"The Building Block Approach in the 21st Century - the role of ICME & UQ"

5 January 2015

Manufacturing & Industrial Technologies Division
AFRL/RXM

Approved for public release; distribution is unlimited.
PA clearance #88ABW-2014-6017
Topics

• Context
• The Building Block Method
• The Philosophy of Design
• Materials & Processes to the Rescue
 – Integrated Computational Materials Engineering
 – “Defect Species:” An example from Additive Manufacturing
• Steps towards a New Design Paradigm
• Takeaways
Norfolk Dam, Arkansas
It’s the decision, not the model

Materials & Processes = Performance

GE’s Passport engine - the commercial debut of ceramic-matrix composites

HondaJet – unitized composite fuselage

CFM LEAP engine – Resin transfer molded fan blade

Increased use of Composites
"Advanced manufacturing technologies are out-pacing structural analysis capabilities"
Topics

• Context

• The Building Block Method

• The Philosophy of Design

• Materials & Processes to the Rescue
 – Integrated Computational Materials Engineering
 – “Defect Species:” An example from Additive Manufacturing

• Steps towards a New Design Paradigm

• Takeaways
Building Block Method

Confidence in system capability is developed through extensive fabrication and testing ...

COURTESY OF DAVE BOWDEN
Building Block Method

Engineering, Operations & Technology | BR&T

Structures Technology

<table>
<thead>
<tr>
<th></th>
<th>1980s</th>
<th>2000s</th>
</tr>
</thead>
<tbody>
<tr>
<td>size of structural test programs</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Allowable development</td>
<td>25</td>
<td>2,500</td>
</tr>
<tr>
<td>Material specification development</td>
<td>500</td>
<td>10,000</td>
</tr>
<tr>
<td>Material screening and selection</td>
<td>5,000</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Major growth in cost & time
Component Life Data

Works fairly well for **evolutionary** design configurations, materials & manufacturing processes

Works less well when aircraft mission profiles & retirement dates **change**

Works poorly for **revolutionary** design configurations, materials & manufacturing processes

Building Block Method

- Allowable development
- Material specification development
- Material screening and selection

Analysis validation

<table>
<thead>
<tr>
<th>1980s</th>
<th>2000s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2,500</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>5,000</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Major growth in cost & time

Copyright © 2012 Boeing. All rights reserved.
Topics

• Context
• The Building Block Method
• The Philosophy of Design
• Materials & Processes to the Rescue
 – Integrated Computational Materials Engineering
 – “Defect Species:” An example from Additive Manufacturing
• Steps towards a New Design Paradigm
• Takeaways
Philosophy of Design
Common to All Structural Materials

Designs are Based on *Minima* - not *Averages*

Courtesy Michael Gorelick, FAA
We don’t know what we don’t know!

Minima are extrapolated - not measured

Deterministic design criteria

Uncertainty in Minima Often Lead to Expensive Re-designs, Especially:
- New Materials
- New Geometries
- New Processes
- New Application of Mature Processes

Courtesy Michael Gorelick, FAA
Topics

• Context
• The Building Block Method
• The Philosophy of Design

• Materials & Processes to the Rescue
 – Integrated Computational Materials Engineering
 – “Defect Species:” An example from Additive Manufacturing

• Steps towards a New Design Paradigm
• Takeaways
ICME is becoming a critical enabler for reducing the design/make cycle time.
Powder Bed Fusion

An additive manufacturing process in which thermal energy selectively fuses regions of a powder bed.
Location-Specific Design: Building Block
Vision & Motivation

Defect Likelihood = \(f(\text{geometry, process}) \)

Optimized Design is Location-Specific and Assured through Digital Data & Informatics

Phased Approach:

1. Effect of **Process Parameters** on Defect Species: DOE of Simple Shapes

2. Effect of **Geometry** on Defect Species: “Canonical” Features connect process to feature

3. Effect of **Process & Geometry** on Defect Species

Develop Framework for Visualization & Analytics: integration of process data, in-situ data, inspection data with process models
Effect of Process Parameters on Defect Species

DOE Builds 1 through 4

10 mm

Laser Scan Path

hatch spacing
laser speed
stripe width

Global Energy Density (GED): energy input density (J/mm²) as laser beam is rastered across powder bed surface at constant speed

Global Energy Density (GED):

\[G = \frac{P}{S \times H} \]

Where:
- G = Global Energy Density
- P = Laser Power
- S = Hatch Speed
- H = Hatch Spacing

DOE # 3

- Laser power (195 W)
- Laser diameter (70 μm)
- Laser speed (1,000 mm/s)
- Hatch spacing (0.1 mm)
- Stripe width (5 mm)

COURTESY OF MICK MAHER
Build Trials: As Built Defects

Low Energy - Lack Of Fusion

High Energy - Keyhole Porosity

~ 150 μm

Avg = 22 μm
Effect of Geometry on Defect Species

- Continuously-Changing Wall Thickness
- Continuously-Changing Wall Pitch

Process maps (beam current) for example geometries

Systematically vary geometrical features & local process parameters and catalog defect species
Defects in Full Scale Builds

