Thermal therapy with a fully electronically steerable HIFU phased array using ultrasound guidance and local harmonic motion monitoring

Pegah Aslani, Leah Drost, Yuexi Huang, Benjamin B. C. Lucht, Erin Wong, Gregory Czarnota, Caitlin Yee, Bo Angela Wan, Vithusha Ganesh, Samuel T. Gunaseelan, Elizabeth David, Edward Chow and Kullervo Hynynen

Abstract — The method of localized harmonic motion (LHM) monitoring has been proposed as an ultrasound-based monitoring technique for in vivo real-time ultrasound-guidance during thermal surgery. Objective: The focus of this paper is to study the performance of LHM monitoring in vivo in order to assess the tissue coagulation during ultrasound surgery of bone metastases. This is done through a pre-clinical study on large scale animals (pigs) as well as a first-in-human pilot study, using a hand held ultrasound-guided HIFU phased array. Methods: A flat, fully steerable HIFU phased array system (1024 elements, 100 mm diameter, 516 kHz), in combination with a co-aligned 64 element imaging system, is used to perform thermal surgery and monitor tissue coagulation using the LHM technique. The in vivo experiments are conducted using thirteen animals, followed by a first-in-human pilot study in which nine patients are enrolled. Results: The pre-clinical results show that the LHM monitoring method is able to detect about 80% of the observed coagulated tissue volumes visible in dissection. In the pilot study, six out of nine patients have durable pain reduction with good correlation observed from LHM detections. Conclusion: In general, the results suggest that the LHM monitoring performance is promising in detecting thermal tissue coagulation during focused ultrasound surgery in tissues close to the bone. Significance: The LHM technique can offer a very accessible and cost-efficient monitoring solution during ultrasound surgery within a clinical setting.

Index Terms—Focused ultrasound, HIFU, local harmonic motion monitoring, phased arrays, stiffness mapping, ultrasound-guided surgery.

I. INTRODUCTION

In recent years, thermal therapy using high-intensity focused ultrasound (HIFU) has shown promise due to its ability to non-invasively treat cancerous cells. This procedure deposits the focused ultrasound (FUS) energy deep in the tissue while the surrounding tissue remains unharmed. In past years, this technique has been used in numerous treatment cases such as breast [1–4], uterine fibroids [5–9], kidney [10], liver [11], pancreatic [12], prostate [13–16], thyroid cancers [17, 18], and some applications in transcranial ablation of the brain [19–20].

Bone is one of the early targets during the metastatic spread of cancer, especially in patients with breast, prostate, lung, and kidney cancer [21–23]. About 75% of patients with bone metastatic tumor suffer from severe pain which significantly impacts their quality of life [24, 25]. Hence, there is a challenge to find palliative therapies that can improve the quality of life for these patients. Some of the standard treatments include radiation therapy (RT) along with systematic therapies and analgesics. However, after radiation therapy about 67% of patients will have residual pain. This is the case while some of the patients have already reached their radiation dose limit [26, 27].

This leaves the patients with limited treatment options. There are invasive options such as surgical interventions [28] and percutaneous cryoablation [29]. However, given the fragile state of many of the patients, the longer recovery time, and the higher risk associated with such procedures, not many of the patients qualify for this option. In addition, there are non-invasive options such as use of analgesics. Despite being effective in reducing the pain temporarily, there are adverse long-term side effects associated with this class of drugs that are not desirable to many patients. Therefore, there is a need for alternative palliative therapies for painful bone metastases.

This creates the challenge of finding ways that can improve the quality of life for these patients. Thermal therapy using HIFU has been used in the past to treat bone metastases [2]; in fact, there have been a number of preliminary clinical studies in which HIFU has shown to be safe and effective in palliative care of bone metastases for different groups of patients [21,30–46]. The palliative outcome of HIFU treatment has been associated with multiple mechanisms such as, periosteum loss of nerve supply and nidus vasculature due to ablation, tumor debulking and, reduction of osteoclast-mediated osteolysis.
The objective of the pre-clinical experiments is to study the application of in vivo LHM monitoring for tissues that are in vicinity of bone and its potential as a feedback mechanism during thermal therapy in large animals and thus test the methods suitability for human treatments.

For this application, the 1024 element HIFU phased array is used in combination with a co-aligned diagnostic ultrasound transducer for imaging.

