Using Cadaver Simulation to Improve Communication and Economy of Movement as Evidence of Progress with the Trans-catheter Aortic Valve Implantation (TAVI) Learning Curve

Conference Paper
July 2014
DOI: 10.13140/2.1.3004.4484
Conference: 2014 Summer Simulation Multiconference, Volume: 26

1st Saman Parvaneh
15.65 · Philips

2nd Sugam Bhatnagar

3rd Robert S Poston
40.91 · St. Francis Medical Center, Trenton, NJ

4th Bijan Najafi
36.96 · Baylor College of Medicine

Abstract

web: http://surgery.arizona.edu/iCAMP Abstract Trans-catheter Aortic Valve Implantation (TAVI) is an endovascular treatment for critical aortic stenosis. An early "learning curve" is important drawback of TAVI that can dramatically alter patient safety and hospital costs. There is paucity of data regarding the quantification of learning experience associated with the technique. The aim of this study was to assess learning curve in clinical staff involved in the...
Using Cadaver Simulation to Improve Communication and Economy of Movement as Evidence of Progress with the Trans-catheter Aortic Valve Implantation (TAVI) Learning Curve

Saman Parvaneh 1,2, Sugam Bhatnagar 3, Robert Poston 1, Bijan Najafi 1,2
1 interdisciplinary Consortium for Advanced Motion Performance (iCAMP), Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ;
2 Southern Arizona Limb Salvage Alliance (SALSA), Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ;
3 Sarver Heart Center, Department of Surgery, College of Medicine, University of Arizona, Tucson, AZ;

Keywords: Trans-catheter Aortic Valve Implantation, TAVI, Economy of movement, Learning Curve, Robotic Surgery, Wearable technology.

Abstract
Trans-catheter Aortic Valve Implantation (TAVI) is an endovascular treatment for critical aortic stenosis. An early “learning curve” is important drawback of TAVI that can dramatically alter patient safety and hospital costs. There is paucity of data regarding the quantification of learning experience associated with the technique. The aim of this study was to assess learning curve in clinical staff involved in the implementation of TAVI. We hypothesize that training sessions will improve economy of movement (EoM) as characterized by measuring jerkiness of trunk movement in medial-lateral direction. Using wearable technology based on tri-axial accelerometer, the EoM of a scrub technician, who was naive to TAVI procedure, was assessed during 6 consecutive TAVI procedures, including 4 cadaver TAVI simulations and 2 clinical cases. In addition, communication errors between the surgery team were monitored. During the cadaver simulation training, the treatment of critical aortic stenosis [1]. It has gained acceptance in the treatment of patients who are ineligible for conventional surgical aortic valve replacement [2]. Patients who undergo TAVI benefit from superior survival and symptomatic outcomes versus patient who carry medical palliation [3, 4]. To date, more than 10000 TAVI procedures have been completed [5] and a recent study by Osanbruggge et al. reported nearly 18000 and 9200 new TAVI candidates in Europe and North America each year, respectively [6].

TAVI is a complex procedure requiring a dedicated team of cardiac surgeons, interventional cardiologists, echocardiographers and anesthesiologists [1, 7]. A careful training of TAVI team and a close collaboration between them seem to play a major role in having a successful TAVI program [1, 8].

1.1. Current training procedures and their challenges
Advanced training and experience are an important factor for success of TAVI [9]. Current TAVI training starts with theoretic procedural preparation during lecture and lab training and is followed by the

reduced during real cases compared to the first simulated case, suggesting that cadaver simulation translated into real cases. This proof of concept study suggests that EoM could be used as an alternative method to objectively evaluate the learning curve during surgical procedures. Results should be confirmed in a larger sample size in both physicians and support staff assisting with TAVI procedure.

1. INTRODUCTION
Trans-catheter Aortic Valve Implantation (TAVI) is a minimally invasive endovascular procedure for the
in patient blood pressure. After the training phase, a number of proctored cases should be completed. Frank, open debriefings about difficult cases have proved valuable [12].

1.2. Quantification of learning during training/practices and their benefit

For evaluation of learning during TAVI training, performance measures need to be defined. Plotting performance versus experience (e.g., number of completed cases) creates a learning curve [15] and it is expected that with more experience, the performance tends to improve [16]. TAVI learning curve involves the improvement in multidisciplinary teamwork to execute a complex intervention. An early “learning curve” is an important drawback of TAVI that can dramatically alter patient safety and hospital costs [16]. Communication failures among cardiologists, CT surgery and cardiac anesthesia and uncertainty about roles among support staff are common triggers for adverse events during the TAVI learning curve. In an article published recently, Block talked about the importance of learning curve in TAVI procedure [7]. The effect of training and learning curve in TAVI procedure has been evaluated in different studies [16-20]. In general, we could classify the learning curve in TAVI to two groups that try to 1) evaluate patient’s outcome [18-20] and/or 2) evaluate the TAVI procedure itself [16, 17, 20].

Fluoroscopy time, valvuloplasty to valve deployment time, radiation exposure and contrast volume studied by Alli et al. during performing TAVI procedure on 44 consecutive patients [16]. Their results show that procedural time, radiation, and contrast volumes significantly decreased with increase in experience. Also, existence of plateau after the first 30 cases in their research proposed that it takes 30 cases to attain proficiency. The same parameter as Alli et al. study has been evaluated in another research on 500 consecutive high-risk patients [17]. The results of this study also confirm that operating time and radiation exposure reduced with minimally invasive surgery such as laparoscopic surgery. Furthermore, good communication and debriefing after surgery were a factor that caused a quick learning curve in minimally invasive cardiac surgery as studied by Leonard et al. [21].

