Online Classes: Megalecture@gmail.com
www.youtube.com/megalecture
www.megalecture.com

Formula Sheet

Physics 2017

Speed of wave

\[v = f \lambda \]

\[v = \sqrt{\frac{\rho}{
ho_0}} \text{ (rampart wave)} \]

\[v = \frac{f}{2} \text{ (longitudinal waves)} \]

Centripetal force

\[F_c = m \frac{v^2}{r} \]

\[T = \frac{m v^2}{r} \]

Centripetal acceleration

\[a_c = \frac{v^2}{r} \]

\[\frac{v}{r} = \omega r \]

Instantaneous d\omega

\[2 \pi x \sin \theta \]

\[\tan \theta \]

Instantaneous d\omega

\[2 \pi x \cos \theta \]

\[\omega = \frac{v}{r} \]

Velocity

\[v_{max} = 2 \pi x \]

\[v_{min} = 0 \]

Mass Spring System

\[\omega = \sqrt{\frac{k}{m}} \]

\[f = \frac{1}{2 \pi} \sqrt{\frac{k}{m}} \]

\[T = 2\pi \sqrt{\frac{m}{k}} \]

Angular Displacement

\[\theta = \frac{1}{2} \pi \]

Angular Velocity

\[\omega = \frac{v}{r} \]

Angular Acceleration

\[\alpha = \frac{d\omega}{dt} \]

Energy Conservation

\[P = \frac{1}{2} k \omega^2 \]

\[K = \frac{1}{2} k \left(x^2 - 2 \omega \right) \]

Tangential Velocity

\[v_t = \omega \]

Tangential Acceleration

\[a_t = \frac{d^2 v_t}{dt^2} \]

Normal Acceleration

\[a_n = \frac{d^2 \theta}{dt^2} \]

By Prof. Ab

www.youtube.com/megalecture
www.megalecture.com
Online Classes: Megalecture@gmail.com
www.youtube.com/megalecture
www.megalecture.com

Half-Wave Rectification

Full-Wave Rectification

Photoelectric Effect

K.E, V, f

f₀

Different Frequencies

Mass Defect Δm

Binding Energy B.E

Energy Cons. in SHM

Pressure Law

Resonance Curve

By Prof.
Online Classes: Megalecture@gmail.com
www.youtube.com/megalecture
www.megalecture.com

Capacitor

\[
Q = CV, \quad \text{Area} = \frac{1}{2} QV
\]

Charging

\[
q = \frac{C}{t}
\]

Disscharging

\[
q = \frac{C}{t}
\]

OHM'S LAW

1. Ohmic

\[
V = IR
\]

2. Non-Ohmic

\[
V = f(I)
\]

Diode

Resistivity

Series combination

Parallel combination

Magnetic Field Intensity

\[
B = \frac{1}{r}
\]

Steam Energy Density

Area = \frac{1}{2} C = U = \frac{1}{2} F = L

Young's Modulus

\[
E = \frac{\Delta L}{\Delta L}
\]

Slope of

\[
\frac{q}{t} = I
\]

\[
\frac{d}{t} = V
\]

\[
\frac{q}{V} = C
\]

\[
\frac{v}{t} = a
\]

\[
E = \frac{1}{2} P
\]

Half-life

\[
\frac{1}{h} = 1.5 \times 10^{-13}
\]

\[
h_c = 2 \times 10^{-15}
\]

\[
h_c = 12 \times 10^{-8}
\]

\[
\frac{e}{h} = 240 \times 10^{-12}
\]

\[
eV = 1.6 \times 10^{-19} J
\]

\[
1 J = 6.25 \times 10^{18} eV
\]

\[
25 e = 6 \times 10^5
\]

Relative Abundance

General Graph (Slope)

Modul Islam

www.youtube.com/megalecture
www.megalecture.com

MEGA LECTURE
Displacement-Time Graph

<table>
<thead>
<tr>
<th>Graphs</th>
<th>Displacement-Time Graph</th>
<th>Velocity-Time Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Constant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Increasing uniform positive</td>
<td>Uniform positive</td>
<td>Increasing uniformly increasing</td>
</tr>
<tr>
<td>Increasing non-uniform positive</td>
<td>Non-uniform increasing</td>
<td>Decrement non-uniform positive</td>
</tr>
<tr>
<td>Decreasing uniform negative</td>
<td>Uniform negative</td>
<td>Decreasing uniformly decreasing</td>
</tr>
<tr>
<td>Decreasing non-uniform negative</td>
<td>Non-uniform decreasing</td>
<td>Decreasing non-uniform linear</td>
</tr>
</tbody>
</table>

Electric Field Intensity

- Electric field intensity: \(\text{Electric field intensity} = \frac{E d}{t^2} \)
- Slope = \(E \)

Electric Potential Difference

- \(V \)
- \(\Delta V \) and \(d \)
- \(V \)
- \(d \) (distance between plates)

Momentum-Time Graph

- \(F \) and \(t \)
- \(\Delta p \) and \(t \)
- \(F = \frac{d\Delta p}{dt} \)
- Area = Energy stored in capacitor

Online Classes
- Megalecture@gmail.com
- www.youtube.com/megalecture
- www.megalecture.com

Work
- \(F \) and \(d \)
- \(\text{Area} = W \)

Power
- \(E \) and \(t \)
- \(\text{Slope} = P \)
- \(\text{Area} = P \)