Prior to this work, extensive investigation has been done on in vivo lesion formation and characterization using MRI and macroscopic examination. In addition, the location of LHM measurements with respect to the lesion are validated by seeing a temperature rise at the focal point using T2-weighted MRI images, while the LHM displacement amplitude dropped. More detailed discussion on lesion characterization is provided in reference [53].

In the current pre-clinical study, one of the objectives is to tune the LHM algorithm for the case of large animal model, which can provide more insight for clinical applications. Hence, a binary outcome is needed to fulfill this objective. In fact, this work is an effort to only rely on a binary feedback from LHM and be able to make a clinical decision as to stop or continue the treatment, without the help of any other modalities.

After assessments on the performance of LHM monitoring during the pre-clinical studies, a pilot study is designed to evaluate the tolerance and safety of performing thermal surgery using HIFU on patients with bone metastases, while storing the LHM signals for post-treatment analysis. The results from the pre-clinical study are used for lesion assessment in the first-in-human pilot study. In order to assess the effectiveness of the treatments and accuracy of the LHM monitoring technique, pain reduction and quality of life is assessed for each patient. It is shown that the HIFU treatment using this device is safe for the patients, while no serious side effects were observed.

II. MATERIALS AND METHODS

A. Transducer array

In order to induce thermal ablation and local harmonic motion in the tissue and conduct LHM monitoring during treatment, an in-house manufactured 1024 element phased array system is used [60, 61]. The transducer head has an outer diameter of 100 mm and a central hole of 24 mm diameter to accommodate an ultrasound imaging probe. The focus is in shape of an ellipsoid and, at a focal depth of 3 cm from the transducer, the beam width (at 50% of the maximum pressure amplitude) is 2 mm and the beam depth of field is 11 mm [62].

Fig. 1. The 1024 element array used for HIFU ablation with the imaging probe mounted in the center.
The system is composed of a main computer which is responsible for the HIFU array as well as the imaging probe. A function generator (WGM-201, Syscomp Electronic Design, Canada) operates as a trigger splitter to convert a single pre-burst trigger into A-line trigger signals for the Ultrasonix imaging system. The Ultrasonix (SonixTouch, Ultrasonix, Canada) is a clinical imaging platform that provides a control interface for the imaging probe. Custom software is run on the Ultrasonix to communicate with the 3D optical tracker (Northern Digital Inc., Canada) in order to keep track of any motion of the transducer head, and to pass the imaging data back to the main computer.

B. Treatment workflow

The transducer array is excited at its central frequency of 516 kHz. During LHM monitoring, the HIFU signal is amplitude modulated at 50 Hz using a 50% duty cycle square wave. This modulation frequency is chosen to obtain higher displacement amplitudes [53] in the tissue in order to make displacement detection easier, at the cost of a longer time to complete a full motion cycle. Due to the square wave modulation, the displacements in every cycle are composed of a push segment and a relaxation segment. During each LHM push/relaxation cycle the imaging probe is excited through the trigger splitter at 1 kHz pulse repetition frequency, resulting in 20 A-lines for each cycle.

The treatment procedure includes 3 different stages: a pre-treatment-baseline, treatment and a post-treatment-baseline. In a pre-treatment-baseline, the stiffness of the untreated tissue is assessed through displacement amplitudes. During the treatment stage, LHM monitoring for stiffness assessment is conducted on a 3s interval, with the intervening period occupied with continuous wave HIFU application at the treatment power. Thus the treatment duration is divided into multiple fractions of time, with LHM fractions and treatment (or CW) fractions alternating until the treatment is completed. By alternating these fractions, the tissue stiffness, and consequently lesion formation, can be monitored throughout the treatment.

In the last stage, once the treatment is finished, the stiffness amplitude of the treated tissue is obtained by acquiring a post-treatment measurement in the same manner as the pre-treatment baseline.

In this system, every LHM monitoring fraction consists of five 20 ms push-relax cycles, corresponding to 100 A-lines. This is equivalent to 100 ms of monitoring time. Including overhead for mode switching from one fraction to the other, the LHM fractions last approximately 150 ms. It uses an acoustic power of 116 W for the push cycles. This is the maximum acoustic power provided by the device; it is chosen to ensure that the maximum radiation force is applied during monitoring.

