

Chemistry | Test | Class XI Hybridization and Bond Order

Time: 1:00 hr.	M.M: 30
1. Choose the correct option	$1 \times 8 = 8$
i. Which of the following specie	es has tetrahedral geometry?
a) BH ₄ -	b) NH ₂ -
c) CO ₃ ²⁻	d) H ₃ O ⁺
ii. The types of hybrid orbitals to be	of nitrogen in NO_{2}^{+} , NO_{3}^{-} and NH_{4}^{+} respectively are expected
a) sp, sp ³ and sp ²	b) sp, sp ² and sp ³
c) sp ² , sp and sp ³	d) sp ² , sp ³ and sp
iii. In PO_4^{3-} ion the formal char	ge on the oxygen atom of P-O bond is
a) +1	b) -1
c) -0.75	d) + 0.75
iv. In NO_3^- ion, the number of h	oond pairs and lone pairs of electrons on nitrogen atom are
a) 2, 2	b) 3, 1
c) 1, 3	d) 4, 0
v. Which of the following speci	es has tetrahedral geometry?
a) BH ₄ -	b) NH ₂ -
c) CO ₃ ²⁻	d) H ₃ O ⁺
vi. Which of the following angl	e corresponds to sp² hybridization?
a) 90°	b) 120°
c) 180°	d) 109°
vii. Which of the following spe	cies have the same shape?
a) CO ₂	b) CCl ₄
c) O ₃	d) NO ₂ -
viii. Which of the following opt	cions represents the correct bond order :
a) $0_2^- > 0_2 > 0_2^+$	b) $O_2^- < O_2 < O_2^+$

d) $O_2^- < O_2 > O_2^+$

c) $O_2^- > O_2 < O_2^+$

2. Match the species in Column I with the geometry/shape in Column II.

 $1 \times 4 = 4$

Column I

Column II

i) H_3O^+

a) Linear

ii) $HC \equiv CH$

b) Angular

iii) ClO₂-

c) Tetrahedral

iv) NH₄+

- d) Trigonal bipyramidal
- e) Pyramidal
- 3. Predict the shapes of the following molecules on the basis of hybridization.

2

BCl₃, CH₄, CO₂, NH₃

4. What is the difference between sp, sp² and sp³ hybridization?

3

5. Explain the five basic shapes of hybridization.

5

- 6. Draw diagrams showing the formation of a double bond and a triple bond between carbon atoms in C_2H_4 and C_2H_2 molecules.
- 7. Arrange the bonds in order of increasing ionic character in the molecules: LiF, K_2O , N_2 , SO_2 and ClF_3
- 8. What is the effect of the following processes on the bond order in N_2 and O_2 ?

2

- a) $N_2 \rightarrow N_2^+ + e^-$
- b) $O_2 \rightarrow O_2^+ + e^-$
- 9. Read the statements below and choose the correct answer-

2

Assertion (A): Though the central atom of both NH₃ and H₂O molecules are sp³ hybridized, yet H–N–H bond angle is greater than that of H–O–H.

Reason (R): This is because nitrogen atom has one lone pair and oxygen atom has two lone pairs.

- a) A and R both are correct, and R is the correct explanation of A.
- b) A and R both are correct, but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A and R both are false.