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A B S T R A C T

This paper adapts the canonical New Economic Geography model for experimental testing of the model’s behav-
ioral assumptions by developing a finite-player, finite-horizon dynamic game of migration. Our analysis gives
distinctive predictions when migration is consistent with myopic behavior (MB) and when it is consistent with
sequentially rational or perfect forward-looking behavior (FB). These alternatives are tested in an economic lab-
oratory experiment with increasing number of agents in different treatments. Results show that perfect FB loses
ground against MB as the number of agents and periods increases, and this number may be surprisingly small.

1. Introduction

The core-periphery (CP) model, which launched New Economic
Geography (NEG) as a separate field, assumed that migrants made
myopic adjustments and based their migration choices on the current
real wage differences between locations (Krugman, 1991b). A major
problem in relaxing the assumption of myopic behavior (MB) was that
the original CP model was not analytically solvable. The assumption of
MB was considered necessary for analytical tractability of the long-run
equilibrium without compromising the richness of the CP model’s find-
ings (Baldwin, 2001).1 Later, two important developments were made
to incorporate forward-looking behavior (FB) in a model with agglom-
eration forces similar to those found in the CP model. In the first, Bald-
win (2001) uses a numerical simulation technique to characterize the
long-run transitional dynamics of the CP model. In the second, Otta-
viano (2001) develops an analytically solvable version of the CP model
with a minor modification of the production technology and analyzes
stability properties of the long-run equilibria. Oyama (2009b,a), using

∗ Corresponding author.
E-mail address: stein.ostbye@uit.no (S. Østbye).

1 A set of models were also developed in parallel to focus on the problem of forward-looking adjustments. In these models, migration dynamics are characterized
by linear differential equations, so the stability analysis of the long-run equilibrium is mathematically tractable. However, to achieve tractability, these models
feature characteristics different from those of the original CP model, including non-pecuniary agglomeration forces (Krugman, 1991a) and indirect utility being
modeled as linear in the share of skilled workers (Ottaviano, 1999).

the concepts of potential games, provides further insights into the ques-
tion of global accessibility properties of the long-run equilibria. These
developments lay the groundwork for the assumption of FB to replace
MB as a default feature of the NEG models.

An assumption of MB or FB, however, deals with a positive, rather
than a normative, aspect of human behavior. Our paper concerns the
behavioral foundation of the assumption of FB and focuses on the equi-
librium selection problem. Using an experimental framework, our pri-
mary objective is to investigate whether migration decisions are con-
sistent with predictions from a model that assumes forward-looking
adjustments by migrants. Further, since the long-run equilibrium out-
come under MB always coincides with the outcome of one of the
expectations-driven equilibria under FB, we study a related question
of how good an approximation the assumption of MB is for the equilib-
rium selection problem.

We address these questions by developing a migration framework
that can be tested in an experimental setting. Our static spatial frame-
work is based on the much-used elaboration of the original CP model by
Ottaviano (2001) and Forslid and Ottaviano (2003), allowing a closed-
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form solution for the inter-regional real wage differential. To adapt this
model featuring an infinite number of agents to experimental testing
with a finite number of subjects, we develop a finite-player, finite-
horizon dynamic game of migration, in which one subject effectively
represents a positive mass of population in the CP model. We model
the migration dynamics as a sequence of games (instead of one sequen-
tial game), each lasting one period. Every subject gets one opportunity
to move in the migration sequence, and only one subject moves in a
given period. We allow subjects to accumulate payoff over periods. This
arrangement allows us to distinguish between MB and FB in a precise
way.

We study the equilibrium in Markov strategies, which assume play-
ers restrict their attention only to payoff-relevant past events (Maskin
and Tirole, 2001). The migration game under FB shows multiple
expectation-driven long-run equilibria. We focus on Markov perfection,
which incorporates the concept of sequential rationality, as an equi-
librium selection criterion. It requires the equilibrium strategy to be
optimal in every possible continuation game. We characterize the con-
ditions on initial states and payoff functions such that the long-run
Markov perfect equilibrium (MPE) outcome under FB is different from
the long-run equilibrium outcome under MB. This distinction allows us
to test the behavioral foundation for perfect (or sequentially rational)
FB.

The empirical test is based on data generated through a labora-
tory experiment. In the experiment, subjects are exposed to all rel-
evant payoff-related information, which enables all subjects to com-
pare any path of decisions to all alternative paths and make deci-
sions under perfect information. It would not be feasible to obtain the
real wages expected by potential migrants under different agglomera-
tion conditions in the future periods with field data, and this common
knowledge of information is fundamental for our test of the behavioral
assumption of FB. This fact has tilted the balance towards an experi-
mental approach. Further, McKenzie (2015) argues that self-selection
of migrants presents a methodological challenge to identify factors of
migration in studies with field data. In the context of our model, self-
selection of migrants would bring additional complexity to delineate
the role of behavioral concerns - we would ideally require treatments
to vary only in terms of the degree of forward-looking adjustments,
but with homogeneous agents. Laboratory experiments also provide us
with unprecedented control over transmission of payoff-relevant infor-
mation and ensure internal validity that is critical for stringent tests of
economic theories (Dhami, 2016, p. 11). It is also worth mentioning
that several other internal validity shortcomings when a CP model is
confronted with field data (see Combes et al., 2008) do not apply to our
experimental data: 1) Homogeneous migrants: real migrants care about
more than the real wage difference. While this is true, this variable is
all that distinguishes different locations in the experimental setting. 2)
Two regions: there are multiple regions real migrants can choose from.
That may be so, but in the experiment, there are only two by design.

Our experimental design considers two heterogeneous regions, 0
and 1, such that individual payoff is lower when everyone is located
in region 0 than when everyone is located in region 1. We test whether
there exists a set of self-fulfilling expectations that leads the economy to
region 1, starting from an initial state in which all subjects are located
in region 0. The payoff functions are derived from our theoretical anal-
ysis so that the economy leads to full agglomeration in region 1 in
the unique MPE under FB and remains fully agglomerated in region 0
under MB. Two potential migrants move sequentially in the baseline
treatment. Our research strategy is to run two additional treatments.
In these added treatments, complexity is marginally increased by first
adding one potential migrant and period, then adding one more. We
find that the outcome is consistent with perfect FB in the baseline treat-
ment, as expected. This is also true when adding one potential migrant,
but surprisingly, adding two is all it takes in terms of complexity to
make a majority of subjects behave consistently with the predictions
coming from the model under MB.

We are related to three strands of literature. First, we contribute
to the small but growing literature on experimental studies on migra-
tion. Experimental techniques were suggested by a distinguished group
of migration researchers within regional science more than 25 years
ago (Greenwood et al., 1991). For some reason, the suggestion never
caught on. The few exceptions include Greenwood et al. (1997) and
Edwards and Huskey (2008, 2014). In recent years, researchers within
development economics are using designed field experiments to study
factors contributing to migration and migrants’ behavior. Bryan et al.
(2014) conduct experiments in Bangladesh to study constraints on sea-
sonal migration and Ashraf et al. (2015) study migrants’ incentives to
remit; see McKenzie (2015) for a review of this literature. To the best
our knowledge, there is no experimental study on migration testing
forward-looking behavior of migrants. There are, however, experimen-
tal studies indirectly related to the game theoretic approach that we
follow. These include experimental studies on backward induction fail-
ure in finite-horizon repeated games. See, e.g., Binmore et al. (2002)
and the more recent paper by Dufwenberg and van Essen (2018).

Second, our study also relates to the quantitative economic geogra-
phy literature studying spatial models; see a recent survey by Redding
and Rossi-Hansberg (2017). While a dynamic spatial model is essential
to understand evolution and growth of an economy over time, intro-
ducing dynamics in the spatial models presents a severe methodolog-
ical challenge for tractability. This is because when the future events
affect an agent’s decision today, the agent must anticipate the future
evolution of the game. Introducing all future possibilities in an agent’s
decision-making increases the dimensionality of the problem manyfold.
To avoid the problem of increasing dimensionality, some studies con-
sider short-lived agents in an otherwise dynamic spatial model (see,
e.g., Delventhal, 2018; Allen and Donaldson, 2020). Not surprisingly,
many empirical studies in economic geography and trade featuring
structural estimation methodology involve static spatial models (Dekle
et al., 2008; Costinot and Rodríguez-Clare, 2014). An important recent
contribution is Caliendo et al. (2019), which extends the estimation
methodology to a dynamic model with long-lived agents with perfect
foresight. However, it is worth noting that the behavioral assumption
of forward-looking agents with perfect foresight, especially in a com-
plex environment, remains an open question. In this context, our find-
ings may suggest that a dynamic model with bounded-rational agents
may not necessarily be a compromise due to increasing complexities,
but rather provide a better alternative in complex situations.