C. Displacement assessment

After the treatment session is completed, the data are analyzed offline. The received radio-frequency (RF) signals are first filtered through a digital high-pass filter and a series of notch filters in order to remove the HIFU interference at its excitation frequency as well as all its harmonic components. Using a residual sum of squares [63] as a cross-correlation technique between each pair of sequential A-lines in the fraction, the time delay between consecutive A-lines is calculated. The center of the cross correlation window is chosen close to the focus, but in such a way that it does not include the bone echo.

Having calculated the delay between each two consecutive A-lines, and knowing the speed of sound in the tissue, one can calculate the displacement distance corresponding to each time point. Hence, it is possible to reconstruct the push and relaxation cycles based on this method.

Figure 3 shows an example of displacements from one sonication.

Additionally, displacement amplitudes in every cycle can be found by looking at the displacement resulting from the push or by looking at both push and relaxation segments of the cycle.

One of the possible artifacts that can present itself in the push and relaxations in the displacement through time is the background motion such as breathing, or slow movements of the subject. Thus, in order to determine the displacement amplitudes, the background motion should be taken into account.
The null hypothesis is tested based on the methods introduced AUC and the region to be sonicated is shaved, chemically depilated, case, the null hypothesis is that the AUC is less or equal to 0.5 is reserved for the area under the curve (AUC). In this case, the null hypothesis is that the AUC is less or equal to AUC₀, i.e. the LHM monitoring is not a useful discriminator). The null hypothesis is tested based on the methods introduced by Hanley and McNeil [64].

True positive rate (TPR), i.e. sensitivity, and false positive rate (FPR), i.e. specificity, are calculated for the coagulation detection, determined from the dissection as the gold standard. Using the ROC curve, the optimal threshold value is determined with the Youden index [65] method, which maximizes the difference between TPR and FPR.

D. In vivo pre-clinical experiments

In order to evaluate the performance of the LHM monitoring as well as the new transducer system in vivo, a porcine model is chosen to accommodate a large number of treatment locations and to test a clinically relevant range of tissue thicknesses. The experiments are done under Institutional Animal Care committee approval.

In all, tests are done on 13 subjects, ranging from 30-50 kg. The pigs are anaesthetized with a ketamine/atropine mixture and the region to be sonicated is shaved, chemically depilated, and thoroughly washed with water and soap. The pigs are intubated and anesthesia is maintained with 2-4% isoflurane for the duration of treatment. Next, the integrated transducer system is coupled acoustically to the target area using a bag of degassed and deionized water and a degassed solution of deionized water and ultrasound gel. Using the imaging probe in the center of the transducer array, the target area is imaged to find the bone. Once the target area is identified, the transducer array is held in place using a locking mechanical arm. For some treatments, the ventilator is stopped to force a breath hold for the treatment duration. This is done to try to identify the effect of breathing motion on the displacements. Once the experiment is finished the animals are euthanized and dissected to visually verify the effects of the treatment.

Figure 4 on the left shows the B-mode image of the bone before the treatment. The image on the right shows the B-mode image of the bone after the treatment where the lesion is observed.

Fig. 4. Left: B-mode image of the bone before the sonication. Right: B-mode image of the bone after the sonication, where the lesion is indicated by the arrow.

E. Population for the pilot study

The focus of the clinical-trial is to conduct a pilot study to investigate the safety and efficacy of using USgHIFU as a palliative therapy for patients with bone metastases. Preceding the clinical trials, institutional research ethics board approval is obtained (REB # 005-2014). Starting March 2017 to August 2018, 9 patients with bone metastases are enrolled in the clinical trial at Sunnybrook Health Sciences Center, Toronto, Canada. Informed consent is granted by each of the enrolled patients. The state of malignancy for each patient is previously confirmed through either histology or cytology.

The criteria upon which the patients are selected required the patients to be able to record daily pain levels as well as medication dosage. Radiographic evidence of bone metastases correlated to the painful site is needed for treatment, given that treatment site is accessible to HIFU treatment based on the imaging data. In addition, the patients’ baseline pain score has to be at least 2 or higher on a scale of 0 to 10.

