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZODME A</td>
<td>1.153.286,53 1.133.753,62</td>
<td>15,49</td>
<td>1.500.000</td>
<td>0010368-MQC-ZO-050</td>
</tr>
<tr>
<td>ZODME B</td>
<td>1.153.817,94 1.132.961,07</td>
<td>20,45</td>
<td>2.800.000</td>
<td>0010368-MQC-ZO-020</td>
</tr>
<tr>
<td>ZODME C</td>
<td>1.151.714,27 1.133.150,09</td>
<td>38,78</td>
<td>8.300.000</td>
<td>0010368-MQC-ZO-030</td>
</tr>
<tr>
<td>Pila de suelo</td>
<td>1.153.469,07 1.133.145,08</td>
<td>12,58</td>
<td>1.900.000</td>
<td>0010368-MQC-ZO-010</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

En la Tabla 3.278 y Tabla 3.279 se presentan los volúmenes del material que se colocará en cada depósito del Proyecto tanto de material común como material orgánico, el cual se depositará en el ZODME denominado Pila de suelo.

Para el balance de masas se consideró que el material de corte aprovechable para los llenos del Proyecto es de hasta el 30% del material de corte utilizado en lleno respecto a cada obra, y se determinó un porcentaje de expansión del 20%. La distancia promedio de acarreo es de 1,63 km para el material común y de 2,21 km para el material orgánico.
<table>
<thead>
<tr>
<th>No</th>
<th>Origen</th>
<th>Volumen en banco</th>
<th>Volumen de corte utilizado en llenos (m³)</th>
<th>Volumen material común a depositar (m³)</th>
<th>Volumen material común a depositar expansido (m³)</th>
<th>Depósito receptor material común</th>
<th>Volumen material orgánico a depositar (m³)</th>
<th>Volumen material orgánico a depositar expansido (m³)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vía construcción 1 (La Mancha)</td>
<td>31.950</td>
<td>5.279</td>
<td>14.957</td>
<td>17.949</td>
<td>ZODME A</td>
<td>14.353</td>
<td>17.224</td>
</tr>
<tr>
<td>2</td>
<td>Vía construcción 2</td>
<td>31.300</td>
<td>7.882</td>
<td>22.332</td>
<td>26.798</td>
<td>ZODME A</td>
<td>5.027</td>
<td>6.033</td>
</tr>
<tr>
<td>3</td>
<td>Vía construcción 3</td>
<td>8.600</td>
<td>1.647</td>
<td>4.665</td>
<td>5.598</td>
<td>ZODME A</td>
<td>3.112</td>
<td>3.734</td>
</tr>
<tr>
<td>4</td>
<td>Vía construcción 4 (San Antonio)</td>
<td>83.950</td>
<td>21.060</td>
<td>77.730</td>
<td>93.276</td>
<td>ZODME A</td>
<td>13.750</td>
<td>16.500</td>
</tr>
<tr>
<td>5</td>
<td>Vía construcción 5</td>
<td>7.400</td>
<td>609</td>
<td>1.725</td>
<td>2.070</td>
<td>ZODME A</td>
<td>5.371</td>
<td>6.445</td>
</tr>
<tr>
<td>6</td>
<td>Vía construcción 6</td>
<td>1.253</td>
<td>9</td>
<td>10</td>
<td>ZODME A</td>
<td>1.243</td>
<td>1.491</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Vía a descarga</td>
<td>895</td>
<td>90</td>
<td>255</td>
<td>306</td>
<td>ZODME A</td>
<td>595</td>
<td>714</td>
</tr>
<tr>
<td>8</td>
<td>Vía a captación</td>
<td>640</td>
<td>60</td>
<td>170</td>
<td>204</td>
<td>ZODME A</td>
<td>440</td>
<td>528</td>
</tr>
<tr>
<td>9</td>
<td>Vía construcción 7 (Candelaria)</td>
<td>43.550</td>
<td>9.295</td>
<td>30.231</td>
<td>36.278</td>
<td>ZODME B</td>
<td>12.566</td>
<td>15.079</td>
</tr>
<tr>
<td>10</td>
<td>Vía construcción 8 (Candelaria)</td>
<td>1.450</td>
<td>275</td>
<td>933</td>
<td>ZODME B</td>
<td>535</td>
<td>642</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Vía construcción 9 (Candelaria)</td>
<td>491</td>
<td>15</td>
<td>43</td>
<td>ZODME B</td>
<td>441</td>
<td>529</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Vía principal</td>
<td>141.500</td>
<td>35.531</td>
<td>100.672</td>
<td>120.807</td>
<td>ZODME A</td>
<td>23.062</td>
<td>27.675</td>
</tr>
<tr>
<td>14</td>
<td>Vía portales</td>
<td>95.000</td>
<td>26.319</td>
<td>97.741</td>
<td>117.289</td>
<td>ZODME C</td>
<td>7.269</td>
<td>8.723</td>
</tr>
<tr>
<td>16</td>
<td>Vía campamento - planta</td>
<td>43.942</td>
<td>11.985</td>
<td>45.018</td>
<td>54.021</td>
<td>ZODME C</td>
<td>3.994</td>
<td>4.792</td>
</tr>
<tr>
<td>17</td>
<td>Vía depósito piritas</td>
<td>46.858</td>
<td>12.909</td>
<td>47.240</td>
<td>56.688</td>
<td>ZODME C</td>
<td>3.829</td>
<td>4.595</td>
</tr>
</tbody>
</table>

*: Todo el material orgánico se depositará en la pila de suelos

Fuente: Integral, 2019
<table>
<thead>
<tr>
<th>No</th>
<th>Origen</th>
<th>Volumen en banco</th>
<th>Volumen de corte utilizado</th>
<th>Volumen material común a depositar</th>
<th>Volumen material común a depositar expandido</th>
<th>Depósito receptor material común</th>
<th>Volumen material orgánico a depositar</th>
<th>Volumen material orgánico a depositar expandido</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plataforma 1</td>
<td>2.400</td>
<td>0</td>
<td>0</td>
<td>1.332</td>
<td>1.598</td>
<td>ZODME A</td>
<td>1.242</td>
</tr>
<tr>
<td>2</td>
<td>Plataforma 2</td>
<td>85.250</td>
<td>104.300</td>
<td>20.991</td>
<td>49.476</td>
<td>71.371</td>
<td>ZODME A</td>
<td>15.278</td>
</tr>
<tr>
<td>3</td>
<td>Plataforma 3</td>
<td>580</td>
<td>0</td>
<td>0</td>
<td>426</td>
<td>511</td>
<td>ZODME A</td>
<td>210</td>
</tr>
<tr>
<td>4</td>
<td>Plataforma 4</td>
<td>215.930</td>
<td>193.920</td>
<td>60.247</td>
<td>170.699</td>
<td>204.838</td>
<td>ZODME B</td>
<td>15.108</td>
</tr>
<tr>
<td>5</td>
<td>Plataforma 5</td>
<td>1.485</td>
<td>9.850</td>
<td>120</td>
<td>340</td>
<td>408</td>
<td>ZODME B</td>
<td>1.085</td>
</tr>
<tr>
<td>6</td>
<td>Plataforma 6</td>
<td>8.800</td>
<td>22.990</td>
<td>1.774</td>
<td>5.026</td>
<td>6.031</td>
<td>ZODME B</td>
<td>2.887</td>
</tr>
<tr>
<td>7</td>
<td>Plataforma 7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Plataforma 8</td>
<td>1.313</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>1.313</td>
</tr>
<tr>
<td>9</td>
<td>Plataforma 9</td>
<td>3.783</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>3.783</td>
</tr>
<tr>
<td>10</td>
<td>Plataforma portería</td>
<td>45.950</td>
<td>15.350</td>
<td>11.769</td>
<td>33.346</td>
<td>40.015</td>
<td>ZODME A</td>
<td>6.719</td>
</tr>
<tr>
<td>11</td>
<td>Plataforma explosivos operación y planta emulsión</td>
<td>22.100</td>
<td>10.850</td>
<td>5.381</td>
<td>15.247</td>
<td>18.296</td>
<td>ZODME B</td>
<td>4.163</td>
</tr>
<tr>
<td>12</td>
<td>PTA RND1</td>
<td>2.107</td>
<td>28.000</td>
<td>15</td>
<td>43</td>
<td>51</td>
<td>ZODME C</td>
<td>2.057</td>
</tr>
<tr>
<td>12</td>
<td>PTAI</td>
<td>29.300</td>
<td>0</td>
<td>0</td>
<td>32.025</td>
<td>38.430</td>
<td>ZODME C</td>
<td>1.452</td>
</tr>
<tr>
<td>12</td>
<td>Zona multifunciones</td>
<td>31.784</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>31.784</td>
<td>38.141</td>
</tr>
<tr>
<td>13</td>
<td>Campamentos</td>
<td>45.793</td>
<td>39.680</td>
<td>10.217</td>
<td>28949</td>
<td>34.739</td>
<td>ZODME C</td>
<td>11.735</td>
</tr>
<tr>
<td>13</td>
<td>Área Integrada de Operación (AIO)</td>
<td>52.470</td>
<td>0</td>
<td>0</td>
<td>54.311</td>
<td>65.173</td>
<td>ZODME C</td>
<td>5.243</td>
</tr>
<tr>
<td>13</td>
<td>Laboratorio</td>
<td>37.604</td>
<td>0</td>
<td>0</td>
<td>40.901</td>
<td>49.081</td>
<td>ZODME C</td>
<td>2.038</td>
</tr>
<tr>
<td>13</td>
<td>Estación de combustible</td>
<td>13.737</td>
<td>0</td>
<td>0</td>
<td>14.837</td>
<td>17.804</td>
<td>ZODME C</td>
<td>835</td>
</tr>
<tr>
<td>14</td>
<td>Planta concreto y trituración</td>
<td>37.312</td>
<td>0</td>
<td>0</td>
<td>40.690</td>
<td>48.828</td>
<td>ZODME C</td>
<td>1.929</td>
</tr>
<tr>
<td>No</td>
<td>Origen</td>
<td>Volumen en banco</td>
<td>Volumen de</td>
<td>Volumen</td>
<td>Volumen</td>
<td>Depósito</td>
<td>Volumen</td>
<td>Volumen</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>------------------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>14</td>
<td>PTAP</td>
<td>6.300</td>
<td>6.910</td>
<td>1.423</td>
<td>4.032</td>
<td>4.838</td>
<td>ZODME C</td>
<td>1.556</td>
</tr>
<tr>
<td>14</td>
<td>Zona multiusos</td>
<td>564.387</td>
<td>64.120</td>
<td>64.120</td>
<td>504.739</td>
<td>605.687</td>
<td>ZODME C</td>
<td>69.726</td>
</tr>
<tr>
<td>14</td>
<td>Plataforma túneles</td>
<td>174.750</td>
<td>2.200</td>
<td>2.200</td>
<td>193.802</td>
<td>232.563</td>
<td>ZODME C</td>
<td>4.313</td>
</tr>
<tr>
<td>15</td>
<td>Adecuación fundación depósito de relaves filtrados</td>
<td>154.726</td>
<td>0</td>
<td>0</td>
<td>136.873</td>
<td>164.248</td>
<td>ZODME C</td>
<td>35.706</td>
</tr>
<tr>
<td>16</td>
<td>Adecuación fundación contrafuerte norte</td>
<td>174.200</td>
<td>0</td>
<td>0</td>
<td>154.100</td>
<td>184.920</td>
<td>ZODME A</td>
<td>40.200</td>
</tr>
<tr>
<td>17</td>
<td>Adecuación fundación depósito de piritas</td>
<td>418.470</td>
<td>0</td>
<td>0</td>
<td>370.185</td>
<td>444.222</td>
<td>ZODME C</td>
<td>96.570</td>
</tr>
<tr>
<td>19</td>
<td>Adecuación fundación contrafuerte 1 piritas</td>
<td>31.070</td>
<td>0</td>
<td>0</td>
<td>27.485</td>
<td>32.982</td>
<td>ZODME C</td>
<td>7.170</td>
</tr>
<tr>
<td>20</td>
<td>Adecuación fundación contrafuerte 2 piritas</td>
<td>23.270</td>
<td>0</td>
<td>0</td>
<td>20.585</td>
<td>24.702</td>
<td>ZODME C</td>
<td>5.370</td>
</tr>
<tr>
<td>22</td>
<td>Adecuación depósito temporal</td>
<td>33.867</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>33.867</td>
<td>40.640</td>
</tr>
<tr>
<td>No</td>
<td>Origen</td>
<td>Volumen en banco</td>
<td>Volumen de corte utilizado</td>
<td>Material de extracción de los pozos de ventilación</td>
<td>Volumen</td>
<td>Volumen</td>
<td>Depósito</td>
<td>Volumen</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>26</td>
<td>Material de extracción de los pozos de ventilación</td>
<td>15.394</td>
<td>0</td>
<td>0</td>
<td>17.703</td>
<td>21.244</td>
<td>ZODME A</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>Sedimentador 1</td>
<td>71.950</td>
<td>23.550</td>
<td>19.746</td>
<td>55.948</td>
<td>67.137</td>
<td>ZODME C</td>
<td>6.129</td>
</tr>
<tr>
<td>29</td>
<td>Sedimentador 3</td>
<td>23.400</td>
<td>4.850</td>
<td>4.850</td>
<td>18.757</td>
<td>22.508</td>
<td>ZODME A</td>
<td>2.872</td>
</tr>
<tr>
<td>30</td>
<td>Sedimentador 4</td>
<td>34.350</td>
<td>50</td>
<td>50</td>
<td>37.691</td>
<td>45.230</td>
<td>ZODME A</td>
<td>1.532</td>
</tr>
<tr>
<td>31</td>
<td>Sedimentador 5</td>
<td>109.600</td>
<td>2.150</td>
<td>2.150</td>
<td>118.481</td>
<td>142.177</td>
<td>ZODME A</td>
<td>4.703</td>
</tr>
<tr>
<td>32</td>
<td>Sedimentador 6</td>
<td>54.550</td>
<td>22.400</td>
<td>15.196</td>
<td>43.055</td>
<td>51.665</td>
<td>ZODME A</td>
<td>3.898</td>
</tr>
<tr>
<td>33</td>
<td>Sedimentador planta de beneficio</td>
<td>13.350</td>
<td>700</td>
<td>700</td>
<td>12.434</td>
<td>14.921</td>
<td>ZODME C</td>
<td>1.929</td>
</tr>
<tr>
<td>34</td>
<td>Poza colectora 1</td>
<td>39.086</td>
<td>18.382</td>
<td>10.618</td>
<td>30.084</td>
<td>36.101</td>
<td>ZODME C</td>
<td>3.693</td>
</tr>
<tr>
<td>36</td>
<td>Canal norte</td>
<td>90.808</td>
<td>0</td>
<td>0</td>
<td>96.638</td>
<td>115.966</td>
<td>ZODME C</td>
<td>6.775</td>
</tr>
<tr>
<td>37</td>
<td>Canal sur</td>
<td>20.879</td>
<td>0</td>
<td>0</td>
<td>15.195</td>
<td>18.234</td>
<td>ZODME C</td>
<td>7.666</td>
</tr>
<tr>
<td>38</td>
<td>Adecuación fundación ZODMES A</td>
<td>46.408</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>46.408</td>
<td>55.689</td>
</tr>
<tr>
<td>39</td>
<td>Adecuación fundación ZODMES B</td>
<td>61.266</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>61.266</td>
<td>73.519</td>
</tr>
<tr>
<td>40</td>
<td>Adecuación fundación ZODMES C</td>
<td>116.239</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>116.239</td>
<td>139.487</td>
</tr>
<tr>
<td>41</td>
<td>Adecuación fundación pila de suelo</td>
<td>37.698</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>37.698</td>
<td>45.238</td>
</tr>
<tr>
<td>42</td>
<td>Adecuación fundación captación</td>
<td>1.363</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>1.363</td>
<td>1.635</td>
</tr>
<tr>
<td>43</td>
<td>Redes acueducto y alcantarillado</td>
<td>120.515</td>
<td>97.494</td>
<td>31.686</td>
<td>89.776</td>
<td>107.731</td>
<td>ZODME C</td>
<td>14.897</td>
</tr>
<tr>
<td>44</td>
<td>Canales</td>
<td>89.683</td>
<td>78.776</td>
<td>25.602</td>
<td>72.540</td>
<td>87.048</td>
<td>ZODME C</td>
<td>4.342</td>
</tr>
</tbody>
</table>

Estudio de Impacto Ambiental

November, 2019

I-0010371-MQC-EIA-V1-FA

3.606
<table>
<thead>
<tr>
<th>No</th>
<th>Origen</th>
<th>Volumen en banco</th>
<th>Volumen de</th>
<th>Volumen</th>
<th>Volumen</th>
<th>Depósito</th>
<th>Volumen</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>Poza colectora 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>Poza colectora 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>48</td>
<td>Adecuación fundación depósito de Relaves filtrados</td>
<td>1.392.534</td>
<td>0</td>
<td>0</td>
<td>1.231.857</td>
<td>1.478.228</td>
<td>ZODME C</td>
<td>321.354</td>
</tr>
<tr>
<td>49</td>
<td>Adecuación fundación contrafuerte sur</td>
<td>35.620</td>
<td>0</td>
<td>0</td>
<td>31.510</td>
<td>37.812</td>
<td>ZODME B</td>
<td>8.220</td>
</tr>
<tr>
<td>50</td>
<td>Conformación contrafuerte sur</td>
<td>0</td>
<td>148.000</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*: Todo el material orgánico se depositará en la pila de suelos

**: El material para la conformación del contrafuerte norte una parte sale del material excavado de los túneles y el restante debe ser de cantera (ver tabla 3.224).

Fuente: Integral, 2019
• Pilas de almacenamiento temporal

El Proyecto Minera de Cobre Quebradona en su etapa de construcción, contará con un depósito temporal para el almacenamiento del primer material de explotación que será procesado una vez esté terminada la planta de operaciones y otro material que será utilizado para diferentes obras del Proyecto. El primero de ellos se depositará en la zona del depósito de pirita y el segundo material se depositará en el depósito temporal de estériles. En la Tabla 3.280 se presentan las coordenadas y capacidad del depósito.

<table>
<thead>
<tr>
<th>Tabla 3.280</th>
<th>Capacidad depósito temporal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre</td>
<td>Coordenadas Magna</td>
</tr>
<tr>
<td>Depósito temporal de estériles</td>
<td>1.152.700,40</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2018

• Zona alta del Proyecto (zona superficial sobre la montaña)

Para la zona alta del Proyecto serán intervenidas efectivamente 83,58 ha en las que se removerá la cobertura vegetal y el suelo para la construcción de las obras que requiere el proyecto e incluyendo el área de la subsidencia. El material común resultante será depositado en los ZODMEs D, E y F de la zona alta, y otra parte se depositará en el ZODME A. En la Tabla 3.281 la Tabla 3.277 se presenta la capacidad volumétrica de los ZODMEs de la parte alta.

<table>
<thead>
<tr>
<th>Tabla 3.281</th>
<th>Capacidad de los ZODMEs proyectados zona alta del Proyecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Nombre</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ZODME D</td>
</tr>
<tr>
<td>2</td>
<td>ZODME E</td>
</tr>
<tr>
<td>3</td>
<td>ZODME F</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

En la zona alta del Proyecto se estimó un volumen de 39.080 m³ de material orgánico, proveniente de las labores de descapote que se deberán realizar para la implantación de las diferentes obras. De dicho volumen se utilizarán 30.000 m³ para la revegetalización de los taludes de Vías, Plataformas y ZODMES.

En la zona alta (zona superficial sobre la montaña) donde se ubicará la zona de subsidencia, se deberán adecuar unas plataformas para los pozos de ventilación y vías de comunicación. Los cortes asociados a estas obras se depositarán en lugares adecuados para este fin luego de extraer el el 30% del corte para lleno de misma obra.

En la Tabla 3.281 se presenta la capacidad de estos ZODMEs, además en la Tabla 3.282 y Tabla 3.283 se indican los orígenes y destinos de este material sobrante. El acarreo promedio del material común que se transportará en la misma zona alta es de 1 km, mientras que el acarreo del material común que se depositara en la zona baja del proyecto es de 52 km. Para el material orgánico el acarreo promedio será de 53km.
Tabla 3.282 Origen - destino del material a depositar de la vía zona alta del Proyecto

<table>
<thead>
<tr>
<th>No</th>
<th>Origen</th>
<th>Volumen en banco</th>
<th>Volumen de corte utilizado en llenos (m³)</th>
<th>Volumen material común a depositar (m³)</th>
<th>Volumen material común a depositar expandido (m³)</th>
<th>Depósito receptor material común</th>
<th>Volumen material orgánico depositar (m³)</th>
<th>Volumen material orgánico a depositar expandido (m³)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vía conexión plataforma</td>
<td>71.150</td>
<td>54.133</td>
<td>63.026</td>
<td>75.631</td>
<td>ZODME D</td>
<td>5.134</td>
<td>1.687</td>
</tr>
<tr>
<td>2</td>
<td>Vía Plataforma C</td>
<td>29.800</td>
<td>22.237</td>
<td>4.881</td>
<td>5.857</td>
<td>ZODME D</td>
<td>2.682</td>
<td>1.149</td>
</tr>
<tr>
<td>3</td>
<td>Vía Plataforma D</td>
<td>35.200</td>
<td>27.444</td>
<td>33.468</td>
<td>40.162</td>
<td>ZODME D</td>
<td>1.732</td>
<td>450</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

Tabla 3.283 Origen – destino del material a depositar plataformas y obras zona alta del Proyecto

<table>
<thead>
<tr>
<th>No</th>
<th>Origen</th>
<th>Volumen en banco</th>
<th>Volumen de corte utilizado en llenos (m³)</th>
<th>Volumen material común a depositar (m³)</th>
<th>Volumen material común a depositar expandido (m³)</th>
<th>Depósito receptor material común</th>
<th>Volumen corte material orgánico (m³)</th>
<th>Material orgánico requerido para protección de taludes (m³)</th>
<th>Volumen material orgánico a depositar expandido (m³)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plataforma A</td>
<td>27.300</td>
<td>18.044</td>
<td>3.961</td>
<td>4.753</td>
<td>ZODME D</td>
<td>5.296</td>
<td>3.064</td>
<td>3.291</td>
</tr>
<tr>
<td>2</td>
<td>Plataforma B</td>
<td>3.850</td>
<td>1.805</td>
<td>396</td>
<td>475</td>
<td>ZODME D</td>
<td>1.649</td>
<td>779</td>
<td>1.200</td>
</tr>
<tr>
<td>3</td>
<td>Plataforma C</td>
<td>67.400</td>
<td>53.483</td>
<td>65.223</td>
<td>3.000</td>
<td>3.600</td>
<td>ZODME E</td>
<td>872</td>
<td>1.740</td>
</tr>
<tr>
<td>4</td>
<td>Plataforma D</td>
<td>44.450</td>
<td>34.898</td>
<td>42.408</td>
<td>50.890</td>
<td>ZODME E</td>
<td>1.892</td>
<td>1.465</td>
<td>805</td>
</tr>
<tr>
<td>5</td>
<td>Adecuación fundación ZODME D</td>
<td>5.192</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>5.192</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Adecuación fundación ZODME E</td>
<td>2.838</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>2.838</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Adecuación fundación ZODME F</td>
<td>2.715</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>2.715</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Redes acueducto y riego</td>
<td>2.097</td>
<td>1.365</td>
<td>300</td>
<td>360</td>
<td>ZODME D</td>
<td>432</td>
<td>0</td>
<td>518</td>
</tr>
</tbody>
</table>

Estudio de Impacto Ambiental
Noviembre, 2019

I-0010371-MQC-EIA-V1-FA
3.609
<table>
<thead>
<tr>
<th>N°</th>
<th>Origen</th>
<th>Volumen en banco</th>
<th>Volumen de corte</th>
<th>Volumen material común a depositar (m³)</th>
<th>Volumen material</th>
<th>Depósito receptor</th>
<th>Volumen corte</th>
<th>Material orgánico</th>
<th>Volumen material expandido (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Canales</td>
<td>3.587</td>
<td>0</td>
<td>2.262</td>
<td>2.759</td>
<td>3.311</td>
<td>ZODME D</td>
<td>828</td>
<td>0</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019
3.6.2.2.5 Localización georreferenciada y mapas topográficos

3.6.2.2.6 Descripción detallada de las obras

Previo a la disposición de materiales sobrantes en los depósitos destinados para ello se deben realizar las tareas de descapotaje, desmontaje y limpieza del terreno. Adicionalmente, se deben construir las obras de drenaje indicadas con mayor detalle en el numeral 3.6.2.2.8.

3.6.2.2.7 Análisis de estabilidad global

El análisis geotécnico de los ZODMEs se presenta en el numeral 3.3.7.17.3. Evaluación de ZODMEs.

3.6.2.2.8 Parámetros de diseño y planos

En el numeral 3.3.7.17.3 Evaluación de ZODMEs, se plantean además las obras de drenaje para los ZODMEs del Proyecto Minera de Cobre Quebradona, necesarias para el manejo de las aguas de la zona a intervenir. El drenaje básicamente incluye un sistema interno de filtros y otro externo que consta de canales y cunetas, que se encargan de captar las aguas y llevarlas a una zona externa del ZODME descargándolas sobre vaguadas y caños existentes.

El proceso constructivo de los drenajes se describe a continuación:

- **Sistema de drenaje superficial**

 Antes de comenzar la disposición de materiales en los sitios ya establecidos para el Proyecto, deberán construirse los canales perimetrales de drenaje que se indican en los planos, para la adecuada interceptación de aguas superficiales, previo a la colocación del filtro y la disposición de materiales.

 Durante todo el proceso de colocación del material en el ZODME se deben controlar las aguas de escorrentía, mediante zanjas o canales perimetrales a la zona que se está llenando. Al final de la jornada o ante amenaza de lluvia, debe pasarse un compactador de cilindro para sellar la superficie, además que ésta debe mantenerse con una pendiente hacia afuera de tal manera que las aguas siempre puedan correr y no se empocen en la superficie. Esta última recomendación se debe adoptar para la superficie definitiva del lleno. Las obras de drenaje deberán dirigir las descargas hacia los cauces naturales aguas abajo o a los costados del ZODME.

- **Cuneta en piedra pegada**

 Es una obra de drenaje superficial con material de canto rodado o piedra partida, con revestimiento de hormigón simple o mortero de cemento, de acuerdo con las alineaciones, pendientes y demás requerimientos planteadas en los planos. La piedra
La superficie sobre la que se colocará la piedra para construir la cuneta, deberá hallarse debidamente conformada. Se iniciará con la excavación y posteriormente se colocará cada uno de los materiales que conforman el drenaje, se ubicarán los filtros y se procederá a la colocación de hileras de piedra de mayor tamaño en el eje inferior y en los bordes superiores de los costados de la cuneta. Luego se procederá a realizar la mezcla del concreto y finalmente se ejecutará el vaciado.

En la Fotografía 3.12 se muestra la cuneta en proceso de construcción, la cual será de dimensiones variables de acuerdo con las áreas aferentes de drenaje en cada ZODME. En el proyecto Minera de Cobre Quebradona se usaran dos tipos de cunetas en piedra pegada dependiendo de las áreas aportantes a estas, en la Figura 3.367 se presenta la sección típica.

Fotografía 3.12 Cuneta piedra pegada en proceso de construcción

Fuente: Minera de Cobre Quebradona, 2019

Figura 3.367 Sección típica cuneta en piedra pegada

Fuente: Integral, 2019
• Cunetas en saco de suelo-cemento

Para su conformación se procederá a efectuar una excavación manteniendo las pendientes especificadas en los planos, se iniciará la colocación de la geomembrana y finalmente se distribuirán los sacos de suelo-cemento en toda la longitud excavada. Estas se deberán conformar preferiblemente con sacos de polipropileno rellenos de suelo - cemento, mezclados en proporción 5:1 por peso. (Véase Fotografía 3.13). Se usarán para este caso 2 secciones típicas de cunetas SC, en la Figura 3.368 se muestran dichas secciones.
Canales escalonados en concreto

Al igual que en todos los sistemas utilizados para el control de aguas de escorrentía, inicialmente se realizará una excavación de acuerdo con las especificaciones mostradas en los planos de diseño. Posteriormente, se instalará la formaleta con el objetivo de darle forma al concreto, siendo esta una estructura temporal que se encarga de sostener los elementos del canal de concreto reforzado mientras estos adquieren la resistencia mencionada en los planos y comienzan a trabajar según su diseño, colocando el refuerzo para luego realizar el vaciado del hormigón. Se estimó que para los ZODMEs del Proyecto Minera de Cobre Quebradona se tendrán tres tipos de canales, con la misma sección transversal pero variando sus dimensiones, como se presentan en el plano de detalles. En la Figura 3.369 se muestra la sección y detalles de los canales en concreto.

Figura 3.369 Sección canal escalonado en concreto
Fuente: Integral, 2019
• Sistema de drenaje subsuperficial

Cuando ya se tengan construidos parte de los sistemas de drenaje superficial, que interceptan la escorrentía aguas arriba de la zona delimitada para el ZODME, se podrán implementar zanjas provisionales que vayan drenando el terreno, antes de implementar la estructura de subdrenaje, ya que un terreno muy húmedo no permite la buena ejecución del filtro y adicionalmente, este se podría colmatar rápidamente. Luego de ejecutado esto, se instalará el sistema de filtros en la base del ZODME a lo largo de vaguadas y zonas de posible acumulación de aguas (depresiones), de acuerdo con lo especificado en los planos de detalle.

Fotografía 3.14 Zanjas drenantes previas a la instalación de filtros en área de ZODME
Fuente: Minera de Cobre Quebradona, 2019

Antes de empezar a depositar material sobrante de excavaciones y derrumbes, se debe construir el filtro, o por lo menos el primer tramo en entrar en operación del ZODME. Luego se prolongará a medida que avance el lleno, en sentido contrario a la dirección del flujo. El drenaje subsuperficial, permitirá la evacuación del agua que fluye desde el terreno natural, manteniendo en adecuadas condiciones de humedad la cimentación del ZODME, favoreciendo así la estabilidad lleno, al mantener baja la presión de poros. Se instalaran dos tipos de filtros (primario y secundario) dependiendo de la longitud de las vaguadas a drenar (véase la Figura 3.370 y Figura 3.371).

Figura 3.370 Sección transversal filtro primario
Fuente: Integral, 2019
3.6.2.2.9 Planta y perfiles de los ZODMEs

3.6.2.2.10 Propuesta de adecuación final del sitio de disposición

En el numeral 3.6.2.3.13 se presenta una síntesis de las medidas previstas para la adecuación final de los sitios de disposición de sobrantes (ZODMEs y Depósito de relaves filtrados), las cuales se describen detalladamente en el Capítulo 10 Planes y programas (numeral 10.1.4 Plan de cierre) de este informe.

3.6.2.2.11 Usos finales para los sitios de disposición

En el numeral 3.6.2.3.14 se presenta una síntesis del uso final previsto para los sitios de disposición de sobrantes (ZODMEs y Depósito de relaves filtrados), las cuales se describen detalladamente en el Capítulo 10 Planes y programas (numeral 10.1.4 Plan de cierre) de este informe.