Finally, our theoretical findings share common features with those
from the extant NEG literature. We contribute to the history versus
expectation debate in the equilibrium selection problem (Krugman,
1991a; Fukao and Benabou, 1993; Oyama, 2009b). In our model, the
long-run equilibrium under MB exhibits history dependency. The migra-
tion game under FB reveals the existence of multiple expectation-driven
long-run equilibria. While the analysis of a NEG model under FB typi-
cally identifies the range of initial states for which multiple equilibria
with self-fulfilling expectations may exist, it is usually uninformative
about which expectation dominates in those states.2 Since the equilib-
rium under MB coincides with the outcome of one of the expectations-
driven equilibria under FB, we are able to test if the assumption of
MB fits well for the equilibrium selection problem. Our findings further
suggest that MB may be a better approximation from a behavioralal per-
spective in a world with more complexity and an even larger number
of decision-makers. Although similar propositions have been put forth
in the NEG literature (see, e.g., Fujita and Thisse, 2013, p. 311), we are
not aware of any experimental studies in support of this proposition.

The paper is organized as follows. Sections 2 and 3 develop our the-
oretical framework that can bridge the gap between existing CP models

2 A notable exception is Oyama (2009b), who shows that the region, which
maximizes the potential long-run gain if fully agglomerated, will always be
reached from any initial state given a sufficiently small degree of friction.
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and one that can be implemented in a laboratory The first presents the
analytically solvable CP model with asymmetry and then the migration
game. Sections 4 and 5 present the experimental design and findings,
respectively. Section 6 concludes. Proofs and instructions for the exper-
iment are given in Appendix A and Appendix B, respectively.

2. An analytically solvable CP model

We begin the theoretical analysis by presenting the analytically solv-
able CP model developed in Ottaviano (2001) and Forslid and Ottaviano
(2003). We extend the model to allow inter-regional asymmetry in the
production technology, the trading cost and the size of the unskilled
labor force.3

2.1. Basic ingredients

There are two regions, 0 and 1. A continuum of mass 1 of skilled
workers is distributed over the two regions and we let s ∈ [0,1] denote
the fraction of skilled workers in region 1. There are mass L of (immo-
bile) unskilled workers, of which Li are in region i = 0,1, and L0 + L1 =
L. Everyone gets utility from consumption of two goods, a differentiated
modern good D and a homogeneous traditional good A. Preferences of
the representative consumer involve CES preferences over the differen-
tiated varieties of the modern good nested in a Cobb–Douglas upper-tier
utility function

Ui (Di,Ai) = 𝛼 ln Di + (1 − 𝛼) ln Ai, i ∈ {0,1} (1)

with

Di =
⎡⎢⎢⎢⎣ ∫q∈ni

dii(q)
𝜎−1
𝜎 dq + ∫

q∈nj

dji(q)
𝜎−1
𝜎 dq

⎤⎥⎥⎥⎦
𝜎

𝜎−1

, 𝜎 > 1, (2)

where Di and Ai are consumptions in region i of the CES composite of
modern varieties and the traditional good, respectively. dji (q) is con-
sumption in region i of a certain variety q that is produced in j, and
ni and nj are the ranges of varieties produced in regions i and j and
i, j ∈ {0,1}. And, 𝜎 > 1 is the elasticity of substitution between any two
varieties. Let ri and wi denote the wages of skilled and unskilled workers
in region i. Production of the modern good takes place in a monopolistic
competition sector subject to increasing return. Production of a modern
good variety in region i requires a fixed input of one skilled worker and
a marginal input of 𝛽 i units of unskilled worker. With a fixed distribu-
tion of skilled workers, the ranges of varieties of modern goods are thus
fixed at n0 = 1 − s and n1 = s. A firm incurs a cost of ri + 𝛽 iwim to pro-
duce m units of a specific variety of the modern good. The traditional
good is produced using a constant returns to scale technology in a per-
fectly competitive sector, and production requires a marginal input of
1 unit of unskilled worker.

Both goods are traded across regions. The traditional good is freely
traded and so the wage of an unskilled worker is the same between
the two regions.4 Trading of a modern good is affected by frictional
(iceberg) trading cost. Specifically, 𝜏 ji > 1 units must be shipped from

3 Forslid and Ottaviano (2003) also provides an extension of the basic model
allowing for the trading cost and the size of the unskilled labor force to vary
between the two regions. The model, however, does not incorporate asymmetric
production technology, which is necessary in order to create a real wage differ-
ence for skilled labor in one region compared to the other under full agglomer-
ation.

4 We impose an additional parametric restriction to ensure that the tra-
ditional good is produced in both regions in positive quantities at equi-
librium. This ‘non-full-specialization’ condition is given by max

{
L0
L
,

L1
L

}
<

(1 − 𝛼) ∕
[
1− 𝛼

𝜎

]
, see Ottaviano (2001, footnote 5) and Forslid and Ottaviano

(2003, footnote 4).

region j to sell one unit in region i. Let 𝜌i = 𝜏1−𝜎
ji ∈ (0,1) measure the

degree of trade openness in region i.

2.2. Equilibrium of the CP model

The following proposition describes the indirect utility of a skilled
worker in region i in equilibrium. A formal Proof is given in Appendix A.

Proposition 1. For a given s, the indirect utility of a skilled worker in
region i is

vi (s) = 𝛼 ln
(
𝛼

ri
Pi

)
+ (1 − 𝛼) ln ((1 − 𝛼) ri) , (3)

where Pi is the CES-price index and ri is the nominal wage of a skilled worker
in region i, and they are given by

Pi =
𝜎

𝜎 − 1

[
xi𝛽

1−𝜎
i + 𝜌ixj𝛽

1−𝜎
j

] 1
1−𝜎

, (4)

ri =
1
𝜓

[
aiLi + biLj − Lixj

(
aiaj − bibj

)]
, j ≠ i, (5)

where

x1 = s,

x0 = 1 − s,

ai =
𝛼𝛽1−𝜎

i

𝜎
[
xi𝛽

1−𝜎
i + 𝜌ixj𝛽

1−𝜎
j

] ,
bi =

𝛼𝜌j𝛽
1−𝜎
i

𝜎
[
xj𝛽

1−𝜎
j + 𝜌jxi𝛽

1−𝜎
i

] ,
𝜓 = 1 − a0x0 − a1x1 + x0x1 (a0a1 − b0b1) .

From (3), the inter-regional payoff difference is given by

v1 (s) − v0 (s) = ln
(

a1L1 + b1L0 − L1 (1 − s) (a0a1 − b0b1)
a0L0 + b0L1 − L0s (a0a1 − b0b1)

)

+ 𝛼

𝜎 − 1
ln

(
s𝛽1−𝜎

1 + 𝜌1 (1 − s)𝛽1−𝜎
0

(1 − s) 𝛽1−𝜎
0 + 𝜌0s𝛽1−𝜎

1

)
. (6)

Eq. (6) is comparable to the utility-difference function Eq. (13) in
Ottaviano (2001, p. 58).5 Observe that 𝛽0 ≠ 𝛽1 implies that v1 (1) ≠
v0 (0), i.e., the wage of a skilled worker under full agglomeration can
be different between two regions. The following example plots the inter-
regional payoff difference for various combination of parameter values.

Example 1. (Regional asymmetry) The inter-regional payoff differ-
ence can take three alternative shapes (see Ottaviano, 2001, pp. 59,
corollary 2, and Fig. 1). In Fig. 1a–c, we plot the payoff difference
when the production technology is the same between regions. As dis-
cussed in Ottaviano (2001), the shape depicted in Fig. 1a arises for
relatively large 𝜎, small 𝛼 and large 𝜏. The shape depicted in Fig. 1c
arises when the converse is true. The shape depicted in Fig. 1b arises
for intermediate values of the parameters. The elasticity of substitu-
tion 𝜎 is different across the three plots. We use 𝜎 = 2.66, 𝜎 =2.58 and
σ = 2.5 in Fig. 1a–c respectively. Fig. 2 considers the same parametric
specification as in Fig. 1, except that the production technologies are
different between regions. Specifically, we allow 𝛽1 = 1 < 𝛽0 = 1.01,
which implies that production of a variety of modern good requires
relatively more unskilled workers in region 0 than in region 1.

The model exhibits agglomeration forces in certain situations. Of
particular interest are the cases depicted in Figs. 1c and 2c, in which
the inter-regional payoff difference increases monotonically with s, such

5 The two functions coincide if two regions are symmetric, i.e., 𝜌0 = 𝜌1, L0 =
L1 = L

2
, and 𝛽0 = 𝛽1.
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Fig. 1. Indirect-utility functions and inter-regional difference in utility.

Fig. 2. Inter-regional payoff difference, v1(s) − v0(s), for different values of 𝜎 in the case of symmetric production technology (𝛽0 = 𝛽1 = 1).
Note: The parameter specification: L0 = L1 = 1, 𝛼 = 0.5, 𝛽0 = 𝛽1 = 1, 𝜏01 = 𝜏10 = 2.

that the skilled workers’ location decisions are mutually rewarding or
complementary for every s. In these cases, the agglomeration forces
exist for all s and the two agglomerated equilibria are potential sta-
ble steady states in the long run (see Ottaviano, 2001). To study the
long run outcome of this model in presence of agglomeration forces, we
therefore focus on the case when the inter-regional payoff difference
increases monotonically with number of players migrated to region 1
and develop a dynamic game of migration that can be implemented in
an experimental framework. The following assumption is a sufficient
condition to ensure that the inter-regional payoff difference increases
monotonically with s. In the remainder of the paper, we assume that
Assumption 1 holds.