F. Treatment procedure

Preceding the treatment, the baseline pain score is recorded for every patient. In addition, the tumor area to be treated is measured and recorded, as well as the use of analgesics. In order to confirm the accessibility as well as safety of the treatment, the tumor location is confirmed either through MRI
or ultrasound on the same day as the thermal surgery. Prior to the treatment, patients received light intravenous (IV) sedation as well as local anesthesia at the treatment site (Marcaine 2%). As a safety protocol, vital signs, such as blood pressure, heart rate, and oxygen saturation are recorded during the treatment. Meanwhile, patients are positioned optimally in such a way that the treatment site is easy to reach and a clear pathway for HIFU, which is confirmed by ultrasound imaging throughout the procedure, is provided. Once, the tumor location is verified, and sufficient acoustic coupling to the skin is provided – using a degassed water pad and degassed coupling gel solution – the transducer head is positioned over the treatment area and the mechanical arm is locked to avoid any movement. Subsequently, the HIFU focus – as well as the focus for LHM monitoring – is located slightly above the bone. The acoustic power is adjusted to the maximum tolerable power by the patient. Next, multiple points at the adjusted power are sonicated and monitored. The schematic of this configuration is shown in Figure 5.

III. RESULTS

A. Pre-clinical experiments

Target locations on the surface of ribs, leg bones and spine are chosen. A total of 179 sonications are carried out on the subjects. The acoustic power during the sonications is chosen between 11 and 78 W for durations between 25 and 80 s in order to explore the range of thermal exposures that could induce thermal coagulation on the bone surfaces. Out of 179 total number of sonication points, in 135 locations thermal coagulation is observed in post-mortem histology, i.e. there is about 75% prevalence rate for coagulation at the exposures used.

In order to be able to quantify the performance of LHM monitoring the results are classified into four cases of true positive (TP), false positive (FP), false negative (FN) and, true negative (TN).

Thermal coagulation detection using LHM monitoring is assessed for different threshold values set by varying the multiplicative factor of the pre-treatment-baseline amplitude standard deviation. The results are used to obtain the ROC curve which is shown in Fig. 6.

<table>
<thead>
<tr>
<th>Pig</th>
<th>HIFU power (W)</th>
<th>Focal depth (cm)</th>
<th>Treatment duration</th>
<th>Treatment points</th>
<th># of thermal coagulations</th>
<th>Coagulations accurately detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11 – 66</td>
<td>2.23 – 2.96</td>
<td>45 – 65</td>
<td>19</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>44 – 66</td>
<td>2.31 – 4.51</td>
<td>45</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>49 – 73</td>
<td>2.01 – 4.19</td>
<td>45</td>
<td>14</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>49 – 73</td>
<td>2.58 – 3.31</td>
<td>25 – 45</td>
<td>12</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>73</td>
<td>2.49 – 3.51</td>
<td>30 – 45</td>
<td>11</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>49 – 73</td>
<td>2.25 – 4.18</td>
<td>45</td>
<td>20</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>36 – 73</td>
<td>2.13 – 4.99</td>
<td>45</td>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>17 – 73</td>
<td>2.41 – 4.54</td>
<td>45 – 95</td>
<td>16</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>19 – 73</td>
<td>2.79 – 4.80</td>
<td>16 – 21</td>
<td>17</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>19 – 73</td>
<td>2.72 – 5.53</td>
<td>21</td>
<td>19</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>11</td>
<td>19 – 73</td>
<td>2.40 – 4.08</td>
<td>21</td>
<td>20</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>36 – 73</td>
<td>2.39 – 5.39</td>
<td>21</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>73</td>
<td>3.59 – 6.41</td>
<td>21</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>
Having done the ROC analysis for the LHM monitoring based on the gold standard, the AUC is calculated to be 0.74 with the 95% confidence interval: 0.66-0.82 and p-value less than 0.00001. In addition, the coefficient of variation of the AUC is less than 0.00001. The results suggest that the null hypothesis can be rejected, i.e. the LHM monitoring technique is significantly different than the chance line and therefore a good discriminator of lesion formation.

The optimal threshold value is obtained as 3.85 times the standard deviation of the pre-treatment-baseline. Choosing this threshold value for LHM monitoring, the system is able to detect about 80% of the observed thermal coagulation according to the gold standard. In addition, the FP, TN and FN rates are obtained as 45%, 55% and 20%, respectively.

Using the optimal threshold value, the results of animal study as well as the sonication parameters for each case are summarized in Table I. Here, the focal depths are measured with respect to the HIFU array.

Moreover, it is interesting to study the number of true detections as well as the number of false detections for different depth and power ranges. This result is shown in Figure 7. Here, true detection includes both the number of TPs and TNs and, similarly, false detection includes both FPs and FNs. Adding the number of true detections and false detections corresponds to the total percentage of sonications at that depth and power range.