3.6.2.3 Zonas de disposición de relaves

3.6.2.3.1 Análisis sobre la alternativa de disposición final de los relaves

El Proyecto Minera de Cobre Quebradona realizará un manejo de relaves a través de pilas secas con una capacidad de almacenamiento de 119,43 millones de toneladas (Mt), los cuales corresponde a 13,37 Mt de relaves con pirita y 105,87 millones de toneladas de relaves filtrados inertes (véase el Anexo_3_17_Deposito_relaves_filtrados_plan_manejo).

El diseño general para el manejo de relaves filtrados del Proyecto se presenta en la Figura 3.372. El manejo de relaves incluye la intervención de los cauces de dos quebradas denominadas San Antonio (al Norte) y La Vainillala (hacia el sur), ubicados a unos 2 km del río Cauca.
Para el manejo de relaves se plantearon varias alternativas que se presentan en los numerales 3.4.2 y 3.4.3, las cuales fueron analizadas en función de las diferentes opciones e impactos, dando como resultado la selección del mecanismo de pila seca. Es así como el manejo de los relaves del Proyecto Minera de Cobre Quebradona se realizará a través de filtración y disposición final en pilas secas, lo cual es comúnmente conocido como un mecanismo de relaves filtrados. Los relaves filtrados pueden ser apilados en las estructuras de autosoporte porque son insaturados.

Las principales características identificadas en el diseño de las instalaciones de relaves filtrados son las siguientes:

Figura 3.372 Vista en planta del área de manejo de relaves
Fuente: Golder, 2019
Las pilas secas de relaves generalmente requieren un menor espacio de almacenamiento porque pueden apilarse en una mayor densidad en seco, con relación a un manejo convencional de relaves (húmedos).

Los relaves de pila seca no son susceptibles de sufrir una rotura catastrófica porque no hay agua empozada dentro de las instalaciones, y se asemejan más a un botadero de esteriles o un ZODME. En este sentido, los relaves filtrados se sometrán a un proceso de compactación con control de calidad durante el proceso de construcción.

Debido a la naturaleza estable e insaturada de los materiales, la superficie de las pilas puede reformarse simultáneamente; por lo tanto, se implementará un cierre progresivo.

Los relaves filtrados inertes que no generan ácido pueden utilizarse para encapsular el filtrado de pirita al interior de las instalaciones de la mina.

3.6.2.3.2 Caracterización geoquímica de los sitios de disposición de sobrantes y roca

La geología del sector se caracteriza por presentar rocas sedimentarias de la formación Amagá y rocas volcánicas de la formación Combia. Como eventos más recientes se observan depósitos de vertiente y otros aluviales, estos últimos asociados a los cauces.

Para la zona del depósito mineral, y posterior a su depositación, se presenta una alteración hidrotermal que cambia la química original de la roca y produce enriquecimiento en algunos elementos como el cobre, oro, plata, molibdeno y azufre entre otros.

Las rocas que serán objeto de explotación corresponden a: esteriles (Formacion Combia) y mineral (Formacion Combia principalmente fase plutónica con los diques).

Se detallan a continuación las características geoquímicas de las rocas del depósito:

3.6.2.3.2.1 Geoquímica de la formación Combia

Está constituida principalmente por tobas y andesitas (cristales de plagioclasa cálcica, biotita, hornblenda, en menor proporción cuarzo y magnetita, líticos y vidrio volcánico. Las andesitas son comunes en la parte norte del área, de textura porfirítica y compuestas por cristales de plagioclasa, hornblenda y magnetita.

3.6.2.3.2.1.1 Intrusivos tempranos

Las rocas intrusivas presentes en el área están en contacto intrusivo con las rocas volcánicas de la Formación Combia, composicionalmente varían entre Dioritas y Cuarzo-dioritas.

Las dioritas están constituidas principalmente por cristales de plagioclasa hasta un 90% en volumen, hornblenda, biotita y magnetita en menor cantidad.
3.6.2.3.2.1 Intrusivos inter minerales

Los intrusivos inter-minerales, corresponden a Cuarzodioritas y Dioritas, compuesto por cristales de plagioclasa con un 40% en volumen, Cuarzo entre el 15-20%, biotita entre el 10-20%, hornblenda y magnetita menor al 10%.

3.6.2.3.2.1.3 Intrusivos tardíos

Los intrusivos tardíos expuestos en superficie son volumétricamente menores, y corresponden a dioritas y cuarzo-dioritas. Están conformados por cristales de plagioclasas hasta un 90% en volumen, y con cantidades menores de hornblenda biotita y magnetita.

A continuación, se observa la geoquímica para la formación Combia, donde los intrusivos, se nombran Dique y los miembros volcánicos Toba (véase la Tabla 3.284). Esta tabla muestra valores para rocas con alteración hidrotermal por lo que no pueden usarse para clasificación de rocas convencionales, pero sí para conocer la composición química.

Tabla 3.284 Análisis de roca total (n: 272)

<table>
<thead>
<tr>
<th></th>
<th>Dique</th>
<th></th>
<th>Toba</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compuesto</td>
<td>%</td>
<td></td>
<td>Compuesto</td>
<td>%</td>
</tr>
<tr>
<td>SiO₂</td>
<td>65,82</td>
<td></td>
<td>SiO₂</td>
<td>57,25</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13,16</td>
<td></td>
<td>Al₂O₃</td>
<td>14,55</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>6,69</td>
<td></td>
<td>Fe₂O₃</td>
<td>10,45</td>
</tr>
<tr>
<td>MnO</td>
<td>0,06</td>
<td></td>
<td>MnO</td>
<td>0,06</td>
</tr>
<tr>
<td>MgO</td>
<td>1,36</td>
<td></td>
<td>MgO</td>
<td>2,65</td>
</tr>
<tr>
<td>CaO</td>
<td>3,05</td>
<td></td>
<td>CaO</td>
<td>4,00</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2,03</td>
<td></td>
<td>Na₂O</td>
<td>2,27</td>
</tr>
<tr>
<td>K₂O</td>
<td>3,37</td>
<td></td>
<td>K₂O</td>
<td>2,94</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0,42</td>
<td></td>
<td>TiO₂</td>
<td>0,73</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0,18</td>
<td></td>
<td>P₂O₅</td>
<td>0,28</td>
</tr>
<tr>
<td>BaO</td>
<td>0,11</td>
<td></td>
<td>BaO</td>
<td>0,06</td>
</tr>
<tr>
<td>SrO</td>
<td>0,06</td>
<td></td>
<td>SrO</td>
<td>0,03</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0,01</td>
<td></td>
<td>Cr₂O₃</td>
<td>0,01</td>
</tr>
<tr>
<td>LOI</td>
<td>3,49</td>
<td></td>
<td>LOI</td>
<td>4,47</td>
</tr>
<tr>
<td>Total (%)</td>
<td>99,80</td>
<td></td>
<td>Total (%)</td>
<td>99,74</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

A continuación, se presenta la concentración de elementos metálicos en la zona del depósito mineralizado, incluyendo también el no metal Azufre y los semi metales como el Arsénico y Selenio. Esta composición es válida para la zona de mina y subsidencia (véase la Tabla 3.285).

En la Tabla 3.286 se presenta la concentración de elementos metálicos en la zona del túnel de acceso, incluyendo también el no metal Azufre y los semi metales como el Arsénico y Selenio.
Tabla 3.285 Concentración elementos metálicos más importantes en Nuevo Chaquiro (Muestras con alteración hidrotermal. N=33.696)

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Unidad</th>
<th>Concentración promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>ppm</td>
<td>2,68</td>
</tr>
<tr>
<td>As</td>
<td>ppm</td>
<td>51,77</td>
</tr>
<tr>
<td>Be</td>
<td>ppm</td>
<td>0,81</td>
</tr>
<tr>
<td>Cd</td>
<td>ppm</td>
<td>2,02</td>
</tr>
<tr>
<td>Co</td>
<td>ppm</td>
<td>20,41</td>
</tr>
<tr>
<td>Cr</td>
<td>ppm</td>
<td>15,57</td>
</tr>
<tr>
<td>Cu</td>
<td>%</td>
<td>0,33</td>
</tr>
<tr>
<td>Fe</td>
<td>%</td>
<td>6,74</td>
</tr>
<tr>
<td>Hg</td>
<td>ppm</td>
<td>0,05</td>
</tr>
<tr>
<td>Mg</td>
<td>%</td>
<td>1,19</td>
</tr>
<tr>
<td>Mn</td>
<td>ppm</td>
<td>415,98</td>
</tr>
<tr>
<td>Mo</td>
<td>ppm</td>
<td>62,20</td>
</tr>
<tr>
<td>Ni</td>
<td>ppm</td>
<td>6,63</td>
</tr>
<tr>
<td>Pb</td>
<td>%</td>
<td>39,83</td>
</tr>
<tr>
<td>S</td>
<td>ppm</td>
<td>4,12</td>
</tr>
<tr>
<td>Se</td>
<td>ppm</td>
<td>5,58</td>
</tr>
<tr>
<td>Th</td>
<td>ppm</td>
<td>1,89</td>
</tr>
<tr>
<td>Ti</td>
<td>ppm</td>
<td>0,31</td>
</tr>
<tr>
<td>U</td>
<td>ppm</td>
<td>0,52</td>
</tr>
<tr>
<td>V</td>
<td>ppm</td>
<td>141,58</td>
</tr>
<tr>
<td>Zn</td>
<td>ppm</td>
<td>0,03</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Tabla 3.286 Concentración elementos metálicos más importantes en zona túnel (Muestras con alteración hidrotermal. N=8)

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Unidad</th>
<th>Concentración promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>ppm</td>
<td>0,65</td>
</tr>
<tr>
<td>As</td>
<td>ppm</td>
<td>38,73</td>
</tr>
<tr>
<td>Be</td>
<td>ppm</td>
<td>1,01</td>
</tr>
<tr>
<td>Cd</td>
<td>ppm</td>
<td>2,72</td>
</tr>
<tr>
<td>Co</td>
<td>ppm</td>
<td>19,23</td>
</tr>
<tr>
<td>Cr</td>
<td>ppm</td>
<td>10,00</td>
</tr>
<tr>
<td>Cu</td>
<td>%</td>
<td>0,01</td>
</tr>
<tr>
<td>Fe</td>
<td>%</td>
<td>6,35</td>
</tr>
<tr>
<td>Hg</td>
<td>ppm</td>
<td>0,01</td>
</tr>
<tr>
<td>Mg</td>
<td>%</td>
<td>1,26</td>
</tr>
<tr>
<td>Mn</td>
<td>ppm</td>
<td>1746,88</td>
</tr>
<tr>
<td>Mo</td>
<td>ppm</td>
<td>2,07</td>
</tr>
<tr>
<td>Ni</td>
<td>ppm</td>
<td>5,21</td>
</tr>
<tr>
<td>Pb</td>
<td>%</td>
<td>57,26</td>
</tr>
<tr>
<td>S</td>
<td>ppm</td>
<td>1,79</td>
</tr>
<tr>
<td>Se</td>
<td>ppm</td>
<td>0,81</td>
</tr>
<tr>
<td>Th</td>
<td>ppm</td>
<td>1,59</td>
</tr>
<tr>
<td>Ti</td>
<td>ppm</td>
<td>0,39</td>
</tr>
<tr>
<td>U</td>
<td>ppm</td>
<td>0,59</td>
</tr>
<tr>
<td>V</td>
<td>ppm</td>
<td>138,00</td>
</tr>
<tr>
<td>Zn</td>
<td>ppm</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019
3.6.2.3.2 Geoquímica de la Formación Amaga y Depósitos de vertiente (Zona de planta –Infraestructura).

Los trabajos desarrollados en el sector de vereda Cauca, incluyendo la investigación geológica-geotécnica de las eventuales zonas de ubicación de la infraestructura del proyecto, se encuentran en un contexto geológico que involucra las Formaciones Amagá, Combia, y depósitos de vertiente.

La Formación Amagá del Terciario está en contacto discordante con la Formación Combia. Estas dos unidades subyacen un depósito de vertiente. Las características geoquímicas de estas formaciones se presentan en la Tabla 3.287.

Tabla 3.287 Concentración elementos metálicos más importantes en zona infraestructura (Muestras sin alteración hidrotermal. N=39)

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Unidad</th>
<th>Concentración promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>ppm</td>
<td>0,54</td>
</tr>
<tr>
<td>As</td>
<td>ppm</td>
<td>4,92</td>
</tr>
<tr>
<td>Be</td>
<td>ppm</td>
<td>0,81</td>
</tr>
<tr>
<td>Cd</td>
<td>ppm</td>
<td>0,27</td>
</tr>
<tr>
<td>Co</td>
<td>ppm</td>
<td>19,84</td>
</tr>
<tr>
<td>Cr</td>
<td>ppm</td>
<td>98,79</td>
</tr>
<tr>
<td>Cu</td>
<td>%</td>
<td>0,01</td>
</tr>
<tr>
<td>Fe</td>
<td>%</td>
<td>5,28</td>
</tr>
<tr>
<td>Hg</td>
<td>ppm</td>
<td>0,04</td>
</tr>
<tr>
<td>Mg</td>
<td>%</td>
<td>1,63</td>
</tr>
<tr>
<td>Mn</td>
<td>ppm</td>
<td>985,54</td>
</tr>
<tr>
<td>Mo</td>
<td>ppm</td>
<td>0,93</td>
</tr>
<tr>
<td>Ni</td>
<td>ppm</td>
<td>28,69</td>
</tr>
<tr>
<td>Pb</td>
<td>%</td>
<td>7,11</td>
</tr>
<tr>
<td>S</td>
<td>ppm</td>
<td>0,03</td>
</tr>
<tr>
<td>Se</td>
<td>ppm</td>
<td>0,51</td>
</tr>
<tr>
<td>Th</td>
<td>ppm</td>
<td>3,16</td>
</tr>
<tr>
<td>Ti</td>
<td>ppm</td>
<td>0,39</td>
</tr>
<tr>
<td>U</td>
<td>ppm</td>
<td>1,09</td>
</tr>
<tr>
<td>V</td>
<td>ppm</td>
<td>155,46</td>
</tr>
<tr>
<td>Zn</td>
<td>ppm</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

Para establecer la potencialidad de formación de drenajes ácidos y lixiviación de metales en el tiempo, así como de neutralización, se seleccionaron diferentes muestras en el sector del depósito, túnel, relaves e infraestructura y se sometieron a ensayos estáticos y dinámicos para determinar su potencial. Esta información será abordada en el Capítulo 5 (Drenajes Mineros Ácidos - DMA). Así mismo, la clasificación de los materiales, involucrando para tal fin pruebas estáticas (balance acido-base, lixiviación de metales, análisis mineralógico) y cinéticas (campo y laboratorio) para diferentes estados de meteorización y épocas climáticas.

3.6.2.3.2.3 Análisis de material radioactivo de origen natural (NORM)

De acuerdo con la Tabla 3.23 del presente documento (Concentraciones de elementos según producto de la planta de beneficio), se encontró que los elementos NORM que ingresan a la planta ligados a la mineralización del cobre se encuentran en trazas. Sin embargo, con el propósito de cuantificar el nivel de radiactividad en el material de
El proceso del Proyecto Minera de Cobre Quebradona se realizaron análisis de radiactividad en muestras de concentrado, relave con pirita y relaves filtrados inertes en el Instituto Peruano de Energía Nuclear (IPEN) (véase el Anexo 3.16_Ensayos_radiactividad_IPEN). Estos análisis fueron realizados mediante espectrometría gamma de alta resolución, según la norma técnica ASTM-D7784-21 (2013) “Práctica estándar para la evaluación rápida de radionucleidos emisores de rayos gamma en medios ambientales por espectrometría gamma”.

Los resultados de las pruebas determinan la actividad de los radionucleidos -isótopos radiactivos- de acuerdo con los límites de dispensa establecido en las normas básicas internacionales de seguridad GSR-3 del Organismo internacional de energía atómica. Específicamente para las pruebas del material del Proyecto Minera de Cobre Quebradona se evaluaron los radionucleidos de la cadena de desintegración del uranio y el torio, incluyendo el potasio 40 (K-40) (véase la Tabla 3.288).

Tabla 3.288 Evaluación de radionucleidos emisores de rayos Gamma en material de proceso (concentrado, relave con pirita, relave inerte)

<table>
<thead>
<tr>
<th>Radionucleido</th>
<th>Concentrado</th>
<th>Relave con pirita</th>
<th>Relave inerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividad (Bq/Kg)</td>
<td>Actividad (Bq/Kg)</td>
<td>Actividad (Bq/Kg)</td>
<td>Actividad (Bq/Kg)</td>
</tr>
<tr>
<td>Límite de dispensa (Bq/Kg)</td>
<td>Límite de dispensa (Bq/Kg)</td>
<td>Límite de dispensa (Bq/Kg)</td>
<td>Límite de dispensa (Bq/Kg)</td>
</tr>
<tr>
<td>K-40</td>
<td>73.9</td>
<td>563.4</td>
<td>1157.6</td>
</tr>
<tr>
<td>Th-232</td>
<td>3.3</td>
<td>6.6</td>
<td>8.6</td>
</tr>
<tr>
<td>U-238</td>
<td>< CMD</td>
<td>< CMD</td>
<td>< CMD</td>
</tr>
<tr>
<td>Ra-226</td>
<td>3</td>
<td>4.5</td>
<td>7.4</td>
</tr>
<tr>
<td>Pb-210</td>
<td>< CMD</td>
<td>< CMD</td>
<td>< CMD</td>
</tr>
</tbody>
</table>

1. El becquerel (Bq) es la unidad de actividad radiactiva del Sistema Internacional (SI)
2. CMD: concentración mínima detectable

Fuente: Minera de Cobre Quebradona, 2019

De acuerdo con los resultados de las pruebas, el material de proceso del Proyecto Minera de Cobre Quebradona se encuentra por debajo de los límites de dispensa establecido en las normas básicas internacionales de seguridad GSR-3 del organismo internacional de energía atómica.
3.6.2.3.3 Pruebas estáticas y cinéticas

El abordaje completo del estudio de Drenajes Mineros Ácidos (DMA), está comprendido en el capítulo 5.1.1.3 (Geoquímica del yacimiento) y en el 5.1.6.3 (Evaluación hidrogeoquímica e isotópica). Sin embargo, en esta sección se incluirá el resumen general de los resultados de los estudios del potencial de generación de drenaje ácido (AGP).

El Proyecto Minera de Cobre Quebradona ha compilado y revisado los datos sobre Drenaje ácido minero (DMA) y lixiviación de metales (LM) de las fuentes de datos de exploración, estática y cinética con el fin de comprender los posibles impactos ambientales y operativos. Se compilaron aproximadamente 30.828 muestras de exploración y 86 muestras estáticas, y se iniciaron 20 pruebas cinéticas. La selección de las muestras tuvo en consideración las litologías dominantes, los rangos de concentración de azufre y las zonas espaciales/elevadas de operación. Las muestras se analizaron para parámetros estándar de contabilidad ácido-base (ABA) como el azufre (total y sulfato), el carbono (total y orgánico), el pH de pasta y el pH de NAG (Generación de Ácido Neto) con análisis de la solución final.

La geoquímica de exploración y las bases de datos de muestras estáticas de azufre y carbono se utilizaron para determinar el potencial de generación de ácido (AGP) y el potencial de neutralización (NP) de las muestras. Los datos de NP/AGP y la clasificación DMA indican que las unidades de toba hospedante y las unidades intrusivas en la zona de SLC, la zona de hundimiento y el alrededor de la infraestructura subterránea son, en la mayoría de casos, potencialmente generadores de ácido (AGP). Más del 96% de las muestras analizadas en la base de datos de exploración y el 84% de las muestras analizadas en la base de datos estática se clasificaron como AGP.

La caracterización se debe al alto porcentaje de azufre (~ 3.5%) y al muy bajo porcentaje de carbono (~ 0.2%) en la roca. Es probable que la roca a lo largo de la alineación del túnel de acceso no sea AGP debido a la baja presencia de azufre (<0.1%) en las muestras. Las muestras de saprolita también fueron generalmente no AGP. Los datos de pH de pasta fueron generalmente neutros y sugieren que existe algún NP a corto plazo que puede manifestarse como un tiempo de retraso con respecto a la ocurrencia de AGP. Sin embargo, los datos del pH del NAG confirman que el comportamiento a largo plazo de la roca con alto contenido de azufre probablemente sea AGP.

Los datos de las pruebas cinéticas hasta la fecha son generalmente neutros debido al NP disponible demostrado por los datos de pH de pasta. La única muestra del muestreo realizado en barriles en campo del componente dinámico, con pH bajo proviene de una muestra de toba en la zona de hundimiento de la cueva de colapso con una alta concentración de azufre y valores bajos de NP y pH de pasta. Las concentraciones promedio de la calidad del agua durante los meses de medición para pH, sulfato y cobre fueron: 3 S.U., 821 mg/l y 29 mg/l, respectivamente.

Las muestras de las pruebas de relaves (despiritizadas y alimentadas) se analizaron para azufre y carbono con el fin de determinar el AGP y NP de las muestras. La concentración promedio de azufre (sulfuro) en las muestras de EMLC (Compósito Temprano de la Vida de la Mina) y RMLC (Compósito Restante de la Vida de la Mina)
es de 0,08% y la concentración promedio de carbono (carbonatado) es de 0,21%. Los datos de NP/AGP y la clasificación DMA indican que las muestras despiritizadas no son AGP es decir no tienen potencial. Las muestras de alimentación se clasifican como AGP debido a la concentración de azufre. Los datos de pH de pasta y NAG de los relaves despiritizados fueron neutrales e indican que los valores de PN no se agotan durante el proceso de flotación y despiritización.

Los datos cinéticos para las muestras despiritizadas hasta la fecha son neutros debido al NP disponible demostrado por los datos de pH de pasta y la baja concentración de azufre en las muestras despiritizadas. Las concentraciones promedio de la calidad del agua durante los meses de medición para pH, sulfato y cobre fueron: 7.4 S.U., 13 mg/l y 0,0005 mg/l.

En conclusión, el análisis de potencial de generación de drenaje minero acido (AGP) se presenta en la Tabla 3.289.

Tabla 3.289 Potencial de generación de ácido de materiales a disponer

<table>
<thead>
<tr>
<th>Procedencia de los materiales a disponer</th>
<th>Potencial de generación de ácido (AGP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mina (área de SLC y zona de hundimiento)</td>
<td>Las unidades intrusivas en la zona de la cueva de subnivel, la zona de hundimiento del colapso y alrededor de la infraestructura subterránea son predominantemente potencial de generación de ácido (AGP).</td>
</tr>
<tr>
<td>Túnel y roca residual temprana</td>
<td>El potencial de DMA para el túnel y la roca residual temprana es bajo, lo que indica que el desarrollo del túnel es no AGP.</td>
</tr>
<tr>
<td>Rampas, pozos de ventilación e infraestructura subterránea</td>
<td>Se espera que este material sea >95% AGP. (Potencial generación acido). Esta clasificación también se aplica al túnel en los últimos 800 m de desarrollo cerca al depósito.</td>
</tr>
<tr>
<td>Depósito de estéril (túnel)</td>
<td>Se espera que los depósitos de estéril del túnel se comporten como el material del área del túnel NO AGP</td>
</tr>
<tr>
<td>Depósito de mineral</td>
<td>Se espera que los depósitos de mineral se comporten como el material del área de SLC (Sub Level Caving). AGP.</td>
</tr>
<tr>
<td>Relaves despiritizados</td>
<td>Debido a los bajos valores de azufre. Los datos muestran que los resultados son neutrales y confirman el comportamiento NO AGP</td>
</tr>
<tr>
<td>Relaves de Pirita</td>
<td>La pirita es AGP, por lo tanto se planea almacenar acorde a una separación selectiva.</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

3.6.2.3.4 Plan de manejo de relaves

Golder Associates desarrolló el plan de manejo de relaves filtrados inertes y relaves con pirita de acuerdo a las siguientes consideraciones:

- **Ajustarse al plan minero y de beneficio elaborado por el Proyecto Minera de Cobre Quebradona.**

- **Establecer toda la facilidad dentro de los límites del municipio de Jericó, limitándose a los predios San Antonio, La Mancha, La Mancha Lote 1, Peñalinda, y Candelaria.**

- **Cubrir la disposición de dos materiales: relaves filtrados y pirita, además considerando que la pirita debe quedar encapsulada dentro del depósito de relaves filtrados inertes con una cobertura mínima de 10 m de relaves.**

Estudio de Impacto Ambiental
Noviembre, 2019
3.6.2.3.4.1 Criterios de Diseño
Los criterios de diseño para el plan de manejo de relaves del Proyecto Minera de Cobre Quebradona fueron:

- Plan de mina y plan de producción de la planta de beneficio, recibido del Proyecto Minera de Cobre Quebradona (2018).
- Densidad de los relaves filtrados inertes y relaves con pirita.
- La pendiente de los contrafuertes y de los depósitos.
- La topografía de la zona.
- Predios indicados por el Proyecto Minera de Cobre Quebradona dentro del municipio de Jericó.

A continuación, se detalla cada uno de estos criterios o bases de diseño.

3.6.2.3.4.2 Plan de mina y plan de producción
La vida de la mina (LoM, por sus siglas en inglés) será de 22 años, sin embargo, la disposición de relaves comienza al año 2 LoM, por lo tanto, el plan de manejo de relaves consta de 21 años. En la Tabla 3.290 se presenta el plan de mina y el plan de producción (MQC, 2018).

La producción de mineral durante los 22 años de LoM será de 124,35 Mt, e igual número de toneladas se procesarán, de donde se extraerán:

- 4,92 Mt de concentrado cobre.
- 13,57 Mt de relaves con pirita.
- 105,87 Mt de relaves filtrados inertes

3.6.2.3.4.3 Propiedades de los relaves
Las densidades de los relaves empleadas en el plan de manejo de relaves son:

- 1,8 t/m³ para los relaves filtrados inertes.
- 2,2 t/m³ para relaves con pirita.

3.6.2.3.4.4 Pendientes de los contrafuertes y de los depósitos
Las pendientes de los contrafuertes y de los depósitos se basaron en los análisis de estabilidad y caracterización geotécnica que realizó Golder para el Proyecto Minera de Cobre Quebradona. En la Tabla 3.291, se muestran las pendientes empleadas para modelar el crecimiento del TMF del Proyecto Minera de Cobre Quebradona.
<table>
<thead>
<tr>
<th>Año</th>
<th>Mineral minado (t)</th>
<th>Mineral procesado (t)</th>
<th>Concentrado Parcial (Mt)</th>
<th>Concentrado Acumulado (Mt)</th>
<th>Relaves con pirita Parcial (MMt)</th>
<th>Relaves con pirita Acumulado (MMt)</th>
<th>Relaves filtrados inertes Parcial (Mt)</th>
<th>Relaves filtrados inertes Acumulado (Mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Año 4 (O)</td>
<td>3,223,209</td>
<td>3,235,063</td>
<td>296,927</td>
<td>296,927</td>
<td>0,30</td>
<td>1,157,950</td>
<td>1,157,950</td>
<td>0,53</td>
</tr>
<tr>
<td>Año 1 (O)</td>
<td>4,725,452</td>
<td>5,564,063</td>
<td>296,927</td>
<td>296,927</td>
<td>0,30</td>
<td>1,157,950</td>
<td>1,157,950</td>
<td>0,53</td>
</tr>
<tr>
<td>Año 2 (O)</td>
<td>5,599,415</td>
<td>6,235,307</td>
<td>272,127</td>
<td>569,054</td>
<td>0,57</td>
<td>1,664,247</td>
<td>2,822,197</td>
<td>1,28</td>
</tr>
<tr>
<td>Año 3 (O)</td>
<td>5,850,162</td>
<td>6,287,338</td>
<td>275,899</td>
<td>844,953</td>
<td>0,84</td>
<td>1,165,691</td>
<td>3,987,888</td>
<td>1,81</td>
</tr>
<tr>
<td>Año 4 (O)</td>
<td>6,041,281</td>
<td>6,279,741</td>
<td>257,762</td>
<td>1,102,714</td>
<td>1,10</td>
<td>1,104,573</td>
<td>5,092,461</td>
<td>2,31</td>
</tr>
<tr>
<td>Año 5 (O)</td>
<td>5,872,541</td>
<td>6,269,974</td>
<td>261,423</td>
<td>1,364,138</td>
<td>1,36</td>
<td>1,085,297</td>
<td>6,177,759</td>
<td>2,81</td>
</tr>
<tr>
<td>Año 6 (O)</td>
<td>5,812,926</td>
<td>6,289,845</td>
<td>270,957</td>
<td>1,635,094</td>
<td>1,64</td>
<td>1,112,888</td>
<td>7,290,647</td>
<td>3,31</td>
</tr>
<tr>
<td>Año 7 (O)</td>
<td>6,061,889</td>
<td>6,260,605</td>
<td>271,349</td>
<td>1,906,443</td>
<td>1,91</td>
<td>991,412</td>
<td>8,282,058</td>
<td>3,76</td>
</tr>
<tr>
<td>Año 8 (O)</td>
<td>6,141,197</td>
<td>6,141,197</td>
<td>252,979</td>
<td>2,159,422</td>
<td>2,16</td>
<td>892,935</td>
<td>9,174,994</td>
<td>4,17</td>
</tr>
<tr>
<td>Año 9 (O)</td>
<td>6,172,197</td>
<td>6,172,197</td>
<td>238,838</td>
<td>2,398,261</td>
<td>2,40</td>
<td>745,916</td>
<td>9,920,909</td>
<td>4,51</td>
</tr>
<tr>
<td>Año 10 (O)</td>
<td>6,150,000</td>
<td>6,150,000</td>
<td>217,463</td>
<td>2,615,724</td>
<td>2,62</td>
<td>586,859</td>
<td>10,507,769</td>
<td>4,78</td>
</tr>
<tr>
<td>Año 11 (O)</td>
<td>6,175,079</td>
<td>6,175,079</td>
<td>219,334</td>
<td>2,835,058</td>
<td>2,84</td>
<td>475,207</td>
<td>10,982,975</td>
<td>4,99</td>
</tr>
<tr>
<td>Año 12 (O)</td>
<td>6,268,244</td>
<td>6,268,244</td>
<td>222,769</td>
<td>3,057,827</td>
<td>3,06</td>
<td>470,947</td>
<td>11,453,922</td>
<td>5,21</td>
</tr>
<tr>
<td>Año 13 (O)</td>
<td>6,175,788</td>
<td>6,175,788</td>
<td>225,801</td>
<td>3,283,628</td>
<td>3,28</td>
<td>442,912</td>
<td>11,896,834</td>
<td>5,41</td>
</tr>
<tr>
<td>Año 14 (O)</td>
<td>6,089,139</td>
<td>6,089,139</td>
<td>222,122</td>
<td>3,505,700</td>
<td>3,51</td>
<td>417,358</td>
<td>12,314,192</td>
<td>5,60</td>
</tr>
<tr>
<td>Año 15 (O)</td>
<td>6,097,400</td>
<td>6,097,400</td>
<td>222,388</td>
<td>3,728,138</td>
<td>3,73</td>
<td>366,100</td>
<td>12,680,292</td>
<td>5,76</td>
</tr>
<tr>
<td>Año 16 (O)</td>
<td>5,952,217</td>
<td>5,952,217</td>
<td>218,372</td>
<td>3,946,511</td>
<td>3,95</td>
<td>282,224</td>
<td>12,962,516</td>
<td>5,89</td>
</tr>
<tr>
<td>Año 17 (O)</td>
<td>6,079,907</td>
<td>6,079,907</td>
<td>230,933</td>
<td>4,177,444</td>
<td>4,18</td>
<td>240,138</td>
<td>13,202,654</td>
<td>6,00</td>
</tr>
<tr>
<td>Año 18 (O)</td>
<td>5,513,657</td>
<td>5,513,657</td>
<td>214,588</td>
<td>4,392,032</td>
<td>4,39</td>
<td>155,453</td>
<td>13,358,107</td>
<td>6,07</td>
</tr>
<tr>
<td>Año 19 (O)</td>
<td>5,711,530</td>
<td>5,711,530</td>
<td>219,988</td>
<td>4,612,019</td>
<td>4,61</td>
<td>142,218</td>
<td>13,500,325</td>
<td>6,10</td>
</tr>
<tr>
<td>Año 20 (O)</td>
<td>5,753,687</td>
<td>5,753,687</td>
<td>211,873</td>
<td>4,823,892</td>
<td>4,82</td>
<td>68,508</td>
<td>13,568,833</td>
<td>6,17</td>
</tr>
<tr>
<td>Año 21 (O)</td>
<td>2,884,138</td>
<td>2,884,138</td>
<td>94,760</td>
<td>4,918,652</td>
<td>4,92</td>
<td>1,433</td>
<td>13,570,266</td>
<td>6,17</td>
</tr>
<tr>
<td>LOM</td>
<td>124,351,053</td>
<td>124,351,053</td>
<td>4,918,552</td>
<td>4,92</td>
<td>13,570,266</td>
<td>13,57</td>
<td>6,17</td>
<td>105,862,136</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019
Tabla 3.291 Criterios para el diseño los contrafuertes y los depósitos

<table>
<thead>
<tr>
<th>Material</th>
<th>Pendiente contrafuerte (H:V)</th>
<th>Ancho de cresta del contrafuerte (m)</th>
<th>Borde libre (a) para el contrafuerte (m)</th>
<th>Pendiente global del depósito (H:V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relaves filtrados inertes</td>
<td>3:1</td>
<td>15</td>
<td>2</td>
<td>4:1</td>
</tr>
<tr>
<td>Relaves con Pirita</td>
<td>2:1</td>
<td>7</td>
<td>3</td>
<td>3:1</td>
</tr>
</tbody>
</table>

$^{(a)}$ El borde libre se define como la diferencia en elevación entre la cresta del contrafuerte y la elevación de los relaves y pirita en contacto con el talud aguas arriba del contrafuerte.