Assumption 1. v1 (s) is strictly increasing in s and v0 (s) is strictly
decreasing in s.

3. The migration game

We now proceed by introducing a group-based migration process
to address the mobility of skilled workers between regions. We first
present the framework and then the analysis.

3.1. The framework

We develop a finite-player, finite-horizon dynamic game of migra-
tion to study the mobility of the skilled workforce. To differentiate MB
from FB, we model the migration game as a sequence of games, each
lasting one period, and allow the players to accumulate payoffs over
periods. To see this, consider the population of the skilled workforce
split in n groups of equal measure, referred to as players hereafter,
and there are n periods.6 Each player gets one opportunity to migrate

6 To interpret the effect of having finitely many players in an otherwise model
with infinite players, we assume that a player represents a strictly positive mass
of population. We thus assume away the within-group coordination problem. In
our experiment with finite players, a single player will represent a group, and
so modeling within-group coordination is not relevant in our context.

and only one player migrates in any period. Unlike the previous liter-
ature, we assume a simple migration-cost structure.7 In every period,
one player has zero migration costs while other players have infinite
migration costs. In effect, the player with zero migration cost has an
opportunity to migrate. We consider an exogenous migration sequence.
Without loss of generality, we label a player based on its position in the
sequence.

The distribution of the skilled workforce is the common payoff-
relevant variable across players and is, therefore, considered as the state
variable. Let st ∈ S ≔ {

0, 1
n ,… ,1

}
denote the fraction of skilled work-

ers in region 1 at the end of period t (or, at the beginning of period t + 1,
t ∈ {0,1,2,… , n}. For analytical convenience, we consider migration
games that start with full agglomeration in region 0, i.e., s0 = 0. Each
player has a common action space A = {0,1} such that action 1 refers
to migrating to region 1 and action 0 refers to staying in region 0. Since
only one player takes an action in each period, we denote the period-t
action profile by at ∈ A, which is the action taken by player t in period
t. Finally, the state-transition probabilities are

Pr(st|st−1, at) =
⎧⎪⎨⎪⎩

1 if at = 1 and st = st−1 + 1
n

1 if at = 0 and st = st−1

0 otherwise

, (7)

and it gives the conditional probability that the state st is realized at
the end of period t (or, beginning of period t + 1), given the state st−1

at the beginning of period t and an action at taken in period t.
A player’s temporal utility depends on her location, action at and

the state st in period t. Recall that vi (s), defined in (3), is the tempo-
ral indirect utility of a player in region i ∈ {0,1} at the state value s.
We assume that players discount future payoffs at a common rate 𝛿.
For a given state-transition path s = (s1, s2,… , sn) ∈ Sn and a compos-
ite action profile a = (a1, a2,… , an) ∈ An, player i’s aggregate payoff,

7 Observe, however, that both in our case as well as in the cases considered in
previous literature, the cost structure essentially prevents workers from moving
all together. See, e.g., Fujita and Thisse (2013, p. 311).
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computed at time t = 1, is the discounted sum of utilities and can be
written as

𝜋i,1(s, a) =
i−1∑
t=1

𝛿t−1v0
(
st) + 𝟙{ai=0}

n∑
t=i

𝛿t−1v0
(
st) + 𝟙{ai=1}

n∑
t=i

𝛿t−1v1
(
st) ,
(8)

where 𝟙E takes value 1 if the event E occurs, and zero otherwise.
Observe that player i moves only in period i, and effects of actions taken
in the previous periods are entirely captured in the state-transition
path. However, player i’s continuation payoff from period i is location-
specific and depends on her action in period i. Precisely, for a given
state-transition path s ∈ Sn and an action profile a ∈ An, player i’s con-
tinuation payoff from period i is

𝜋i,i(s, a) = 𝟙{ai=0}

n∑
t=i

𝛿t−iv0
(
st) + 𝟙{ai=1}

n∑
t=i

𝛿t−iv1
(
st) . (9)

In general, strategies in a dynamic game can consider a player’s
action as a complicated function of the preceding history. It is, how-
ever, common to restrict attention to Markov strategies in which the
past influences the current play only through its effect on the payoff-
relevant state variable.8 A (pure) Markov strategy for player i is a func-
tion 𝜎i ∶ S → A. A strategy profile 𝜎 = (𝜎1,… , 𝜎n) is a Markov perfect
equilibrium (MPE) when 𝜎is are Markov strategies and the strategy
profile constitutes a subgame-perfect equilibrium of this finite-horizon
dynamic game (Fudenberg and Tirole, 1991).9 We consider MPE in pure
strategies as the solution concept of the game. It is worth pointed out
that the requirement of perfection in MPE is intimately linked to the
idea of sequential rationality. It requires that the equilibrium strategies
must reflect optimal behavior in the continuation game at any state
even if that state may not necessarily be realized along the equilibrium
path. Consequently, the set of MPE can be smaller than the set of all
equilibria of the dynamic game.

3.2. Analysis

We study the equilibrium outcomes in two different cases:

1. MB − the migration decision is based on one-period utility gain from
migration. Specifically, every player considers 𝛿 = 0 and it is com-
mon knowledge.

2. FB − the migration decision is based on the accumulated utility
flows over all the remaining periods and under the belief that all
other groups are forward-looking. Specifically, every player consid-
ers 𝛿 = 1 and it is common knowledge.

3.2.1. MB
Since every player only cares about the current period payoff and

only one player moves in each period, players’ behaviors are non-
strategic in MB and the analysis is trivial. Given a state value s, player
i’s payoff from migrating is v1(s +

1
n ) and from not migrating is v0(s).

The optimal strategy is straightforward and given by10

8 The restriction of strategy space is also suitable for our experimental analy-
sis, in which subjects receive only payoff-related information.

9 Observe that only players t + 1,… , n take actions period (t + 1) onward.
Therefore, a strategy profile 𝜎 = (𝜎1,… , 𝜎n) is a subgame-perfect equilibrium of
the n−periods game if, for any history of play ht = (a1,… , at), t ∈ {1,2,… , n}
ending in a state s ∈ S, the continuation strategy profile 𝜎|ht

= (𝜎t+1,… , 𝜎n) is a
Nash equilibrium of the (n − t)−periods continuation game starting at the state
s.

10 We use the tie-breaking rule that players do not migrate if they are indiffer-
ent between migration and no migration.

𝜎i(s) = 𝜎(s) =
⎧⎪⎨⎪⎩

1 if v1

(
s + 1

n

)
> v0(s)

0 otherwise
. (10)

The strategy profile (𝜎(s),… , 𝜎(s)) constitutes the unique equilibrium
of the n−player game. If v0(0) < v1(

1
n ), then player 1 migrates to region

1. Given Assumption 1, all the following players migrate. On the other
hand, If v1(

1
n ) ≤ v0(0), none of the players find incentive to migrate.

Therefore, there are only two possible outcomes − every player either
stays in region 0 or migrates to region 1, depending on whether or not
the following condition holds:

v1

(1
n

) ≤ v0(0). (MB0)

The following proposition documents this finding. The Proof is straight-
forward and skipped.

Proposition 2. Consider the migration game with n myopic players. In the
unique equilibrium, there will be full agglomeration either in region 0 or in
region 1. If (MB0) holds, no player migrates and sn = 0. If (MB0) does not
hold, every player migrates and sn = 1.

The above proposition points out history dependency in the migra-
tion game with myopic players. To see this, suppose that v1(0) < v0(0).
Then, condition (MB0) holds for sufficiently large n. Therefore, if the
population is partitioned in sufficiently fine groups, the economy will
remain at the initial agglomerated state. Suppose instead that v1(0) >
v0(0). Then, condition (MB0) is violated for any n and the whole pop-
ulation of skilled workers move to region 1 in any n−player migration
game. Therefore, an inter-regional real wage difference at the initial
state drives the outcome of the migration game.

3.2.2. FB - perfect equilibrium in markov strategies
We next analyze the migration game with forward-looking players

(i.e., 𝛿 = 1). In a finite-horizon dynamic game with perfect information,
there always exists a pure-strategy MPE (see Fudenberg and Tirole,
1991, Chapter 13.2.2). The following lemma shows that in any MPE,
players’ optimal strategies are threshold strategies and the thresholds
are increasing in the player’s position in the migration sequence. We
prove the lemma by backward induction and the Proof is included in
Appendix A.

Lemma 1. There exist thresholds si, i ∈ {1,2,… , n} with si −
1
n ≤ si−1 <

si such that in any MPE, the optimal strategy of player i is given by11

𝜎i(s) =
{

1 if s > si

0 if s ≤ si
. (11)

Further, the threshold si, i ∈ {i,… , n} uniquely solves12

v0(s) =
1

n − i + 1

n−i+1∑
t=1

v1

(
s + t

n

)
. (12)

For player n, the threshold sn solves v0(s) = v1(s +
1
n ) and it coin-

cides with the corresponding threshold derived in MB; see (10). How-
ever, the preceding players have weaker thresholds − they are willing to
migrate at lower state values. This is because their incentives to migrate
are driven by the expectation that future players would follow suit and
all would benefit from increased migration to region 1. In particular,

11 Similar to MB, here we consider the tie-breaking rule that players do not
migrate if they are indifferent between migration and no migration.

