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Abstract—With the ever-increasing popularity of resource-
intensive mobile applications, Mobile Edge Computing (MEC),
e.g., offloading computationally expensive tasks to the cellular
edge, has become a prominent technology for the next generation
wireless networks. Despite its great performance in terms of
delay and energy, MEC suffers from restricted power allowance
and computational capability of the edge nodes. Therefore, it is
imperative to develop distributed mechanisms for computation
offloading, so that not only the computational servers are utilized
at their best capacity, but also the users’ latency constraints are
fulfilled. In this letter, by using the theory of Minority Games,
we develop a novel distributed server activation mechanism for
computation offloading. Our scheme guarantees energy-efficient
activation of servers as well as satisfaction of users’ quality-of-
experience (QoE) requirements in terms of latency.

Keywords: Computation offloading, mobile edge computing,
server mode selection, minority game.

I. INTRODUCTION

Due to the ever-increasing popularity of computationally
intensive applications, computation offloading capability has
become a prerequisite for next generation wireless networks.
Since the energy, storage, and computing capacity of small
mobile devices are limited, mobile users need to transfer com-
putationally expensive tasks to powerful computing servers.
Despite its higher computational capability, remote cloud may
not be the ideal option, as the long distance between the
cloud and the user device yields substantial latency and energy
cost. In contrast, small scale computing servers located in
the network edge might provide services at reduced latency
and energy cost, compared to the remote cloud. This is
referred to as Mobile Edge Computing (MEC) [1]. Naturally,
efficient utilization of MEC servers is vital, since they have
limited computational resources and power. To this end, one
solution is to activate only a specific number of servers, while
keeping the rest in the energy saving mode. At the same time,
users’ latency requirements should be taken into account, as
overloading the servers with computational tasks can result
in unacceptable delay. Therefore, addressing this trade-off
is a major issue in developing efficient MEC systems. This
becomes challenging in the presence of uncertainty in task
arrival and/or in the absence of any central controller. Other
challenges include minimizing users’ energy consumption and
efficient radio resource management.

In [1], the authors develop a distributed algorithm in a
game-theoretic framework to address the decision making
problem for computation offloading by the users. In [2], the
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authors investigate a computational offloading problem, where
mobile users offload to a variety of edge nodes such as
macro base stations and access points. Reference [3] provides
centralized resource allocation algorithms for mobile edge
computation offloading system, which minimize the weighted
sum energy consumption under delay constraints. A multi-
objective offloading problem is formulated and analyzed using
queuing theory in [4]. In [5], the authors address optimization
of offloading decision making for mobile users in the presence
of fading. A comprehensive survey can be found in [6].

The majority of the existing literature focus on user-
centric objectives such as meeting users’ delay constraints
and minimizing users’ energy consumption. On the contrary,
our work presents a two-sided view, where both servers’ and
users’ standpoints are considered. In doing so, we address the
uncertainty caused by the randomness in channel quality and
users’ requests. We first analyze the statistical characteristics
of the offloading delay. Based on this, we model the compu-
tational offloading problem as a planned market, where the
price of computational services is determined by an authority.
Afterward, by using the theory of minority games [7], we
develop a novel approach for efficient mode selection (or
activation) at the servers’ side. The designed mode selection
mechanism guarantees a minimal server activation to ensure
energy efficiency, while meeting the users’ delay constraints.
Moreover, it is distributed, and does not require any prior
information at the servers’ side. We numerically investigate
the performance of the proposed method.

In Section II, we present the system model and formulate
the server activation problem. In Section III, we cast the
servers’ mode selection problem in a minority game-theoretic
framework and provide an algorithmic solution. Numerical
results and discussions are presented in Section IV.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an MEC system consisting of a virtual pool of
M computational servers (e.g., small base stations), denoted
by a setM, and a set of users (e.g., mobile devices). Each user
has some delay sensitive computational tasks to be completed
in consecutive offloading periods. Each offloading period is
referred to as one time slot. In every time slot t, computational
jobs are offloaded by the users to the pool following a Poisson
distribution, with mean job arrival rate of λ. Prior to task
arrival, every server independently decides whether to
• accept computation jobs (active mode); or
• not to accept any computation job (inactive mode).