Fuente: Golder, 2019

3.6.2.3.4.5 Descripción del sitio de disposición de los relaves

El sitio de disposición de los residuos mineros, relaves y pirita, se encuentra ubicado a 36 km de Jericó Antioquia, por la vía Nacional existente, es decir, no es la distancia medida en línea recta, y a 3 km del cauce del Río Cauca (véase el Anexo_3_17_Deposito_relaves_filtrados_plan_manejo).

El valle donde se llevará a cabo la disposición de los relaves se encuentra entre las cotas 1.010 msnm y la cota 800 msnm., la máxima pendiente es del 24%. Aguas arriba se encuentra una peña cuya altura es aproximadamente de 840 m. En la Figura 3.373 se muestra el relieve que rodea el área de colocación de relaves filtrados.

El área dispuesta para la ubicación del TMF está subdividida en cinco predios, denominados: San Antonio, La Mancha, La Mancha Lote 1, Peñalinda y Candelaria. En la Figura 3.374 y en la Tabla 3.292 se muestra la huella del TMF para el último año, con respecto a los predios disponibles. Existirán obras asociadas al TMF, como las del manejo de aguas, que no se visualizan en la figura.

Figura 3.373 Modelo de elevación del área de disposición de relaves filtrados

Fuente: Golder, 2019
Figura 3.374 Ubicación del TMF respecto a los predios
Fuente: Golder, 2019

Tabla 3.292 Porcentaje de área emplazada por el TMF en cada predio

<table>
<thead>
<tr>
<th>Predio</th>
<th>Área (ha)</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Antonio</td>
<td>24.00</td>
<td>14,98%</td>
</tr>
<tr>
<td>La Mancha</td>
<td>107,88</td>
<td>67,33%</td>
</tr>
<tr>
<td>Peñalinda</td>
<td>26,34</td>
<td>16,44%</td>
</tr>
<tr>
<td>Candelaria</td>
<td>2.00</td>
<td>1,25%</td>
</tr>
<tr>
<td>La Mancha Lote 1</td>
<td>0.01</td>
<td><0.01%</td>
</tr>
<tr>
<td>Total</td>
<td>160,23</td>
<td>100%</td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

3.6.2.3.4.6 Estrategia de llenado

El resultado de la estrategia de llenado tanto de los relaves como de la pirita se muestra en detalle en el reporte del plan de manejo de relaves desarrollado por Golder, donde se muestra los modelos del software GoldTail para cada año del plan de producción, junto con los planos de la secuencia de crecimiento (véase el Anexo_3_17_Depósito_relaves_filtrados_plan_manejo).

A continuación, se presenta una breve descripción del plan de manejo de relaves y de la pirita, basado en los resultados de la modelación volumétrica realizada en GoldTail.
El plan de manejo de relaves del TMF considera disponer relaves filtrados que permitirá almacenar los 105,86 Mt de relaves filtrados y 13,57 Mt de pirita.

La vida de la mina (LOM, por sus siglas en inglés) será de 22 años, sin embargo, la disposición de relaves y pirita comienza al año 2 LOM, por lo tanto, el plan de manejo de relaves consta de 21 años.

El depósito de relaves filtrados se ubica en los predios San Antonio, La Mancha, Peñalinda y Candelaria:
- Desde el año 1 hasta el año 4 de operación, los relaves filtrados se colocan en los predios San Antonio y La Mancha.
- En los años 6 y 7 se prioriza la colocación de relaves en Calendaria, Peñalinda y La Mancha, sin dejar de colocar en San Antonio.
- En el año 8 se prioriza la colocación de relaves en Peñalinda y La Mancha, sin dejar de colocar en San Antonio.
- En el Año 9 se colocan relaves solo en Peñalinda y La Mancha.
- Desde el año 10 crecen los dos costados a la par.
- La disposición de relaves se centra en los primeros cuatro años en los predios San Antonio y La Mancha para diferir la construcción del contrafuerte en los predios de Peñalinda y Candelaria con el objetivo de optimizar las áreas de intervención del Proyecto.

La pirita se coloca en un solo depósito:
- Se priorizó la disposición en el depósito de pirita ubicado en La Mancha debido a su cercanía al apilamiento de pirita con el objetivo de reducir las áreas de intervención del Proyecto.
- Debido al alto volumen de pirita, solo es posible colocar pirita en la zona norte del depósito durante el primer año de operación.
- Durante el primer año de operación se deberá construir el contrafuerte 1 del depósito de pirita.
- Desde el año 2 de operación, la pirita se coloca toda la extensión del depósito, en los predios de San Antonio y Peñalinda.

Se requiere construir 4 contrafuertes para la disposición de relaves y pirita:
- Dos contrafuertes para la disposición de relaves.
- Dos contrafuertes para la disposición de la pirita.

Para los relaves filtrados:
- La disposición de relaves comienza en el contrafuerte en los predios La Mancha y San Antonio (norte). La elevación del contrafuerte es la cota 838 m s. n. m. La elevación final del TMF es la cota 1.018 m s. n. m.
- Hasta la elevación 1.010 m.s.n.m. los relaves filtrados se colocan con concepto de colocar los relaves contra terreno natural.

- La cota 1.010 m.s.n.m. se definió como la elevación máxima que los relaves pueden ser colocados contra el terreno natural para no afectar la huella de la planta de beneficio definida por otros consultores.

- Desde la cota 1.010 m.s.n.m. y en adelante, los relaves filtrados se colocan sin estar sobre el terreno natural, sino como un relleno que comienza en la cota 1.010 m.s.n.m., con una pendiente en todo su perímetro de 4H:1V, hasta alcanzar la elevación final del TMF.

- Este relleno tiene la ventaja que no se recuesta contra el acantilado, de tal manera que no se sobreponen el depósito de relaves sobre alguna estructura de la planta y permite crecer en elevación y capacidad al depósito de relaves.

- La disposición de relaves filtrados y pirita se debe secuenciar durante el último año de operación, de tal forma, que se coloque primero la pirita y se instalen la geomembrana y materiales para su cierre progresivo, previo a la disposición de los relaves filtrados.

3.6.2.3.4.7 Curva de llenado del depósito de relaves filtrados

La curva de llenado de acuerdo con la estrategia se muestra en la Figura 3.375 y en la Tabla 3.293. En cada punto se indica a que año corresponde la elevación y el volumen de relaves.

- El año 2, 3, 4 y 5 se colocan relaves solo en los predios de San Antonio y la Mancha.

- En los años 6 y 7 se prioriza la colocación de relaves en Candelaria, Peñalinda y La Mancha, sin dejar de colocar en San Antonio.

- En el año 8 se prioriza la colocación de relaves en Peñalinda y La Mancha, sin dejar de colocar en San Antonio.

- En el Año 9 se colocan relaves solo en Peñalinda y La Mancha.

- Desde al año 10 crecen los dos costados a la par.

La altura máxima del TMF es de 218 m, medida sobre el talud del TMF y aproximadamente 106 m medida en el eje de la cresta hasta el terreno natural.

<table>
<thead>
<tr>
<th>Año LOM</th>
<th>Año TMF</th>
<th>Elevación TMF Costado norte (msnm)</th>
<th>Elevación TMF Costado sur este (msnm)</th>
<th>Elevación TMF (msnm)</th>
<th>Volumen acumulado (Mm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (C)</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1 (O)</td>
<td>2</td>
<td>850</td>
<td>-</td>
<td>850</td>
<td>2.28</td>
</tr>
<tr>
<td>2 (O)</td>
<td>3</td>
<td>868</td>
<td>-</td>
<td>868</td>
<td>4.67</td>
</tr>
<tr>
<td>3 (O)</td>
<td>4</td>
<td>885</td>
<td>-</td>
<td>885</td>
<td>7.36</td>
</tr>
<tr>
<td>4 (O)</td>
<td>5</td>
<td>900</td>
<td>-</td>
<td>900</td>
<td>10.10</td>
</tr>
<tr>
<td>5 (O)</td>
<td>6</td>
<td>910</td>
<td>862</td>
<td>910</td>
<td>12.83</td>
</tr>
<tr>
<td>6 (O)</td>
<td>7</td>
<td>916</td>
<td>882</td>
<td>916</td>
<td>15.56</td>
</tr>
</tbody>
</table>

Tabla 3.293 Resumen del plan de llenado del depósito de relaves filtrados (TMF)
<table>
<thead>
<tr>
<th>Año LOM</th>
<th>Año TMF</th>
<th>Elevación TMF Costado norte (msnm)</th>
<th>Elevación TMF Costado sur este (msnm)</th>
<th>Elevación TMF (msnm)</th>
<th>Volumen acumulado (Mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (O)</td>
<td>8</td>
<td>918</td>
<td>902</td>
<td>918</td>
<td>18.33</td>
</tr>
<tr>
<td>8 (O)</td>
<td>9</td>
<td>918</td>
<td>918</td>
<td>918</td>
<td>21.11</td>
</tr>
<tr>
<td>9 (O)</td>
<td>10</td>
<td>925</td>
<td>925</td>
<td>925</td>
<td>23.99</td>
</tr>
<tr>
<td>10 (O)</td>
<td>11</td>
<td>931</td>
<td>931</td>
<td>931</td>
<td>26.96</td>
</tr>
<tr>
<td>11 (O)</td>
<td>12</td>
<td>939</td>
<td>939</td>
<td>939</td>
<td>30.00</td>
</tr>
<tr>
<td>12 (O)</td>
<td>13</td>
<td>946</td>
<td>946</td>
<td>946</td>
<td>33.10</td>
</tr>
<tr>
<td>13 (O)</td>
<td>14</td>
<td>954</td>
<td>954</td>
<td>954</td>
<td>36.16</td>
</tr>
<tr>
<td>14 (O)</td>
<td>15</td>
<td>962</td>
<td>962</td>
<td>962</td>
<td>39.19</td>
</tr>
<tr>
<td>15 (O)</td>
<td>16</td>
<td>970</td>
<td>970</td>
<td>970</td>
<td>42.25</td>
</tr>
<tr>
<td>16 (O)</td>
<td>17</td>
<td>979</td>
<td>979</td>
<td>979</td>
<td>45.28</td>
</tr>
<tr>
<td>17 (O)</td>
<td>18</td>
<td>988</td>
<td>988</td>
<td>988</td>
<td>48.39</td>
</tr>
<tr>
<td>18 (O)</td>
<td>19</td>
<td>997</td>
<td>997</td>
<td>997</td>
<td>51.25</td>
</tr>
<tr>
<td>19 (O)</td>
<td>20</td>
<td>1.009</td>
<td>1.009</td>
<td>1.009</td>
<td>54.22</td>
</tr>
<tr>
<td>20 (O)</td>
<td>21</td>
<td>1.016</td>
<td>1.016</td>
<td>1.016</td>
<td>57.26</td>
</tr>
<tr>
<td>21 (O)</td>
<td>22</td>
<td>1.018</td>
<td>1.018</td>
<td>1.018</td>
<td>58.81</td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

Figura 3.375 Curva de llenado del depósito de relaves filtrados (TMF)

Fuente: Golder, 2019

3.6.2.3.4.8 Curva de llenado del depósito de pirita

La curva de llenado de acuerdo con la estrategia expuesta del plan de manejo de relaves con pirita se muestra en la Tabla 3.294 y en la Figura 3.376.
Tabla 3.294 Resumen del plan de llenado del depósito de pirita

<table>
<thead>
<tr>
<th>Año</th>
<th>Depósito de pirita</th>
<th>Elevación (msnm)</th>
<th>Volumen Acumulado (Mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (O)</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2 (O)</td>
<td></td>
<td>959</td>
<td>0,53</td>
</tr>
<tr>
<td>3 (O)</td>
<td></td>
<td>960</td>
<td>1,28</td>
</tr>
<tr>
<td>4 (O)</td>
<td></td>
<td>965</td>
<td>1,81</td>
</tr>
<tr>
<td>5 (O)</td>
<td></td>
<td>970</td>
<td>2,31</td>
</tr>
<tr>
<td>6 (O)</td>
<td></td>
<td>974</td>
<td>2,81</td>
</tr>
<tr>
<td>7 (O)</td>
<td></td>
<td>978</td>
<td>3,31</td>
</tr>
<tr>
<td>8 (O)</td>
<td></td>
<td>982</td>
<td>3,76</td>
</tr>
<tr>
<td>9 (O)</td>
<td></td>
<td>985</td>
<td>4,17</td>
</tr>
<tr>
<td>10 (O)</td>
<td></td>
<td>988</td>
<td>4,51</td>
</tr>
<tr>
<td>11 (O)</td>
<td></td>
<td>990</td>
<td>4,78</td>
</tr>
<tr>
<td>12 (O)</td>
<td></td>
<td>992</td>
<td>4,99</td>
</tr>
<tr>
<td>13 (O)</td>
<td></td>
<td>993</td>
<td>5,21</td>
</tr>
<tr>
<td>14 (O)</td>
<td></td>
<td>994</td>
<td>5,41</td>
</tr>
<tr>
<td>15 (O)</td>
<td></td>
<td>995</td>
<td>5,60</td>
</tr>
<tr>
<td>16 (O)</td>
<td></td>
<td>996</td>
<td>5,76</td>
</tr>
<tr>
<td>17 (O)</td>
<td></td>
<td>997</td>
<td>5,89</td>
</tr>
<tr>
<td>18 (O)</td>
<td></td>
<td>998</td>
<td>6,00</td>
</tr>
<tr>
<td>19 (O)</td>
<td></td>
<td>999</td>
<td>6,07</td>
</tr>
<tr>
<td>20 (O)</td>
<td></td>
<td>1.000</td>
<td>6,14</td>
</tr>
<tr>
<td>21 (O)</td>
<td></td>
<td>1.001</td>
<td>6,17</td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

![Figura 3.376 Curva de crecimiento del depósito de pirita](image_url)

Fuente: Golder, 2019
El depósito de pirita se va llenando progresivamente en los diferentes predios que ocupa hasta alcanzar el volumen de almacenamiento total de 6,17 Mm³. El año 2 se coloca pirita solo en los predios de San Antonio y la Mancha. En el año 3 se prioriza la colocación de relaves en Peñalinda y La Mancha, sin dejar de colocar en San Antonio. En el año 4 crecen los dos costados a la par.

La altura máxima del depósito de pirita es de 45 m.

El cierre progresivo de la celda de pirita se hace para asegurar el encapsulado de estas dentro del depósito de relaves, y dejar una cobertura mínima de 10 m de relaves sobre el depósito de pirita.

3.6.2.3.4.9 Secuencia de construcción del depósito de relaves filtrados

Los relaves filtrados finales serán enviados desde la planta de filtrado hasta la pila de almacenamiento temporal por un sistema de banda transportadora, la pila cubierta de almacenamiento temporal está ubicada 750 m aguas abajo de la Planta de beneficio en el predio La Mancha, en la cota 930 msnm. Desde esta plataforma un cargador recogerá los relaves finales, cargando camiones de entre 30 y 40 t, que transportarán y descargarán los relaves en diferentes zonas o áreas dentro del depósito de relaves filtrados.

Debido a las fuertes lluvias en la zona del Proyecto Minera de Cobre Quebradona, la pila de almacenamiento temporal de relaves tendrá una cubierta para prevenir el aumento en el contenido de humedad de los relaves.

Para el manejo de aguas lluvias en el depósito de relaves filtrados y con el propósito final de asegurar la estabilidad de la estructura, el Proyecto incluye los siguientes controles:

Controles de Diseño

- Diseño de un sistema de subdrenaje subsuperficial que a través de zanjas y filtros colecta las aguas lluvias que se espera se infiltrarán de acuerdo a los análisis hidrológicos e hidráulicos, y las conduce a los sedimentadores para posteriormente ser descargadas al río Cauca. Este sistema de subdrenaje además garantiza que se mantengan bajas las presiones de poros con el fin de garantizar la estabilidad en condiciones estáticas y prevenir la licuación de los relaves ante un evento sísmico.

- Diseño de un sistema de drenaje superficial, como complemento al subdrenaje antes descrito, que a través de cunetas y canales capta y conduce las aguas de escorrentías hacia los sedimentadores para posteriormente ser descargadas al río Cauca. Estas obras de drenaje evitarán la acumulación de aguas lluvias en la superficie del depósito para reducir el volumen de agua infiltrada, prevenir fenómenos de erosión y así garantizar la estabilidad de la estructura.

- Para el desarrollo de los diseños se evaluaron y definieron parámetros de entrada propios del sitio del Proyecto y de los materiales como lo son la topografía, climatología, hidrología, geología, geotecnia, permeabilidad, capacidad de drenaje, entre otros.
• Los diseños geotécnicos y de manejo de aguas del depósito de relaves se describen en los Anexo_3_2_Deposito_Relaves_Filtrados_Diseño y Anexo_3_18_Deposito_Relaves_Filtrados_Manoe_Agua

Controles Constructivos

• Especificación del procedimiento constructivo de compactación requerido para alcanzar la máxima densidad seca (95% del Proctor Estándar según norma ASTM D698) de cada capa de depositación de acuerdo a la humedad óptima definida. El procedimiento detallado que incluya el tipo de maquinaria, energía de compactación, número de pasadas, humedad óptima y demás aspectos predefinidos en los diseños y ensayos de laboratorio será confirmado con terraplenes de prueba en campo.

• Especificación de prácticas constructivas para el manejo de aguas de escorrentía de forma instantánea y puntual en caso de presentarse lluvias durante procesos de depositación de relaves, tales como uso de geomembranas o lonas temporales en los frentes de relaves no compactados para protección contra la lluvia.

Controles Operativos

• Como contingencia el Proyecto incluye depósitos cubiertos con capacidad para hasta 4 días de acopio (de acuerdo a los análisis hidrológicos del sitio) de relaves para ser usados en caso de presentarse lluvias continuas que imposibiliten la depositación y compactación adecuadas para garantizar la estabilidad del depósito.

• Implementación de cierre progresivo mediante la revegetalización con capas de suelo orgánico del depósito de relaves lo cual reduce el área expuesta a la precipitación, facilita el manejo de aguas, aporta al control de erosión y por ende a la estabilidad como tal de la estructura.

• Para monitorear la integridad del depósito se implementará instrumentación geotécnica para hacer seguimiento a la respuesta sísmica y estática, el nivel freático dentro del TMF, el control de la infiltración a través de la fundación del TMF y la deformación. Específicamente se instalarán acelerógrafos, hitos de control topográfico, piezómetros de cuerda vibrante e inclinómetros. Para mayor información consultar el Anexo_3_20_Deposito_Relaves_Filtrados_Diseño

Los relaves finales se extenderán en el depósito de relaves filtrados, formando capas de 0,30 m mediante bulldozer o motoniveladoras, y con un compactador de tambor liso vibratorio se proveerá suficiente compactación para el tránsito de los camiones y equipos pesados sobre la superficie de sellado de los relaves. Equipos tales como excavadores, motoniveladoras, y rodillos también serán utilizados en la zona del depósito de relaves filtrados, para complementar la disposición de los relaves, así como en remoción de suelo, perfilado de taludes y mantenimiento de los accesos.

En todo momento, la superficie final de los relaves deberá ser comparada con la superficie interna del terreno natural, manteniendo una pendiente mínima de -1% para conducir el agua en contacto con los relaves fuera de la pila. Una vez el agua se ubique en una zona, deberá ser bombeada inmediatamente hacia los canales de desviación de aguas de contacto.
La zona estructural será conformada por los relaves finales, que serán compactados, con un compactador de tambor liso vibratorio, hasta lograr una densidad equivalente al 95% de la densidad proctor estándar (ASTM D 698) para proporcionar un fundamento adecuado para la posterior construcción de la berma interna. Ello contribuirá también a mejorar la estabilidad general de depósito de relaves filtrados. En campo, es importante delimitar esta zona, colocando las bermas perimetrales construidas de relaves compactados.

3.6.2.3.4.10 Metodología de construcción

El uso de camiones para transportar los relaves desde la pila cubierta de almacenamiento temporal hasta la del depósito de relaves filtrados se realizará utilizando las rutas internas de acarreo. Como parte de la preparación para la colocación de los relaves en la zona estructural de manejo de relaves, debe haber una disposición de amplias áreas para las maniobras de los camiones y para el tránsito de estos para la ubicación de los relaves.

Una vez dispuestos los relaves, se compactará y perfilará su superficie para que el agua fluya mediante los canales de desviación, evitando la acumulación de agua, tal como se describió en el numeral anterior.

Si los residuos son altamente compresibles y si la tasa de apilamiento (SoR) es demasiado rápida, se puede generar un exceso de presión de poros, lo cual podría comprometer la estabilidad del talud. Por consiguiente, se adoptará la estrategia de considerar distintos frentes de disposición de material, de modo que este pueda distribuirse a través del depósito de relaves, reduciendo la tasa de apilamiento.

3.6.2.3.5 Descripción para el manejo y restitución de cuerpos de agua

El sistema de manejo de agua en zona del valle donde se emplazarán las facilidades de beneficio, el depósito de relaves filtrados (TMF) y el soporte a la operación de mina, estará orientado a priorizar el manejo diferenciado de aguas de contacto y de no contacto, lo cual requerirá de mantenimientos preventivos e inspecciones supervisadas a las estructuras de conducción (véase el Anexo 3.20 _Deposito_relaves_filtados_Diseño). Los tipos de aguas definidos se dividen en las siguientes categorías:

- **Agua de contacto:** es agua superficial o subterránea, que ha sido expuesta a cualquier material excavado, como en la mina, el TMF y los zodmes, o expuesto a cualquier talud de corte o relleno de vías o canales dentro de las áreas operativas de la unidad minera (en adelante UM).

- **Agua de no contacto:** es agua superficial o subterránea, que pasando alrededor o por debajo de los componentes de la UM, no entra en contacto con material excavado o expuesto. La conducción de las aguas de no contacto se llevará a cabo mediante un sistema de canales y pozas dispuestos de tal forma que permitan derivar estos flujos y descargarlos al ambiente sin que estos se hayan mezclado con el agua de contacto. Cualquier agua de no contacto que se mezcle con el agua de contacto o agua de proceso se convierte en agua de contacto.
En la Figura 3.377 se muestra el esquema de manejo de aguas en la zona del valle donde se emplazarán las facilidades de beneficio y soporte a la operación.

3.6.2.3.5.1 Manejo de Aguas de Contacto

- Depósito de Relaves filtrados (TMF)

Durante la operación del TMF, la precipitación que caiga sobre él se convertirá en agua de contacto, la cual será conducida ordenadamente mediante canales (en adelante cunetas) ubicados al pie de cada uno de los taludes del TMF conforme este vaya creciendo. Finalmente, se tendrá una cuneta en cada berma del TMF.
Estas cunetas serán de sección trapezoidal, tendrán una pendiente media de 0,5% y estarán revestidas de geoceldas rellenas con concreto.

Las cunetas recogerán, al pie, la escorrentía producida sobre los taludes (cuya altura alcanzará los 10 m). Adicionalmente, estas cunetas recogerán escorrentía (agua de no contacto) que le pueda llegar desde el terreno natural desde los flancos noreste y noroeste del TMF.

El agua mezclada en las cunetas se convertirá en agua de contacto y será conducida hacia canales de fuerte pendiente (en adelante rápidas) estratégicamente ubicados, rápidas que colectarán progresivamente el agua de las cunetas conforme la rápida vaya descendiendo.

Conforme el TMF vaya creciendo, existirá siempre una plataforma en su parte superior. Complementariamente, esta plataforma recibirá aguas de no contacto (convirtiéndola en agua de contacto) que no hayan podido ser colectadas por los canales de coronación temporales del TMF.

La escorrentía producida sobre esta plataforma tendrá que ser conducida hacia la rápida más cercana, para lo cual se requerirá que la pendiente con la que se vaya conformando la plataforma superior favorezca la conducción de la escorrentía hacia las rápidas.

Siendo relaves filtrados, no se formarán lagunas en la parte superior del TMF.

Las rápidas serán de concreto armado, sección rectangular y se desarrollarán con pendientes entre 33% en los taludes y 5% en las bermas.

El diseño de las rápidas considera el uso de pantallas deflectoras, que servirán para reducir las velocidades dentro de las rápidas, de manera que no se requiera alguna estructura de disipación al pie de la rápida.

Las descargas de cada una de las rápidas del TMF serán derivadas hacia los sedimentadores mediante un canal de derivación.

En la Figura 3.378 se presenta el detalle el manejo de aguas de contacto del TMF.
Figura 3.378 Manejo de Aguas TMF
Fuente: Golder, 2019

Sedimentadores en el TMF

Las estructuras denominadas sedimentadores fueron consideradas para el almacenamiento temporal de los flujos de escorrentía superficial provenientes del depósito de relaves (TMF) así como para la realización del proceso de sedimentación antes de su disposición final en el río Cauca.

Considerando la extensión y el manejo de las aguas de contacto del TMF, se ha dispuesto un conjunto de tres (3) sedimentadores dimensionados para contener los volúmenes de escorrentío de eventos de tormentas hasta de un periodo de retorno de 10 años.
Se han configurado estructuras rectangulares con taludes de corte y relleno de 2H:1V cuyos volúmenes aproximados se muestran en la siguiente tabla.

<table>
<thead>
<tr>
<th>Sedimentador</th>
<th>Capacidad de almacenamiento (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedimentador 2</td>
<td>~95.060</td>
</tr>
<tr>
<td>Sedimentador 5</td>
<td>~62.000</td>
</tr>
<tr>
<td>Sedimentador 7</td>
<td>~110.080</td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

Los sedimentadores 2 y 5 serán construidos conjuntamente con la habilitación del Contrafuerte Norte en el año 4 (construcción), mientras que el sedimentador 7 sería habilitado antes de la construcción del Contrafuerte Sur en el año 1 (construcción).

El manejo de aguas de contacto de los sedimentadores contempla las estructuras para el control y manejo de calidad de las aguas, además del vertedero de emergencias.

Las estructuras de control y manejo de calidad de aguas se diseñaron para el manejo y control de sedimentos en base a un periodo de retención y tiempo de drenaje de la poza consistente con la lluvia de diseño.

La estructura orientada al drenaje de la poza consiste en una tubería dimensionada para drenar, en un periodo de 60 horas, el volumen de un evento de tormenta correspondiente al percentil 95%.

La estructura de salida para el manejo y control de sedimentos estará conformada por un sistema de tubería vertical provista de múltiples orificios que permiten la reducción de las velocidades de descarga garantizando la eficiencia del proceso de sedimentación. La tubería está dimensionada para evacuar los flujos de un evento hasta de 25 años de periodo de retorno.

La obra que recibe el total de las descargas provenientes de los sedimentadores para luego conducir el agua al río Cauca será un canal de 2,00 de ancho por 1,50 de altura.

Las descargas de ambas estructuras serán conducidas mediante tuberías hacia el río Cauca debido a su capacidad de asimilación.

Para el caso de ocurrencia de eventos extraordinarios, se considera un vertedero de emergencia en cada uno de los sedimentadores proyectados. La estructura está diseñada para evacuar los flujos de escorrentía de eventos entre 25 y 100 años de periodo de retorno. Se contempla que la descarga de los flujos por el vertedero de emergencia se realice hacia los cauces y quebradas naturales donde se emplaza la estructura.

Se contempla que la descarga de los flujos por el vertedero de emergencia se realice hacia los cauces y quebradas donde se emplazará la estructura de los sedimentadores mediante un canal de derivación.

En la Figura 3.379 se presenta los sedimentadores 2 y 5 que corresponden al contrafuerte Norte y en la Figura 3.380 se muestra el sedimentador 7, que serviría al contrafuerte Sur.
Figura 3.379 Sedimentadores 2 y 5 - Contrafuerte Norte
Fuente: Golder, 2019
Zona de disposición de material de excavación (ZODME)

El Proyecto Minera de Cobre Quebradona contará con zonas en las que se dispondrá el material excavado (en adelante ZODME). La concepción del manejo de aguas de contacto en cada uno de ellos es la misma.