12 Although we solve the problem in case of no future discounting (𝛿 = 1),
the results are quite similar in the general problem with a discount fac-
tor of 𝛿 ∈ [0,1]. The corresponding threshold si satisfies v0(s)

∑n−i+1
t=1 𝛿t−1 =∑n−i+1

t=1 𝛿t−1v1(s +
t
n
).
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player 1 has the least demanding migration threshold s1, which solves
v0(s) =

1
n
∑n

t=1 v1(s +
t
n ). Building on Lemma (1), the following lemma

shows that any pair of consecutive players must take the same action in
any MPE. The Proof is included in Appendix A.

Lemma 2. In any MPE, player i + 1 migrates if and only if player i
migrates for any i ∈ {1,… , n − 1}.

The above lemma implies that only two action profiles can occur in
a MPE − one in which every player migrates and the other in which
no player migrates. The action of the first player determines which
action profile we observe in equilibrium. Player 1 migrates if and only
if s1 < s0 = 0, which is, given Assumption 1, equivalent to the following
condition:

v0(0) <
1
n

n∑
t=1

v1

( t
n

)
. (MPE1)

The following proposition characterizes the unique MPE of the game.
The Proof directly follows from the above discussion and is skipped.

Proposition 3. Consider the migration game with n forward-looking play-
ers. In the unique MPE, there will be full agglomeration either in region 0 or
in region 1. If (MPE1) holds, every player migrates and sn = 1. If (MPE1)
does not hold, no player migrates and sn = 0.

3.2.3. FB - non-perfect equilibrium in markov strategies
The requirement of perfection and the assumptions of strict mono-

tonicity of the indirect utility functions result in a unique MPE. There
can be other equilibria in Markov strategies that do not satisfy the
requirement of perfection in all possible continuation games. The fol-
lowing lemma shows that similar to the case of MPE, only two possi-
ble action profiles can be sustained in any non-perfect equilibrium in
Markov strategy − either every players migrates or no one does. The key
to proving this result is showing that whenever there is a pair of con-
secutive players taking different actions, a unilateral deviation by one
of the pair is profitable. The technical Proof is included in Appendix 7.

Lemma 3. In any Markov equilibrium, either ai = 0 for all i ∈ {1,… , n},
or, ai = 1 for all i ∈ {1,… , n}.

Let us first consider the action profile ai = 0 for all i ∈ {1,… , n}. In
period i, player i has a continuation payoff of (n − i + 1)v0(0) by playing
ai = 0, and a unilateral deviation gives her a continuation payoff of
(n− i + 1)v1(

1
n ). Therefore, the condition for no unilateral deviation is

v1

(1
n

) ≤ v0(0), (NPE0)

which is same as the condition under which we observe sn = 0 in MB.
The strategy profile that sustains the above action profile in a non-
perfect equilibrium is not necessarily unique. One specific strategy pro-
file of interest, because of symmetry and extremity, is the Markov strat-
egy profile (𝜎(s),… , 𝜎(s)) such that 𝜎(s) = 0 for all s ∈ [0,1]. This strat-
egy profile constitutes an equilibrium if (NPE0) holds.13 However, the
strategy profile violates subgame perfection.14

Next, consider the action profile ai = 1 for all i ∈ {1,… , n}. Player i
gets a continuation payoff of

∑n
t=i v1(

t
n ) by playing ai = 1, and a unilat-

eral deviation gives her a continuation payoff of
∑n

t=i v0(
t−1
n ). A unilat-

eral deviation is not beneficial to player t if
∑n

t=i v0(
t−1
n ) < ∑n

t=i v1(
t
n ).

13 Similarly, a threshold Markov strategy profile (𝜎1(s),… , 𝜎n(s)) satisfying
(11), for which s1 > 0 and si >

1
n

for all i ∈ {2,… , n}, constitutes an equilib-
rium if (NPE0) holds and we have a1 = a2 = · · · = an = 0 along the equilibrium
path. The strategy, however, violates subgame perfection.

14 For example, if v1(s +
1
n
) > v0(s) for some s > 0, then a player will deviate

from the strategy 𝜎(s) = 0 at that s. In fact, if (MPE1) holds, then there will
always be some s > 0 such that v1(s +

1
n
) > v0(s) even if v0(0) > v1(

1
n
).

From Assumption 1, it follows that if the no-unilateral-deviation condi-
tion holds for player i, it must hold for player i + 1. Therefore, we can
express the condition for no unilateral deviation by any player as

1
n

n∑
t=1

v0

( t − 1
n

)
<

1
n

n∑
t=1

v1

( t
n

)
. (NPE1)

As with the previous case, the strategy profile sustaining the above
action profile in a non-perfect equilibrium is not unique. One specific
profile of interest is an extreme strategy profile, in which every player
decides to migrate in every possible state, i.e., 𝜎(s) = 1 for all s ∈ [0,1].
This strategy profile constitutes an equilibrium if (NPE1) holds.

The two conditions (NPE0) and (NPE1) are collectively exhaustive
but not mutually exclusive − for any parameter specification of the
model, we will have at least one, and sometime both, of the two types
of non-perfect equilibria present.15 The following proposition docu-
ments the findings. The Proof follows from the above discussion and
is skipped.

Proposition 4. There always exists a non-perfect equilibrium in Markov
strategies in the migration game with n forward-looking players. If (NPE0)
holds, there always exists a non-perfect equilibrium such that no player
migrates and sn = 0. If (NPE1) holds, there always exists a non-perfect equi-
librium such that every player migrates and sn = 1.

The action profile in any perfect or non-perfect equilibrium under
FB is associated with a set of self-fulfilling expectations, since a player’s
migration decision depends on expectations of future utilities, which
depend on actions of other players. If the conditions (NPE0) and (NPE1)
are simultaneously satisfied, there exist multiple expectation-driven
equilibria (in Markov strategies), which differ in the final outcome.

Of particular interest to our experimental design is the case when
(NPE0) and (MPE1) are simultaneously satisfied:

v1

(1
n

)
< v0(0) <

1
n

n∑
t=1

v1

( t
n

)
. (13)

There are several reasons for it. First, by Assumption 1, (MPE1) implies
(NPE1). Therefore, when (13) holds, we continue to have multiple
expectation-driven equilibria and we can test whether the expectation
consistent with perfect FB plays a dominant role in determining the
final outcome. Secondly, (MB0), which coincides with (NPE0), holds
given (13). Therefore, the prediction under MB is distinctly different
from that under perfect FB. It allows us to investigate whether MB is
a good approximation against perfect FB for predicting the long run
outcome. It is worth pointing out that there always exists a non-perfect
equilibrium of FB, the outcome of which coincides with the outcome
of the unique MPE.16 It is, therefore, not feasible to distinguish perfect
and non-perfect behaviors from observing the outcome of the migration
game.

For our experiment, we construct indirect utility functions v1 (s) and
v0 (s), satisfying (13), such that the unique prediction under MB is com-
plete agglomeration in region 0 and the unique prediction under perfect
FB is full agglomeration in region 1. We vary the number of players or,
equivalently, the partitioning of the population, and study the outcome
of the migration game.

4. Experimental study

We start with some numerical examples that we adopt in the exper-
iment. Treatments are labeled reflecting the number of players in the

15 The fact that (NPE0) and (NPE1) are collectively exhaustive can be proved
by showing that (NPE1) must hold if (NPE_0) does not hold. Further, both
(NPE0) and (NPE1) are simultaneously satisfied if v1(

1
n
) < v0(0) <

∑n
t=1 v1(

t
n
).

16 This is because if (MPE1) holds, then (NPE1) holds and if (MPE1) does not
hold, then (NPE0) holds.
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Fig. 3. Inter-regional payoff difference, v1(s) − v0(s), for different values of 𝜎 in the case of asymmetric production technology (𝛽0 = 1.01 > 𝛽1 = 1).
Note: The parameter specification: L0 = L1 = 1, 𝛼 = 0.5, 𝛽0 = 1.01, 𝛽1 = 1, 𝜏01 = 𝜏10 = 2.

Table 1
Payoff at different state values with n = 2.

n0(s) v0(s) n1(s) v1(s)

s = 0 2 7.7 0 6.8
s = 1∕2 1 2.7 1 7.5
s = 1 0 0.4 2 9.5

Table 2
Payoff at different state values with n = 3.

n0(s) v0(s) n1(s) v1(s)

s = 0 3 7.7 0 6.8
s = 1∕3 2 3.9 1 7.2
s = 2∕3 1 1.8 2 8.0
s = 1 0 0.4 3 9.5

game: T2 when 2 players, T3 when 3, and T4 when 4. A discussion of
the experimental design to test the behavioral difference follows after
the examples.