On one hand, to optimize the servers’ energy consumption,
selective activation of a limited number of servers is beneficial.
On the other hand, from the users’ point of view, the number
of active servers should be large enough for the users to
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meet their required QoE. Therefore, for the offloading system
to perform efficiently, the number of active servers at any
offloading round t, denoted by c(t), should be determined in
a way that both servers and users are satisfied. We denote this
value by cth. During each offloading round t, incoming jobs are
equally divided among the c(t) active servers, implying that
the computational jobs arrive at every active server at a mean
rate of λ/c(t), following a Poisson distribution. Therefore, any
active server can be modeled as an M/M/1 queuing system,
where each job is processed in the order of arrival [8]. In what
follows, we use some results from queuing theory [9] to derive
the parameters of the described offloading system.

Let µ denote the service rate (the number of tasks processed
per unit time) of any active server. Naturally, to avoid the
infinite queue lengths, the arrival rate should be less than
the service rate; thus, for servers to operate with finite queue
length, we need to have λ/c(t) < µ, or

c(t) >
λ

µ
. (1)

Hence cth must satisfy the following condition:

Condition I: cth > cmin(1), (2)

where cmin(1) = λ/µ. Clearly, the total time a job stays at
any server (response time), denoted by tc, is the sum of the
waiting time in the queue, tw, and the service time ts. Since we
consider an M/M/1 queue model, ts and tc are exponentially
distributed with parameters µ and µ− λ

c(t) , respectively [9].
Considering Rayleigh fading, the channel gain (h) is expo-

nentially distributed with parameter ν. We model the round
trip transmission delay (from the user to the servers pool) as a
linear function of the channel gain. The channel gains in both
directions are assumed to be equal. Formally,1

t0 = 2(ah+ b), (3)

where a < 0 and b > 0 are constants such that t0 ≥ 0. The
total offloading delay θ, is the sum of total delay at the server
tc, and the round trip transmission delay t0. Thus,

θ = tc + t0. (4)

The following proposition characterizes θ statistically.2

Proposition 1. The cumulative distribution function (cdf) of
offloading delay θ can be calculated as

FΘ(θ) = 1− νe(2b−θ)(µ−λ/c(t))

ν − 2a(µ− λ/c(t))
, 2b− θ < 0. (5)

The expected value and variance of θ are respectively given
by

E(θ) =
1

µ− λ
c(t)

+
2(a+ bν)

ν
, (6)

Var(θ) =
1(

µ− λ
c(t)

)2 +
4a2

ν2
. (7)

1Assuming a linear model of the transmission delay for the transmission
delay does not limit the applicability of the proposed model, and similar
analysis can be performed with any other model.

2The proof follows by simple probability rules given the independence of tc
and t0. We omit the proof due to space limitation. Note that, for 2b− θ ≥ 0,
the cdf is slightly different; however, similar analysis can be done to determine
the optimal number of active servers.

Every user requires its offloaded job(s) to be completed by
some deadline T . Moreover, due to the uncertainty caused by
the randomness, deterministic performance guarantee in terms
of delay is not feasible. Therefore, we assume a probabilistic
guarantee of users’ QoE requirement. Formally, let Pr[θ > T ]
be the probability that θ exceeds T , i.e., the likelihood that the
delay requirement of some offloading user(s) is not satisfied.
We require that Pr[θ > T ] remains below a predefined
threshold β. That is,

Pr[θ > T ] ≤ β. (8)

A. Condition for Users
Recall that the users’ QoE requirement is given by (8). Then,

by (5) and (8), we require

νe(2b−T )(µ−λ/c(t))

ν − 2a(µ− λ/c(t))
≤ β. (9)

For simplicity of notation, let y = 1− 2a
ν

(
µ− λ

c(t)

)
. Then

e(2b−T )
ν(1−y)

2a ≤ βy. (10)

Since ln(z) is an increasing function, we obtain

(2b− T )ν(1− y)

2a
≤ ln(β) + ln(y). (11)

Simple rearrangement of (11) yields

y +
2a ln(y)

ν(2b− T )
+

2a ln(β)

ν(2b− T )
− 1 ≥ 0. (12)

Define p = 1, q = 2a
ν(2b−T ) , and r = 2a ln(β)

ν(2b−T ) − 1. Then, (12)
boils down to py + q ln(y) + r ≥ 0. For the equality case,

p

q
y + ln(

p

q
y) +

r

q
− ln

(
p

q

)
= 0

=⇒ e
p
q yeln( pq y) = eln( pq )e

−r
q

=⇒ p

q
ye

p
q y =

p

q
e

−r
q

=⇒ y =
q

p
W

(
p

q
e

−r
q

)
with W (z) being the Lambert W function. By substitution,

y =
2a

ν(2b− T )
W

(
ν(2b− T )

2a
e−(

2a ln(β)
ν(2b−T )

−1)/( 2a
ν(2b−T )

)

)
.