The results in Figure 7 suggest that there is no explicit trend for the percentage of true and false detections for different depths. It is interesting to note that in Figure 7a, the percentage of false detections typically decreases with the increase in the acoustic power. However, at higher values of power, i.e. 60 – 73 W, the percentage of false detections has slightly increased. One should consider that strong vaporization effects and gas activity are more probable at higher acoustic power which can affect the detection accuracy.

B. Clinical trials

In general, the treatment locations include extremities, scapula, rib and iliac bones. The treatment locations, as well as the tumor size are described in more detail in Table II for every patient. During the procedure, two stop buttons are available and the treatment relies on the feedback provided by the patient. The treatment would stop either because patient felt significant pain at the treatment location and pushes the

<table>
<thead>
<tr>
<th>Tumor Site</th>
<th>Tumor Size (cm)</th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Patient 3</th>
<th>Patient 4</th>
<th>Patient 5</th>
<th>Patient 6</th>
<th>Patient 7</th>
<th>Patient 8</th>
<th>Patient 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rib</td>
<td>5.6 x 5.0</td>
<td>30.9 – 42.1</td>
<td>4.5 x 1.9</td>
<td>2.0 x 1.1</td>
<td>2.8 x 1.6</td>
<td>4.8 x 1.4</td>
<td>2.0 x 1.0</td>
<td>5.2 x 3.5</td>
<td>2.4 x 1.8</td>
<td>1.4 x 1.3</td>
</tr>
<tr>
<td>Scapula</td>
<td>5.2 x 3.5</td>
<td>30.6 – 44.8</td>
<td>3.28 x 1.9</td>
<td>2.90 x 1.4</td>
<td>2.00 x 1.1</td>
<td>4.80 x 1.4</td>
<td>5.20 x 1.8</td>
<td>2.40 x 1.8</td>
<td>1.40 x 1.3</td>
<td></td>
</tr>
<tr>
<td>Humerus</td>
<td>4.8 x 1.9</td>
<td>30.6 – 44.8</td>
<td>3.28 x 1.9</td>
<td>2.90 x 1.4</td>
<td>2.00 x 1.1</td>
<td>4.80 x 1.4</td>
<td>5.20 x 1.8</td>
<td>2.40 x 1.8</td>
<td>1.40 x 1.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HIFU Power (W)</th>
<th>Focal Depth (cm)</th>
<th>Treatment duration (s)</th>
<th># Sonications</th>
<th># Lesions detected by LHM</th>
<th>Pain reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>5.6 x 5.0</td>
<td>30.9 – 42.1</td>
<td>20 – 30</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Patient 2</td>
<td>4.5 x 1.9</td>
<td>30.6 – 44.8</td>
<td>20 – 30</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Patient 3</td>
<td>2.0 x 1.1</td>
<td>2.8 x 1.6</td>
<td>20 – 30</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Patient 4</td>
<td>4.8 x 1.4</td>
<td>2.0 x 1.0</td>
<td>5.2 x 3.5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Patient 5</td>
<td>2.4 x 1.8</td>
<td>1.4 x 1.3</td>
<td>30.9 – 42.1</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Patient 6</td>
<td>5.2 x 3.5</td>
<td>2.8 x 1.6</td>
<td>20 – 30</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Patient 7</td>
<td>2.4 x 1.8</td>
<td>1.4 x 1.3</td>
<td>30.9 – 42.1</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Patient 8</td>
<td>5.2 x 3.5</td>
<td>2.8 x 1.6</td>
<td>20 – 30</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Patient 9</td>
<td>1.4 x 1.3</td>
<td>30.9 – 42.1</td>
<td>20 – 30</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

Fig. 6. ROC curve for LHM monitoring.

Fig. 7. Percentage of true and false detections for different depths and power ranges.
stop button, or something moves and the treatment is stopped by the operator. If none of the stop buttons are used during the treatment, the treatment would continue until the pre-set time is completed. The LHM monitoring data are processed offline.

The number of lesions predicted by LHM along with sonication parameters is listed for each patient in Table III. At the end, the patients’ pain score is recorded for 10 days post treatment. Moreover, the treatment durability is assessed by patient follow up and if the patients need to receive RT after the HIFU treatment, which is also recorded in Table III. The treatment duration is composed of sonication time as well as the time spent for LHM monitoring.