Metallization: build-up and contamination

Raking: Powder distribution and swelling

Anomalous melting

Scale Matters!
Fully Integrate Process Data & Models with Lifing Models

- In situ data (Log-files, IR, Optical images)
- Characterization (Destructive & Non-destructive)
- Process Data
- Intended Geometry
- Process Models
- Property Models
- Probabilistic Design and Performance Lifing

Beam Power & other parameters

- Laser beam normal to image scanning from left to right

Yield Strength (ksi)
- 175
- 155

COURTESY OF MICK MAHER
Fully Integrate Process Data & Models with Lifing Models

- Beam Power & other parameters
- In situ data (Log-files, IR, Optical images)
- Intended Geometry
- μ-structural Models
- Property Models
- Over 60 Process Variables
- Characterization (Destructive & Non-destructive)

~1 Terabyte of data per Build!

COURTESY OF MICK MAHER
Topics

• Context
• The Building Block Method
• The Philosophy of Design
• Materials & Processes to the Rescue
 – Integrated Computational Materials Engineering
 – “Defect Species:” An example from Additive Manufacturing
• Steps towards a New Design Paradigm
• Takeaways
Building Block Method

Confidence in system capability is developed through extensive fabrication and testing ...

Design Subcomponent Tests To Assess the Capability of The Process to Successfully Deliver the Full-Scale Article

Confidence in system capability is developed through extensive fabrication and testing ...

COURTESY OF DAVE BOWDEN
Change the Testing Paradigm:
Use ICME to Design - 3 σ Validation Experiments that Delineate Process Capability

Combined Computational/Experimental Approach

- Vary material & process parameters
- Simulate fine-scale behavior, homogenize to higher level models
- Estimate impact of M&P variability on system performance
- Iterate

ASME V&V 10-2006
Change the Testing Paradigm:
Use ICME to Design - 3σ Validation Experiments that Delineate Process Capability

Use ICME to understand processing effects & sensitivity due to scale up in size, manufacturing volume, and component complexity.
Change the Testing Paradigm: Use ICME to Design - 3σ Validation Experiments that Delineate Process Capability

Explore Digitally – Confirm Physically

Model Predictions - Experimentally
Of Defect Occurrences
Inspection

Use ICME to understand processing effects & sensitivity due to scale up in size, manufacturing volume, and component complexity
TODAY: Fully Integrate Manufacturing with Design & Risk Analyses

- **Data Informatics/Analytics**
 - Empirical/data-driven modeling
 - e.g. ICME, statistical process modeling, etc.

- **Material/Process Modeling and Simulation**
 - Advanced physics-driven modeling
 - e.g. ICME, FEA, CFD, etc.

- **Intelligent Process Monitoring/Control**
 - Linking math/physics models to process control
 - e.g. process monitoring parameters as model input

- **Integrated Quality Testing**
 - Inform modeling & simulation with quality test results
 - e.g. calibrating process models & process control
TOMORROW: Link Materials & Manufacturing to Fleet Management

- **Data Informatics/Analytics**
 - Empirical/data-driven modeling
 - e.g. ICME, statistical process modeling, etc.

- **Material/Process Modeling and Simulation**
 - Advanced physics-driven modeling
 - e.g. ICME, FEA, CFD, etc.

- **Integrated Quality Testing**
 - Inform modeling & simulation with quality test results
 - e.g. calibrating process models & process control

- **Intelligent Process Monitoring/Control**
 - Linking math/physics models to process control
 - e.g. process monitoring parameters as model input

- **Quantifying & Understanding Manufacturing Variability**
- **Performance-based Decision Making in Manufacturing**
- **State Awareness & Prediction for Each Tail Number in the Fleet**

ICME = Integrated Computational Materials & Manufacturing Engineering

FEA = Finite Element Analysis; **CFD** = Computational Fluid Dynamics

TOMORROW: Link Materials & Manufacturing to Fleet Management

State Awareness & Prediction for Each Tail Number in the Fleet
Topics

• Context
• The Building Block Method
• The Philosophy of Design
• Materials & Processes to the Rescue
 – Integrated Computational Materials Engineering
 – “Defect Species:” An example from Additive Manufacturing
• Steps towards a New Design Paradigm
• *Takeaways*
Takeaways

• The Building Block Approach doesn’t work well for new M&P
 – Surprises happen too frequently
 – We’re leaving too much information on the table

• Link Mfg to Design - it’s much more than Design for Mfg!
 – Fully exploit the emerging capabilities of ICME models

• Change the testing paradigm to better elucidate minima
 – *Design validation tests that accurately estimate the relevant physics of the full-size article*

• Change the value proposition for manufacturing!
 – Quantify the impact of manufacturing variability on system capability
 – Reduced Design Iterations = $$$$$$$ in cost savings

• It’s not the model, it’s the decision you make using the model results!