(13)
Therefore, for the equality case in (9), we obtain

c(t) =
λ

µ− ν(1−y)
2a

. (14)

Obviously, with larger number of active servers, the users
achieve better QoE. Hence, the value of c(t) in (14) is the
minimum number of active servers that guarantees the users’
QoE requirement with high probability; that is,

cmin(2) =
λ

µ− ν(1−y)
2a

. (15)

Therefore, the following condition should be satisfied when
selecting the threshold cth:

Condition II: cth ≥ cmin(2). (16)



2162-2337 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LWC.2018.2810292, IEEE Wireless
Communications Letters

3

B. Condition for Servers

To become active, each server incurs a fixed energy cost
represented by ef (dimensionless value). In addition, doing
each task yields an extra ej units of energy cost. Naturally,
the required energy to perform a job is directly proportional
to the required service time ts. Formally, ej = δts, where
δ > 0 is a server-specific parameter. Consequently, since ts
is exponentially distributed with parameter µ (see Section II),
ej is also exponentially distributed with parameter µ/δ. Thus,
the mean energy cost per job is given by

ēj = δ/µ. (17)

Moreover, by processing each job, a server receives a reim-
bursement (benefit) equal to ep = γej, where γ > 1. Thus, ep
is exponentially distributed with parameter µ

γδ , and the mean
energy price per job is given by

ēp = γδ/µ. (18)

Let k(t) be the mean number of jobs in any active server at
t. By using the M/M/1 queue results [9], the mean number of
jobs in each active server is

k(t) =
λ/c(t)

µ− λ/c(t)
. (19)

Thus, each active server processes k(t) jobs on average, and
thus earns a mean reward given by

R(t) = (ēp − ēj)k(t)− ef. (20)

For each server, being in active mode is attractive only if a
minimum desired reward, denoted by Rth > 0, is obtained.
Therefore, using (17), (18), and (20), the mean number of
jobs in any active server k(t) has to be at least

kmin =
µ(Rth + ef)

δ(γ − 1)
, (21)

in order to achieve the minimum desired reward. Thus, by (19)
and (21), at most

cmax =
λ

µ
+

λδ(γ − 1)

µ2(Rth + ef)
(22)

servers can be in the active mode so that every active server
receives a mean reward of Rth, while inactive servers receive
no reward. Accordingly, the following condition must be
satisfied when selecting the cut-off cth:

Condition III: cth ≤ cmax. (23)

By (2), (16), and (23), the optimal number of active servers,
cth, is determined as

cmin ≤ cth ≤ cmax, (24)

where cmin = Max{cmin(1), cmin(2)}. Hence, the system
performs optimally in terms of servers’ energy and users’ delay
when cth servers are active. If we define the threshold cth as

cth = cmin = cmax, (25)

then in order to ensure that the entire system works efficiently,
also the price of receiving computing services (i.e., ep) must
be set by an authority (for instance, macro base station or
network planner). This is determined by solving (25) for γ.

Thus we obtain

γ =
µ2

λδ
(cth −

λ

µ
)(Rth + ef) + 1. (26)

In fact, in a distributed system, if a price larger than (26)
is charged, more servers than cth would become active, since
every server achieves mean reward of Rth with lower number
of tasks than kmin according to (21). In contrast, for γ lower
than (26), achieving Rth requires more tasks per server than
kmin, thus resulting in longer queue lengths which negatively
affect the users’ QoE.

Now the challenge is to activate cth servers in a self-
organized manner, which is addressed in the next section.