Cada ZODME, tiene su respectivo sistemas de drenaje subsuperficial y superficial, compuesto básicamente por un filtro primario y otro secundario de menor capacidad, cunetas en piedra pegada para recorridos en baja pendiente y canales en concreto reforzado en aquellos de alta pendiente, especialmente cuando se acerca al descole.
definitivo al terreno. También se tienen cunetas en sacos de suelo cemento para zonas sujetas a deformación en el proceso de consolidación del lleno.

Los drenajes superficiales se diseñaron para un período de retorno de 25 años y, en el caso de los canales principales, se incluyó un borde libre adicional de 30 cm que les permita asumir crecientes mayores. Para los filtros se utilizó un período de retorno de dos años que es lo normal para este tipo de drenaje interno del cuerpo del lleno. Igualmente, los drenajes planteados requieren mantenimiento que garantice su adecuado funcionamiento (véanse los planos de detalle 0010368-MQC-ZO-001 y 002).

Drenajes superficiales

- Cuneta en piedra pegada
- Cuneta en sacos de suelo cemento
- Canal en concreto reforzado

Drenajes subsuperficiales

- Filtro primario
- Filtro secundario

Figura 3.381 Drenajes superficiales y subsuperficiales en ZODMEs
Fuente: Integral, 2019

Una vez definida y delimitada el área que será ocupada con un ZODME, se hará descapote y limpieza del área, para proceder con la instalación del sistema de subdrenaje sin omitir zonas de vaguada y de acumulación de escorrentía. Después se implementan los drenajes superficiales indicados en los diseños (véanse los planos 0010368-MQC-ZO-010 al 070).
Sedimentadores en ZODMEs

Los sedimentadores convenientemente ubicados aguas abajo de las ZODMEs, están diseñados para almacenar las aguas de contacto y favorecer el proceso de sedimentación (en base en un tiempo de retención), y finalmente ser descargados hacia el río Cauca mediante el sistema de tuberías proyectado.

Considerando la ubicación y extensión de los ZODMEs así como los límites de propiedad, se han dispuesto un conjunto de sedimentadores dimensionados para contener los volúmenes de escurrimiento de eventos de tormentas hasta de un periodo de retorno de 25 años. Las estructuras de geometría rectangular poseen taludes de corte y relleno de 2H:1V con volúmenes aproximados que se muestran en la siguiente tabla.

Tabla 3.296 Capacidad de los sedimentadores de las ZODMEs

<table>
<thead>
<tr>
<th>ZODME</th>
<th>Estructura</th>
<th>Capacidad de almacenamiento (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZODME “C”</td>
<td>Sedimentador 1</td>
<td>~62,060</td>
</tr>
<tr>
<td>ZODME “A”</td>
<td>Sedimentador 3</td>
<td>~22,020</td>
</tr>
<tr>
<td>ZODME “B”</td>
<td>Sedimentador 4</td>
<td>~15,650</td>
</tr>
<tr>
<td>PILA DE SUELO</td>
<td>Sedimentador 6</td>
<td>~55,020</td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

En la Figura 3.377 se muestra el esquema típico de manejo de aguas en los Zodmes así como los sedimentadores diseñados.

- Depósito de pirita

El Proyecto Minera de Cobre Quebradona contará con un depósito en el que dispondrá el material producto del proceso de transformación (en adelante Depósito de Pirita). Las características geoquímicas del material depositado lo convierten en potencial productor de acidez, por lo que el agua en contacto con este depósito debería ser manejada en forma independiente, y bombeada hacia la PTARND1 (planta de tratamiento de aguas ácidas).

Durante la operación del Depósito de Pirita, la precipitación que caiga sobre él se convertirá en agua de contacto, la cual será conducida ordenadamente mediante cunetas ubicadas al pie de cada uno de los taludes, conforme este vaya creciendo. Finalmente, se tendrá una cuneta en cada berma del depósito.

Estas cunetas serán de sección trapezoidal, tendrán una pendiente media de 0,5% y estarán revestidas de geoceldas rellenas de concreto.

Las cunetas recogerán, al pie, la escorrentía producida sobre los taludes (cuya altura alcanzará los 10 m). Adicionalmente, estas cunetas recogerán escorrentía (agua de no contacto) que le pueda llegar desde el terreno natural a ambos flancos del depósito.

El agua mezclada en las cunetas se convertirá en agua de contacto y será conducida hacia rápidas estratégicamente ubicadas, las que colectarán progresivamente el agua de las cuentas conforme la rápida vaya descendiendo.

Complementariamente, el Depósito de Pirita contará con un sistema de colección de filtraciones compuesto por tuberías ranuradas, sistema que conducirá estas aguas
hacia pozas colectoras. En estas pozas descargarán también las rápidas del sistema de manejo de escorrentía superficial.

Las rápidas serán de sección rectangular, tendrán una pendiente media de 35% y estarán revestidas de concreto armado.

El diseño de las rápidas considera el uso de pantallas deflectoras, que servirán para reducir considerablemente la velocidad con la que baje el agua por ellas.

Conforme el Depósito de Pirita vaya creciendo, existirá siempre una plataforma en su parte superior. Adicionalmente, la plataforma sobre el Depósito de Pirita recibirá aguas de no contacto (convirtiéndola en agua de contacto) proveniente del área de drenaje del terreno natural por encima de ella.

La escorrentía producida sobre esta plataforma tendrá que ser conducida hacia la rápida más cercana, para lo cual se requerirá que la pendiente con la que se vaya conformando la plataforma superior favorezca la conducción de la escorrentía hacia la rápida.

Pozas colectoras

Las pozas colectoras están ubicadas de acuerdo al plan de llenado del depósito de pirita y están configuradas para almacenar aguas potencialmente ácidas, y por lo tanto proyectadas como pozas impermeabilizadas con geomembrana de HDPE con taludes de corte y relleno de 2H:1V cuyos volúmenes aproximados se muestran en Tabla 3.297.

<table>
<thead>
<tr>
<th>Estructura</th>
<th>Capacidad de almacenamiento (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poza colectora 1</td>
<td>25.000</td>
</tr>
<tr>
<td>Poza colectora 2</td>
<td>25.000</td>
</tr>
<tr>
<td>Poza colectora 3</td>
<td>15.000</td>
</tr>
<tr>
<td>Poza colectora 4</td>
<td>15.000</td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

Frente a estas pozas, es importante considerar que la poza colectora 3 y la poza colectora 4 se desplazarán en su ubicación durante la operación del depósito de pirita debido al plan de disposición de los relaves con pirita; por lo anterior, en algunos casos se denominan poza colectora 3A y poza colectora 4A.

Las pozas colectoras fueron dimensionadas para contener los volúmenes de escorrentío de eventos de tormentas hasta de un periodo de retorno de 10 años.

No contemplan un sistema de manejo de excedencias, pues se considera que todas las aguas de drenaje del Depósito de Pirita serán direccionadas hacia la planta de neutralización (PTARND1).

Las pozas colectoras se irán habilitando en lugares estratégicos según se efectúe el llenado del depósito de pirita.

Finalmente, antes de que el Depósito de Pirita sean cubiertos por el TMF, se procederá con el encapsulado total de la plataforma impidiendo de esta forma, el ingreso de las filtraciones del TMF hacia el Depósito de Pirita.
3.6.2.3.5.2 Manejo de Aguas de No Contacto
3.6.2.3.5.3 Sector en el Valle (zona de planta de beneficio y relaves)

- Canales Norte y Sur

Las estructuras de manejo de aguas de no contacto en el sector de las instalaciones de procesos del Proyecto serán manejadas mediante los canales Sur y Norte.

Ambos canales están conceptuados como canales perimetales permanentes cuya función principal será derivar la escorrentía natural del sector de la peña o acantilado y facilitar su descarga sobre los cauces existentes, manteniendo la condición natural como aguas de no contacto. En las Figura 3.382 y Figura 3.383 se muestran los canales perimetales Norte y Sur, respectivamente.

El canal sur corona el portal de ingreso de los túneles de acceso y se desarrolla en sentido sureste, con pendientes longitudinales entre 1% y 10%. En sectores específicos el canal se desarrolla con pendientes hasta del 40%. La sección del canal será trapezoidal con revestimiento conformado de geoceldas rellenas de concreto para las pendientes hasta 10%. En otros sectores la sección propuesta se complementa con enrocanado y/o un emboquillado orientado a reducir la velocidad de flujos.

El canal norte se desarrolla en sentido noreste con pendientes longitudinales entre 1 y 5%. La sección del canal, también se desarrolla con una sección trapezoidal con un revestimiento de geoceldas rellenas de concreto en toda su longitud.

Ambos canales están diseñados para evacuar los flujos de escorrentía extraordinarios correspondientes un periodo de retorno de hasta 100 años.

![Figura 3.382 Canal Norte](Fuente: Golder, 2019)
- Canales de Coronación Temporales del TMF

El TMF estará servido por canales de coronación temporales encargados de desviar la escorrentía (agua de no contacto) que se produzca en el área de drenaje por encima del. El agua colectada será descargada en la misma quebrada en la que hará su descarga el Canal Sur.

Estos canales serán de sección trapezoidal, tendrán una pendiente media de 1% y estarán revestidos de geoceldas rellenas de concreto.

Conforme el TMF vaya creciendo, estos canales de coronación serán cubiertos por los relaves por lo que se tendrá que acondicionar nuevos canales de coronación aguas arriba. Se estima que serán necesarios nuevos canales de coronación temporales en los años 3, 6, 11 y 15 de operación del TMF.

- Canales de Coronación (Temporales) del depósito de pirita

De manera similar al depósito de relaves filtrados, el depósito de Pirita estará servido por canales de coronación temporales encargados de desviar la escorrentía (agua de no contacto) que se produzca en el área de drenaje aguas arriba del depósito para así evitar la producción de más agua de contacto. El agua recolectada será descargada en la misma quebrada en la que hará su descarga el Canal Sur.
Estos canales serán de sección trapezoidal, tendrán una pendiente media de 1% y estarán revestidos de geoceldas rellenas de concreto. Los canales dejarán de funcionar cuando de acuerdo al plan de llenado el depósito de pirita sea cubierto y encapsulado totalmente por los relaves filtrados, finalmente quedando también cubierto el canal.

3.6.2.3.5.4 Sector sobre la montaña (zonas de depósito)

El manejo de la escorrentía de las cuencas aguas arriba de los sectores de subsidencia estará orientado a maximizar los volúmenes de aguas derivadas mediante el uso de estructures de derivación conformado por diques (interceptores), canales temporales y tuberías by-pass.

Los diques interceptores que captarán los flujos de los cauces naturales estarán conformados por un muro de gaviones con el paramento aguas arriba impermeabilizado con geosintético (geomembrana). Los flujos interceptados serán derivados mediante canales temporales y tuberías de HDPE hacia los cauces adyacentes fuera de los límites de la subsidencia. En la Figura 3.384 se muestra la sección típica de la estructura de derivación.

![Estructura de derivación](image)

Figura 3.384 Estructura de derivación

Fuente: Golder, 2019

Los canales de sección trapezoidal permitirán el manejo de la escorrentía hacia los flancos del área de subsidencia y estarán provistos de un revestimiento impermeable para evitar la erosión y maximizar la capacidad de conducción. Los canales se desarrollarán con una pendiente mínima de 2%. Cuando el trazo del canal sea interceptado por el límite de subsidencia, se considera la utilización de la sección del canal para la instalación de las tuberías HDPE. Es decir que conforme se expanda el sector de subsidencia, el sistema de tuberías by-pass podrán ser reubicados, según se requiera.

El diseño para esta etapa de estudio de los canales y dimensionamiento de tuberías by-pass está basado en los criterios de diseño mostrados en la Tabla 3.298.

Tabla 3.298 Criterios de diseño

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Criterio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona de Subsidencia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canales Temporales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descripción</td>
<td>Unidad</td>
<td>Criterio</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Período de retorno para tormenta de diseño (para operación)</td>
<td>años</td>
<td>25</td>
</tr>
<tr>
<td>Revestimiento de canales</td>
<td>tipo</td>
<td>Geocelda y concreto</td>
</tr>
<tr>
<td>Pendiente mínima de canales</td>
<td>%</td>
<td>2</td>
</tr>
<tr>
<td>Sección de Canal (S1, S2 y, S3)</td>
<td>Tipo</td>
<td>Trapezoidal</td>
</tr>
<tr>
<td>Talud Lateral</td>
<td>H:1V</td>
<td>1</td>
</tr>
<tr>
<td>Tuberías by-pass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Período de retorno para tormenta de diseño (para operación)</td>
<td>años</td>
<td>2</td>
</tr>
<tr>
<td>Tipo de sistema de drenaje</td>
<td>tipo</td>
<td>Gravedad</td>
</tr>
<tr>
<td>Material</td>
<td>tipo</td>
<td>HDPE</td>
</tr>
<tr>
<td>Pendiente mínima de Tuberías</td>
<td>%</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

Antes de su descarga hacia los cauces adyacentes, tales como la Quebada La Fea, se dispondrán estructuras de protección contra la erosión (i.e. enrocado, bloques de disipación, etc.).

Se aprovechará la capacidad de conducción de los cauces naturales como estructuras de conducción entre los canales de derivación. El sistema de derivación por canales se complementará con un sistema de derivación conformado por diques interceptores y tuberías by-pass.

El cuerpo de los diques podrá estar conformado por gaviones, cuyo paramento de aguas será impermeabilizado con geosintéticos. La estructura estará provista de un aliviadero de emergencia diseñado para eventos hasta de 25 años de periodo de retorno.

Para el año 4 de operación, la zona de subsidencia contará con tres canales temporales y una tubería de HDPE. El año 5 de operación contará con cuatro canales temporales y tres tuberías de HDPE. En el año 10 de operación, el área de subsidencia contará con seis canales temporales y cuatro tuberías de HDPE.

La zona de subsidencia, para el año 15 de operación, contará con tres canales temporales, y siete tuberías de HDPE; En el año 20 de operación, la zona de subsidencia contará con dos canales temporales y 11 tuberías de HDPE. En el Anexo 3.18_ Deposito relaves filtrados_Manejo_agua se muestran los Parámetros Hidráulicos y el dimensionamiento de las estructuras.

En las Figura 3.385, Figura 3.386 y Figura 3.387 se muestran las obras típicas de derivación descritas anteriormente, para algunas etapas de operación en la zona de subsidencia.
Figura 3.385 Obra desviación subsidencia Año Operación 4
Fuente: Golder, 2019
Figura 3.386 Obra desviación subsidencia Operación Intermedia (Año 10)
Fuente: Golder, 2019
3.6.2.3.6 Prevención de contaminación de acuíferos

El comportamiento general de las aguas subterráneas en el área donde se encuentra Jericó y los municipios vecinos como Pueblo Rico, Támesis, Tarso y otros, está conformada por rocas de la formación Amagá (sedimentarias) y la formación Combia (volcanosedimentaria), que no se clasifican como acuífero, entendido técnicamente el concepto de acuífero como una roca que puede almacenar agua en cantidades apreciables (porosa), y que permite su movimiento con facilidad (muy permeable), de tal forma que pueda extraerse el agua en grandes cantidades para su uso.
En este sentido y partiendo del supuesto de que dichas rocas no poseen estas características, se entiende que no hay formaciones acuíferas en la zona.

Hidrogeológicamente las rocas de la zona donde se ubica el Proyecto Minera de Cobre Quebradona, se clasifican como Acuítares, que son rocas que almacenan aguas de bajas a moderadas cantidades. El movimiento del agua es muy limitado o casi nulo (baja permeabilidad), lo que dificulta o en su mayoría no permite la extracción del agua para su uso. Adicionalmente, su almacenamiento y flujo se da en superficie y no en profundidad.

La recarga por agua lluvia a las zonas someras, donde se acumula el agua en los acuítares, puede ocurrir en toda la superficie del área, en una mayor o menor proporción, eso depende de los usos del suelo que puedan impermeabilizar o no la superficie.

Teniendo en cuenta lo descrito, los relaves filtrados inertes, así como los relaves con pirita, serán deshidratados en la Planta de beneficio utilizando un filtro de gran capacidad, el cual producirá un contenido de humedad adecuado para estos materiales. Estos materiales serán ubicados en una pila de almacenamiento ubicada 500 m abajo de la planta de beneficio, en la cota 943.

Esta pila de almacenamiento se utilizará para mantener la pirita insaturada durante las precipitaciones más fuertes, evitando aumentar el contenido de humedad. Para esto, será necesario cubrir temporalmente el material con una lona durante eventos de lluvia intensa.

A partir de esta pila de almacenamiento, los relaves con pirita serán cargados en camiones, transportados, descargados, ubicados, nivelados y compactados en el depósito de pirita. Una descripción detallada de la estrategia y curvas de llenado se presenta en el plan de manejo de relaves numeral 3.6.2.3.4.

Las mismas consideraciones en términos de ubicación, teniendo varios frentes de descarga, mantendrán la pirita insaturada y con una compactación tan buena como sea posible, ayudará en términos de estabilidad y de infiltración.
Figura 3.388 Vista en planta del depósito de pirita
Fuente: Golder, 2019

- **Base de la berma**
 El depósito de pirita tendrá construida una base de la berma para mejorar la estabilidad. Estas bases de las bermas se construirán con material externo o con material proveniente de las excavaciones requeridas para la adecuación del área de la zona de manejo de relaves.

- **Manejo de aguas**
 1. **Drenaje basal y protección**
 El depósito de pirita será excavado de manera inclinada para generar una plataforma graduada en la parte inferior, en la cual puede ser implementado un drenaje basal para recoger la precipitación directa y la escorrentía de las laderas de la excavación descritos ampliamente en el numeral 3.6.2.3.5 en esta sección.

 Además, un sistema de revestimiento de geomembrana se colocará como una barrera directa para evitar infiltraciones a la fundación.

 El drenaje basal está conformado por grava de río con una envoltura de geotextiles y tiene un interior con una tubería corrugada HDPE en el centro. Como se mencionó anteriormente, el drenaje basal cruzará la parte inferior de la plataforma y continúa hasta que alcance el contacto de la parte inferior de la plataforma y talud, así
continuará hasta el talud cortado, cruzando las bancas de estabilidad, hasta que llega a la superficie de la fundación preparada, en donde continuará hasta el final de la elevación de la zona de manejo de relaves. El agua recolectada será finalmente bombeada hasta la PTARND1.

2. Bombeo

El sistema de bombeo consta de una bomba sumergible, ubicada dentro de la tubería HDPE corrugada sobre el drenaje basal, que extraerá el agua recogida en toda la zona de manejo de pirita. Esta agua proviene, principalmente, de la precipitación directa que estuvo en contacto con la pirita o de la escorrentía superficial de los taludes. El agua será bombeada hacia la planta de neutralización (PTARND1).

3. Manejo de aguas superficiales

El agua de escorrentía de la superficie de las pilas de relaves con pirita antes de la aplicación progresiva del encapsulamiento puede tener concentraciones elevadas de partículas de pirita en suspensión que se depositan en la laguna temporal para aguas de escorrentía situado aguas debajo de la base de la berma.

El detalle del manejo de aguas superficiales del depósito de pirita se describe ampliamente en el numeral 3.6.2.3.5 de esta sección.

- Encapsulamiento

El sistema de encapsulamiento que será implementado en el depósito de pirita, considera la colocación de una última capa de relaves que no generen ácidos. Luego, se ubicará una geomembrana como una barrera para la infiltración, así como para evitar la evaporotranspiración y la difusión de oxígeno. Un promedio de 10 m de relaves inertes serán ubicados en la parte superior de la geomembrana instalada sobre la pirita como una acción conservadora y de protección (Véase la Figura 3.389).

![Figura 3.389 Detalle del encapsulamiento del depósito de pirita](Fuente: Ausenco, 2018)
3.6.2.3.7 Volúmenes de material a disponer

En el numeral 3.6.2.3.4, se describen los volúmenes de material esteril resultante del proceso de explotación del yacimiento, y que serán dispuestos progresivamente en el depósito de relaves filtrados.

En este caso la procedencia de todos los materiales será subterránea y su disposición se realizará en el mismo depósito de relaves, cuya conformación evolucionará a lo largo de los 21 años de operación del Proyecto, tal como se ilustra y describe en los numerales 3.3.7.7 y 3.3.7.8.

3.6.2.3.8 Localización georreferenciada y mapas topográficos

En el Anexo_3_2_Deposito_relaves_filtrados_Diseño se ilustran las características y localización del Depósito de relaves filtrados.

3.6.2.3.9 Descripción detallada de las obras

La preparación del sitio incluye el retiro de árboles y material orgánico, limpieza y excavaciones, construcción de caminos de acceso y almacenamiento adecuado la capa de suelo orgánico (superior) para su uso futuro. Las profundidades estimadas para el material orgánico y materiales inadecuados se basan en la caracterización de la fundación realizada en el sitio de investigación geotécnica.

La capa de suelo superficial (suelo orgánico) necesita ser removida y acopiada o almacenada para ser usada en el cierre del TMF. De acuerdo con los criterios de diseño, es necesaria la remoción y corte de la vegetación y una remoción de 0,5 m (en promedio) de suelo superficial como parte de la preparación de la fundación para la construcción del TMF y los contrafuertes. El análisis de estabilidad indica que no es necesario remover coluvión (descrito en la cartografía geológica como depósito de vertiente), de acuerdo con las características geotécnicas encontradas durante las campañas de exploración y los supuestos en las propiedades geotécnicas de estos materiales, sin embargo, se recomienda la remoción de 1,0 m de coluvión con el fin de remover cualquier tipo de material inadecuado que pueden incluir zonas blandas saturadas, zonas altamente orgánicas, zonas sueltas y otros materiales potencialmente nocivos. En la Tabla 3.299, se muestran los volúmenes estimados de remoción del coluvión para cada el depósito de relaves y de sus dos contrafuertes.

El material extraído de la fundación se incluyó en la estimación del material a remover para la zona de manejo de relaves. A lo largo de la mayor parte del área, estas actividades dejarán una superficie compuesta por un lecho de roca en donde existe una red de drenaje natural.

Tabla 3.299 Preparación de la fundación- Espesores de coluvión a remover

<table>
<thead>
<tr>
<th>Estructura</th>
<th>Área (ha)</th>
<th>Espesor a remover (m)</th>
<th>Volumen (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Organico</td>
</tr>
<tr>
<td>Depósito de relaves filtrados (TMF)</td>
<td>1.640.000</td>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>Contrafuerte Norte</td>
<td>134.000</td>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>Contrafuerte Sur</td>
<td>27.300</td>
<td></td>
<td>0,5</td>
</tr>
</tbody>
</table>
Estructura | Área (ha) | Espesor a remover (m) | Volumen (m3) | Orgánico | Coluvial / de vertiente | Orgánico | Coluvial / de vertiente
--- | --- | --- | --- | --- | --- | --- | ---
Total | | | | 900.700 | 1.801.300 |
Fuente: Golder, 2019

3.6.2.3.10 Análisis de estabilidad global

Se realizaron una serie de análisis 2D para sustentar las suposiciones de diseño utilizadas para TMF, específicamente análisis de estabilidad y deformación se llevaron a cabo. Los siguientes análisis fueron realizados para cada uno de los depósitos:

- Susceptibilidad a la licuación de los suelos de cimentación en el área.
- Análisis de estabilidad de taludes en condiciones estáticas y pseudo-estáticas.
- Análisis de asentamientos inducidos por sismo.
- Dimensionamiento de los drenes.

Asimismo, se realizó un análisis de probabilidad de falla, el cual se presenta en el Anexo_3_9B_Anexo_geotecnico_probab_falla.

3.6.2.3.10.1 Parámetros de Resistencia

La estratigrafía usada para los análisis de estabilidad se obtuvo a partir de la información topográfica junto con la revisión de la información geotécnica y geológica descrita en Golder (2019c). La Tabla 3.300 resume las propiedades geotécnicas de las principales unidades de suelo y roca.

Tabla 3.300 Parámetros de Resistencia

<table>
<thead>
<tr>
<th>Material</th>
<th>γ (kN/m3)</th>
<th>c (kPa)</th>
<th>ϕ (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrafuerte</td>
<td>20,0</td>
<td>0,0</td>
<td>36,0</td>
</tr>
<tr>
<td>Relaves filtrados inertes (2)</td>
<td>19,5</td>
<td>6,0</td>
<td>36,0</td>
</tr>
<tr>
<td>Relaves con Pirita (1)</td>
<td>22,0</td>
<td>10,0</td>
<td>30,0</td>
</tr>
<tr>
<td>Coluvión (3)</td>
<td>20,0</td>
<td>15,0</td>
<td>22,0</td>
</tr>
<tr>
<td>Arcillolita Altamente Meteorizada</td>
<td>21,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arcillolita Meteorizada</td>
<td>21,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arenisca Altamente Meteorizada</td>
<td>24,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arenisca Meteorizada</td>
<td>24,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conglomerado</td>
<td>26,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Criterio Hoek-Brown

Notas:

1. Datos tomados de Ausenco (2019).
2. Ensayos de laboratorio Anddes.
3. Para los análisis pseudo-estáticos, la resistencia en reducida por un factor de 80%, tal como recomienda la metodología de (Hynes-Griffin & Franklin, 1984).

Fuente: Golder, 2019

3.6.2.3.10.2 Susceptibilidad a la Licuación de los suelos

La susceptibilidad a la licuefacción se analizó por medio la metodología presentada en Seed y otros (2003), los cuales propusieron una clasificación para evaluar la susceptibilidad a la licuación, en tres zonas de acuerdo con la carta de plasticidad y el
contenido de finos (FC). La figura muestra los resultados de los límites de Atterberg que cumplen el rango de contenido de finos e índices de plasticidad propuesto por los autores para la correcta aplicación del método.

Fuente: Golder, 2019

- Para este caso, 41 de los 50 ensayos coinciden con los criterios.
- De estos 41 ensayos solo uno se encuentra en la Zona A, lo que significa que solamente el 2% de las muestras de suelo son susceptibles a la licuación si el contenido de humedad es superior al 80% del límite líquido

3.6.2.3.10.3 Análisis de Estabilidad de Taludes

3.6.2.3.10.3.1 Métodos de Análisis

Los análisis de estabilidad, tanto estáticos como pseudo-estáticos, fueron completados para evaluar el desempeño físico de los contrafuertes, el depósito de pirita y el TMF. Los análisis de estabilidad se llevaron a cabo teniendo en cuenta:

- Los niveles freáticos encontrados durante la campaña de exploración.
- La teoría de equilibrio límite.
- El método de Spencer (1967) el cual es incorporado por el programa Slope/W, del paquete computacional Geostudio (2016).

3.6.2.3.10.3.1.1 Nivel Freático

Para la evaluación del nivel freático, se tuvieron en cuenta un total de 14 piezómetros tipo Casagrande; cinco para fines hidrogeológicos y nueve para fines geotécnicos. Los 14 piezómetros fueron diseñados para monitorear el nivel freático / piezométrico además de monitorear la calidad del agua. En la Tabla 3.301 se muestra el resumen de los niveles registrados.
Tabla 3.301 Niveles de agua en el área del TMF

<table>
<thead>
<tr>
<th>Perforación</th>
<th>Nivel Freático (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH_QUEUE18-01A (CAU-004)</td>
<td>4,7</td>
</tr>
<tr>
<td>DH_QUEUE18-01 (CAU-003)</td>
<td>5,1</td>
</tr>
<tr>
<td>DH_QUEUE18-02 (CAU-021)</td>
<td>43,4</td>
</tr>
<tr>
<td>DH_QUEUE18-09 (CAU-020)</td>
<td>6,2</td>
</tr>
<tr>
<td>DH_QUEUE18-09A (CAU-022)</td>
<td>2,3</td>
</tr>
<tr>
<td>DH_QUEUE18-03 (CAU-006)</td>
<td>44,9</td>
</tr>
<tr>
<td>DH_QUEUE18-04 (CAU-008)</td>
<td>12,8</td>
</tr>
<tr>
<td>DH_QUEUE18-05 (CAU-002)</td>
<td>7,5</td>
</tr>
<tr>
<td>DH_QUEUE18-06 (CAU-005)</td>
<td>8,2</td>
</tr>
<tr>
<td>DH_QUEUE18-07 (CAU-011)</td>
<td>3,0</td>
</tr>
<tr>
<td>DH_QUEUE18-08 (CAU-017)</td>
<td>1,5</td>
</tr>
<tr>
<td>DH_QUEUE18-11 (CAU-018)</td>
<td>9,5</td>
</tr>
<tr>
<td>DH_QUEUE18-12 (CAU-015)</td>
<td>9,0</td>
</tr>
<tr>
<td>DH_QUEUE18-14 (CAU-016)</td>
<td>10,7</td>
</tr>
<tr>
<td>DH_QUEUE18-15 (CAU-012)</td>
<td>6,9</td>
</tr>
<tr>
<td>DH_QUEUE18-18 (CAU-007)</td>
<td>5,5</td>
</tr>
<tr>
<td>DH_QUEUE18-19 (CAU-009)</td>
<td>3,3</td>
</tr>
<tr>
<td>Promedio</td>
<td>6,4</td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

Los criterios de selección de los niveles freáticos para cada una de las estructuras fueron los siguientes:

- Usar los niveles freáticos reportados en sondeos que se encuentren dentro o cerca de las inmediaciones de las instalaciones del TMF.
- De no contar con ningún sondeo se usa el nivel freático promedio.

3.6.2.3.10.3.1.2 Carga Sísmica

Ausenco (2018b) presentó un análisis de riesgo sísmico con recomendaciones para el sismo de diseño para el Proyecto Minera de Cobre Quebradona (véase el Anexo 3.19.Analisis_riesgo_sismico):

- El sismo base de operaciones (OBE), correspondiente a un período de retorno de 500 años, produce una aceleración pico (PGA) de 0,33 g. El OBE es considerado como el sismo de diseño para los contrafuertes y el depósito de pirita.
- El sismo de diseño, correspondiente a un período de retorno de 1.000 años (definido por la clasificación de riesgo realizada), produce una aceleración pico (PGA) de 0,39 g. Este sismo es considerado como el sismo diseño del TMF.
- El coeficiente sísmico horizontal (kh) aplicado en los análisis se basa en Hynes-Griffin & Franklin, 1984 y es igual al 50% del PGA.

3.6.2.3.10.3.1.3 Geometría de las superficies de falla

Para los contrafuertes, depósito de pirita y el TMF, las superficies de falla que pasen por el material de relleno y el suelo de cimentación fueron seleccionados junto con
superficies que involucran grandes volúmenes de material que intersectan la cresta del relleno y la base de la cimentación. Las superficies de falla superficiales no se consideraron como mecanismos de falla creíbles que pudieran suponer un riesgo para la estabilidad general. Se consideraron superficies de falla circulares con una profundidad de al menos el 20% de la altura total de la sección analizada.

3.6.2.3.10.3.1.4 Casos de Análisis

- **Caso Final Construcción:** El término “Final de Construcción” hace referencia a las condiciones de carga a la cual estará sometida la estructura (contrafuertes), no hace referencia al método constructivo (si se construye en una o varias etapas). El término “Final de Construcción” se usa para el caso de análisis en donde la estructura ha sido terminada de construir y no se ha iniciado ningún proceso de colocación de relaves.