4.1. Numerical examples with parameters adopted in the experiment

The following examples consider indirect utility functions satisfy-
ing Assumption 1 and the condition (13), such that the unique equilib-
rium under MB is full agglomeration in region 0 (i.e., sn = 0) and the
unique MPE under FB is full agglomeration in region 1 (i.e., sn = 1). We
use the following parameter specifications to derive the indirect utility
functions (equations (3)–(5)):

(L0 = 1, L1= 1.25, 𝛼= 0.5, 𝛽0= 1.363, 𝛽1= 1.15, 𝜎 = 2, 𝜏01= 𝜏10= 2.55) .

The indirect utility functions are illustrated in Fig. 3a and the inter-
regional difference in utility in Fig. 3b. The examples differ in the num-
ber of players, i.e., the fraction of the population with migration oppor-
tunity in a period.

Example 2. (Treatment T2) Consider n = 2. The indirect utilities at
various state values are given in Table 1 (where ni(s) refers to the num-
ber of players in region i at the state value s). The payoff functions
satisfy (13) with n = 2.

Example 3. (Treatment T3) Consider n = 3. The indirect utilities at
various state values are given in Table 2. The payoff functions satisfy
(13) with n = 3.

Example 4. (Treatment T4) Consider n = 4. The indirect utilities at
various state values are given in Table 3. The payoff functions satisfy
(13) with n = 4.

Table 3
Payoff at different state values with n = 4.

n0(s) v0(s) n1(s) v1(s)

s = 0 4 7.7 0 6.8
s = 1∕4 3 4.6 1 7.1
s = 1∕2 2 2.7 2 7.5
s = 3∕4 1 1.4 3 8.3
s = 1 0 0.4 4 9.5

4.2. Experimental design

The experiment was conducted at the Laboratorio de Economía
Experimental (LEE) at Jaume I University (Spain). Experimental sub-
jects gave their explicit informed consent to be included in the ORSEE
database of LEE prior to being called to any session. The recruitment
process of the laboratory was approved by the Deontology Commis-
sion of Jaume I University and subject data are stored following the
data protection recommendations of the European Commission (GDPR,
2016).

The subjects were incentivized by earning real money depending
on performance (paid in cash when leaving the lab): on average 24.40
euros, ranging from 13.60 to 42.70. The time spent in the lab was on
average a little less than 2 h. The experiment was implemented as a
computerized laboratory experiment programmed using the standard
software z-Tree (Fischbacher, 2007).

The experiment contains 3 different treatments, with controls for
reasoning ability,17 risk aversion,18 and inequity aversion.19 We will
first give a general outline of the design and then turn to more details
on the different treatments.

According to Binmore (1999), economic theory can only be expected
to predict in the laboratory if “the problem the subjects face is not only
‘reasonably’ simple in itself, but is framed so it seems simple to the

17 Based on the reasoning ability scale of the Differential Aptitude Test. We
use the Spanish version (Cordero and Corral, 2006): The 20 image series of the
test are not programmed, they are presented on paper and only the answers are
introduced within 20 min maximum time.

18 The test by Sabater-Grande and Georgantzís (2002) was developed in
our laboratory and is our standard measure of risk aversion. Using this test,
Barreda-Tarrazona et al. (2011) obtain an estimate of a CRRA coefficient that
is perfectly in line with the one estimated by Harrison et al. (2009) based on
the more common Holt and Laury (2002) test.

19 The Altruism scale (or inequity aversion test) consists of 4 situations that
require an agent to sacrifice money to benefit another partner in a series of
dictator like choices. The choices were taken from Charness and Rabin (2002).
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Fig. 4. Decisions by treatment on extensive form. Note: Number of stay (move) decisions to the left (right) of each node.

subjects”. Hence, we use a framed experiment.20 To keep the design
clean, the treatments vary in one dimension only: the number of players
(2, 3 or 4). Recall that, we denote treatments accordingly as T2, T3 and
T4. T2 and T3 were run in November 2016 and T4 in March 2017. The
baseline (T2) is described by low substitutability (low 𝜎) and 2 players,
both initially in region 0 (none in region 1).

In order to make the payoffs in the tables easy to compare for the
subjects, we made a transformation with payoff equal to 200 x util-
ity from the parameterized theoretical model minus 12.5. Payoff tables
were made available to the subjects during the experiment and a com-
prehension test was run prior to the experiment in order to ensure that
the task was fully understood.

We consider 20 independent observations per treatment variation a
minimum for meaningful statistical inference. In the baseline treatment
(T2), both players are initially in region 0. This calls for 40 subjects
that play in either first or second position. T3 calls for 20 (independent
observations) times 3 players per observation = 60 subjects. T4 requires
another 80 subjects. With a pure between subject design, this implies
180 subjects in total playing a one-shot game.

In T2, the baseline treatment, the 40 subjects were randomly
matched into 20 fixed pairs. In each pair, one subject was randomly

20 As emphasized by Loewenstein (1999, p. F30), “The context-free experiment
is, of course, an elusive goal … Nor would a context-free experiment necessarily
be a good thing if it were possible.” For the context provided to subjects in our
experiment, see the instructions in Appendix B.

designated as decision maker in the first period and the second subject
left to make the decision in the second period.

In T3, the 60 subjects were randomly matched into 20 fixed triplets.
To allow each subject to act as the single decision maker in each group
in any period, the number of periods compared to the baseline treat-
ment increased from 2 to 3.

In T4, we had 80 subjects randomly matched into 20 fixed quadru-
ples. Each group played for 4 periods to let all subjects make decisions
as they did in the previous treatments.

5. Results

We will first present and comment on the data for all decisions by
treatment on extensive form. All decision data are presented in Fig. 4,
whereas data on decisions to stay conditional on full agglomeration in
region 0 are summarized in Table 4. Notice that only data on decisions
in the first period can be used to discriminate between FB and MB across
all treatments. We will therefore concentrate the analysis on this subset
of data after we have presented and commented on all decision data.

In T2, only the first period decision matters for testing the hypothe-
sis of perfect or sequentially rational FB (see Fig. 4 panel (a), first node,
and Table 4, first row). 17 out of 20 subjects (85 percent) decided in the
first period to move to region 1, consistent with the MPE in FB (incon-
sistent with MB). In the second period, in 2 out of the 3 pairs where the
first period decision maker did choose to stay, the second period deci-
sion maker also made the decision to stay which is perfectly rational

8
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Table 4
Decision to stay conditional on full agglomeration in
region 0.

Treatment Period 1 Period 2 Period 3

T2 3∕20
T3 4∕20 0∕4
T4 11∕20 2∕11 1∕2

Note: Number of decision makers in each period is 20
in each treatment. In total 60 in period 1, 60 in period
2, 40 in period 3 (T3 and T4) and 20 in period 4 (T4).
Only period 1 is relevant for discriminating between MB
and perfect FB in T2, period 1 and 2 are relevant for T3,
and all periods except period 4 for T4. Only period 1 is
relevant for all treatments.

Table 5
Treatment differences first period migration
decisions.

T2 T4

T3 p = 1.000 p = 0.048
T4 p = 0.018

Note: N = 20 in each treatment. Wilcoxon
signed rank tests (Mann Whitney U tests). The
p-values have been Bonferroni corrected for
multiple comparisons by multiplying by 2. The
distribution of Period 1 migration decisions in
the T3 treatment is not significantly different
from the T2 baseline treatment, the T4 is (at
the 2 percent level). T3 is significantly differ-
ent from T4 (at the 5 percent level).

since payoff is 7.7 instead of 7.5 by moving. In one case, however, the
second period decision maker made the decision to move.

In T3, as in the baseline treatment, the first period decision discrim-
inates between MB and the MPE in FB. But now, also the second period
decision may discriminate between the two, provided the first-period
decision in the group was consistent with MB (see Table 4, second row).
Just as in the baseline treatment, the last period decision is irrelevant
for testing apart from discriminating between rational and irrational
behavior. In the first period, 4 out of 20 subjects (20 percent) made
the decision to stay in region 0, consistent with MB (see Fig. 4, panel
(b), first node). Comparing first round behavior to the baseline treat-
ment, the increase from 15 to 20 percent is clearly not enough to be
statistically significant (see Table 5). In the second period, conditional
on first period decision to stay, a decision to stay is consistent with MB
and a decision to move consistent with the MPE in FB. The difference
in payoff is small, but the decision context very simple. In 3 out of the
4 groups where the first period decision was to stay, the second period
decision maker decided to move consistent with the MPE in FB. In the
third period, perfect FB calls for a decision to move if at the beginning
of this period there is at least already one subject in Region 1 (giving at
least 8.0 by moving as opposed to maximum 3.9 by staying, according
to Table 2) while the third mover should rather stay if the two preced-
ing players also stayed (7.7 staying against 7.2 moving). Again, there is
one subject (the one who should have stayed given the previous play-
ers in his group did not migrate) who fails to make the corresponding
payoff maximizing decision.