III. MODELING THE PROBLEM AS A MINORITY GAME

A Minority game (MG) can model the interaction among
a large number of players competing for limited shared
resources. In a basic MG, the players select between two
alternatives and the players belonging to the minority group
win. The minority is typically defined by using a cut-off value.
The collective sum of the selected actions by all players is
referred to as the attendance. The advantages of MG include
simple implementation, low overhead, and scalability to large
set of players, which are of vital importance in a dense wireless
network. Details can be found in [7], [10].

We model the formulated server mode selection problem
as an MG, where the M servers represent the players, with
a cut-off value cth for the number of active servers. In
each offloading period, the servers decide between the two
actions, i.e., being active or inactive, denoted by 1 and 0,
respectively. We denote the action of a given player i in the
time slot t by ai(t). The number of active servers c(t) maps
to the attendance. Each player has S strategies. According to
our formulated mode selection problem for servers and the
analysis in Section II,
• If c(t) ≤ cth, each of the c(t) active servers (the minority)

earns a reward higher than or equal to the minimum
desired reward, Rth.

• If c(t) > cth, c(t) active servers cannot achieve Rth. In
this case, inactivity (i.e., the action of the minority) is
considered as the winning choice, since inactive servers
spend no cost without being properly reimbursed.

A. Control Information
After each round of play, a central unit (e.g., a macro base

station) broadcasts the winning choice to all servers by sending
a one-bit control information:

w(t) =

{
1, if c(t) ≤ cth

0, otherwise.
(27)

As neither the attendance value c(t) nor the cut-off cth is
known by the players, the overhead remains very low.

B. Utility
Let Ui,a(t) and Ui,p(t) denote the utility that server i

receives for being active and being inactive, respectively.
Based on the discussion above, we define

Ui,a(t) =

{
1, if c(t) ≤ cth

0, otherwise
(28)
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and

Ui,p(t) =

{
1, if c(t) > cth

0, otherwise.
(29)

C. Distributed Learning Algorithm

Every player applies a basic strategy reinforcement tech-
nique to solve the formulated MG, summarized in Algorithm
1 for some player i. Details can be found in [7].

Algorithm 1 Distributed learning algorithm to solve server
mode selection MG [7]

1: Initialization: Randomly draw S strategies from the uni-
versal strategy pool, gathered in a set S. Moreover, For
every s ∈ S, set the score Vi,s(0) = 0.

2: for t = 1, 2, ... do
3: If t = 1, select the current strategy, si(1), uniformly

at random from the set S. Otherwise, select the best
strategy so far, defined as

si(t) = argmax
s∈S

Vi,s(t). (30)

4: Select the action ai(t), predicted by si(t) as the winning
choice.

5: The central unit broadcasts the control information
(winning choice), w(t).

6: Update the score of the strategy si(t) as

Vi,s(t+ 1) =

{
Vi,s(t) + 1, if ai(t) = w(t)

Vi,s(t), otherwise
(31)

7: end for

IV. NUMERICAL RESULTS

For numerical analysis, we choose M = 20, λ = 105 tasks
per second, µ = 15 tasks per second, Rth = 100, ef = 50, δ =
75/seconds, β = 0.05, T = 0.5 seconds, ν = 1, a = −0.05,
and b = 0.1. Simulation is carried out for 32 runs and in each
run, the servers randomly draw a set of strategies (S = 2)
and repeatedly execute the MG for 1000 offloading periods.
For the given parameters, the cut-off value is obtained as:
cth = 16. The optimal (central activation) and random choice
game (each server selects its action uniformly at random) are
also simulated for comparison.

Fig. 1 shows the changes in users’ probability measure, i.e.,
Pr[θ ≤ T ]. The users meet their QoE certainty requirement
whenever c(t) ≥ cth. As the attendance fluctuates near cth, the
probability value also remains near the desired certainty.

The average utility per user is depicted in Fig. 2. It can
be seen that the utility of MG-based strategy is higher than
that of random selection. Yet, it is below the average utility
of the optimal scenario. This is due to the fact that in MG-
based method, servers make decisions under minimal external
information and without any coordination with other servers.

V. CONCLUSION

We have investigated the edge server activation problem in
an MEC offloading system. We have analyzed the conditions
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for optimizing the servers’ energy consumption while satisfy-
ing the users’ QoE requirement, using queuing theory. More-
over, we have presented an MG-based distributed algorithm
for server activation. The performance of the proposed method
has been analyzed both theoretically and numerically.
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