- **Caso Final Temporal:** El término “Final Temporal” hace referencia a las condiciones de carga a la cual estará sometida la estructura (depósito de pirita), no hace referencia al método constructivo (si se construye en una o varias etapas). El “Termino Temporal” se usa para el caso de análisis en donde la estructura ha sido terminada de construir, pero esta será cubierta por otra estructura.

- **Caso Condición de Cierre:** Para este caso, se analiza el caso crítico, para el TMF sería la condición final con un nivel de almacenamiento de relaves máximo (para el año 21 de operación y 22 LoM).

3.6.2.3.10.3.1.5 Secciones de Análisis

A continuación, se realiza la descripción de las secciones utilizadas para el análisis de estabilidad. La localización de las secciones se muestra en la Figura 3.391 para los contrafuertes y el TMF, y la Figura 3.392 para el depósito de pirita.
Figura 3.391 Ubicación de las secciones de análisis para el depósito de relaves filtrados
Fuente: Golder, 2019
Figura 3.392 Ubicación de las secciones de análisis para el depósito de pirita
Fuente: Golder, 2019

3.6.2.3.10.3.1.5.1 Sección de análisis contrafuertes TMF

A continuación, se presentan las secciones de análisis para los contrafuertes (sección A-A, sección B-B y Sección C-C) y para el depósito de relaves filtrados (TMF).

Sección A-A

El espesor de coluvión oscila entre los 8 m y 25 m seguido por una serie de intercalaciones de estratos de arcillolita y areniscas con diferentes niveles de meteorización, también se encuentran unos lentes de conglomerado de 2 m a 3 m de espesor en la parte superior. El primer estrato de arcillolita se encuentra altamente meteorizado seguido por un estrato de arenisca de meteorización media a alta, precedido por un estrato de arcillolita de meteorización media para finalmente encontrar arcillolita de resistencia media. De acuerdo con los sondeos cercanos, el nivel freático varía entre los 6 m a 8 m.
Sección B-B

El espesor de coluvión oscila entre los 10 m y 20 m seguido por una serie de intercalaciones de estratos de arcillolita y areniscas con diferentes niveles de meteorización seguidos de conglomerado. En la parte superior se encuentran intercalaciones de arenisca, conglomerados y limolitas. El primer estrato de arcillolita se encuentra altamente meteorizado seguido por un estrato muy fino de arenisca de meteorización media a alta, precedido por un estrato de conglomerado de meteorización baja para finalmente encontrar arcillolita de resistencia media (se modelo como material impenetrable). El nivel freático se encuentra a 6 m de profundidad del nivel de fundación.

Sección C-C

El espesor de coluvión oscila entre los 10 m y 30 m seguido por una serie de intercalaciones de estratos de arcillolita y areniscas con diferentes niveles de meteorización seguidos de conglomerado. En la parte superior se encuentran intercalaciones de arenisca, conglomerados y limolitas. El primero estrato de arcillolita se encuentra altamente meteorizado seguido por un estrato muy fino de arenisca de meteorización media a alta, precedido por un estrato de conglomerado de meteorización baja para finalmente encontrar arcillolita de resistencia media (se modelo como material impenetrable). De acuerdo con los sondeos cercanos el nivel freático tiene una profundidad de 9,5 m (sondeo DH-QUE-18-11) en la parte superior, 3 m en la parte media (sondeo DH-QUE-18-07) y entre 1,5 m a 2,3 m en la parte baja (sondeo DH-QUE-18-08 y 09A).
3.6.2.3.10.3.1.5.2 Sección típica bancos del TMF

Para verificar su estabilidad, se analizó una sección típica de uno de los bancos del TMF. La geometría de los bancos es la siguiente:

- Altura de 20 m.
- Pendiente 3H:1V.
- Berma de 10 m entre bancos.

3.6.2.3.10.3.1.5.3 Sección de análisis Depósito de pirita

Para los modelos de estabilidad de la pirita, se supuso como condición crítica la altura que tendrá el depósito de pirita antes que el depósito de relaves ejerza alguna influencia sobre los contrafuertes. De acuerdo con el plan de manejo de relaves corresponde al año 9 LOM.

Sección D-D

El espesor de coluvión oscila entre los 9 m y 16 m seguido por una serie de intercalaciones de estratos de arcillolita y areniscas con diferentes niveles de meteorización. El primer estrato de arcillolita se encuentra altamente meteorizado.
seguido por un estrato de arenisca de meteorización media a alta, precedido por un estrato de arcillolita de meteorización media para finalmente encontrar arenisca de resistencia media. El nivel freático se encuentra a 6 m de profundidad del nivel de fundación.

![Figura 3.397 Secciones estabilidad Depósito Pirita - Sección D-D](image)

Sección E-E

El espesor de coluvión oscila entre los 8 m y 14 m seguido por una serie de intercalaciones de arenisca, arcillolitas y limolitas. El estrato de arenisca que subyace al coluvión presenta un nivel de meteorización alto, seguido por un estrato de arcillolita medianamente meteorizada, limolita de muy alta a alta meteorización, arenisca de resistencia media. El nivel freático se encuentra a 6 m de profundidad del nivel de fundación.

![Figura 3.398 Secciones estabilidad Depósito Pirita - Sección E-E](image)

3.6.2.3.10.3.1.6 Resultados de sección de análisis

A continuación, se presenta un resumen de los resultados del análisis de estabilidad tomado de los diseños del depósito de relaves filtrados (TMF), elaborado por Golder (véase el Anexo_3_20_Deposito_relaves_filtrados_Diseño).

Análisis de Estabilidad Contrafuerte Norte

A continuación, se presentan los casos de análisis para el Contrafuerte Norte y el resumen de los resultados.
Tabla 3.302 Casos analizados para el Contrafuerte Norte del TMF

<table>
<thead>
<tr>
<th>Sección</th>
<th>Caso de análisis</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sección A</td>
<td>Final de construcción</td>
<td>Se verifica estabilidad estática y pseudoestática del contrafuerte finalizada su construcción. Para la verificación pseudoestática se usa el sismo OBE (kh = 0,165)</td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

Tabla 3.303 Resultados del análisis de estabilidad para el Contrafuerte Norte

<table>
<thead>
<tr>
<th>Caso de Carga</th>
<th>Factor de seguridad</th>
<th>Caso aguas abajo – Sección A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Criterios mínimos de diseño</td>
<td></td>
</tr>
<tr>
<td>Carga estática</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final de Construcción</td>
<td>1,5</td>
<td>1,79</td>
</tr>
<tr>
<td>Carga pseudoestática</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final de Construcción</td>
<td>1</td>
<td>1,13</td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

El Contrafuerte Norte cumple con los criterios de estabilidad, para condiciones estáticas y pseudo-estáticas.

Análisis de Estabilidad Contrafuerte Sur

A continuación, se presentan los casos de análisis para el Contrafuerte Sur y el resumen de los resultados.

Tabla 3.304 Casos Analizados para el Contrafuerte Sur

<table>
<thead>
<tr>
<th>Sección</th>
<th>Caso de análisis</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sección C</td>
<td>Fin de la construcción</td>
<td>Se verifica la estabilidad estática y pseudoestática del contrafuerte finalizada su construcción. Para la verificación pseudoestática se usa el sismo OBE (kh = 0,165)</td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

Tabla 3.305 Resultados del Análisis de Estabilidad para el Contrafuerte Sur

<table>
<thead>
<tr>
<th>Caso de carga</th>
<th>Factor de seguridad</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Criterios mínimos de diseño</td>
<td>Caso aguas abajo – Sección C</td>
</tr>
<tr>
<td>Carga estática</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final de Construcción</td>
<td>1,5</td>
<td>1,73</td>
</tr>
<tr>
<td>Carga pseudoestática</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final de Construcción</td>
<td>1</td>
<td>1,08</td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

El Contrafuerte Sur cumple con los criterios de estabilidad, para condiciones estáticas y pseudo-estáticas.

Depósito de relaves (TMF)

A continuación, se presentan los resultados de los análisis de estabilidad para la condición final (Año 21 de operación y LoM 22) del depósito de relaves.

Las tablas siguientes presentan los casos de análisis para el TMF y para el resumen de los resultados.
Tabla 3.306 Casos Analizados para el TMF

<table>
<thead>
<tr>
<th>Sección</th>
<th>Caso de análisis</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sección A</td>
<td>Condición Final (Año 21 de operación)</td>
<td>Se verifica la estabilidad estática y pseudoestática del TMF finalizada su construcción.</td>
</tr>
<tr>
<td>Sección B</td>
<td>Caso de Cierre</td>
<td>Para la verificación pseudoestática se usa el sismo cuya probabilidad de excedencia es de 1/1000 (0,39 g), para un $kh = 0,195$ g.</td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

Tabla 3.307 Resultados del Análisis de Estabilidad para el TMF

<table>
<thead>
<tr>
<th>Caso de carga</th>
<th>Factor de seguridad</th>
<th>Criterios mínimos de diseño</th>
<th>Caso aguas abajo</th>
<th>Sección A</th>
<th>Sección B</th>
<th>Sección C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga estática Condición de Cierre</td>
<td>Sección A</td>
<td>2,1</td>
<td>2,31</td>
<td>2,06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carga pseudoestática Condición de Cierre</td>
<td>Sección A</td>
<td>1,11</td>
<td>1,21</td>
<td>1,07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

El TMF cumple con los criterios de estabilidad, para condiciones estáticas y pseudo-estáticas.

Bancos TMF

A continuación, se presentan los resultados de los análisis de estabilidad para los bancos de depósito de relaves.

La Tabla 3.308 presenta los casos de análisis para los bancos y la Tabla 3.309 muestra el resumen de los resultados

Tabla 3.308 Casos analizados para los bancos del TMF

<table>
<thead>
<tr>
<th>Sección</th>
<th>Caso de Análisis</th>
<th>Descripción</th>
</tr>
</thead>
</table>
| Sección Típica Bancos | Sección típica de los bancos del TMF | •En este análisis se verifica la estabilidad estática y pseudoestática de los bancos del TMF.
•Para la verificación pseudoestática se usa el sismo cuya probabilidad de excedencia es de 1/1000 (0,39 g), para un $kh = 0,195$ g. |

Fuente: Golder, 2019

Tabla 3.309 Resultados del análisis de estabilidad para los bancos del TMF

<table>
<thead>
<tr>
<th>Caso de Carga</th>
<th>Factor de Seguridad</th>
<th>Criterios Mínimos de Diseño</th>
<th>Sección Típica Bancos TMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga estática Condición de Cierre</td>
<td>Sección A</td>
<td>2,73</td>
<td></td>
</tr>
<tr>
<td>Carga pseudoestática Condición de Cierre</td>
<td>Sección A</td>
<td>1,11</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

Los bancos del TMF cumplen con los criterios de estabilidad, para condiciones estáticas y pseudo-estáticas.
Depósito de Pirita

Las tablas siguientes presentan los casos de análisis para los contrafuertes del depósito de pirita, así como el resumen de los resultados para los contrafuertes y para el depósito de pirita.

Tabla 3.310 Casos analizados para los contrafuertes del depósito de pirita

<table>
<thead>
<tr>
<th>Sección</th>
<th>Caso de análisis</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sección D</td>
<td>Fin de la construcción/</td>
<td>En este análisis se verifica la estabilidad estática y pseudoestática.</td>
</tr>
<tr>
<td></td>
<td>Temporal</td>
<td>Análisis de estabilidad de los contrafuertes del depósito de pirita</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Para la verificación pseudoestática se usa el sismo OBE para</td>
</tr>
<tr>
<td></td>
<td></td>
<td>la estimación del $kh = 0,165g$.</td>
</tr>
<tr>
<td>Sección E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

Tabla 3.311 Resultados del análisis de estabilidad para los contrafuertes del depósito de pirita

<table>
<thead>
<tr>
<th>Caso de carga</th>
<th>Factor de seguridad</th>
<th>Caso aguas abajo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Criterios mínimos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>de diseño</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sección D</td>
<td>Sección E</td>
</tr>
<tr>
<td>Carga estática</td>
<td>1,3</td>
<td>1,5</td>
</tr>
<tr>
<td>Final de Construcción</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carga pseudoestática</td>
<td>1</td>
<td>1,01</td>
</tr>
<tr>
<td>Final de Construcción</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

Tabla 3.312 Resultados del análisis de estabilidad para el depósito de pirita

<table>
<thead>
<tr>
<th>Caso de carga</th>
<th>Factor de seguridad</th>
<th>Caso aguas abajo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Criterios mínimos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>de diseño</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sección D</td>
<td>Sección E</td>
</tr>
<tr>
<td>Carga estática</td>
<td>1,3</td>
<td>1,64</td>
</tr>
<tr>
<td>Temporal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carga pseudoestática</td>
<td>1</td>
<td>1,03</td>
</tr>
<tr>
<td>Temporal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

Los contrafuertes y el depósito de pirita cumplen con los criterios de estabilidad, para condiciones estáticas y pseudo-estáticas.

1. Asentamientos Inducidos por Sismo

El procedimiento de regresión de Swaisgood (2013) para presas sometidas a carga sísmica se empleó para estimar los asentamientos inducidos por sismo. El método no es directamente aplicable a grandes rellenos de tierra o roca, pero proporciona una estimación aproximada del nivel de deformación. El método se basa en una regresión de casos reportados.

Para:
- un valor de PGA de 0,39 g.
- una magnitud de Momento (Ms) de 8,0.
• una altura de presa de 106 m (DH).
• un espesor de suelo sobre roca de 30 m (AT).

Se estimó un valor promedio del porcentaje de deformación del suelo de cimentación y una columna de relleno. Bajo estas condiciones el asentamiento medio es 0,29%, que corresponde aproximadamente a 40 cm.

Los resultados indican que cumplen los criterios de aceptación de deformación bajo excitación sísmica. Los asentamientos inducidos son inferiores a 1,0 m (menos del 1% de la altura del TMF).

3.6.2.3.11 Parámetros de diseño y planos

3.6.2.3.11.1 Clasificación del TMF - Guías para la Clasificación de Riesgo

Se uso la metodología WSRHC propuesta por Hawley (2017) para determinar el grado de estabilidad y el riesgo de inestabilidad del TMF, junto con los Lineamientos de Seguridad para Presas de Canadá (CDA, 2013) para determinar, principalmente, el sismo de diseño del TMF.

Para la clasificación de riesgo del depósito de relaves filtrados (TMF) del Proyecto Minera de Cobre Quebradona se realizó la suposición que el TMF tiene características de botadero para aplicar la metodología WSRHC sobre la metodología de la CDA (2013) que está desarrollada principalmente para presas con un embalse asociado, por las siguientes razones:
• El TMF es un acopio de material seco filtrado (o dry stack por su nombre en inglés).
- El TMF no almacena materiales con bajo contenido de sólidos
- El TMF no tiene un embalse de agua en ninguna de sus etapas constructivas.
- El TMF no tiene una laguna de agua durante la operación del Proyecto.

Por las razones descritas anteriormente, el TMF de Quebradona tiene características similares más a un botadero que a un depósito de relaves convencional en donde el depósito consiste de una presa de material de préstamo o material grueso proveniente de los relaves, que almacena en su cubeta materiales con un contenido de sólidos muy bajo (alto contenido de agua) y una piscina o laguna de agua.

Adicionalmente, el TMF de Quebradona tendrá un comportamiento dilatante debido a que los relaves filtrados serán compactados durante su colocación en el TMF, a diferencia, de los botaderos de estéril convencionales en donde el material es volteado pero no es compactado.

3.6.2.3.11.1.1 Método WSRHC

La metodología WSRHC requiere la evaluación de 22 factores claves o atributos que afectan la estabilidad (sismicidad, precipitación, inclinación del terreno, tipo de suelo cimentación, espesor suelo cimentación, potencial de licuación, tipo de roca, nivel freático, altura, ángulo y volumen del botadero, método de construcción, tasa de construcción, entre otros). Estos factores fueron organizados en 7 grupos y cada uno de los factores se le asignan índices numéricos para finalmente sumarlos y obtener grado de estabilidad del botadero (WSR en sus siglas en inglés). El máximo valor WSR posible es 100, con una calificación más alta indica una configuración más estable.

En la Tabla 3.313 se presenta el resumen de grado de estabilidad y riesgo de Inestabilidad para este sistema.

<table>
<thead>
<tr>
<th>WSR</th>
<th>WHC</th>
<th>Riesgo de Inestabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-100</td>
<td>I</td>
<td>Riesgo muy Bajo</td>
</tr>
<tr>
<td>60-80</td>
<td>II</td>
<td>Riesgo Bajo</td>
</tr>
<tr>
<td>40-60</td>
<td>III</td>
<td>Riesgo Moderado</td>
</tr>
<tr>
<td>20-40</td>
<td>IV</td>
<td>Riesgo Alto</td>
</tr>
<tr>
<td><20</td>
<td>V</td>
<td>Riesgo muy Alto</td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

Evaluados los 22 factores para el TMF, se obtuvo un WSR de 42, por lo tanto, el TMF clasifica como con riesgo moderado de inestabilidad.

3.6.2.3.11.1.2 Clasificación del TMF – Guía Asociación de presas de Canadá (CDA)

La guía de la Asociación de Presas de Canadá para la clasificación de presas se basa en la consecuencia de la falla, en la población en riesgo y pérdidas potenciales, incluyendo pérdidas humanas, pérdida de valores culturales y ambientales, y pérdida de bienes económicos tal como se presenta en la Tabla 3.314.

<table>
<thead>
<tr>
<th>Clasificación</th>
<th>Población en Aumento de Perdidas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estudio de Impacto Ambiental</td>
</tr>
<tr>
<td></td>
<td>Noviembre, 2019</td>
</tr>
</tbody>
</table>
Notas:

1. **Definición de población en riesgo:**
 - **Ninguna**: No se ha identificado población en riesgo, por lo que no existe posibilidad de pérdida de vida excepto mediante accidente no predecible.
 - **Temporales**: Las personas permanecen temporalmente en la zona de inundación de rotura de presa (Ej. uso temporal de cabaña, pasando por rutas de transporte, participando en actividades recreativas).
 - **Permanentes**: La población en riesgo se ubica de manera habitual en la zona de inundación de rotura de presa (Ej. Como residentes permanentes); se proponen tres clases de consecuencia (alta, muy alta, extrema) para permitir realizar estimados más detallados de potenciales pérdidas de vida (para contribuir en la toma de decisiones si el análisis adecuado se lleva a cabo).

2. **Consecuencias de pérdidas de vida:**
 - **No se especifica**: El nivel adecuado de seguridad necesario en una presa donde las personas se encuentran en riesgo de manera temporal depende del número de personas, el tiempo de exposición, el tipo de actividad y otras condiciones. Una clase más elevada podría ser adecuada según los requerimientos. No obstante, el requerimiento de inundación de diseño, por ejemplo, podría no ser mayor si la población temporal no estuviese presente durante la temporada de inundación.

Fuente: Golder, 2019

Con el fin de unificar ambos sistemas se presenta la Tabla 3.315:

<table>
<thead>
<tr>
<th>de riesgo presa</th>
<th>riesgo1</th>
<th>Pérdidas Humanas2</th>
<th>Valores culturales y ambientales</th>
<th>Infraestructura y economía</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baja</td>
<td>Ninguna</td>
<td>0</td>
<td>Pérdida mínima a corto plazo.</td>
<td>Pocas pérdidas económicas; el área cuenta con una infraestructura o servicios limitados.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ninguna pérdida a largo plazo.</td>
<td></td>
</tr>
<tr>
<td>Significativa</td>
<td>Solo temporal</td>
<td>No especifica</td>
<td>Ninguna pérdida ni deterioro significativo del hábitat de los peces y de la vida silvestre.</td>
<td>Pérdidas de las instalaciones recreacionales, lugares temporales de trabajo y rutas de transporte poco utilizadas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pérdida sólo del hábitat marginal.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Restauración o indemnización en especie, altamente probable.</td>
<td></td>
</tr>
<tr>
<td>Alta</td>
<td>Permanente</td>
<td>10 o menos</td>
<td>Pérdida significativa o deterioro del hábitat importante de peces o vida silvestre.</td>
<td>Grandes pérdidas económicas que afectan la infraestructura, el transporte público y las instalaciones comerciales.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Restauración o compensación en especie altamente posible.</td>
<td></td>
</tr>
<tr>
<td>Muy alta</td>
<td>Permanente</td>
<td>100 o menos</td>
<td>Pérdida significativa o deterioro del hábitat crítico de peces o vida silvestre.</td>
<td>Grandes pérdidas económicas que afectan la infraestructura o servicios importantes (por ejemplo, la carretera, instalaciones industriales, instalaciones de almacenamiento para sustancias peligrosas).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Restauración o compensación en especie posible pero poco práctico.</td>
<td></td>
</tr>
<tr>
<td>Extrema</td>
<td>Permanente</td>
<td>Mas de 100</td>
<td>Pérdida principal de hábitat crítico de peces o vida silvestre.</td>
<td>Pérdidas extremas que afectan la infraestructura o servicios críticos (por ejemplo, complejo industrial hospitalario principal, importantes instalaciones de almacenamiento para sustancias peligrosas).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Restauración o compensación en especie imposible.</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 3.315 Resumen grado de estabilidad y riesgo de inestabilidad

<table>
<thead>
<tr>
<th>Riesgo Presa CDA</th>
<th>WHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baja</td>
<td>I o II</td>
</tr>
<tr>
<td>Significativa</td>
<td>III</td>
</tr>
<tr>
<td>Alta</td>
<td>IV</td>
</tr>
<tr>
<td>Muy Alta</td>
<td>V</td>
</tr>
<tr>
<td>Extrema</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

De acuerdo con la Tabla 3.315 y el resultado WSR de 42 (WHC=III), se considera que los botaderos se encuentran en la categoría de falla “Significativa”. Para esta clasificación, el TMF debe ser diseñado usando las condiciones presentadas en la Tabla 3.316.

Tabla 3.316 Avenida de diseño y Movimiento sísmico sugeridos (CDA, 2013)

<table>
<thead>
<tr>
<th>Clase de Presa</th>
<th>Probabilidad de Excedencia Anual (AEP)</th>
<th>Probabilidad de Excedencia Anual – Sismo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baja</td>
<td>Probabilidad de Excedencia Anual – Inundaciones: 1/100</td>
<td>Probabilidad de Excedencia Anual – Sismo: 1/100</td>
</tr>
<tr>
<td>Significativa</td>
<td>Entre 1/100 y 1/1.000</td>
<td>1/1.000</td>
</tr>
<tr>
<td>Alta</td>
<td>1/3 entre 1/1.000 y PMF</td>
<td>1/2.475</td>
</tr>
<tr>
<td>Muy Alta</td>
<td>2/3 entre 1/1.000 y PMF</td>
<td>1/2 entre 1/2.475 (Nota 6) y 1/10.000 o MCE</td>
</tr>
<tr>
<td>Extrema</td>
<td>Creciente máxima probable (CMP)</td>
<td>1/10.000 o MCE</td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

3.6.2.3.11.2 Condiciones del sitio

3.6.2.3.11.2.1 Topografía

El área de estudio tiene tres características geomorfológicas fácilmente distinguibles, como se muestra en la siguiente figura.
Figura 3.400 Rasgos morfológicos que enmarcan el área de estudio
Fuente: Golder, 2019

Hacia el suroeste se encuentra una extensa meseta con elevaciones que oscilan entre 1.900 msnm. y 2.300 msnm., conformado por cerros y lomas, seccionados por quebradas fluviales, con flancos de pendiente suave a moderada, configuradas en suelos residuales, depósitos coluviales y aluviales y afloramientos rocosos aislados; con presencia de vegetación antrópica producto de la actividad agrícola y ganadera. Hacia el noreste, presenta una extensa pendiente suave a moderada que culmina en el río Cauca, con pendientes generales de 10° a 13° y localmente hasta 25°, seccionados por corrientes incipientes. Esta morfología se configura en depósitos coluviales-aluviales con presencia de vegetación antrópica.

Entre la meseta y la ladera suave a moderada, hay una pendiente pronunciada, con una pendiente ascendente hasta los 1.000 m de altura entre la pata y la cresta del talud, con pendientes de hasta 45° seccionadas por pequeños arroyos que desaparecen durante la estación seca. Esta morfología está configurada en afloramientos de roca volcánica-clástica, con depósitos coluviales en la pata del talud. En general, presenta vegetación natural arbustiva.

3.6.2.3.11.2.2 Generalidades de la climatología del área

Los datos meteorológicos se presentan en la Tabla 3.317. Los valores en la tabla son para el área del TMF y se consideran adecuados para proporcionar una caracterización meteorológica general del área del TMF.

Tabla 3.317 Datos Meteorológicos para el Proyecto

<table>
<thead>
<tr>
<th>Item</th>
<th>Unidades</th>
<th>Valor</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevación geográfica</td>
<td>msnm</td>
<td>800 -1.000</td>
<td>(Golder, 2019b)</td>
</tr>
<tr>
<td>Humedad relativa anual</td>
<td>%</td>
<td>86,0</td>
<td>Ausenco (2018a)</td>
</tr>
</tbody>
</table>
3.6.2.3.11.2.3 Geología

La estratigrafía regional está compuesta por unidades intrusivas, metamórficas, sedimentarias y volcanoclásticas, con edades desde el cretáceo hasta el cuaternario, En la base, una se presenta una extensa secuencia de rocas metamórficas del Complejo Arquia de la Edad Cretácica; seguido por rocas ígneas y sedimentarias de la Formación Quebrada Grande del Cretácico temprano, secuencia litológica que forma el basamento de la cuenca Amagá-Cauca. Recubriendo estas formaciones se encuentran las secuencias sedimentarias de la Formación Amagá y la Formación volcanica de Combia. Estas secuencias han sido cortadas por cuerpos intrusivos que conforman la Reserva de Támesis del Mioceno Tardío. En ambos flancos del Río Cauca, existen extensos depósitos coluviales y aluviales que cubren las Unidades litológicas descritas.

Las principales características estructurales de carácter regional están formadas por los sistemas de fallas de Romeral y Mistrato con buzamiento NNO-SSE que se proyectan al Este y Oeste del área del estudio y dan forma a los bordes de la Cuenca Amagá.

3.6.2.3.11.2.4 Condiciones Geotécnicas -Suelos

Con la información primaria obtenida de las calicatas y perforaciones, en la Tabla 3.318 se muestra un resumen del depósito de vertiente presente en la zona del TMF.

<table>
<thead>
<tr>
<th>Capa</th>
<th>Descripción</th>
<th>Espesor Promedio (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coluvión /</td>
<td>• Esta unidad generalmente clasifica como Arena Limosa (SM) o Limo de baja</td>
<td>19</td>
</tr>
<tr>
<td>de vertiente</td>
<td>plasticidad (ML).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Esta unidad tiene un contenido de promedio de 10% de Grava, 46 % de</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arena y 44 % de finos, El Índice de plasticidad promedio (IP) es 18%.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Número de Golpes SPT promedio N₁(60) de 26.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Velocidades de onda primaria (Vp) y de corte (Vs) promedio de 1.500 m/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y 277 m/s, respectivamente.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Relación de vacíos (e) promedio de 0.80, índice de compresión (Cc) 0.18,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>índice de recompresión (Cr) 0.055 y coeficiente de sobreconsolidación de 4.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Los parámetros promedio de resistencia al corte drenados son: c = 15 kPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y φ' =22°</td>
<td></td>
</tr>
<tr>
<td>Fuente:</td>
<td>Golder, 2019</td>
<td></td>
</tr>
</tbody>
</table>

3.6.2.3.11.2.5 Peligro Sísmico

Ausenco (2018b) presentó un análisis para evaluar el peligro sísmico específico y las configuraciones tectónicas que rigen la ubicación del TMF Quebradona, evaluando las posibles fuentes sismogénicas y caracterizando su actividad.
En este estudio se consideraron todos los posibles eventos sísmicos registrados y disponibles para estimar el movimiento del suelo junto con su probabilidad de ocurrencia asociada, con el propósito de evaluar el nivel de movimiento sísmico de diseño del suelo para las estructuras.

Las aceleraciones espectrales que se reportan se obtuvieron asumiendo una velocidad de onda de corte $V_{S30} = 760$ m/s. En las Tabla 3.319 y Tabla 3.320 se encuentran los resultados obtenidos de los análisis de respuesta sísmica mediante los métodos probabilístico y determinístico, respectivamente.

Tabla 3.319 Aceleración Pico del terreno TMF Quebradona (PGA) obtenidas Análisis Probabilístico

<table>
<thead>
<tr>
<th>Período de Retorno (años)</th>
<th>Probabilidad de Excedencia Anual (%)</th>
<th>Aceleración máxima del terreno (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.0</td>
<td>0.17</td>
</tr>
<tr>
<td>475</td>
<td>0.2</td>
<td>0.31</td>
</tr>
<tr>
<td>1,000</td>
<td>0.1</td>
<td>0.39</td>
</tr>
<tr>
<td>2,475</td>
<td>0.04</td>
<td>0.53</td>
</tr>
<tr>
<td>5,000</td>
<td>0.02</td>
<td>0.64</td>
</tr>
<tr>
<td>10,000</td>
<td>0.01</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

Tabla 3.320 Resultados análisis Determinístico y Terremoto Máximo Creíble (MCE)

<table>
<thead>
<tr>
<th>Mecanismo Sísmico</th>
<th>Distancia Focal (km)</th>
<th>Profundidad Hipocentro (km)</th>
<th>Magnitud Máxima (Mw)</th>
<th>PGA P(0.50) (g)</th>
<th>PGA P(0.84) (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placa del Caribe (F1)</td>
<td>40</td>
<td>39</td>
<td>8</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>Falla Romeral</td>
<td>20</td>
<td>17</td>
<td>7.6</td>
<td>0.24</td>
<td>0.43</td>
</tr>
<tr>
<td>Placa superior de Subducción</td>
<td>116</td>
<td>100</td>
<td>7</td>
<td>0.15</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

Figura 3.401 Sección transversal esquemática que ilustra las principales características tectónicas y los hipocentros históricos de los eventos sísmicos

Fuente: Ausenco, 2018
Figura 3.402 Eventos Históricos que rodean el área del proyecto dentro de un radio de 500 km
Fuente: Ausenco, 2018
3.6.2.3.11.3 Características de diseño del TMF

A continuación, se describen aspectos del diseño de los contrafuertes del depósito de relaves filtrados (véase también el numeral 3.6.2.3.4.) y del depósito de pirita.

3.6.2.3.11.3.1 Contrafuertes

Los Contrafuertes Norte y Sur se construirán en la sección inferior de los predios San Antonio-La Mancha y Peñalinda-Candelaria, respectivamente. Estos contrafuertes se construirán con el material de préstamo o material de reutilización provenientes del proceso de preparación de la fundación, la excavación en los límites de la huella del TMF y la planta de beneficio junto con el material de préstamo proveniente de las excavaciones de los túneles de acceso a la mina y/o canteras externas. De acuerdo con el plan de manejo de relaves (Golder, 2019b), el contrafuerte sur deberá ser construido durante la etapa de construcción del proyecto. Durante el primer año de operación se deberá construir el contrafuerte 2 del depósito de pirita.