In T4, unconditional discrimination between the two behavioral
hypotheses is feasible in the first period as for all treatments. We may
also compare second period decisions conditional on first period deci-
sions consistent with MB to T3. In T4, it may even be feasible to dis-
criminate between MB and perfect FB in the third period (see Table 4,
row 3). Starting with the first period, now only 9 out of 20 decision
makers chose to move (see Fig. 4, panel (c), first node). Hence, 11 out

of 20 chose to stay consistent with MB. This is up 30 percentage points
compared to baseline and clearly significant (see Table 5). Is there any
evidence consistent with MB also in the second period? In 2 out of the
11 groups with MB in first period, the second period decision was also
to stay consistent with MB. Finally, in the third period, for 1 out of
the 2 groups that were still agglomerated in region 0, the third period
decision was to stay consistent with MB.

We now concentrate on the first period where the decision can
be used to discriminate between perfect FB and MB across all treat-
ments. We start by asking if the first-period decision-makers are differ-
ent across treatments in terms of background variables and the incen-
tivized test results. Could difference in behavior in T4 compared to T3
and T2, be explained by an atypical sample of subjects? The answer is
negative. Background variables are not too dissimilar across treatments,
as can be seen from Table 6 (age, gender, laboratory experience, start of
major, and standards of living). Neither is there any reason for concern
regarding the test results (see Table 7).

In order to probe deeper into the possible effect of background vari-
ables and incentivized test results on the first period decision, we also
did a regression analysis. Results are presented in Table 8. The results
for the two tests for Inequity Aversion (IA1 interpreted as a measure
of envy and IA2 interpreted as a measure of fairness) were clearly cor-
related (Spearman’s rank correlation coefficient equal to 0.463 with
p-value = 0.000). We therefore integrated the two into one measure
when we did the regressions.

In the logit regression pooled over treatments, we observe a very
significant (at the 1 percent level) negative effect of the most complex
Treatment 4 on the likelihood of first period decision makers to actually
choose to move. In fact, the dummy variable for T4 is the only signifi-
cant variable on the 5 percent level as we can observe from first column
in Table 8.

Analyzing the drivers of the first mover decisions in T4, we observe
from the second column in Table 8 that both reasoning ability and
economics background increase the likelihood of moving. In short, our
regression analysis confirms the result obtained in the Wilcoxon signed
rank tests: The increase in the number of players is the main identifiable
driver of the increase in MB-consistent behaviors among treatments.

Is the outcome of our experiment in complex situations with
increased number of decision makers likely due to MB or something
else? At least two arguments could be suggested against myopic behav-
ior. First, agents’ behavior can follow expectations consistent with some
non-perfect equilibrium under FB. Specifically, in one of the non-perfect
equilibria in Markov strategies, staying is an equilibrium on the belief
that all are staying and in such a case, staying may therefore have noth-
ing to do with MB. While this is true, we may ask why subjects in
the last treatment (T4) should have this belief and not the subjects in
the other two treatments (T2 and T3)? Further, since the outcome in
this non-perfect equilibrium with FB always coincides with the out-
come under MB, the assumption of MB can still be considered as a good
approximation for the prediction purpose.

The second argument could be that subjects have preferences not
reflected in the theoretical model where only real wage differences
are assumed to matter. For example, Inequity aversion could be a rea-
son for not migrating in our game, as late movers stuck in a region
that loses population see their income reduced while migrants see their
income increased after new arrivals. Apart from controlling for individ-
ual inequity aversion in our regressions, without observing any signif-
icant effect, in order to shed further light into the question of whether
inequity aversion was an important consideration for our subjects and
whether it was distinctly so in the different treatments, we turn to our
post-experiment questionnaire, in which we asked participants about
the strategy they had followed in the migration game. In the great
majority of cases, migrants declared to have consciously followed their
egoistic interest even being aware of imposing lower gains on later
movers, thus disregarding any inequity aversion. In the case of the stay-
ers, about 20% of them declare, homogeneously for all treatments, to
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Table 6
Subject characteristics for first period decision makers by treatment.

Treatment N Age Female Proportion Lab experience Start major Standards of living

T2 20 21.80 0.45 2.75 2014 2.00
T3 20 22.45 0.30 2.50 2014 2.45
T4 20 22.55 0.55 2.80 2013 2.40

Note: Means. Lab experience measured from 1 = no experience to 5 = more than 9 times (3 is 4–6 times
and 2 is 1–3 times). Living standards measured from 1 = affluent to 4 = very poor (2 is acceptable
conditions and 3 is non-acceptable but slightly better than 4).

Table 7
Incentivized controls first period decision makers by treatment.

Treatment N Reasoning ability Risk aversion IA1 IA2

T2 20 5.0 4.2 1.4 1.4
T3 20 4.5 3.3 1.5 1.4
T4 20 4.9 4.7 1.6 1.4

Note: Means. Reasoning ability is measured by the profit earned from solving the 40
tasks of the Differential Aptitude Test. Risk aversion is measured by a scale based
on the four items used by Sabater-Grande and Georgantzís (2002) - a higher number
implies higher risk aversion. Inequity aversion is based on the four items used by
Charness and Rabin (2002). IA1 for the two first items (averse against getting less
than the others) and IA2 for the last two (averse against getting more than the others).

Table 8
Regressing decision by first period decision makers on treatments,
incentivized controls and background variables.

Dependent variable: Move All treatments (N = 60) T4 (N = 20)

T3 −0.725(0.98)
T4 −2.921∗∗∗(0.92)
Altruism Scale 0.770∗(0.41) 4.516(2.80)
Risk aversion Scale −0.054(0.38) 0.645(2.47)
Reasoning ability 0.060(0.06) 0.393∗∗(0.16)
Female 0.521(0.72) 0.638(3.13)
Age 0.224(0.22) 0.092(0.18)
Economics Major 0.409(0.83) 7.147∗∗(3.03)
Lab Experience −0.216(0.29) −0.933∗(0.49)
Financial Situation 0.028(0.43) −0.950(1.06)
Constant −4.118(4.57) −14.855(8.30)
R-squared 0.21 0.48

Note: Logit Regressions for first period decision makers for all treat-
ments (left) and for T4 only. Entries are coefficient estimates with
robust standard errors. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. T2 is
left out in the pooled regression and will be picked up by the constant
term. R-square for logit is a pseudo R-square.

have done it in order to maximize joint profits (which are symmetri-
cally shared, given that all stay in the collusive solution), so we have
no hint of increased importance of inequity aversion in any treatment,
while 30% of the stayers (54% in T4) incorrectly thought to be maximiz-
ing own profit by not migrating, which points instead to some kind of
myopia (increased in T4). Further, we find that higher reasoning ability
significantly decreases the likelihood of behaving in a way consistent
with MB in the most complex treatment.

6. Concluding remarks

In this paper, we study migration dynamics in the CP model of
New Economic Geography. More specifically, we investigate the behav-
ioral foundation of the perfect FB hypothesis. By implication, we also
shed light on whether MB can be a good approximation for predict-

ing the long run outcome. We use the analytically tractable elaboration
by Forslid and Ottaviano (2003) of the original CP model (Krugman,
1991b) as basis for developing a game theoretical framework adapted
to experimental analysis.

The paper contributes to the literature in several important ways:
The first contribution lies in developing a theoretical framework suit-
able for experimental testing. To do so, we introduce a group-based
migration process in the standard New Economic Geography framework
and proceed by operating with a finite number of agents reflecting that
the number of subjects in the laboratory is always finite. We also intro-
duce sufficient asymmetry to make locations different with complete
agglomeration in order to make places clearly distinctive for poten-
tial migrants. Our theoretical findings show that the outcome of the
migration game can be different based on whether agents follow MB or
perfect (sequentially rational) FB.

The second contribution lies in testing the model predictions by
designing and running a framed experiment that closely captures the
migration incentives considered in our theoretical study. Our experi-
mental findings show that perfect or sequentially rational FB is less
likely to prevail with a large number of participants in the migration
game. More specifically, we find behavior consistent with perfect FB in
treatments with 2 and 3 players (T2 and T3). However, with 4 play-
ers (T4), a majority retreat to behavior consistent with MB. It therefore
seems that it does not take much complexity to reach a threshold where
MB-consistent dynamics can be a good approximation for predicting the
long run outcome from a behavioral perspective.