The top graph in Figure 9 shows a case where amplitude has dropped below the threshold and a lesion is detected and, the graph in the bottom shows a case where no lesion is detected where the displacement amplitude does not drop sufficiently.

![Figure 9](image_url)

Fig. 9. The displacement amplitudes Top) lesion is detected Bottom) no lesion is detected.

Overall, 6 out of 9 patients have durable pain reduction after the HIFU treatment. All patients who do not have durable pain reduction receive RT sometime after the HIFU treatment.

IV. DISCUSSION

In this paper, a flat electronically steerable HIFU phased array with frequency of 516 kHz along with a co-aligned imaging phased array is used to investigate the diagnostic ability of LHM monitoring for lesion formation through a pre-clinical study. The flat HIFU array is successful in heating and ablating the tissue. Using this array the focus can be easily adjusted to different depths and lateral locations visible with the imaging probe. In addition, the LHM system is also successful in inducing the harmonic displacements in the tissue and monitoring them in vivo.

In the pre-clinical stage, the results from the ROC analysis support further investigation of using LHM as a real-time monitoring technique in detecting lesion formation for HIFU applications, especially in enhancing the TRP while trying to decrease the FPR mainly caused by physical decorrelations and strong vaporization effects during the treatment procedure. In addition, decorrelations between pre-treatment-baseline and the treatment can also be another possible cause of false detections. The variations of the standard deviation of the pre-treatment baselines (σ) are summarized in Table IV by taking the mean (μ) and standard deviation (ε) of σ for each category of TP, FN, FP, TN.

The results in Table IV suggest similar variation parameters for categories of TP and FP. In addition, the variation parameters are significantly higher for FN and TN categories. The higher mean value for FN category makes the algorithm insensitive to the actual drop caused by the lesion. On the other hand, the lower mean value for FP category (which is similar to the TP category), makes the algorithm sensitive to random noise. Moreover, it is important to note that in these experiments, the treatments extended past the time point where LHM detected the lesion; future work will integrate the LHM feedback into the treatment control and test whether turning off the HIFU at lesion detection is effective [40].

<table>
<thead>
<tr>
<th>Result</th>
<th>η (μm)</th>
<th>ε (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP</td>
<td>0.87</td>
<td>1.35</td>
</tr>
<tr>
<td>FP</td>
<td>0.87</td>
<td>1.08</td>
</tr>
<tr>
<td>FN</td>
<td>1.75</td>
<td>2.72</td>
</tr>
<tr>
<td>TN</td>
<td>3.51</td>
<td>7.06</td>
</tr>
</tbody>
</table>

The results from the first-in-human pilot study are promising. In general, good correlation is observed between the LHM detections and the patients’ outcome in terms of pain reduction. It is interesting to note that the patients who do not have durable pain reduction have much larger tumor sizes relative to the patients who have durable results. For example, patient 6, for whom LHM detected 4 lesions, has complete pain relief. Assuming an estimate of the average lesion area to be 0.5 cm2 (based on pre-clinical results), the total lesion area created is similar in size to the tumor area for patient 6.

In addition, patients who do not have durable pain reduction have much higher baseline pain scores and as a result, it is hard for them to stay motionless during the treatment. This can enhance physical decorrelation both in terms of detection as well as energy deposition.

Overall, the prototype device can be improved by increasing the sonication frequency resulting in larger tissue displacements. Similarly the ultrasound imaging is not ideal and higher quality imaging system can potentially improve the image quality and the motion detection.

V. CONCLUSION

This study demonstrates that a combination of electronically steered phased array with clinical diagnostic ultrasound system can be used to coagulate tissues at bone surface in large animal model as well as in clinical settings. The imaging
system is programmed to acquire M-mode scans through the HIFU focus and it is demonstrated that tissue motion induced by the radiation force from the pulsed ultrasound field can be detected. The detected tissue motion provides a reasonable indicator for tissue coagulation both in pre-clinical investigation as well as the first-in-human pilot study.

ACKNOWLEDGMENT

The research in this publication is supported by ORF, OICR, FedDev, and Harmonic Medical.

We would also like to show our gratitude to Mohammad Kazem, Ping Wu, and Rohan Ramdoyal for their help in building the LHM system; Shawna Rideout-Gros and Alex Garces for helping with the animal experiments; and Dr. John Hudson, Dr. Nicholas Ellens, and Brigitte Babin for assisting with data collection.

REFERENCES