3.6.2.3.11.3.2 Contrafuerte Norte

El Contrafuerte Norte propuesto tendrá un ancho de cresta de 15 m y una altura de 42 m, alcanzando una elevación máxima de 838 m s. n. m. La pendiente de inclinación de los taludes aguas arriba y abajo será de 3H:1V. Tendrá un volumen aproximado de 1,41 Mm3 con un área en planta de 13,4 ha. La configuración final del contrafuerte y la sección tipica se muestran en las siguiente figura.

![Figura 3.403 Contrafuerte Norte – Vista en Planta](image-url)

Fuente: Golder, 2019
3.6.2.3.11.3.3 Contrafuerte Sur

El Contrafuerte Sur propuesto tendrá un ancho de cresta de 15 m y una altura de 22 m, alcanzando una elevación máxima de 842 m s. n. m. La pendiente de inclinación de los taludes aguas arriba y abajo será de 3H:1V. Tendrá un volumen aproximado de 0,148 Mm3 con un área en planta de 2.66 ha. La configuración final del contrafuerte y la sección típica se muestran en las siguiente figura.

![Contrafuerte Sur - Vista en Planta](image)

Figura 3.404 Contrafuerte Sur – Vista en Planta
Fuente: Golder, 2019

3.6.2.3.11.4 Depósito de Pirita

Los contrafuertes se construirán con una pendiente aguas arriba de 2H:1V, para el contrafuerte 1 del depósito de pirita y 2.5H:1V para el contrafuerte 2 del depósito de pirita. Los taludes aguas abajo serán de 2H:1V. Los contrafuertes de pirita serán construidos a partir del material de préstamo de la mina y/o externo o material proveniente del proceso de preparación de la fundación en los límites de la huella del TMF. La pirita se coloca en un solo deposito; se priorizó la disposición en el depósito de pirita ubicado en La Mancha debido a su cercanía al apilamiento de pirita con el objetivo de reducir el Capex. Debido al alto volumen de pirita, solo es posible colocar pirita en la zona norte del depósito durante el primero año de operación. La Pirita se coloca toda la extensión del depósito, en los predios de San Antonio y Peñalinda.
El depósito de Pirita se construirá con una pendiente de 3H:1V y tendrá un volumen de almacenamiento de 6,2 Mm3, con un área en planta de 29,4 ha.

La configuración final del depósito de Pirita y la sección típica se muestran en la siguiente figura.

![Figura 3.405 Depósito de Pirita– Vista en Planta](image)

Fuente: Golder, 2019

3.6.2.3.11.5 Depósito de Relaves filtrados (TMF)

El depósito de relaves filtrados se ubica en los predios San Antonio, La mancha, Peñalinda y Candelaria:
El año 2, 3, 4 y 5 se colocan relaves solo en los predios de San Antonio y la Mancha, en la zona del Contrafuerte Norte.

En los años 6 y 7 se prioriza la colocación de relaves en Candelaria, Peñalinda y La Mancha, en la zona del Contrafuerte Sur, sin dejar de colocar en San Antonio.

En el año 8 se prioriza la colocación de relaves en Peñalinda y La Mancha, sin dejar de colocar en San Antonio.

En el Año 9 se colocan relaves solo en Peñalinda y La Mancha.

Desde el año 10 crecen los dos costados a la par.

El detalle del plan de manejo de relaves se presenta en el numeral 3.6.2.3.4 de este documento.

El TMF propuesto tendrá una altura aproximada de 106 m medida en el eje de la cresta hasta el terreno natural, alcanzando una elevación máxima de 1.018 m s. n. m. La pendiente de inclinación global será de 4H:1V. La pendiente interbanco es de 3H:1, la altura interbanco es de 20 m, con bermas de 10 m de ancho. El TMF tendrá un volumen aproximado de 58.8 Mm3 con un área en planta de 160,4 ha.

Dimensionamiento de Drenes

El TMF requerirá un drenaje subyacente adecuado para mantener bajas las presiones de poros con el fin de garantizar la estabilidad en condiciones estáticas y disminuir la probabilidad de licuación de los relaves filtrados durante un evento sísmico. Este sistema de drenaje recogerá el agua proveniente de la infiltración de precipitación y la transportará a las piscinas de infiltración aguas abajo. Los drenes se construirán como zanjas excavadas y tendrán un geotextil en la base para evitar la tubificación y erosión de los suelos naturales hacia los materiales de drenaje. Material granular y materiales de transición se dispondrán en la parte superior del material de drenaje para evitar la migración de suelo de fundación y relaves dentro de los drenes.

Criterios de Diseño

Los criterios de diseño para la estructura y los materiales que lo conforman deben satisfacer ciertos requerimientos específicos, los cuales puede ser resumidos en:

- **La Gradación** debe ser seleccionada de tal modo que las partículas del suelo del relleno o colocadas encima del dren no lo obstruyan, un sistema de filtros por encima del dren para prevenir la migración de partículas desde la fundación.

- **La Capacidad de drenaje** del sistema debe ser la suficiente para un manejo adecuado del caudal de filtración proveniente tanto de la cimentación como del agua de filtraciones de los relaves.

- **La permeabilidad** del dren debe ser tan alta que permita un acceso rápido a la filtración, disminuyendo así las fuerzas de levantamiento producto de las filtraciones.

Para proveer una solución funcional que evite los problemas de obstrucción del dren, se recomienda un sistema de filtros y transiciones con materiales térreos que protejan el dren, previniendo que entren materiales finos al dren y se ocupen los vacíos del
material de drenaje. La sección típica de la estructura del dren propuesta se muestra en la siguiente figura.

![Diagrama del dren](image)

Figura 3.406 Sección típica del Dren
Fuente: Golder, 2019

El diseño de la red de drenaje tuvo en cuenta la información topográfica y la sección de drenaje capaz de evacuar rápidamente grandes cantidades de agua.

Tabla 3.321 Criterios de Diseño para el sistema de Drenes del TMF

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Valor</th>
<th>Fuente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escorrentía hacia el dren para Tr = 200 años</td>
<td>mm/día</td>
<td>3.1</td>
<td>Adoptado, Golder</td>
</tr>
<tr>
<td>Número de Curva Modelo 1</td>
<td>-</td>
<td>89.0</td>
<td>Adoptado, Golder</td>
</tr>
<tr>
<td>Número de Curva Modelo 2</td>
<td>-</td>
<td>76.0</td>
<td>Adoptado, Golder</td>
</tr>
<tr>
<td>Factor de seguridad para drenes Primarios y Basal</td>
<td>-</td>
<td>5.0</td>
<td>Adoptado, Golder</td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

Infiltración Drenes

Para la estimación de la cantidad de agua que se infiltrará hacia los drenes proveniente de la precipitación se usó el método propuesto por el Soil Conservation Service (SCS), el cual estima la escorrentía producida por un evento diario con base en la relación que existe entre la humedad, el uso o tipo del suelo y el sistema de cobertura. Aunque el método es más apropiado para entornos urbanos, proporciona números de curva apropiados que representan las condiciones apropiadas de escorrentía para los pastizales rurales, agrícolas, áridos y semiáridos incluyendo caminos de grava y áreas con césped.

Se realizaron dos análisis de Número de Curva para evaluar el movimiento del agua a través del TMF hacia el dren y debido a que no existe un numero de Curva específico para los relaves filtrados como material de cobertura o uso de suelo, el análisis usa un número de Curva para reflejar la escorrentía superficial y la infiltración en el TMF (la infiltración es igual a la precipitación menos la escorrentía superficial). Dado a que toda el agua que se infiltra en el TMF puede ser retenida por los vacíos o se mueve a través del TMF hacia los drenes, se realizó un segundo análisis para simular el movimiento del agua a través de los relaves del TMF. El segundo calculo usa la
La precipitación con un período de retorno de 200 años, usando la metodología descrita en la sección anterior, se usó como parámetro de entrada para el cálculo del caudal de diseño. Las huellas de cada uno de los botaderos se dividen en subcuencas teniendo en cuenta los cauces naturales de flujo. Cada una de esas subcuencas contribuye un caudal proveniente del agua de precipitación a un dren primario o basal. Estas áreas se utilizan para calcular el caudal aportado por cada una de las subcuencas al sistema de drenaje usando la siguiente ecuación:

\[Q = 4,167 \times 10^{-5} \times I \times A \]
Donde:
- Q: Caudal (m3/h).
- I: Escorrentía hacia dren (mm/24h).
- A: Área de la subcuenca (m2).

Metodología de Diseño

La teoría usada para estimar el caudal a través del material de drenaje es la ecuación de Wilkins (Ferris, 2009), la cual es una simplificación para flujo en dos dimensiones, es válida para un amplio rango de tamaños de partículas y de gradientes hidráulicos.

La ecuación de Wilkins es aplicable casi totalmente bajo el régimen de flujo turbulento:

$$Q = n A W m^{0.5} i^{0.54}$$

donde:
- Q: Caudal (m3/s).
- n: Porosidad (adimensional).
- A: Área transversal a través de la cual fluye el agua (m2).
- W: Constante empírica de Wilkins, depende de la distribución granulométrica del material.
- m: Radio hidráulico promedio (m).
- i: Gradiente hidráulico (adimensional).

De acuerdo con la teoría de Hansen el radio hidráulico promedio puede ser estimado de la siguiente manera:

$$m = \frac{e d}{6 r_e}$$

donde:
- e: relación de vacíos (adimensional).
- d: Diámetro partícula “Dominante” (m).
- r_e: Relación de eficiencia superficial de las partículas, típicamente 1,3 para material granular angular grueso (adimensional).

El diámetro de partícula "dominante" se define de acuerdo con el tipo de material. En el caso de los materiales granulares, controlados por tamaños de partícula más pequeños, se suele proponer igual al D_{10} (tamaño de partícula del material para el cual el 10% en peso es retenido (EBL, 2005)). Para los materiales de relleno, sin la presencia de finos, el D_{50} (tamaño de partícula del material para el cual el 50% en peso es retenido) se considera generalmente como el diámetro de partícula dominante.

Este índice representativo se propone debido a la impracticabilidad de estimar la gradación real del relleno, y considerando los efectos de la segregación de rocas, la
probabilidad del lavado de finos en el tiempo y la relativa insensibilidad del resultado final a pequeñas variaciones en el tamaño de roca.

Estudios experimentales realizados a través de permeámetros a gran escala demostraron que la mejor correlación se establece cuando los resultados se comparan con la ecuación de Wilkins, con un valor de la constante empírica de Wilkins, W, de 6,693 (Siddiqua, Blatz, & Privat, 2011).

Geometría Sección Transversal

El tamaño de los drenes primarios se basó en los caudales de precipitación, el área de la sub-cuenca y la pendiente media de drenaje mientras que los drenes basales fueron dimensionados con base en los caudales de entrada provenientes de los drenes primarios y el gradiente hidráulico promedio.

Con el fin de optimizar la distribución de los drenes, se realizó un análisis de acumulación de flujo de agua con ayuda del software Arcgis Arcmap 10.4,1 y la topografía del sitio para identificar los canales de drenaje de la zona de estudio. Los canales de drenaje con pendientes pronunciadas o área de sub-cuenca pequeña no fueron considerados en la distribución de drenes basándose en dos suposiciones:

- el agua fluirá por gravedad hacia los drenes basales
- debido a que el área de la sub-cuenca es baja, el caudal generado por la precipitación es insignificante.

La Tabla 3.323 muestra las dimensiones de los drenes.

Tabla 3.323 Parámetros de diseño usados en el diseño de los drenes y área mínima de drenaje

<table>
<thead>
<tr>
<th>Dren</th>
<th>Tipo</th>
<th>n</th>
<th>m</th>
<th>r_e</th>
<th>D_{50}</th>
<th>I (%)</th>
<th>Área de drenaje mínima (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primario</td>
<td>A</td>
<td>0,333</td>
<td>0,0064</td>
<td>1,3</td>
<td>0,1</td>
<td>9</td>
<td>0,56</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0,333</td>
<td>0,0064</td>
<td>1,3</td>
<td>0,1</td>
<td>11-15</td>
<td>0,12</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0,333</td>
<td>0,0064</td>
<td>1,3</td>
<td>0,1</td>
<td>16-19</td>
<td>0,08</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>0,333</td>
<td>0,0064</td>
<td>1,3</td>
<td>0,1</td>
<td>8-14</td>
<td>0,24</td>
</tr>
<tr>
<td>Basal</td>
<td>E</td>
<td>0,333</td>
<td>0,0064</td>
<td>1,3</td>
<td>0,1</td>
<td>11</td>
<td>1,71</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>0,333</td>
<td>0,0064</td>
<td>1,3</td>
<td>0,1</td>
<td>6-11</td>
<td>0,56</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>0,333</td>
<td>0,0064</td>
<td>1,3</td>
<td>0,1</td>
<td>5-9</td>
<td>0,96</td>
</tr>
</tbody>
</table>

Fuente: Golder, 2019

3.6.2.3.12 Planta y perfiles del desarrollo del depósito de relaves

La configuración final del TMF se desarrolló con base en la curva de llenado que se muestra en la Figura 3.407.
Figura 3.407 Vista en Planta del TMF
Fuente: Golder, 2019

A continuación, se presentan dos secciones transversales y dos longitudinales del TMF

Figura 3.408 TMF – Sección A-A
Fuente: Golder, 2019
Figura 3.409 TMF – Sección B-B
Fuente: Golder, 2019

Figura 3.410 TMF – Sección C-C
Fuente: Golder, 2019

Figura 3.411 TMF – Sección D-D
Fuente: Golder, 2019
La Figura 3.412 y la Figura 3.413 muestran la vista planta y la sección típica del sistema de drenaje propuesto para el TMF.
3.6.2.3.13 Propuesta de adecuación final del sitio de disposición de sobrantes

El objetivo fundamental del plan de abandono y cierre consiste en establecer los lineamientos técnicos, ambientales y sociales que el Proyecto Minera de Cobre Quebradona tendrá en cuenta para el cierre de los componentes e instalaciones que forman parte del Proyecto, a fin de retornar el territorio en condiciones adecuadas para proteger el ambiente, las comunidades y los derechos colectivos, una vez finalicen las operaciones mineras.

Las actividades de cierre y adecuación comprenderán tanto las áreas en superficie, en la zona sobre la montaña (parte alta del Proyecto) y en la zona de el valle (parte baja), como los componentes subterráneos.

Si bien el Proyecto cuenta con un Plan de cierre completo que describe tanto el cierre inicial, como las actividades de cierre progresivo, temporal y final, para todas las instalaciones existentes al finalizar la explotación (véase el Capítulo 10 Planes y programas), en este numeral se describen específicamente las actividades previstas para el cierre de los sitios de disposición de sobrantes, a saber: ZODMEs (véase la Figura 3.229, Figura 3.230 y Figura 3.231), y Depósito de relaves filtrados (véase la Figura 3.372).

3.6.2.3.13.1 Actividades de recuperación. Cierre inicial

- **Depósitos de material sobrante de excavación (ZODME)**

 Los ZODMEs se diseñaron considerando criterios de estabilidad que favorezcan las actividades de cierre, por lo que presentarán taludes globales de 3H:1V. Los trabajos de cierre consistirán en la nivelación del terreno, construcción de zanjas de coronación y obras para el manejo de escorrentía superficial, colocación de suelo, y revegetación, acorde al plan de manejo del paisaje.

- **Área de Depósito de relaves filtrados (TMF)**

 En este depósito se conformarán las superficies hasta que alcancen las pendientes requeridas para garantizar la estabilidad del terreno, y facilitar la posterior cobertura con suelo y plantación de especies vegetales nativas. Además, se retirarán las válvulas y bombas de conducción asociadas al manejo de relaves filtrados.

3.6.2.3.13.2 Actividades de recuperación. Cierre progresivo

- **Lineamientos de diseño para el manejo paisajístico**

 El Proyecto Minera de Cobre Quebradona está comprometido con el respeto y la valoración del paisaje para el diseño e implementación del proyecto, en ese sentido y reconociendo la importancia ambiental y paisajística de la zona, se realizaron análisis de integración de paisaje, con múltiples criterios durante las fases de construcción, operación, y cierre para la prevención de las posibles afectaciones que puedan generarse sobre el paisaje, teniendo en cuenta las condiciones del terreno, adaptaciones del proyecto a las características geológicas, geotécnicas, topográficas, climáticas y a la infraestructura de servicios de la zona.

 Para la etapa de construcción, operación y cierre y post cierre se rehabilitarán y recuperarán las zonas y obras liberadas, lo cual garantizará un cierre progresivo desde
el primer momento de la primera fase para cada una de las áreas de infraestructura y soporte.

De acuerdo con esto, el Proyecto Minera de Cobre Quebradona ha configurado una arquitectura del paisaje que permitirá tener una articulación entre el avance del Proyecto y la dinámica del paisaje mediante el cierre progresivo y el desarrollo de un parque biodinámico.

- **Arquitectura del paisaje:**

La definición de biodinámico se refiere al entendimiento del mismo bajo un principio de organismo vivo y cambiante, que muta, se transforma y adapta conforme pasa el tiempo y según las necesidades que requiera, reconociendo también, las preexistencias del lugar de intervención y el desarrollo adaptativo por etapas.

La arquitectura del paisaje se adapta a las diferentes etapas de desarrollo de construcción, operación y cierre y post cierre del Proyecto, introduciendo los diferentes aspectos que lo conforman para cada periodo de trabajo, desarrollándose en conjunto según los requerimientos y expectativas desde la primera etapa hasta el cierre y post cierre.

Desde la arquitectura del paisaje se ha definido el desarrollo de una serie de obras y actividades desde la fase de construcción hasta el cierre y post cierre, que integralmente conforman el Parque Biodinámico Quebradona.

Los conceptos de diseño del parque contemplaron el paisaje como memoria de la región, la tecnología como evolución de la zona y la arquitectura como representación de la Comunidad al interior del parque, y se establecieron los siguientes principios fundamentales:

- Bosque seco tropical con la introducción de especies nativas.
- Implementación del uso de tecnologías renovables inmersas en el paisaje.
- Construcción de elementos y unidades arquitectónicas, para la conservación y avistamiento del parque.

Los lineamientos del diseño conceptual del parque biodinámico se definen a continuación:

- **Cuerpos de agua y humedales naturales:** Se aprovecharán las aguas de escorrentía y cuerpos de agua provenientes de las mismas infraestructuras integrándolos a la arquitectura del paisaje bajo el uso de técnicas de diseño hidrológico, de manera que esta se convierta en el principal elemento dinamizador de los ecosistemas en todas las épocas del año.

Se diseñarán pequeños humedales que tendrán la capacidad de albergar diferentes formas de vida acuática y formas de vida asociadas en fauna y flora.

En los diseños estarán incluidos, en la medida de lo posible, la infraestructura hidráulica planteada dentro de la operación de la planta y sus demás instalaciones tales como los canales de aguas de contacto y de no contacto, cajas de empalme, sedimentadores, etc. de manera que, tras haber realizado las adaptaciones
necesarias, estas sirvan como apoyo y uso directo a las zonas planteadas para intervención paisajística y reconstrucción de ecosistemas.

Figura 3.414 Sistema hídrico
Fuente: Juan Manuel Pelaez Arquitectos, 2019

Los reservorios tendrán un uso estético en la conformación del parque, para lo cual se usará la infraestructura existente y tendrá una dinámica conforme a las actividades del plan del cierre progresivo y a las del Proyecto.

♦ Asociaciones vegetales: La vegetación disponible establecerá nuevos parches naturales con diferentes temáticas, dentro y fuera del Proyecto, de manera que este y su infraestructura se fundan con el paisaje y se integren con las áreas de restauración y de corredores biológicos, por lo que se plantean las siguientes zonas:

1. Zona de enriquecimiento y restauración de coberturas naturales sembrada.
2. Zona de Maderables sembrada con especies nativas y exóticas.
3. Zona de Producción forestal de maderables y no maderables.
4. Zona de Mosaico de cultivos y espacios naturales
5. Zona de Bosque seco tropical Sembrada
6. Zona de producción agrícola y frutales.
7. Zona de Guadual sembrada
8. Áreas de Centros de Investigación, acopio y transformación con la puesta en marcha de la aldea investigativa.
Pasos de fauna: Para la fauna terrestres de especies mayores se instalarán pasos de fauna en las vías que minimicen los atropellamientos. Estos pasos de fauna deberán ser elegidos dentro de los desarrollos actuales para cada tipo grupo de fauna (terrestres, anfibios, animales nocturnos, diurnos, etc.) teniendo presente la ubicación de los mismos dentro de las coberturas y diferentes zonas antes expuestas.

Los pasos de pueden variar desde estructuras colgantes sencillas a box couverts con medidas y adaptaciones más específicas.

Los pasos de fauna irán acompañados por la debida señalización y contendrán en sí los detalles técnicos necesarios para su buen funcionamiento (barreras, direccionadores, estrategias de apropiación para la fauna, mimetización, etc.). Estas medidas son detalladas en el Capítulo 10 PMA_BIO_04.

Generadores eólicos de energía: haciendo uso de la velocidad del viento de la zona y el uso de nuevas tecnologías, se propone que en los últimos niveles de los zóndemes y relaves, se aproveche para la generación energía a través del aire y distribuir a las diversas áreas o sistemas específicos del Proyecto.

Una nueva tecnología corresponde en transformar la energía cinética en electricidad a partir de verticales captadores de viento, este mecanismo de energía eólica sin aspas oscila en un rango de velocidad de viento que conduce este esfuerzo mecánico en eléctrico por medio del fenómeno de aparición de vórtices basado en resonancia aerostática.

El cilindro exterior es rígido y está diseñado para oscilar, permaneciendo anclado a la varilla o núcleo. El movimiento de la parte superior del cilindro no está restringido, encontrándose aquí la máxima amplitud de oscilación.
El aerogenerador produce electricidad por medio de un sistema de alternador, integrando bobinas e imanes permanentes adaptados a la dinámica del equipo y el desprendimiento de vórtices con las fuerzas laterales del viento. El flujo eólico genera un patrón cíclico continuo.

A diferencia de sistemas convencionales con aspas de emplazamiento circular donde la separación entre ellos principia por un módulo de “diámetro y medio” de su rotor, esta tecnología permite un sembrado más cercano entre éstos considerando el dimensionamiento oscilatorio y una distancia de seguridad.

Generadores solares de energía: Funciona como una lupa, la luz pasa a través de la esfera convergente del instrumento óptico en un intenso haz de luz que incide en un panel solar que almacena energía.
La esfera se llena de agua que magnifica los rayos del sol en más de 10,000 veces, por lo que es posible generar energía de la luna o del sol en un día nublado. Los diminutos paneles solares están situados directamente debajo de la esfera, donde llega un rayo de luz magnificado.

Figura 3.419 PANELES DE LAS ESFERAS SOLARES (bera.ray1.0)
Fuente: https://www.alternative-energy-news.info/spherical-sun-power-generator/, 2019

Las esferas están hechas de polímero acrílico lleno de agua, con una transparencia casi cristalina que se ajusta a las necesidades técnicas, dándole una apariencia incorpórea. Se hará uso del módulo fotovoltaico Micro-track (certificado por el Centro de Investigación de Energía Solar e Hidrógeno de Baden-Wurtemberg de Alemania) que se mueven de acuerdo con la trayectoria del sol.
Figura 3.420 comparación de un módulo fotovoltaico convencional y un Micro-track
Las esferas Beta ray deben ubicarse a distancia de cualquier pantalla natural o artificial que puedan proyectar sombreado sobre éstas y no reducir su eficiencia. Pueden ser diseñados “árboles” de esferas (como se muestra en la figura siguiente).

Figura 3.421 Árboles de esferas solares
Fuente: https://landartgenerator.org/blagi/archives/75172, 2019
Atrapanieblas: Considerando las condiciones meteorológicas de la zona, un sistema para atrapar la humedad relativa contenida en el aire, o las gotas de agua que se presentan en la neblina, se convierte en una alternativa para obtener agua.

A través de infraestructura como módulos de aldeas (ver más adelante), se ensambla una malla de polietileno de alta densidad para la captura de agua y usarla como elemento generador de microclimas para las zonas o “círculos” de paisaje, favoreciendo la adaptación y crecimiento de determinado material vegetal, además de la canalización natural producida en el escurrimiento de la malla en su perímetro.

Desde el punto de vista paisajístico, este tipo de infraestructura se configura como una barrera visual, para armonizar el emplazamiento de las infraestructuras con el fondo natural del paisaje, así mismo brinda una fuente de agua para el riego de la cobertura vegetal.

Intervención arquitectónica: Las Uno de los principales objetivos del parque biodinámico es que el Proyecto y el parque se conviertan en el laboratorio que permita la generación y la transferencia del conocimiento a las comunidades. En este sentido se hace necesario desarrollar elementos arquitectónicos que permita las actividades de investigación.

Los elementos arquitectónicos, se distribuyen en toda el área de intervención, con un criterio de agrupación que no solo se adapta a la topografía existente, sino también a agrupación de especies paisajísticas que se plantean en donde se tendrán en cuenta los siguientes principios de conceptualización:

a. El círculo: figura geométrica adaptativa, principalmente a las distintas topografías que se crean o existen en el área a intervenir
b. Definición de puntos de siembra: a partir del principio para la definición de los puntos de siembra conformando una malla o grilla, y teniendo en cuenta las distintas agrupaciones de especies naturales que se planten en el bosque, se establecieron los vacíos o claros de bosque con las dimensiones naturales anteriormente mencionadas para posteriormente definir el tipo de módulo o elemento arquitectónico que acompañará este vacío.

c. Módulos Arquitectónicos: se definen tres distintos módulos de elementos de arquitectónicos en donde sus principales objetivos parten de la conservación,
avistamiento y preservación del parque en el tiempo. (Módulo Aldea, Avistamiento, Albergue de flora).

Figura 3.423 Esquema de elementos arquitectónicos como límite geográfico
Fuente: Juan Manuel Pelaez Arquitectos, 2019

Módulo aldea: El módulo funciona como centro de acopio, transformación en investigación de dos ejes fundamentales, por una parte, la investigación sobre el bosque seco y, por otra parte, la posibilidad de estudiar sobre minería, gracias a las operaciones que se desarrollarán en el territorio; ambas como plan educativo en relación a la comunidad nacional e internacional.

Figura 3.424 Esquema *módulo aldea
Fuente: Juan Manuel Pelaez Arquitectos, 2019

La materialidad predominate de los módulos es la guadua, por esto se apoyará en la generación de unidades guadal que permitan no solo la regeneración del paisaje si no a la vez de materia prima para el desarrollo de las arquitecturas del Proyecto.
Los módulos programáticos independientes permiten el desarrollo en simultáneo de actividades con requerimientos diferentes, enfocadas siempre en la educación ambiental y en los procesos de minería de alta tecnología. Por las condiciones geomorfológicas del Proyecto la ubicación de las aldeas se concentrará en las mesetas de los zodmes y los relaves filtrados.

Para garantizar una correcta implantación en el terreno se propone un sistema de crecimiento ondulado que permite, independiente de la geoforma una implantación con la mínima instrucción y cambios al terreno.
Módulo de avistamiento o mirador: en la misma forma que en el anterior, y utilizando los desniveles naturales del terreno, se colocan los módulos de avistamiento / miradores los que permiten elevar los puntos de vista a través de un recorrido vertical.

Modulo Albergues de Flora: Se ubicará un talud con el material inerte de la construcción de los túneles y obras que opere como límite entre el área productiva y el resto del territorio, con elementos arquitectónicos, naturales y de energía renovable donde podemos encontrar a los módulos albergues de especies vegetales.
Figura 3.429 Esquema módulo albergue de especies vegetales*
Fuente: Juan Manuel Pelaez Arquitectos, 2019

Figura 3.430 Módulo talud
Fuente: Juan Manuel Pelaez Arquitectos, 2019
Dado lo anterior, se realizó un plan de manejo ambiental que contiene los lineamientos para el manejo paisajístico en función de las siguientes medidas: Registro visual del paisaje y los sitios de interés paisajístico, diseño para minimizar el impacto visual, adecuación de los componentes e instalaciones de apoyo, establecimiento de barreras vivas, elementos cromáticos y prácticas para el uso de iluminación artificial. Ver PMA_ABIO_14 (programa de manejo del paisaje).

A continuación, y haciendo un recorrido por los diferentes puntos de interés cercanos al Proyecto desde donde se puede y no se puede observar el mismo, se presenta representaciones gráficas de cómo se vería en sus fases de operación y cierre. véase la Figura 3.432 y la Figura 3.433).
Figura 3.432 Configuración esperada de la infraestructura en la zona del Cauca durante el proceso de operación en año 10 (Vista desde la Soledad)
Fuente: Minera de Cobre Quebradona, 2019

Figura 3.433 Configuración esperada de la infraestructura en la zona del Cauca en el cierre del Proyecto (Vista desde la Soledad)
Fuente: Minera de Cobre Quebradona, 2019
Figura 3.434 Configuración esperada de la infraestructura durante el proceso de operación en año 10 (Vista desde Marsella)
Fuente: Minera de Cobre Quebradona, 2019

Figura 3.435 Configuración esperada de la infraestructura en la zona del Cauca en el cierre del Proyecto (Vista desde Marsella)
Fuente: Minera de Cobre Quebradona, 2019
Figura 3.436 Configuración esperada de la infraestructura en la zona del Valle durante la operación en el año 10 (vista desde la vía La Pintada – Puente Iglesias)

Fuente: Minera de Cobre Quebradona, 2019
Figura 3.437 Configuración esperada de la infraestructura en la zona del Cauca en el cierre del Proyecto (vista desde la vía La Pintada – Puente Iglesias)
Fuente: Minera de Cobre Quebradona, 2019

Figura 3.438 Configuraciones esperadas de la infraestructura en la zona del Cauca durante el proceso de operación en el año 10 y en el cierre del proyecto (vista desde La Oculta, en este punto no se ve el Proyecto en ninguna de sus fases)
Fuente: Minera de Cobre Quebradona, 2019
Figura 3.439 Configuraciones esperadas de la infraestructura en la zona del Cauca durante el proceso de operación en el año 10 y en el cierre del Proyecto (vista desde Cauca Viejo, en este punto no se ve el proyecto en ninguna de sus fases)

Fuente: Minera de Cobre Quebradona, 2019

Figura 3.440 Configuraciones esperadas de la infraestructura en la zona del Cauca durante el proceso de operación en el año 10 y en el cierre del proyecto (vista desde el mirador Brisas sobre la vía de acceso a Jericó, en este punto no se ve el proyecto en ninguna de sus fases)

Fuente: Minera de Cobre Quebradona, 2019
Figura 3.441 Configuración esperada de la subsidencia durante el proceso del cierre del proyecto (vista desde cerro Salvador), el cambio obedece al reemplazo de pino por especies nativas
Fuente: Minera de Cobre Quebradona, 2019

Figura 3.442 Configuraciones esperadas durante el proceso de operación y del cierre del proyecto (vista desde parque principal de Jericó, en este punto no se ve el proyecto en ninguna de sus fases)
Fuente: Minera de Cobre Quebradona, 2019
3.6.2.3.13.3 Actividades de recuperación. Cierre final

El cierre final incluye la ejecución propiamente dicha de las actividades definitivas de cierre y los diseños de ingeniería para el desmantelamiento, demolición, estabilización de terrenos, rehabilitación de tierras, reconversión laboral y propiedad y acceso a tierras.