Number effects, similar to what we find, have also been found
in other game theory experiments. Studying experimental oligopolies,
Huck et al. (2004), using a neutral frame, find collusion in simultaneous
games with 2 and 3 agents, but market outcomes at Cournot or above in
games with 4 and more agents. Closer to our experiment, Dufwenberg
and van Essen (2018) find behavior consistent with backward induc-
tion in a sequential game with two agents, but not when the number
of agents is increased to 3 or 4. We may therefore ask if the number
effect found in these very different settings could be the result of a
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more general phenomenon that could be revealed through additional
experimental work.
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A. Proofs

Proof of Proposition 1

Proof. The proof follows the standard techniques used in characterizing the equilibria of typical CP models. For notational convenience, in this
proof, we will generically use xi to refer to the size of the skilled workers in region i ∈ {0,1}. For a given s, x0 = 1 − s and x1 = s. Let pA

i denote
the price of the traditional good in sector i ∈ {0,1}. The assumption of perfect competition in the traditional sector implies marginal cost pricing
so that the price equals the wage of an unskilled worker. Further, the assumption of free trade of the traditional good implies that prices are the
same between the regions. Without loss of generality, we consider the traditional good as numeraire, so that pA

i = wi = 1 for i ∈ {0,1}. We let pij(q)
denote the price of a variety q of the modern good D, which is produced in region j but sold in region i. Given the CES-type demand by residents in
region i, we can write the CES price index Pi in region i as

Pi =
[
∫

ni

0
pii(q)1−𝜎dq + ∫

nj

0
pji(q)1−𝜎dq

] 1
1−𝜎

. (A.1)

An individual consumer in region i has income mi, which equals ri if she is a skilled worker or 1 if she is an unskilled worker. The total income
in region i as Mi = xiri + Li. An individual consumer maximizes her utility, given by (1), subject to the budget constraint ∫ ni

0 pii(q)dii(q)dq +
∫ nj

0 pji(q)dji(q)dq + Ai = mi. The solution of the utility-maximization problem gives the following individual demand:

dji(q) =
pji(q)−𝜎

P1−𝜎
i

𝛼mi,Ai = (1 − 𝛼)mi, i, j ∈ {0,1} . (A.2)

The CES composite Di of the modern varieties is

Di = 𝛼mi

[
∫

ni

0
dii(q)

𝜎−1
𝜎 dq + ∫

nj

0
dji(q)

𝜎−1
𝜎 dq

] 𝜎

𝜎−1

= 𝛼mi
P1−𝜎

i

[
∫

ni

0
(pii(q)−𝜎)

𝜎−1
𝜎 dq + ∫

nj

0
(pji(q)−𝜎)

𝜎−1
𝜎 dq

] 𝜎

𝜎−1

=
𝛼miP−𝜎i

P1−𝜎
i

= 𝛼mi
Pi

Therefore, the indirect utility of a skilled worker with income mi = ri is

vi(s) = 𝛼 ln
(
𝛼

ri
Pi

)
+ (1 − 𝛼) ln ((1 − 𝛼)ri) . (A.3)

After simplifying, the inter-regional difference in utility can be expressed as

v1(s) − v0(s) = ln
(

r1
r0

)
− 𝛼 ln

(
P1
P0

)
(A.4)

We next solve the producer’s problem to find the equilibrium price index. Aggregating individual demand (A.2), we write the aggregate demand
function of a variety q, which is consumed in region i = 0,1 and produced in region j = 0,1, as

yji(q) =
pji(q)−𝜎

P1−𝜎
i

𝛼Mi, i, j ∈ {0,1} . (A.5)

A manufacturing firm, which is located in region i and produces the modern-good variety q, maximizes profit:

Πi(q) = pii(q)yii(q) + pij(q)yij(q) − 𝛽i
[
yii(q) + 𝜏ijyij(q)

]
− ri. (A.6)

Using (A.5), maximization of (A.6) yields the equilibrium prices:

pii(q) =
𝛽i𝜎

𝜎 − 1
, pij(q) =

𝛽i𝜏ij𝜎

𝜎 − 1
, i, j ∈ {0,1} . (A.7)
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The CES price index (A.1) is then given by Pi =
𝜎

𝜎−1

[
ni𝛽

1−𝜎
i + 𝜌inj𝛽

1−𝜎
j

] 1
1−𝜎 . As production of each variety requires one skilled worker, we have

ni = xi, and so we can write the price index as

Pi =
𝜎

𝜎 − 1

[
xi𝛽

1−𝜎
i + 𝜌ixj𝛽

1−𝜎
j

] 1
1−𝜎

. (A.8)

Next, we solve for the equilibrium wage of a skilled worker. The assumption of free entry and exit implies that the revenue equals the wage bill.
Using (A.6), we derive21

ri = piiyii + pijyij − 𝛽i[yii + 𝜏ijyij] = 𝛼

[
p1−𝜎

ii Mi

P1−𝜎
i

+
p1−𝜎

ij Mj

P1−𝜎
j

]
− 𝛼𝛽i

[
p−𝜎ii Mi

P1−𝜎
i

+ 𝜏ij
p−𝜎ij Mj

P1−𝜎
j

]

= 𝛼

[
p1−𝜎

ii Mi

P1−𝜎
i

+
p1−𝜎

ij Mj

P1−𝜎
j

]
− 𝛼

[
𝛽i
pii

p1−𝜎
ii Mi

P1−𝜎
i

+
𝛽i𝜏ij

pij

p1−𝜎
ij Mj

P1−𝜎
j

]
= 𝛼

(
1 − 𝜎 − 1

𝜎

)[
p1−𝜎

ii Mi

P1−𝜎
i

+
p1−𝜎

ij Mj

P1−𝜎
j

]

= 𝛼

𝜎

[
𝛽1−𝜎

i Mi

xi𝛽
1−𝜎
i + 𝜌ixj𝛽

1−𝜎
j

+
𝛽1−𝜎

i 𝜌jMj

xj𝛽
1−𝜎
j + 𝜌jxi𝛽

1−𝜎
i

]
(A.9)

As the aggregate income Mi, which is xiri + Li, is a function of ri, (A.9) gives us a system of equations for i = 0,1, that can be simultaneously solved

to find r0 and r1. Defining ai ≔ 𝛼𝛽1−𝜎
i

𝜎
[
xi𝛽

1−𝜎
i +𝜌ixj𝛽

1−𝜎
j

] and bi ≔ 𝛼𝛽1−𝜎
i 𝜌j

𝜎
[
xj𝛽

1−𝜎
j +𝜌jxi𝛽

1−𝜎
i

] , we can write the system of equations as

r1 = a1x1r1 + b1x0r0 + a1L1 + b1L0,

r0 = a0x0r0 + b0x1r1 + a0L0 + b0L1. (A.10)

Solving (A.10), we find

r1 = a1L1 + b1L0 − L1x0 (a0a1 − b0b1)
1 − a0x0 − a1x1 + x0x1 (a0a1 − b0b1)

,

r0 = a0L0 + b0L1 − L0x1 (a0a1 − b0b1)
1 − a0x0 − a1x1 + x0x1 (a0a1 − b0b1)

. (A.11)

Further, using (A.8) and (A.11), we can express the inter-regional difference in utility (A.4) as

v1(s) − v0(s) = ln
(

a1L1 + b1L0 − L1x0 (a0a1 − b0b1)
a0L0 + b0L1 − L0x1 (a0a1 − b0b1)

)
+ 𝛼

𝜎 − 1
ln

(
x1𝛽

1−𝜎
1 + 𝜌1x0𝛽

1−𝜎
0

x0𝛽
1−𝜎
0 + 𝜌0x1𝛽

1−𝜎
1

)
, (A.12)

which is the functional form of the inter-regional payoff difference in (6).

Proof of Lemma 1

Proof. We prove by backward induction. Consider player n. Since player n’s strategy must be optimal for any state s in period n, she migrates to
1 if and only if v1(s +

1
n ) > v0(s). By Assumption 1, the optimal strategy is indeed a threshold strategy. Further, sn, the state value at which she is

indifferent between migration or not, is the unique solution of v1(s +
1
n ) = v0(s).

Folding back, we consider player n − 1. At sn−1 (will show below that it is uniquely defined), she is indifferent between migrating to region 1
and staying back in region 0. First, consider the possibility that sn−1 < sn −

1
n . Then, her payoff from migration at s = sn−1 is 2v1(s +

1
n ); because she

expects player n will not migrate in the following period as sn > sn−1 +
1
n . On the other hand, her payoff from staying back is 2v0(s). Therefore, sn−1

must satisfy 2v1(s +
1
n ) = 2v0(s), which, given Assumption 1, contradicts the fact that sn is the unique solution of the same equation and we have

considered sn−1 < sn −
1
n .

Hence, sn−1 ≥ sn −
1
n . In this case, at s = sn−1, player n − 1 gets v1(s +

1
n ) + v1(s +

2
n ) by migration, and gets 2v0(s) by staying back. Therefore,

she migrates if v1(s +
1
n ) + v1(s +

2
n ) > 2v0(s). By Assumption 1, the optimal strategy is indeed a threshold strategy and sn−1 uniquely solves v1(s +

1
n ) + v1(s +

2
n ) = 2v0(s). Further, sn−1 < sn, since at s = sn, v1(s +

1
n ) + v1(s +

2
n ) = v0(s) + v1(s +

2
n ) > 2v0(s) by Assumption 1.

Next, consider player i and assume that the lemma holds for all k ∈ {i + 1,… , n}. At si, she is indifferent between migrating and staying. If
si < si+1 −

1
n , then her payoff from migration at s = si is (n − i + 1)v1(s +

1
n ); because she expects no player will migrate in the following periods as

sn > … > si+1 > si +
1
n . On the other hand, her payoff from staying back is (n − i + 1)v0(s). Therefore, si must satisfy v1(s +

1
n ) = v0(s), which leads

to a contraction because of Assumption 1 and the fact that sn is the unique solution of the same equation.
Hence, we must have si ≥ si+1 −

1
n . Then, at s = si, player i gets v1(s +

1
n ) + · · · + v1(s +

n−i+1
n ) by migration, and gets (n− i + 1)v0(s) by staying

back. Therefore, she migrates if
∑n−i+1

t=1 v1(s +
t
n ) > (n − i + 1)v0(s). By Assumption 1, the optimal strategy is indeed a threshold strategy and si

uniquely solves 1
n−i+1

∑n−i+1
t=1 v1(s +

t
n ) = v0(s). Further, si < si+1, since at s = si+1, 1

n−i+1
∑n−i+1

t=1 v1(s +
t
n ) > v0(s) by Assumption 1. By the logic of

induction, the lemma, therefore, holds true for all i ∈ {1,… , n}.