In this study, we hypothesized that training and enhancing between team communications, can improve the economy of movement (EoM) in clinical staff during TAVI procedure. As a case study, we explored body motion using a wearable sensor on one clinical staff who participated in 6 consecutive cases including four training sessions and two clinical cases. Since the jerkiness of motion is an indicator of economy of motion and may be used as an indicator for the performance of human motion, it stands to reason that assessing the jerkiness of motion may be an indicator of learning effect after practices.

2. METHODS AND MATERIALS

After approval of this study by the institutional review board (IRB) in University of Arizona, physicians (two interventional cardiologists, two cardiac surgeons, cardiac anesthesiologist, and a non-interventional cardiologist) and support staff (three catheterization lab nurses and three CT surgery nurses) were recruited to participate in four cadaver TAVI simulations over a four month period followed by two clinical cases.

Each simulation and clinical case involved videotaped performance in the hybrid operating room, and a debriefing session to review case highlights. Two raters independent of the TAVI team reviewed videos for major communication errors.

Economy of movement of one clinical staff (scrub technician), who assisted in the TAVI procedure, was measured using a wearable sensor (PAMSys™, Biosense LLC, MA, USA) inserted in a tank top shirt to assess trunk acceleration with sample frequency of 50Hz. One of the
the 5th and 95th percentiles of the measured jerkiness per trial were excluded.

Since the duration of each TAVI practice was different, except a simple real case only first 50 minutes of captured data for each trial was considered for final data analysis and between trials comparison.

Repeated measures ANOVA test was used to examine significant change in jerkiness of movement as a function of TAVI cadaver simulated practices. In addition, Student–Newman–Keuls correction was used as the post-hoc to assess pairwise comparisons between the first and the last cadaver simulated jerkiness of movement.

To characterize the early learning curve during cadaver simulations, an exponential curve (Y=a×exp(-X×r) +b), where ‘a’, ‘b’, and ‘r’ are constant values and X is number of practice, was fitted to the averaged jerkiness values measured during each simulated cases. The gain and time constant resulted from simulated cases were mapped to the results obtained during real cases to explore whether the gained benefit is translated from simulated cases to real cases. In addition, to identify the magnitude of practice benefit, the jerkiness of movement in medial-lateral direction in subsequent trials were compared to the first training case experience, assuming the first case as baseline with value of 100%. Thus, a reduction in percentage of movement jerkiness is considered an enhancement in economy of motion or learning effect during TAVI procedure.

3. RESULTS

The cadaver simulated trials durations ranged from 55min to 87min with an average duration of 75.5±14.0 minutes. After completing the cadaver cases, two real cases were performed, one included a simple case with duration of 25 minutes and the second one was a complex case with duration of 400 minutes.

Figure 1: Jerkiness of movement for TAVI cadaver simulations and real cases.

Figure 2: Jerkiness of movement is significantly reduced as a function of cadaver simulated practices in exponential fashion.
Using Cadaver Simulation to Improve Communication and Economy of Movement as Evidence of Progress with the Trans-catheter Aortic Valve Implantation Assessing the Learning Curve

Transcatheter Aortic Valve Implantation Assessing the Learning Curve
Full-text · Article · Dec 2011 · JACC. Cardiovascular Interventions
Oluseun O Alli, Jeffrey D Booker, Ryan J Lennon, Kevin L Greason
Read full-text
0 Comments 56 Citations

Transcatheter Aortic Valve Implantation: Lessons From the Learning Curve of the First 270 High-Risk Patients
Full-text · Article · Jun 2011 · Catheterization and Cardiovascular Interventions
Ronen Gurvitch, Edgar L Tay, Namal Wijesinghe, J Ye
Read full-text
0 Comments 96 Citations

Introducing transapical aortic valve implantation (part 1): Effect of a structured training program on clinical outcome in a series of 500 procedures
Full-text · Article · Jan 2013 · The Journal of thoracic and cardiovascular surgery
Miralem Pasic, Axel Unbehaun, Stephan Dresyse, Semih Buz
Read full-text
27 Comments 15 Citations

Methodological Infrastructure in Surgical Ergonomics: A Review of Tasks, Models, and Measurement Systems
Full-text · Article · Oct 2007 · Surgical Innovation
Gyusung Lee, Tommy Lee, David Dexter, Rosemary Klein
Read full-text
0 Comments 27 Citations

Motion tracking systems for assessment of surgical skill
Full-text · Article · Mar 2007 · Surgical Endoscopy
R Aggarwal, A Dosis, F Bello, A Darzi
Read full-text
0 Comments 15 Citations
The human factor: the critical importance of effective teamwork and communication in providing safe care. Sentinel events statistics (Joint Commission)

Leonard MW, S Graham, D Bonacum

Ergonomic problem encountered by the medical team related to products used for minimally invasive surgery

M A van Veelen, E A L Nederlof, R H M Goossens, C J Schot

Filling in the gaps of predeployment fleet surgical team training using a team-centered approach

Tuan N Hoang, Jeff Kang, Anthony J Laporta, Vyacheslav I Makler

Learning curves in surgical practice

A N Hopper, M H Jamison, W G Lewis

The SOURCE Registry: What is the learning curve in trans-apical aortic valve implantation?

Olaf Wendler, Thomas Walther, Holger Schroefel, Rüdiger Lange