Aunque son previsibles ajustes del Plan de cierre final acordes con los avances del cierre progresivo, de ajustes del Plan minero y modificaciones de los Esquemas de Ordenamiento Territorial, entre otros, se puede afirmar que el cierre final de las áreas de disposición de sobrantes consistirá en la aplicación de las mismas medidas de cierre progresivo, en aquellas áreas que solo podrán liberarse al finalizar la operación.

Esas áreas serán muy posiblemente algunos bancos superiores, y las plataformas superiores de ZODMEs y del TMF, así como las vías de acceso, hasta conseguir un aspecto similar al representado en la Figura 3.443.

Figura 3.443 Cierre Conceptual - Diseño General
Fuente: Minera de Cobre Quebradona, 2019

3.6.2.3.14 Usos finales para los sitios de disposición de sobrantes (ZODMEs y TMF)

Los usos finales del suelo para estas áreas se plantean de manera conceptual, tal como se indica en el Capítulo 10 Planes y programas (numeral 10.1.4 Plan de cierre),
donde se definen cinco tipos de Zonas homogéneas en función de las restricciones de uso.

Tabla 3.324 Zonas homogéneas y restricciones de usos

<table>
<thead>
<tr>
<th>Zona</th>
<th>Descripción de restricciones</th>
<th>Usos potenciales de la tierra</th>
</tr>
</thead>
</table>
| TIPO I | Zonas que por falta de consolidación de los materiales depositados o por la inexistencia de cobertura vegetal pueden comportarse como focos de erosión susceptibles de inestabilidad | - Protección
 | | - Silvicultura
 | | - Agrícola transitoria
 | | - Granjas de generación de energía solar |
| TIPO II | Áreas auxiliares mineras cuya infraestructura es susceptible de desmantelarse, demolerse o adecuarse, sin restricciones para el uso posterior. | - Pecuario semi-intensivo
 | | - Industrial
 | | - Agrícola
 | | - Servicios/turismo |
| TIPO III | Áreas de apoyo, sin restricciones de uso | Industrial o Comercial
 | | Servicios / turismo |
| TIPO IV | Zonas inestables | - Área restringida
 | | - Protección para avistamiento de aves |
| TIPO V | Obras hidráulicas que se clausurarán en la etapa de post-cierre* | - Rehabilitación y recuperación de coberturas naturales |

*Algunos sedimentadores se utilizarán en la etapa de post-cierre y por lo tanto no se clausurarán. Asimismo, los canales norte y sur tampoco serán clausurados.

Fuente: Integral, 2019

Para el caso de los sitios de disposición de sobrantes se concluye que corresponden a zonas Tipo I, las cuales admitirían usos especialmente de protección y silvicultura, o aún de agricultura con especies transitorias adaptables a las condiciones de calidad de suelo. Así mismo, será posible establecer proyectos que no requieren gran capacidad portante del suelo, tales como aprovechamiento de energía solar.

En estas áreas, y como producto de las actividades de revegetalización, se espera desarrollar coberturas herbácea o de pastizales, que protegen la superficial de la acción de la escorrentía, ayudan al reciclado de nutrientes y mejoran la estructura física de suelos. En este grupo sobresalen las gramíneas o pastos, nativas o cultivadas, especies de porte bajo que aparte de favorecer la recuperación de las características biofísicas del suelo permiten su adecuación y preparación para el ingreso de especies de mayor tamaño. En el capítulo 10 Planes y programas (numeral 10.1.4 Plan de cierre), se describen en detalle las distintas actividades previstas para desarrollar la revegetación de las áreas en el cierre final, incluyendo y en el Plan de manejo ambiental (PMA-BIO-02 Programa de rehabilitación y recuperación de áreas intervenidas) se relacionan las especies que podrían utilizarse, así como las metodologías a implementar en distintas etapas del programa, a saber:

- Establecimiento de cobertura herbácea.
- Establecimiento de especies pioneras.
- Establecimiento de sucesiones avanzadas.
- Especies y características para su uso en revegetación.
3.6.3 Residuos peligrosos y no peligrosos

En el Proyecto se generan durante las etapas de construcción, operación y cierre, residuos peligrosos y no peligrosos.

La composición física de residuos sólidos generados según estudios realizados a diferentes rellenos sanitarios es la siguiente:

- Residuos orgánicos 30,2%
- Residuos ordinarios 43,6%
- Residuos reciclables 5,0%
- Residuos peligrosos 0,2%

Esta distribución de los residuos fue asumida como un promedio de los datos obtenidos en varios rellenos sanitarios de ciudades de Colombia y Estados Unidos, y los cuales se encuentran en referencias bibliográficas como “Gestión y operación de redellos sanitarios de Hactor Collazaso Peñalosa” e “Ingenieria ambiental de James R. Michelcic -Julieth Beth Zimmerman”.

Los residuos se calcularon en función del número de ocupantes para cada etapa del proyecto; para la etapa de construcción y cierre se generarán residuos adicionales debidos a la construcción y demolición de las edificaciones.

3.6.3.1 Cálculo de Residuos sólidos

La producción diaria de residuos sólidos en el proyecto se define según lo establecido en la tabla de valores típicos de la producción per capita (PPC) para municipios colombianos presentados por el RAS 2000 en su título F, considerando el valor promedio de producción de residuos sólidos perteneciente al nivel de complejidad bajo de la norma, es decir 0,5 kg/hab día.

De acuerdo con el personal de la mina que estará en cada etapa de su desarrollo, se calcularán los residuos sólidos producidos los cuales se indican en la Tabla 3.325 en kg/día y m³/día.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Distribución de la composición de los residuos</th>
<th>Producción de residuos etapa de construcción</th>
<th>Producción de residuos etapa de operación</th>
<th>Producción de residuos etapa de cierre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de habitantes (hab)</td>
<td>2,190 694 450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPC (kg/hab/día)</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>Total residuos (kg/día)</td>
<td>1095</td>
<td>347</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>Residuos orgánicos (kg/día)</td>
<td>29,50% 323,03 102,37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residuos ordinarios (kg/día)</td>
<td>30,00% 328,50 104,10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residuos reciclables (kg/día)</td>
<td>40,00% 438,00 138,80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residuos peligrosos (kg/día)</td>
<td>0,50% 5,48 1,74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Densidad de los residuos sólidos kg/m³</td>
<td>500 500 500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total residuos (m³/día)</td>
<td>2,19 0,694 0,45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residuos orgánicos (m³/día)</td>
<td>29,50% 1,41 0,14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residuos ordinarios (m³/día)</td>
<td>30,00% 0,93 0,03</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.6.3.2 Residuos sólidos debidos a la construcción y cierre del Proyecto

Estos corresponden a los residuos inertes tales como despuntes de hierro, chatarra, plásticos, cartones, maderas, escombros de construcción, vidrios, cables, gomas, residuos de paviemento, concreto, etc. Estos residuos se generan en las plazoletas donde se construirán edificaciones para la operación de la mina y las vías del Proyecto, en la Tabla 3.326 se detalla el área bruta de cada una de estas zonas y el área neta a considerar como generadora de residuos:

Tabla 3.326 Áreas donde se generan residuos de construcción

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Area bruta (ha)</th>
<th>Factor de ocupacion</th>
<th>Area neta para estimacion de residuos (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campamento</td>
<td>3.92</td>
<td>0,7</td>
<td>2,74</td>
</tr>
<tr>
<td>Canal Norte</td>
<td>2.26</td>
<td>1</td>
<td>2,26</td>
</tr>
<tr>
<td>Canal Sur</td>
<td>2.56</td>
<td>1</td>
<td>2,56</td>
</tr>
<tr>
<td>Estación bombeo 1</td>
<td>0,01</td>
<td>1</td>
<td>0,01</td>
</tr>
<tr>
<td>Estación bombeo 2</td>
<td>0,01</td>
<td>1</td>
<td>0,01</td>
</tr>
<tr>
<td>Estación bombeo 3</td>
<td>0,01</td>
<td>1</td>
<td>0,01</td>
</tr>
<tr>
<td>Estación bombeo 4</td>
<td>0,01</td>
<td>1</td>
<td>0,01</td>
</tr>
<tr>
<td>Estación bombeo 5</td>
<td>0,01</td>
<td>1</td>
<td>0,01</td>
</tr>
<tr>
<td>Estación de combustible</td>
<td>0,28</td>
<td>0,7</td>
<td>0,20</td>
</tr>
<tr>
<td>Laboratorio</td>
<td>0,68</td>
<td>1</td>
<td>0,68</td>
</tr>
<tr>
<td>Planta concreto y trituración</td>
<td>0,64</td>
<td>1</td>
<td>0,64</td>
</tr>
<tr>
<td>Plataforma 2</td>
<td>5,14</td>
<td>0,7</td>
<td>3,80</td>
</tr>
<tr>
<td>Plataforma 3</td>
<td>0,07</td>
<td>0,7</td>
<td>0,05</td>
</tr>
<tr>
<td>Plataforma 4</td>
<td>5,04</td>
<td>0,7</td>
<td>3,53</td>
</tr>
<tr>
<td>Plataforma 5</td>
<td>0,36</td>
<td>0,7</td>
<td>0,25</td>
</tr>
<tr>
<td>Plataforma 6</td>
<td>0,96</td>
<td>0,7</td>
<td>0,67</td>
</tr>
<tr>
<td>Plataforma 7</td>
<td>0,1</td>
<td>0,7</td>
<td>0,07</td>
</tr>
<tr>
<td>Plataforma 8</td>
<td>0,44</td>
<td>0,7</td>
<td>0,31</td>
</tr>
<tr>
<td>Plataforma 9</td>
<td>1,26</td>
<td>0,7</td>
<td>0,88</td>
</tr>
<tr>
<td>Plataforma A</td>
<td>1,47</td>
<td>0,7</td>
<td>1,03</td>
</tr>
<tr>
<td>Plataforma B</td>
<td>0,46</td>
<td>0,7</td>
<td>0,32</td>
</tr>
<tr>
<td>Plataforma C</td>
<td>0,61</td>
<td>0,7</td>
<td>0,43</td>
</tr>
<tr>
<td>Plataforma D</td>
<td>0,53</td>
<td>0,7</td>
<td>0,37</td>
</tr>
<tr>
<td>Plataforma explosivos operación y Planta emulsión</td>
<td>1,42</td>
<td>0,7</td>
<td>0,99</td>
</tr>
<tr>
<td>Plataforma planta de beneficio</td>
<td>28,92</td>
<td>0,7</td>
<td>19,80</td>
</tr>
<tr>
<td>Plataforma portería</td>
<td>2,24</td>
<td>0,7</td>
<td>1,57</td>
</tr>
<tr>
<td>Plataforma túneles</td>
<td>1,44</td>
<td>0,7</td>
<td>1,01</td>
</tr>
<tr>
<td>Poza colectora 1</td>
<td>1,23</td>
<td>0,7</td>
<td>0,86</td>
</tr>
<tr>
<td>Poza colectora 2</td>
<td>1,37</td>
<td>0,7</td>
<td>0,96</td>
</tr>
<tr>
<td>Poza colectora 3</td>
<td>0,48</td>
<td>0,7</td>
<td>0,34</td>
</tr>
<tr>
<td>Poza colectora 4</td>
<td>0,48</td>
<td>0,7</td>
<td>0,34</td>
</tr>
<tr>
<td>Pozo de ventilación #1</td>
<td>0,01</td>
<td>0,7</td>
<td>0,01</td>
</tr>
<tr>
<td>Pozo de ventilación #2</td>
<td>0,01</td>
<td>0,7</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019
Para la estimación del volumen de residuos relacionado con la construcción de las edificaciones y las vías del Proyecto se asumió que el volumen de residuos generado por la construcción es equivalente al área bruta de las obras multiplicado por un factor de ocupación y un espesor de residuos de 0,01 m del área neta de ocupación (véase la Tabla 3.327).

Tabla 3.327 Volumen total de residuos generados por la construcción de las edificaciones de la mina - Etapa de construcción

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen total de residuos en 4 años de construcción</td>
<td>9.814,94</td>
<td>m³</td>
</tr>
<tr>
<td>Volumen total de residuos m³/día</td>
<td>6,72</td>
<td>m³/día</td>
</tr>
<tr>
<td>Factor de expansión por relación de vacíos en los escombros</td>
<td>1,40</td>
<td>adim</td>
</tr>
<tr>
<td>Volumen total de residuos m³/día</td>
<td>9.412</td>
<td>m³/día</td>
</tr>
</tbody>
</table>

Fuente: Integral, 2019

La etapa de cierre y poscierre de la mina durará 13 años. En esta etapa el volumen total de residuos de construcción a demoler se estima en alrededor de 40.000 m³, afectado por un factor de expansión por vacíos de 1,40 se obtiene que el total de escombros 56.000 m³.
Los residuos sólidos no peligrosos serán separados y clasificados según lo establece la normatividad ambiental vigente y depositados en contenedores adecuadamente rotulados y de capacidad suficiente, habilitados especialmente en los puntos de generación, para su posterior comercialización y aprovechamiento. Aquellos residuos que no puedan ser valorizados, serán entregados a un gestor autorizado.

Los residuos peligrosos corresponden en mayor medida a lubricantes y aceites usados, filtros de aceite tambores, envases y trapos contaminados con hidrocarburos, envases de solventes y pinturas, baterías, pilas, suelos contaminados con hidrocarburos, etc., derivados principalmente de las actividades de mantenimiento de equipos. En menor medida, en campamento y oficinas se generarán otros residuos peligrosos tales como cartuchos y tóneres de impresoras y envases de productos de limpieza.

Estos residuos peligrosos, serán clasificados y manejados de acuerdo con la normatividad ambiental vigente. Para esto se habilitarán áreas de almacenamiento temporal adecuadas según los requerimientos normativos y donde los residuos serán dispuestos transitoriamente de acuerdo con sus características de peligrosidad y su compatibilidad química. Posteriormente serán enviados a empresas autorizadas especializadas en el tratamiento y disposición de este tipo de residuos, cuyas instalaciones se ubicarán fuera del área de Proyecto.

3.6.3.3 Manejo y disposición de los residuos

Todos los residuos sólidos, peligrosos y no peligrosos, se clasificarán en el punto de origen y se almacenarán en cajas estacionarias o estaciones con canecas, dependiendo del volumen generado. Se utilizarán recipientes de colores, con el fin de diferenciarlos según su clase, como lo establece el Plan de manejo ambiental del Proyecto.

Los residuos sólidos se generarán en porterías, campamento, planta de beneficio, planta de concretos, Área integrada de operaciones (AIO) y mina subterránea. Dentro de las instalaciones se adecuará una de zona de manejo de 1.650 m², debidamente aislada y señalizada para la clasificación de residuos.

Se programarán las rutas de recolección y frecuencias separadas para los residuos no peligrosos reciclables, biodegradables u ordinarios y peligrosos. Se garantizará que el vehículo (especial para el manejo de residuos) cuente con canaletas para control derrames durante el recorrido al sitio de disposición.

Para la disposición final de los residuos ordinarios y reciclables se plantea contratar con una empresa autorizada para la recolección de residuos, ya que en la zona del Proyecto no se cuenta con relleno sanitario cercano autorizado, y los residuos generados serán transportados al relleno sanitario La Pradera, de EMVARIAS. Allí se dispondrán tanto los residuos sólidos no peligrosos de etapa de construcción como de operación.

3.6.3.4 Materiales radioactivos de origen natural (NORM)

De acuerdo con los análisis de radioactividad realizados a los materiales resultantes del proceso de beneficio, se observó que los elementos NORM que ingresan a la planta, ligados a la mineralización, se encuentran en trazas, y sus niveles de emisión
natural son inferiores a los límites de dispensa establecidos en las normas básicas internacionales de seguridad GSR-3 (véase el numeral 3.6.2.3.2 de este documento).

Por esta razón no se consideran medidas especiales de manejo y disposición de los materiales generados en el proceso de beneficio.

3.6.4 Producción y costos del Proyecto

3.6.4.1 Producción, t/a y Oz/a

En esta sección se presenta, anualmente para los primeros cinco años y quinquenalmente a partir del año sexto, la información de producción del material mineral, material estéril y material total producido, así como la relación de mineral /m³ de material total y los tenores esperados.

En la Tabla 3.328 se observa que desde el año 1 (O), se alcanza una producción de 4.7 Mt de material mineral. La etapa de operación de la mina es de 21 años.

El material estéril (5.7 Mt) representa, en promedio de la vida de la mina, el 4.4 % del material total minado, produciendo en los primeros cinco años el 84 % del mismo.

Tabla 3.328 Producción de mineral

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Un</th>
<th>Total</th>
<th>Año 1 (C)</th>
<th>Año 2 (C)</th>
<th>Año 3 (C)</th>
<th>Año 4 (C)*</th>
<th>Año 1 (O)</th>
<th>Años 2-6 (O)</th>
<th>Años 7-11 (O)</th>
<th>Años 12-16 (O)</th>
<th>Años 17-21 (O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral de Desarrollos</td>
<td>kt</td>
<td>10.038</td>
<td>0</td>
<td>0</td>
<td>147</td>
<td>931</td>
<td>716</td>
<td>2.433</td>
<td>1.421</td>
<td>2.738</td>
<td>1.851</td>
</tr>
<tr>
<td>Mineral de Producción</td>
<td>kt</td>
<td>114.313</td>
<td>0</td>
<td>0</td>
<td>2.145</td>
<td>4.010</td>
<td></td>
<td>26.743</td>
<td>29.279</td>
<td>27.844</td>
<td>24.292</td>
</tr>
<tr>
<td>Total de Mineral</td>
<td>kt</td>
<td>124.351</td>
<td>0</td>
<td>0</td>
<td>147</td>
<td>3.076</td>
<td>4.725</td>
<td>29.176</td>
<td>30.700</td>
<td>30.583</td>
<td>25.943</td>
</tr>
<tr>
<td>Material Esteril</td>
<td>kt</td>
<td>5.720</td>
<td>998</td>
<td>1.830</td>
<td>1.130</td>
<td>807</td>
<td>220</td>
<td>291</td>
<td>282</td>
<td>261</td>
<td>101</td>
</tr>
<tr>
<td>Total Material Minado</td>
<td>kt</td>
<td>130.071</td>
<td>998</td>
<td>1.630</td>
<td>1.277</td>
<td>3.883</td>
<td>4.946</td>
<td>29.467</td>
<td>30.982</td>
<td>30.844</td>
<td>26.044</td>
</tr>
<tr>
<td>Total Cobre Vendido</td>
<td>kt</td>
<td>1.373</td>
<td>0</td>
<td>0</td>
<td>70</td>
<td>392.9</td>
<td>331.4</td>
<td>306</td>
<td>315.6</td>
<td>292.3</td>
<td></td>
</tr>
<tr>
<td>Total Oro Vendido</td>
<td>kOz</td>
<td>1.453</td>
<td></td>
<td></td>
<td></td>
<td>103.6</td>
<td>505.6</td>
<td>379.6</td>
<td>276.4</td>
<td>187.9</td>
<td></td>
</tr>
<tr>
<td>Total Plata Vendida</td>
<td>kOz</td>
<td>20.666</td>
<td></td>
<td></td>
<td></td>
<td>1.214,3</td>
<td>6.059,4</td>
<td>5.015,3</td>
<td>4.375,6</td>
<td>3.801,2</td>
<td></td>
</tr>
</tbody>
</table>

Mía: millones de toneladas por año; Kt: miles de toneladas; MOz: millones de onzas

Fuente: Minera de Cobre Quebradona, 2019

3.6.4.2 Relación de mineral/m³ de material movido

La relación promedio de material mineral extraído en la vida de la mina es de 0.95, la relación en los primeros cinco años es en promedio 0.60 y a partir del sexto año es en promedio 0.99 (véase la Tabla 3.329). Los cálculos fueron realizados considerando un peso unitario de 2,78 t/m³, por lo tanto, los resultados se presentan en toneladas.

Tabla 3.329 Relación de mineral/m³ de material removido

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Un</th>
<th>Total</th>
<th>Año 1 (O)</th>
<th>Año 2 (O)</th>
<th>Año 3 (O)</th>
<th>Año 4 (O)*</th>
<th>Año 1 (O)</th>
<th>Años 2-6 (O)</th>
<th>Años 7-11 (O)</th>
<th>Años 12-16 (O)</th>
<th>Años 17-21 (O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total de Mineral</td>
<td>kt</td>
<td>124.351</td>
<td>0</td>
<td>0</td>
<td>147</td>
<td>3.076</td>
<td>4.725</td>
<td>29.176</td>
<td>30.700</td>
<td>30.583</td>
<td>25.943</td>
</tr>
<tr>
<td>Total Material Minado</td>
<td>kt</td>
<td>130.071</td>
<td>998</td>
<td>1.630</td>
<td>1.277</td>
<td>3.883</td>
<td>4.946</td>
<td>29.467</td>
<td>30.982</td>
<td>30.844</td>
<td>26.044</td>
</tr>
<tr>
<td>Relación</td>
<td></td>
<td>0.95</td>
<td>0.00</td>
<td>0.00</td>
<td>0.12</td>
<td>0.79</td>
<td>0.96</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona S.A.
3.6.4.3 Inversiones de capital

Las estimaciones de las inversiones de capital, así como de los costos de operación es información estimada sujeta a incertidumbres y otros factores que pueden originar que los resultados reales difieran de los aquí presentados. Las proyecciones se basaron en información que a su vez también es estimada e incluyen, pero sin limitarse a ellas, las siguientes:

- Recursos y reservas de minerales
- Producción de mineral
- Factores de recuperación metalúrgica
- Productividad y disponibilidad de equipos
- Equipos y facilidades requeridos
- Precios de mercado estimados
- Ratas de consumo, insumos y horas de operación
- Costos de cierre y post cierre de mina

En la Tabla 3.330 se incluye la información de las inversiones de capital requeridas para la construcción del Proyecto y operación expresados en millones de dólares reales.

Tabla 3.330 Inversiones de capital requeridas

<table>
<thead>
<tr>
<th>Área</th>
<th>US$Millones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mina</td>
<td>301,77</td>
</tr>
<tr>
<td>Planta, infraestructura y otras facilidades</td>
<td>690.55</td>
</tr>
<tr>
<td>Total inversiones de capital de construcción</td>
<td>992,32</td>
</tr>
<tr>
<td>Inversiones de capital de sostenimiento</td>
<td>371,65</td>
</tr>
<tr>
<td>Total inversiones de capital - vida de la mina</td>
<td>1.363,97</td>
</tr>
</tbody>
</table>

*: Dólares constantes de 2019

Fuente: Minera de Cobre Quebradona, 2019

Las inversiones en el área de la mina incluyen todas las erogaciones necesarias de minería subterránea y representan el 34 % de las inversiones totales e incluyen entre otros:

- Diseño de la mina
- Accesos a la mina
 - Inicial para programas Geotécnicos y geológicos
 - De personal
 - De materiales
- Desarrollo subterráneo de mina
- Desarrollos verticales (chimeneas de ventilación)
- Vías subterráneas
• Manejo subterráneo de material y estéril
• Polvorín
• Equipo de transporte de material hasta la planta de trituración
• Planta de trituración
• Sistema de bandas transportadoras hasta superficie
• Sistema de automatización y control
• Sistemas de manejo de agua
• Sistemas de tuberías
• Sistemas de ventilación
• Sistemas de distribución eléctrica
• Sistemas de aire comprimido
• Sistema de control de incendios
• Sistemas de control de polvo
• Equipo minero mayor (taladros de barreno largo, jumbos, transportadores LHD, camión de anfo, camiones transporte de material, camiones de agua, etc.)
• Sistemas de comunicaciones
• Facilidades para el personal (cambiaderos, comedores, baños, áreas de refugio, sala de primeros auxilios, etc)
• Equipo auxiliar y vehículos livianos

Las inversiones en planta, infraestructura de superficie y otras facilidades representan el 66 % del total de las inversiones iniciales del Proyecto e incluyen entre otras:
• Accesos, vías de construcción y operación
• Desarrollo y adecuación de las áreas de superficie
• Planta de beneficio
• Patio manejo de colas
• Botaderos de estéril
• Pilas de almacenamiento de suelo
• Sistemas de distribución eléctrica
• Sistemas de control de incendios
• Sistemas de manejos de agua
• Talleres
• Bodegas y almacenamiento de combustibles
- Facilidades para el personal (campamento, cambiaderos, comedores, sala de primeros auxilios)
- Equipo auxiliar y equipo móvil
- Sistemas de comunicaciones y de cómputo
- Oficinas

Las inversiones de capital de sostenimiento se estiman en US$369 M e incluyen la adquisición de equipos e instalaciones que serán reemplazadas de acuerdo con su uso y vida útil esperadas durante la vida de la mina.

3.6.4.4 Costos operacionales (Extracción y Beneficio)

Los costos de operación promedio para la vida de la mina incluyen todos aquellos costos necesarios para la producción, extracción y beneficio del material incluyendo los costos de soporte y administración. Los costos de operación se estiman entre otros, asumiendo para los equipos horas de operación, disponibilidad y uso de disponibilidad del 85 % y ratas de consumo. Los costos incluyen:

- Cantidad y nivel de personal requerido y salarios & beneficios asociados
- Consumos y costos de:
 - Energía
 - Explosivos
 - Repuestos
 - Combustibles
 - Insumos
 - Reactivos, medios de molienda y consumibles operativos
 - Mantenimiento
- Gastos generales y de Administración
 - Gastos de manejo de estériles y deposición de estériles
 - Gastos de soporte a la minería y metalurgia (geología, planeación minera, ingeniería, etc.)
 - Gastos de soporte a operaciones (transporte terrestre, alimentación, seguridad, protección, etc.)
 - Servicios Contratados
 - Gastos de administración (oficina, seguros, legales, etc.)
 - Gastos de cierre progresivo, cierre y post cierre de la operación minera
 - Gastos de venta del concentrado, relacionados a transporte terrestre y marítimo del concentrato, costos de tratamiento y refinación del concentrado, más pruebas y mostreos de los materiales en el proceso.
En la Tabla 3.331 se incluyen los costos de operación promedio para la vida de la mina expresados en dólares por tonelada. Típicamente en proyectos de cobre donde no se refina en el sitio, los costos generales y de administración (G&A) tienden a ser más grandes que los operativos, debido a los gastos de venta del concentrado. Como se muestra en la Tabla 3.331, los gastos de G&A representan 68% de los costos totales operativos.

Tabla 3.331 Costos de operación

<table>
<thead>
<tr>
<th>Área</th>
<th>US$/t</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minería (Extracción)</td>
<td>9.61</td>
<td>19</td>
</tr>
<tr>
<td>Beneficio (Planta)</td>
<td>6.25</td>
<td>13</td>
</tr>
<tr>
<td>Gastos generales y de administración</td>
<td>33.31</td>
<td>68</td>
</tr>
</tbody>
</table>

*: Dólares constantes de 2018

Fuente: Minera de Cobre Quebradona, 2019

3.6.4.5 Costos de restauración por unidad de producción

La estabilización de las áreas intervenidas por la operación incluye la nivelación de las áreas a recuperar, la colocación de suelo, la revegetación de las zonas cubiertas con suelo y la construcción y mantenimiento de cercas para controlar el acceso de personas y animales que pudieran afectar el desarrollo de la nueva cobertura vegetal.

Adicionalmente, en el caso particular de la zona de subsidencia, además de algunas actividades preliminares (instalación de avisos de identificación de áreas), se contempla el inventario y aprovechamiento forestal de pino pátula en la zona de hundimiento y el enriquecimiento forestal de la zona demarcada como límite de la subsidencia.

Sin embargo, las actividades de mayor impacto en el costo de rehabilitación son revegetación con US$ 3.179.000, la colocación de suelo con US$ 2.953.000 y la nivelación de superficies con US$ 1.443.000 (Véase la Tabla 3.332).

Tabla 3.332 Costos de estabilización de áreas intervenidas (miles de US$)

<table>
<thead>
<tr>
<th>Obras</th>
<th>Nivelación Superficie</th>
<th>Colocación de suelo</th>
<th>Enriquecimiento forestal</th>
<th>Aprovechamiento forestal</th>
<th>Cercas</th>
<th>Revegetación</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depósito de relaves filtrados</td>
<td>261</td>
<td>552</td>
<td>0</td>
<td>0</td>
<td>45</td>
<td>527</td>
<td>1.384</td>
</tr>
<tr>
<td>Instalaciones</td>
<td>114</td>
<td>241</td>
<td>0</td>
<td>0</td>
<td>81</td>
<td>231</td>
<td>667</td>
</tr>
<tr>
<td>Plantas</td>
<td>69</td>
<td>145</td>
<td>0</td>
<td>0</td>
<td>29</td>
<td>139</td>
<td>382</td>
</tr>
<tr>
<td>Plataformas</td>
<td>95</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>71</td>
<td>191</td>
<td>558</td>
</tr>
<tr>
<td>Sedimentadores</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>Vías</td>
<td>134</td>
<td>285</td>
<td>103</td>
<td>86</td>
<td>127</td>
<td>272</td>
<td>1.007</td>
</tr>
<tr>
<td>Zodmes</td>
<td>251</td>
<td>467</td>
<td>11</td>
<td>9</td>
<td>96</td>
<td>508</td>
<td>1.343</td>
</tr>
<tr>
<td>Zona de Subsidencia</td>
<td>0</td>
<td>0</td>
<td>126</td>
<td>105</td>
<td>23</td>
<td>167</td>
<td>420</td>
</tr>
<tr>
<td>Total</td>
<td>924</td>
<td>1.890</td>
<td>240</td>
<td>201</td>
<td>506</td>
<td>2.035</td>
<td>5.796</td>
</tr>
<tr>
<td>Costos Indirectos</td>
<td>231</td>
<td>472</td>
<td>60</td>
<td>50</td>
<td>127</td>
<td>509</td>
<td>1.449</td>
</tr>
<tr>
<td>Contingencia</td>
<td>289</td>
<td>591</td>
<td>75</td>
<td>63</td>
<td>158</td>
<td>636</td>
<td>1.811</td>
</tr>
<tr>
<td>Costo total estimado</td>
<td>1.443</td>
<td>2.953</td>
<td>375</td>
<td>315</td>
<td>791</td>
<td>3.179</td>
<td>9.056</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019
3.6.4.6 Costos de manejo y deposición de estériles

Por ser un Proyecto de minería subterránea, la relación mineral movido por material movido es muy alta, como se dijo anteriormente alrededor de 0,98. De esta forma los costos relacionados con el manejo y deposición de estériles son poco significantes en relación con los costos totales. Los estériles del desarrollo de los túneles serán depositados en zonas determinadas en el layout acordes con el plan de manejo correspondiente. El costo estimado de manejo de este estéril es de 1,5 US$/t. Los costos destacados en azul son referentes a los costos de inversión de capital (aproximadamente US$ 7,7M), los otros son referentes a los costos en operación (aproximadamente US$ 1,7M).