21 For notational simplicity, we suppress the functional argument indicating variety q in the expressions of price and quantity.
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Proof of Lemma 2

Proof. At the beginning of period i, the state value is si−1 and player i decides whether or not to migrate. Suppose that player i migrates. Therefore,
si−1 > si by Lemma (1), and si = si−1 + 1

n . Together, si > si +
1
n ≥ si+1. The last inequality follows since si+1 −

1
n ≤ si, by Lemma (1). si > si+1 ⇒ player

i + 1 migrates. Next, suppose player i does not migrate. Therefore, si−1 ≤ si by Lemma (1), and si = si−1. Together, si ≤ si ≤ si+1. The last inequality
follows from Lemma (1). si ≤ si+1 ⇒ player i + 1 does not migrate.

Proof of Lemma 3

Proof. Note that to prove the lemma, it is sufficient to show that in any equilibrium in Markov strategy, it is not possible to have sn = k for some
k ∈ { 1

n ,… ,
n−1

n }. We prove it by contradiction. Suppose, if possible, sn = k for k ∈ { 1
n ,… ,

n−1
n }. Let A0 and A1 denote the sets of players taking

action 0 and action 1 respectively. Observe that if sn = k for k ∈ { 1
n ,… ,

n−1
n }, then both A0 and A1 are non-empty sets. Therefore, there must be at

least one pair of consecutive players who take different actions. Let (j, j + 1), j ∈ {1,… , n − 1} be the last of such pairs with different actions. Two
possibilities can arise − case (i): j ∈ A1 and all j + 1,… , n ∈ A0, and case (ii): j ∈ A0 and all j + 1,… , n ∈ A1.

First, consider case (i). Given that sn = k, n ∈ A0 implies

v0

(
k
n

)
≥ v1

(
k + 1

n

)
. (A.13)

Further, since j is the last player to take action 1, it implies that (n − j + 1)v1(
k
n ) > (n − j + 1)v0(

k−1
n ), or equivalently, v1(

k
n ) > v0(

k−1
n ). Then, by

Assumption 1,

v1

(
k + 1

n

)
> v1

(
k
n

)
> v0

(
k − 1

n

)
> v0

(
k
n

)
, (A.14)

which contradicts (A.13), and so, case (i) is not a feasible scenario.
Next, consider case (ii): Given that sn = k,

n ∈ A1 ⇒ v1

(
k
n

)
> v0

(
k − 1

n

)
n − 1 ∈ A1 ⇒ v1

(
k − 1

n

)
+ v1

(
k
n

)
> v0

(
k − 2

n

)
+v0

(
k − 1

n

)
⋮

j + 1 ∈ A1 ⇒
k∑

i=k−n+j+1
v1

(
i
n

)
>

k−1∑
i=k−n+j

v0

(
i
n

)
(A.15)

Now, as j is the last player to take action 0, j finds the state at the beginning of period j to be k − n + j (since she does not migrate and the following
n − j players migrate to make the terminal state to be k), and j’s decision not to migrate would be optimal if

k∑
i=k−n+j

v0

(
i
n

)
>

k+1∑
i=k−n+j+1

v1

(
i
n

)
. (A.16)

The right-hand-side of (A.16) can be written as
∑k

i=k−n+j+1 v1(
i
n ) + v1(

k+1
n ) and the left-hand-side of (A.16) can be written as

∑k−1
i=k−n+j v0(

i
n ) + v0(

k
n ).

By Assumption 1 and (A.15),

v1

(
k + 1

n

)
> v1

(
k
n

)
> v0

(
k − 1

n

)
> v0

(
k
n

)
,

and by (A.15),
∑k

i=k−n+j+1 v1(
i
n ) >

∑k−1
i=k−n+j v0(

i
n ). Together, we get that the right-hand-side of (A.16) is greater than the left-hand-side of (A.16),

which contradicts (A.16), and so, case (ii) is not a feasible scenario as well. We thus rule out all possibilities that can arise if sn = k for some
k ∈ { 1

n ,… ,
n−1

n }. Hence, we must have sn = 0 or sn = 1, in which case, either ai = 0 for all i ∈ {1,… , n}, or, ai = 1 for all i ∈ {1,… , n}. This
completes the Proof.

B. Instructions for the experiment

Experimental Instructions T4 (Translated from Spanish)

Welcome to the LEE. We are carrying out a research project on economic decision making. If you carefully follow the instructions and take good
decisions you can earn a considerable amount of money. Your gains will be personally communicated to you and they will be paid in cash right
at the end of the session. Your data will be confidentially treated and they will not be used for any purpose alien to this project. Your name will
never be associated to your decisions when the results are published. Communication with other participants in the session will lead to immediate
experiment termination for those participants breaching the rule. At the beginning of the session you will be assigned to a group with three other
participants. You will never discover the identity of the other members of your group, as they also will never discover yours. The game will last
four periods and it will not be repeated. Before the start of the paid periods you will answer a comprehension test about the instructions in your
computer.
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The Regions
There are 2 different regions regarding the wage (in experimental units) that they offer. The wage depends on the number of participants

belonging to your group that there are in each region:

Participants in region 0 Participants in region 1 Wage region 0 Wage region 1

4 0 7.7 6.8
3 1 4.6 7.1
2 2 2.7 7.5
1 3 1.4 8.3
0 4 0.4 9.5

In each of the four periods that the game lasts you will get the wage corresponding to the region in which you are at the moment, which will be
calculated depending on where the other three group members are. At the end of the session you will get in cash 0.55 euros for each experimental
unit accumulated after the four periods.

In the upper region of the screen you will be shown in red colour information about how many participants of your group there are in that
moment in each region.
Your Decision

You are now in region 0, as the other three members of your group. In each one of the four periods of the game, one member of your group will
have to decide whether he or she prefers to remain in region 0 or move to region 1. The order of the decision will be random and will be determined
at the beginning of the session. The participant who has to decide in a given period will know the number of group members that there are in each
region in that moment.
The Information

At the end of each period you will be informed about how many participants of your group there are in each region and which wage do get in
this period those who are in each region, including yourself. You will also be reminded about the accumulated gains up to that moment.
Experimental Instructions T4 (Original in Spanish)

Bienvenido al LEE. Estamos realizando un proyecto de investigación sobre la toma de decisiones económicas. Si sigues cuidadosamente las
instrucciones y tomas decisiones acertadas puedes ganar una considerable cantidad de dinero. Tus ganancias se te comunicarán personalmente y
se te pagarán en efectivo al final de la sesión. Tus datos se tratarán de modo confidencial y no se utilizarán para fines ajenos a este proyecto. Tu
nombre nunca se verá asociado a ninguna de tus decisiones cuando se publiquen los resultados. La comunicación con otros participantes en la sesión
supondría la automática finalización de la misma sin ninguna ganancia para los participantes que infrinjan esta regla. Al inicio de la sesión serás
asignado a un grupo con otros 3 participantes. No conocerás la identidad de los otros miembros de tu grupo como tampoco ellos conocerán la tuya.
El juego durará cuatro periodos y no se repetirá. Antes de iniciar los periodos pagados realizarás un test de comprensión de las instrucciones en tu
ordenador.

Las Regiones
Existen 2 regiones distintas en cuanto al salario (en unidades experimentales) que ofrecen. Dicho salario depende del número de participantes

de tu grupo que haya en cada una de ellas:

Participantes en región 0 Participantes en región 1 Salario región 0 Salario región 1

4 0 7.7 6.8
3 1 4.6 7.1
2 2 2.7 7.5
1 3 1.4 8.3
0 4 0.4 9.5

En cada uno de los cuatro periodos que dura el juego recibirás el salario que te corresponda según la región en la que te encuentres y según
dónde estén los otros tres miembros de tu grupo. Al finalizar la sesión se te pagará en efectivo 0.55 euros por cada unidad experimental que hayas
acumulado en los cuatro periodos.

En la parte superior de la pantalla te aparecerá en rojo la información acerca de cuántos participantes de tu grupo se encuentran en ese momento
en cada región.
Tu Decisión

Estás actualmente en la región 0, al igual que los otros tres miembros de tu grupo. En cada uno de los cuatro periodos del juego, un miembro de
tu grupo habrá de decidir si desea permanecer en la región 0◦ moverse a la región 1. El orden de las decisiones será aleatorio y se determinará al
inicio de la sesión. El participante que deba decidir en un determinado periodo conocerá el número de miembros del grupo que hay en cada región
en ese momento.
La Información

Al final de cada periodo se te informará de cuántos participantes de tu grupo hay en cada región y cuánto cobra en ese periodo quien esté en
cada región y tú mismo. También se te recuerda las ganancias acumuladas hasta ese momento.
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