SECTION 011100
SUMMARY OF THE WORK

PART 1 GENERAL

1.1 DESCRIPTION OF WORK
A. This Section summarizes construction operations required by the Contract Documents, defines aspects of Prime Contractor’s relationship with City and lists special City requirements.

1.2 RELATED WORK SPECIFIED ELSEWHERE
A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.

1.3 PROJECT DESCRIPTION
A. The Work covers the renovation/fit-out of floors 8, 9 and 10, plus related work on other floors, the site and the building exterior for the Office of Emergency Management located in the Philadelphia Public Services Building, 400 North Broad Street, Philadelphia, PA.

1.4 CONTRACTS
A. Construct Work under a single Prime Contract for General Construction. The scope of Work for each Contract shall be as indicated below.

1. Incidental Work provided by a one Prime Contractor but specified in a Division mainly the responsibility of a different Prime Contractor shall conform to the applicable specifications (i.e. earthwork required for Plumbing Work shall comply with the requirements of Division 2).

B. General Construction Work: Provide all the Work of all Contracts, no matter where the information is located, except as specifically indicated to be performed by one of the other Prime Contractors.

1. Selective demolition and new construction as required for new Mechanical, Plumbing and Electrical Work but only if indicated on the Demolition or Architectural Drawings. Cutting and patching required by the other Prime Contractors and not specifically indicated on the drawings are the responsibility of the respective Prime.

a. Remove conduit runs with wiring, boxes and devices built into existing walls, floors or roof slabs which are to be removed.

2. Install access doors and panels, anchors, embedments, bolts, plates, sleeves, boxes, etc. furnished under other Contracts.

3. Provide blocking, backing, box-outs, openings, recesses, etc. required for the Work of other Contracts.

4. Provide a dumpster for the use of all Contractors.

5. Provide periodic and final cleaning of building and site.

6. Normal patching of sprayed-on fireproofing required because of the installation of Work required in other Contracts.
7. Provide control lines and elevation benchmarks at central locations for the extension by other Prime Contractors.

8. Provide temporary site perimeter fence and sidewalk cover if required.

9. Provide temporary toilet facilities for all Contractors.

10. Provide base flashing of roof-mounted curbs and rails provided under other Prime Contracts.

11. Provide painting of all surfaces and equipment exposed to view in the finished Work, regardless of which Prime Contractor provided the surface or equipment.

12. Furnish starters and disconnects for electrical components of systems included in the General Construction Work for installation under the Electrical Contract.

C. Mechanical Work, Plumbing Work, Electrical Work: In addition to the Work listed under Articles D, E, and F below, each of the three separate Prime Contractors shall provide the following:

1. All the Work including administrative and managerial procedures included in Divisions 0 and 1, indicated to be performed by each Prime Contractor.

2. Excavation, bedding, de-watering, shoring, sheeting, backfill, and rough grading to indicated sub-grade plus removal of excess material as required for the Work of this Contract.

3. Cutting and patching required to complete the Work of each respective Prime Contract, except where selective demolition and new construction are indicated in the General Contractors Work.

4. Coordinate, layout and furnish to others for installation all anchors, embedments, bolts, plates, sleeves, boxes, etc. required for the Work of each respective Prime Contract.

5. Coordinate and layout all blocking, backing, box-outs, openings, recesses, etc. required for the Work of each respective Prime Contract but located in the Work of others.

6. Provide firesafing of fire-rated assemblies at penetrations caused by each respective Prime Contract. Provide sealant at all other penetrations.

7. Provide concrete housekeeping pads, bases, thrust blocks, grouting, etc. required for the Work of each respective Prime Contract.

8. Remove trash and debris created by the Work of each respective Prime Contract to the dumpster provided by the General Contractor. Provide daily clean-up of each area in which Work of each respective Prime Contract is performed.

9. Provide lay-out and coordination of the Work of each respective Prime Contract from control points established by the General Contractor.

11. Provide temporary drinking water for the Work of each respective Prime Contract.
12. Provide miscellaneous steel framing, channels, supports, bracing, hangers, etc. required for the Work of each respective Prime Contract.

13. Provide all curbs and rails required to support roof-mounted equipment required for the Work of each respective Prime Contract. Base flashings shall be by the General Contractor. Provide counterflashing required to make watertight the installation of equipment furnished under each respective Prime Contract.

D. Mechanical Work: All the Work indicated in the “M” series drawings and all the Work indicated in the Division 23 Specifications excluding the Plumbing sections listed below, and except as specifically indicated to be performed by one of the other Prime Contractors and as follows:

1. All the Work listed in Article C above.
2. All the Work including administrative and managerial procedures included in Divisions 0 and 1 indicated to be the Work of this Contract.
3. Demolition of all existing mechanical equipment and systems which is associated with and/or determined to be part of the Work of this Contract.
4. Provide the instrumentation and controls system for the mechanical equipment specified in Section 230923.
5. Furnish starters and disconnects for electrical components of systems included in the Mechanical Work for installation under the Electrical Contract.