<table>
<thead>
<tr>
<th>Tabla 3.333 Costos de operación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Material Esteril</td>
</tr>
<tr>
<td>Costo de manejo</td>
</tr>
</tbody>
</table>

* Dólares constantes de 2018

Fuente: Minera de Cobre Quebradona, 2019

3.6.4.7 Costos previstos para el programa de cierre y de post cierre de mina

El Plan de Cierre se ha estimado en US$ 40,8 M, cifra que incluye costos directos por valor de US$ 26,1 M, costos indirectos por US$ 6,5 M y contingencia por US$ 8,2 M. Desde el punto de vista de etapas del proceso se han estimado US$ 13,1 M para el cierre progresivo, US$ 23,4 M para el cierre final y US$ 4,3 M para actividades de pos-cierre (véase la Tabla 3.334).

<p>| Tabla 3.334 Costos totales estimados del cierre (miles de US$) |
|-------------------|-----------------|-----------------|-----------------|-------------------|</p>
<table>
<thead>
<tr>
<th>Concepto</th>
<th>Cierre progresivo</th>
<th>Cierre final</th>
<th>Pos-cierre</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costos Directos</td>
<td>8.377</td>
<td>15.001</td>
<td>2.748</td>
<td>26.127</td>
</tr>
<tr>
<td>Costos Indirectos</td>
<td>2.094</td>
<td>3.750</td>
<td>687</td>
<td>6.532</td>
</tr>
<tr>
<td>Contingencia</td>
<td>2.618</td>
<td>4.688</td>
<td>859</td>
<td>8.165</td>
</tr>
<tr>
<td>Total</td>
<td>13.090</td>
<td>23.440</td>
<td>4.294</td>
<td>40.824</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

<p>| Tabla 3.335 Costos de cierre según actividades (miles de US$) |
|-------------------|-----------------|-----------------|-----------------|-------------------|</p>
<table>
<thead>
<tr>
<th>Actividades</th>
<th>Costos Directos</th>
<th>Costos Indirectos</th>
<th>Contingencia</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminares</td>
<td>330</td>
<td>83</td>
<td>103</td>
<td>516</td>
</tr>
<tr>
<td>Estabilización</td>
<td>5.867</td>
<td>1.467</td>
<td>1.833</td>
<td>9.167</td>
</tr>
<tr>
<td>Desmantelamiento</td>
<td>5.471</td>
<td>1.368</td>
<td>1.710</td>
<td>8.549</td>
</tr>
<tr>
<td>Demolición</td>
<td>3.134</td>
<td>784</td>
<td>979</td>
<td>4.897</td>
</tr>
<tr>
<td>Control de DAR</td>
<td>7.000</td>
<td>1.750</td>
<td>2.188</td>
<td>10.938</td>
</tr>
</tbody>
</table>

Estudio de Impacto Ambiental I-0010371-MQC-EIA-V1-FA
Noviembre, 2019 3.717
Cuando se consideran las distintas obras a realizar observamos que los costos de cierre se distribuyen en dos zonas: zona en la montaña (área de subsistencia, plataformas y otras) por valor de US$ 1.230.000; mientras que en la zona de el valle (parte baja) los costos de recuperación de áreas relacionadas con el beneficio de minerales son de US$ 8.390.000, de manejo de sobrantes de minería y del proceso son de US$ 5.579.000 y rehabilitación de áreas destinadas al soporte minero tienen un valor de US$ 10.928.000, para un total de US$ 26.127.000.

A este valor deben sumarse US$ 6.532.000 de costos indirectos y US$ 8.165.000 de contingencia, para un total de US$ 40.824.000.

Como puede apreciarse en la Tabla 3.36, el principal componente del costo de rehabilitación está representado por el sistema pasivo de control de drenaje ácido de rocas (US$ 10.938.000), seguido en su orden por la estabilización de áreas intervenidas (US$ 9.167.000), desmantelamiento de infraestructuras (US$ 8.549.000), mantenimiento de áreas revegetadas (US$ 6.326.000), demolición de edificaciones (US$ 4.897.000), obras preliminares (US$ 516.000) y, finalmente, actividades de monitoreo que se llevarán a cabo durante la etapa de pos-cierre (US$ 431.000).

<table>
<thead>
<tr>
<th>Obras</th>
<th>En la montaña</th>
<th>En el valle</th>
<th>Total</th>
<th>Costos indirectos</th>
<th>Contingencia</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminares</td>
<td>83</td>
<td>41</td>
<td>124</td>
<td>83</td>
<td>103</td>
<td>516</td>
</tr>
<tr>
<td>Estabilización</td>
<td>1.057</td>
<td>360</td>
<td>2.923</td>
<td>1.455</td>
<td>1.449</td>
<td>1.811</td>
</tr>
<tr>
<td>Desmantelamiento</td>
<td>0</td>
<td>5.001</td>
<td>6</td>
<td>464</td>
<td>1.368</td>
<td>1.710</td>
</tr>
<tr>
<td>Demolición</td>
<td>121</td>
<td>2.372</td>
<td>0</td>
<td>641</td>
<td>784</td>
<td>979</td>
</tr>
<tr>
<td>Control de DAR*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7.000</td>
<td>1.750</td>
<td>2.188</td>
</tr>
<tr>
<td>Mantenimiento</td>
<td>386</td>
<td>335</td>
<td>2.574</td>
<td>1.078</td>
<td>1.093</td>
<td>1.366</td>
</tr>
<tr>
<td>Monitoreo</td>
<td>0</td>
<td>276</td>
<td>0</td>
<td>276</td>
<td>69</td>
<td>86</td>
</tr>
<tr>
<td>Total</td>
<td>1.230</td>
<td>8.390</td>
<td>5.679</td>
<td>10.928</td>
<td>6.532</td>
<td>8.165</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019

3.6.5 Cronograma del Proyecto
<table>
<thead>
<tr>
<th>Actividad</th>
<th>Año 1 (C)*</th>
<th>Año 2 (C)</th>
<th>Año 3 (C)</th>
<th>Año 4 (C)</th>
<th>Año 1 (O)-Año 21 (O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTRUCCION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desarrollo de mina subterránea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manejo de minerales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flota minera & equipo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instalaciones y servicios de infraestructura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comunicaciones, informática y computación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instalaciones generales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servicios de construcción</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instalaciones de construcción</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilidades de construcción</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipo de construcción</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puesta en servicio/preparación operativa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primeros rellenos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manejo de minerales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instalaciones de mina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instalaciones de mina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desagüe de mina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planta concentradora</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilas & recuperación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conminución</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flotación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remolienda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espesamiento de concentrado, almacenaje, filtración y carga</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espesamiento y filtración de relaves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactivos y servicios de planta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depósito de relaves filtrados</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrafuertes norte y sur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colección infiltración</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pila de filtrados</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Estudio de Impacto Ambiental

MINERA DE COBRE QUEBRADONA S.A.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Año 1 (C)*</th>
<th>Año 2 (C)</th>
<th>Año 3 (C)</th>
<th>Año 4 (C)</th>
<th>Año 1 (O)-Año 21 (O)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tr1</td>
<td>Tr2</td>
<td>Tr3</td>
<td>Tr4</td>
<td>Tr1</td>
</tr>
<tr>
<td>Eliminación de pirita</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMF estanques</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vías de acarreo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Instalaciones y servicios de infraestructura

- Servicios de agua
- Comunicación y I.T.
- Instalaciones generales
- Vías de acceso
- Gestión de materiales
- Manejo de aguas
- Subestación de media y distribución en el sitio

OPERACIÓN

* (C): Construcción; (O): Operación

Fuente: Minera de Cobre Quebradona, 2019
<p>| Tabla 3.338 Cronograma de actividades de cierre progresivo, cierre y pos cierre |
|---|---|---|---|---|---|---|
| Etapa | Construcción | Operación | Cierre | Pos-cierre |
| Actividad / año | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| Cierre progresivo |
| Establecimiento de barreras vivas en el perímetro de la zona de subsidencia |
| Enriquecimiento forestal del bosque de galería y de los pastos arbolados en la zona de subsidencia |
| Conservación del bosque fragmentado en la zona de subsidencia |
| Inventario y aprovechamiento forestal de la plantación de pino en la zona de subsidencia |
| Reforestación del área aprovechada y de los pastos limpios en la zona de subsidencia |
| Seguimiento y monitoreo a la zona de subsidencia |
| Reconformación morfológica y revegetalización de zóndmes |
| Cierre final |
| Desmantelamiento de instalaciones y equipos |
| Demolición de estructuras y disposición de escombros |
| Reconformación morfológica y paisajística |
| Revegetalización del área |
| Ejecución de estrategias de comunicación con la comunidad |
| Postcierre |
| Monitoreo de calidad de agua |
| Inspecciones visuales de estabilidad física y de reestablecimiento de coberturas |
| Inspecciones visuales a las protecciones implementadas para evitar la generación de drenaje ácido |
| Inspecciones visuales de las obras hidráulicas |</p>
<table>
<thead>
<tr>
<th>Etapa</th>
<th>Construcción</th>
<th>Operación</th>
<th>Cierre</th>
<th>Pos-cierre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividad / año</td>
<td>1 2 3 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoreo a los procesos de revegetalización</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoreo a las comunidades</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona, 2019
3.6.6 Organización del Proyecto

3.6.6.1 Estructura organizacional de la empresa

La estructura organizacional del Proyecto Minera de Cobre Quebradona se transforma con el desarrollo del Proyecto. Actualmente, la empresa cuenta con empleados nacionales y extranjeros, situación que se mantendrá en el tiempo y que implica un proceso de adaptación mutua, clave para la consolidación de las diferentes culturas.

La empresa Quebradona Colombia S.A. es desde este año controlada en un 100% por AngloGold Ashanti Colombia SA, por lo que el Proyecto se desarrolla bajo los estándares y valores corporativos de su empresa global AngloGoldAshanti.

La Empresa ha implantado un sistema organizacional orientado a la vinculación del personal necesario, con el objetivo de hacer negocios con eficiencia, competitividad, creatividad, confianza y satisfacción en el trabajo.

La organización requerida se basa en dos principios fundamentales: primero, todas las personas vienen a trabajar para hacer lo mejor posible, y segundo, todas las políticas, procedimientos y prácticas se basan en la confianza mutua. La estructura organizacional se fundamenta en varios niveles de asignación de responsabilidades, roles y asignación de autoridades.

3.6.6.1.1 Organización Interna

Quebradona Colombia S.A. está organizada por niveles llamados “Stratum”, cada uno de los cuales tiene hasta tres niveles diferentes, de acuerdo con el tiempo de asignación de responsabilidades. La Tabla 3.339 muestra un ejemplo de los Stratum y niveles actualmente en la organización, en la que cada nivel corresponde a unas funciones específicas y a un grado de responsabilidad diferente y en la Figura 3.444 se presentan las políticas de la organización.

<table>
<thead>
<tr>
<th>Tabla 3.339</th>
<th>Ejemplo de funciones por niveles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrato (Stratum)</td>
<td>Nivel</td>
</tr>
<tr>
<td>Estrato IV</td>
<td>Medio</td>
</tr>
<tr>
<td></td>
<td>Bajo</td>
</tr>
<tr>
<td>Estrato III</td>
<td>Alto</td>
</tr>
<tr>
<td></td>
<td>Medio</td>
</tr>
<tr>
<td></td>
<td>Bajo</td>
</tr>
<tr>
<td>Estrato II</td>
<td>Alto</td>
</tr>
<tr>
<td></td>
<td>Medio</td>
</tr>
<tr>
<td></td>
<td>Bajo</td>
</tr>
<tr>
<td>Estrato I</td>
<td>Alto</td>
</tr>
<tr>
<td></td>
<td>Medio</td>
</tr>
<tr>
<td></td>
<td>Bajo</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona. 2019
3.6.6.1.2 Desarrollo de personal

Un relacionamiento claro entre los empleados de una organización permite que trabajen de manera constructiva, responsable y efectiva. Para ello, la empresa hace énfasis en el diseño organizacional, en la planificación del recurso humano, el reclutamiento, la selección e inducción inicial, en la gestión del rendimiento de cada empleado, su remuneración, el desarrollo del talento humano, su educación y formación, y en el desarrollo del liderazgo gerencial.
Un requisito fundamental para lograr este desarrollo se basa en que todas las políticas, procedimientos y prácticas de gestión deben inducir confianza. La confianza no significa estar de acuerdo con todas las decisiones de sus superiores, sino lograr los resultados esperados mediante un trato justo de la gente, asegurando la eficiencia y eficacia para conseguir que el trabajo se lleve a cabo de la mejor forma posible.

Quebradona considera todas las políticas como una declaración de alto nivel que refleja las creencias de la organización, que serán utilizadas como base para la elaboración de normas, procedimientos y directrices más detalladas.

3.6.6.2 Organización para la gestión ambiental

El Departamento de Gestión Ambiental, reglamentado por el Decreto 1299 de 2008, tiene por objeto: “Establecer e implementar acciones encaminadas a dirigir la gestión ambiental de las empresas a nivel industrial; velar por el cumplimiento de la normatividad ambiental; prevenir, minimizar y controlar la generación de cargas contaminantes; promover prácticas de producción más limpia y el uso racional de los recursos naturales; aumentar la eficiencia energética y el uso de combustible más limpios; implementar opciones para la reducción de emisiones de gases de efecto invernadero; y proteger y conservar los ecosistemas”.

En este orden de ideas, el artículo 6 del decreto en mención, establece que el Departamento de Gestión Ambiental deberá como mínimo desempeñar las siguientes funciones:

- Velar por el cumplimiento de la normatividad ambiental vigente.
- Incorporar la dimensión ambiental en la toma de decisiones de la Compañía.
- Brindar asesoría técnica - ambiental al interior de la Compañía.
- Establecer e implementar acciones de prevención, mitigación, corrección y compensación de los impactos ambientales que generen.
- Planificar, establecer e implementar procesos y procedimientos, gestionar recursos que permitan desarrollar, controlar y realizar seguimiento a las acciones encaminadas a dirigir la gestión ambiental y la gestión de riesgo ambiental de las mismas.
- Promover el mejoramiento de la gestión y desempeño ambiental al interior de la Compañía.
- Implementar mejores prácticas ambientales al interior de la Compañía.
- Liderar la actividad de formación y capacitación a todos los niveles de la Compañía en materia ambiental.
- Mantener actualizada la información ambiental de la Compañía y generar informes periódicos.
- Preparar la información requerida por el Sistema de Información Ambiental que administra el Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM.
Las demás que se desprendan de su naturaleza y se requieran para el cumplimiento de una gestión ambiental adecuada.

Para ello Proyecto Minera de Cobre Quebradona ha responsabilizado a la Gerencia Ambiental el liderazgo de la gestión ambiental corporativa y ella contará con el apoyo de otras gerencias de la Compañía entre las que se destacan las gerencias de Gobierno y comunidades, Recursos Humanos y Tierras. El departamento de gestión ambiental se encuentra definido en el Capítulo 10 Programas de manejo ambiental, del presente Estudio de Impacto Ambiental, el cual está enfocado en la atención de todas las medidas de manejo propuestas para los medios abiótico, biótico y socioeconómico, definidas para cada una de las etapas del Proyecto.

3.6.6.3 Organización para el desarrollo del proyecto

Antes de definir la estructura organizacional prevista para el desarrollo del proyecto es necesario precisar que la definición de roles y cargos es una condición que pueden variar en el tiempo en la medida en que el proyecto tenga cambios en su diferentes fases de desarrollo, en función de los ajustes que puedan presentarse en el ámbito laboral y/o de los ajustes tecnológicos que puedan generarse en el tiempo por efecto de las condiciones de mercado que puedan afectar la operación. Por tanto, la estructura organizacional propuesta en este numeral debe verse de manera flexible, que, sin embargo, tendrá como responsabilidad el desarrollo de las principales actividades de operación del proyecto, la cual se tiene prevista por cada etapa del proyecto, de la siguiente forma:

3.6.6.3.1 Construcción y montaje

La Estructura de Implementación y Construcción, será la encargada de casi todas las actividades de implementación para llevar el Proyecto a través de las fases de ingeniería y construcción, puesta en marcha e incremento de producción. La construcción del Proyecto se ejecutará sobre una base de Gestión de Ingeniería, compras, suministros y construcción con un grupo de consultores y contratistas especializados.

La estructura organizacional del proyecto estará conformada por dos roles: una Gerencia General (GG) que será la encargada de dar lineamientos generales a 12 áreas, con responsabilidades funcionales y para garantizar el correcto traspaso del proyecto a la operación; una Gerencia/ Dirección de Proyectos (GP), responsable por la construcción del Proyecto en los términos y capacidades aprobadas, tal como se resume en la Figura 3.445.
El equipo Gerencia/ Dirección de Proyectos estará apoyado por un equipo de implementación conformado por las siguientes gerencias:

- Gerencia de Geotécnica de Construcción.
- Gerencia de Control de Proyectos.
- Gerencia de Servicios.
- Gerencia de Geología de Construcción.
- Gerencia de Minería de Construcción.
- Gerencia de Metalurgia de Procesos.
- Gerencia de Ingeniería.
- Gerencia de Calidad.
- Gerencia de Construcción.
- Gerencia de Comisionamiento.
- Gerencia de Prontitud Operacional.
Se incluyen en esta etapa todas las actividades constructivas, previas a la explotación minera, necesarias para la ejecución del Proyecto, tales como construcción de vías, construcción del campamento, construcción y montaje de la planta de beneficio, entre otras. Para la construcción y montaje se consolidaron las actividades de acuerdo con la Tabla 3.340.

Tabla 3.340 Actividades de construcción de infraestructura y montaje de equipos

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Responsable de la ejecución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contratación mano de obra, bienes y servicios</td>
<td>Gerencia de Recurso Humanos (GG)</td>
</tr>
<tr>
<td>Utilización de materiales de construcción disponibles en obra</td>
<td>Gerencia de Construcción</td>
</tr>
<tr>
<td>Almacenamiento de materiales, insumos y residuos</td>
<td>Gerencia de servicios</td>
</tr>
<tr>
<td>Operación de Casinos, Oficinas y Campamento internos.</td>
<td>Gerencia de servicios</td>
</tr>
<tr>
<td>Transporte y acarreos</td>
<td>Todas las áreas</td>
</tr>
<tr>
<td>Desmonte</td>
<td>Gerencia de Construcción</td>
</tr>
<tr>
<td>Descapote</td>
<td>Gerencia de Construcción</td>
</tr>
<tr>
<td>Excavaciones y voladuras</td>
<td>Gerencia de Construcción</td>
</tr>
<tr>
<td>Adecuación, operación y mantenimiento de zonas de depósito</td>
<td>Gerencia de Construcción</td>
</tr>
<tr>
<td>Preparación de concretos y agregados</td>
<td>Gerencia de Construcción</td>
</tr>
<tr>
<td>Construcción, operación y mantenimiento de obras civiles</td>
<td>Gerencia de Construcción</td>
</tr>
<tr>
<td>Construcción, operación y mantenimiento de vías</td>
<td>Gerencia de Construcción</td>
</tr>
<tr>
<td>Construcción de obras hidráulicas</td>
<td>Gerencia de Construcción</td>
</tr>
<tr>
<td>Construcción de túnel</td>
<td>Gerencia de Minería</td>
</tr>
<tr>
<td>Montaje de estructuras, equipos, sistemas eléctricos e instrumentalización.</td>
<td>Gerencia de Construcción</td>
</tr>
<tr>
<td>Exploración adicional</td>
<td>Gerencia de Geología</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona 2019

3.6.6.3.2 Actividades de operación del Proyecto

Encargada de la operación general de la compañía, apoyando el equipo de implementación y construcción y preparando las operaciones de la mina. El equipo de operaciones operará durante las cuatro fases del Proyecto y está conformado por diez gerencias funcionales cuyos roles serán funcionales y cruzados con el equipo de implementación del proyecto.

- Gerencia de Finanzas y Administración.
- Gerencia de Ambiental.
Las actividades de operación del Proyecto se clasificaron de la siguiente forma.

- **Actividades preliminares**

Estas actividades se detallan en la Tabla 3.341 y se consideran transversales a toda la operación minera, es decir, no son exclusivas de un momento, sino que se pueden desarrollar a lo largo de toda la vida de la mina.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Responsable de la ejecución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contratación mano de obra, bienes y servicios</td>
<td>Gerencia de recursos humanos</td>
</tr>
<tr>
<td>Recepción y almacenamiento de materiales, insumos</td>
<td>Todas las áreas</td>
</tr>
<tr>
<td>y residuos</td>
<td></td>
</tr>
<tr>
<td>Operación de Casinos, Oficinas y Campamento internos.</td>
<td>Gerencia de Servicios</td>
</tr>
<tr>
<td>Operación y mantenimiento de maquinaria y equipos</td>
<td>Gerencia de Maquinaria Pesada</td>
</tr>
<tr>
<td>Transporte y acarreos</td>
<td>Todas las áreas</td>
</tr>
<tr>
<td>Operación de estaciones de servicio</td>
<td>Gerencia de Servicios</td>
</tr>
<tr>
<td>Operación y mantenimiento de obras hidráulicas</td>
<td>Gerencia de Infraestructura</td>
</tr>
<tr>
<td>Exploración adicional</td>
<td>Gerencia de Control del Proyecto</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona 2019

- **Extracción**

Entendiéndose extracción como el proceso de explotación y procesamiento de los minerales, así como la actividad orientada a la preparación y el desarrollo de las áreas que abarcan los depósitos de mineral se presenta en la Tabla 3.342 el esquema de manejo correspondiente y su nivel de responsabilidad para cada actividad.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Responsable de la ejecución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operación depósitos de materiales</td>
<td>Gerencia de operaciones mineras</td>
</tr>
<tr>
<td>Producción de explosivos</td>
<td>Gerencia de operaciones mineras y Gerencia de Seguridad</td>
</tr>
<tr>
<td>Perforación y voladura</td>
<td>Gerencia de operaciones mineras y Gerencia de Seguridad</td>
</tr>
<tr>
<td>Arranque mecánico y cargue</td>
<td>Gerencia de operaciones mineras</td>
</tr>
<tr>
<td>Almacenamiento de roca</td>
<td>Gerencia de operaciones mineras</td>
</tr>
</tbody>
</table>
Beneficio y transformación

El beneficio de los minerales consiste en el proceso de separación, molienda, trituración, lavado, concentración y otras operaciones similares, a que se somete el mineral extraído para su posterior utilización o transformación. La transformación por su parte es el conjunto de operaciones fisicoquímicas o metalúrgicas a que se somete un mineral después de ser beneficiado, para obtener un primer producto comercial utilizable por la industria y el consumidor.

En el caso concreto del Proyecto Minera de Cobre Quebradona el proceso estará enfocado esencialmente al beneficio de cobre (Cu), por cuanto el resultado del proceso en ningún momento es un producto diferente no identificable con el mineral en su estado natural.

En la Tabla 3.343 se presentan las principales actividades del beneficio del mineral.

Tabla 3.343 Actividades de beneficio y transformación

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Responsable de la ejecución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparación y distribución de insumos químicos para el proceso</td>
<td>Gerencia de Operaciones de Proceso</td>
</tr>
<tr>
<td>Trituración Primaria</td>
<td>Gerencia de Operaciones de Proceso</td>
</tr>
<tr>
<td>Molienda y Remolienda</td>
<td>Gerencia de Operaciones de Proceso</td>
</tr>
<tr>
<td>Flotación</td>
<td>Gerencia de Operaciones de Proceso</td>
</tr>
<tr>
<td>Concentración</td>
<td>Gerencia de Operaciones de Proceso</td>
</tr>
<tr>
<td>Filtaje</td>
<td>Gerencia de Operaciones de Proceso</td>
</tr>
<tr>
<td>Transporte de Concentrado</td>
<td>Gerencia de Operaciones de Proceso</td>
</tr>
</tbody>
</table>

Disposición de Arenas

Disposición de los materiales resultantes de las operaciones de beneficio. En la Tabla 3.344 se presentan las actividades para esta parte del proceso.

Tabla 3.344 Actividades de deposición de arenas

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Responsable de la ejecución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transporte de Arenas</td>
<td>Gerencia de Operaciones de Proceso</td>
</tr>
<tr>
<td>Depósito de Arenas</td>
<td>Gerencia de Operaciones de Proceso</td>
</tr>
</tbody>
</table>

3.6.6.3.3 Abandono y Cierre

En la Tabla 3.345 se resumen las actividades de cierre que serán desarrolladas para el Proyecto Minera de Cobre Quebradona. Esta etapa consiste en la preparación del terreno para una nueva actividad o uso, para la protección ambiental y para la integración armónica con el paisaje circundante.
Tabla 3.345 Actividades de abandono y cierre

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Responsable de la ejecución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desmantelamiento / Demoliciones</td>
<td>Gerencia de infraestructura</td>
</tr>
<tr>
<td>Adecuaciones / Construcciones</td>
<td>Gerencia de infraestructura</td>
</tr>
<tr>
<td>Adecuaciones del Depósito de relaves</td>
<td></td>
</tr>
<tr>
<td>filtrados</td>
<td></td>
</tr>
<tr>
<td>Transporte y acarreo</td>
<td>Todos las áreas</td>
</tr>
<tr>
<td>Desvinculación de personal</td>
<td>Gerencia de Recursos Humanos</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona 2019

3.6.6.3.4 Post Cierre

En la Tabla 3.346 se resumen las actividades de post-cierre que serán desarrolladas para el Proyecto Minera de Cobre Quebradona. Esta etapa se realizan las labores de monitoreo y mantenimiento de las medidas de cierre de la estabilización física, la geoquímica, el establecimiento del suelo y rehabilitación o restauración de hábitats. Las actividades de mantenimiento van a depender de los resultados de las actividades de monitoreo.

Tabla 3.346 Actividades de postcierre

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Responsable de la ejecución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoreo y estabilidad física y química</td>
<td>Gerencia Ambiental</td>
</tr>
<tr>
<td>Monitoreo Social</td>
<td>Gerente de Sostenibilidad</td>
</tr>
<tr>
<td>Mantenimiento físico-químico</td>
<td>Gerencia Ambiental</td>
</tr>
<tr>
<td>Mantenimiento hidro-biólico</td>
<td>Gerencia Ambiental</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona 2019

3.6.6.4 Personal requerido

El modelo organizativo propuesto en el Proyecto Minera de cobre Quebradona, proyecta las necesidades de personal en la fase de construcción, operación y cierre, tal como se muestra en la Tabla 3.347.

Tabla 3.347 Pronóstico de personal para el desarrollo del proyecto

<table>
<thead>
<tr>
<th>Fase</th>
<th>Cantidad máxima de personas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construcción</td>
<td>2.190</td>
</tr>
<tr>
<td>Operación</td>
<td>694</td>
</tr>
<tr>
<td>Abandono y cierre</td>
<td>450</td>
</tr>
</tbody>
</table>

Fuente: Minera de Cobre Quebradona 2019

Se hará un convenio con el SENA para capacitar y cualificar a las personas que se vinculen al Proyecto en diferentes oficios.

Se preferirán los servicios que ofrece esta institución: Certificación de Competencias Laborales; Formación titulada; Contrato de Aprendizaje y Emprendimiento, Empresarismo y Fondo Emprender. El número y disciplina del personal calificado se detalla en la Tabla 3.348.

Tabla 3.348 Proyección de personal calificado por disciplina durante la fase de construcción y montaje

<table>
<thead>
<tr>
<th>Disciplina</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movimientos de tierra</td>
<td>284</td>
</tr>
<tr>
<td>Infraestructura</td>
<td>51</td>
</tr>
<tr>
<td>Concreto</td>
<td>530</td>
</tr>
</tbody>
</table>

Estudio de Impacto Ambiental I-0010371-MQC-EIA-V1-FA
Noviembre, 2019 3.731
La estrategia de selección es un proceso de doble vía, donde no sólo es la empresa la que busca talento, sino que los candidatos perciban a la empresa como una atractiva oportunidad para su propio desarrollo y decidan solicitar un empleo de manera voluntaria.

Antes de que el proceso de búsqueda de candidatos se inicie fuera de la compañía, la búsqueda se centrará en talentos disponibles y potenciales dentro de la organización, incluyendo aquellos empleados con contratos temporales. Además, dadas las características de nuestro Proyecto, el talento local y regional tendrá prioridad sobre candidatos de otras regiones, basándonos en nuestra política de selección y contratación.

3.6.6.4.2 Contratación

La estrategia de contratación de personal se basa en la programación de los recursos humanos que sean necesarios en las diferentes fases de la operación y construcción de la mina. Cada área, según sus necesidades, indicará el número de posiciones requeridas durante una fase determinada del Proyecto. El diseño del programa de formación se basa en dos aspectos principales:

- Directrices de la Planificación Estratégica Corporativa que establecen el crecimiento de la Productividad, lo que implica las personas correctas, con las competencias correctas en el cargo requerido.
- Los resultados de la evaluación del desempeño y la identificación de brechas y necesidades de formación y entrenamiento requeridas por los empleados.

Con base en lo anterior, la formación y el desarrollo derivados del plan de formación estratégico tienen dos enfoques. El primero busca el desarrollo de competencias de una manera transversal y su objetivo es el desarrollo de habilidades organizacionales que están vinculadas a los valores de la empresa, y facilitan la interacción con otras áreas de trabajo. El segundo, se centra en el desarrollo de competencias especializadas y técnicas para el rol, que se presentan por el desarrollo del
conocimiento del negocio o para el cierre de brechas que se identifican en las evaluaciones de los empleados.

El resultado esperado es que la organización cuente con un desarrollo de las habilidades conductuales y técnicas de los empleados, que permitan la percepción individual del crecimiento y la percepción colectiva del desarrollo sostenible que genera la organización.

3.6.6.4.3 Procesos corporativos asociadas a recursos humanos

El área de recursos humanos se asegurará que el Proyecto Minera de Cobre Quebradona implemente todos los procesos necesarios como una declaración obligatoria de alto nivel relacionada con los valores, metas y objetivos de la organización. Los procesos de Anglo Gold Ashanti se utilizan como base para el desarrollo de todas las normas, procedimientos y directrices del Proyecto; dichos procesos internos son los siguientes:

- RH020 Reclutar y seleccionar empleados.
- RH030 Administrar ingreso de nuevos empleados.
- RH040 Capacitar colaboradores.
- RH050 Administrar los planes de desarrollo.
- RH060 Administrar datos del colaborador.
- RH070 Administrar compensaciones.
- RH090 Administrar cultura y clima organizacional.
- RH100 Administrar relaciones de trabajo (colectivas) y con el colaborador (individuales).
- RH110 Administrar desvinculación de colaboradores.
- RH120 Administrar gestión del desempeño.
- RH130 Procesar y pagar nómina.
- RH140 Gestionar visas para extranjeros.