E. Plumbing Work: All the Work indicated in the “P” and “FP series drawings and all the Work indicated in specification Divisions 21 and 22, except as specifically indicated to be performed by one of the other Prime Contractors and as follows.

1. All the Work listed in Article C above.
2. All the Work including administrative and managerial procedures included in Divisions 0 and 1 indicated to be the Work of this Contract.
3. Demolition of all existing plumbing and fire protection equipment and systems which is associated with and/or determined to be part of the Work of this Contract.
4. Provide both interior below grade Plumbing Work and all below-grade site utilities with their above grade accessories, including but not limited to the following:
 a. Site domestic water service.
 b. Site storm drainage service.
 c. Site sanitary sewer service.
 d. Site combined sewer service.
 e. Site natural gas service.
 f. Building sub-drainage and foundation drainage system.
5. Provide the temporary water service required in Division 1.
6. Furnish starters and disconnects for electrical components of systems included in the Plumbing Work for installation under the Electrical Contract.

7. Provide the fire extinguishing system specified in Division 21.

F. Electrical Work: All the Work indicated in the “E” series drawings and all the Work indicated in the Division 16 Specifications except as specifically indicated to be performed by one of the other Prime Contractors and as follows:

1. All the Work listed in Article C above.

2. All the Work including administrative and managerial procedures included in Divisions 0 and 1 indicated to be the Work of this Contract.

3. Demolition of all existing electrical equipment and systems, except conduit runs with wiring, boxes and devices built into existing walls, which is associated with and/or determined to part of the Work of this Contract.

4. Install starters and disconnects furnished under other Prime Contracts.

5. Provide the fire alarm system specified in Section 284621.11.

6. Provide the electrical service to the building.

7. Provide all site lighting including foundations.

8. Provide the temporary lighting and power systems required in Division 1.

1.5 WORK BY OTHERS

A. Work on this Project which will be executed prior to the start of Work of this Contract and which is excluded from this Contract, is as follows:

1. Base building work, indicated as N.I.C. on the drawings.

B. Work on this Project which will be executed during the time of construction of the Work of this Contract and which is excluded from this Contract, is as follows:

1. Base building work, indicated as N.I.C. on the drawings.

2. Furniture installation and related Work.

1.6 CONTRACTOR'S USE OF PREMISES

A. Prime Contractors shall limit use of the premises for Work and for storage to allow:

1. Work by others

2. Owner occupancy

3. Public use

B. Coordinate use of premises with Project Coordinator

C. Protect products stored on-site

D. Store products to avoid interference with operations of City or other Prime Contractors

E. Secure and pay for additional storage and work areas if required by Contractor.
F. Do not overload structure with stored materials.

PART 2 PRODUCTS Not Used

PART 3 EXECUTION Not Used

- END -
SECTION 012100
ALLOWANCES

PART 1 GENERAL

1.1 DESCRIPTION OF WORK
A. This Section specifies each Prime Contractor’s administrative and procedural requirements governing handling and processing allowances

1.2 RELATED WORK SPECIFIED ELSEWHERE
A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.
B. Each section of the specifications including an allowance.

1.3 COORDINATION
A. Designate required selection and delivery dates for products under each allowance in the Contractor’s Construction Schedule.
B. Designate each allowance with extensions based on estimated quantities for unit price allowances on Contractor’s Schedule of Values.

1.4 DEFINITIONS
A. Refer to Section 007200 Standard Contract Requirements.

1.5 ALLOWANCES
A. Include in Total Base Bid Amount, an amount equal to Two Percent (2%) of the base bid amount for payment of permit fees. This is a direct cost; no mark-ups will be permitted.
B. Bidders are to include the amount equal to $500,000 to provide all specialized furniture located in the Emergency Operations Center (EOC) and the Regional Information Center (RIC).
C. Bidders are to include the amount equal to $250,000 for Owner Controlled Allowance.
D. Bidders are to include the amount equal to $2,300,000 to provide all Audio-Visual Equipment as shown on the documents.
E. Amount of each allowance (excluding 1.5.A above) shall include:
 1. Net cost of product.
 2. Delivery to site.
 3. Applicable taxes.
 4. Preparing submittals.
F. In addition to amounts of allowances (excluding 1.5.A above), include in the base bid amount, the Contractor's cost for:
 1. Assisting in selection and obtaining proposals from suppliers and subcontractors.
2. Processing submittals.
3. Handling at site, including unloading, uncrating and storage.
4. Protection from elements and from damage.
5. Labor, installation and finishing.
6. Other expenses required to complete installation.
7. Overhead and profit.

1.6 SELECTION OF PRODUCTS
A. Design Professional shall issue by Change Order a full specification for the final selected product.
B. Contractor's Duties
 1. Notify Design Professional of deadlines for specification of final products, allowing for Contractor’s required submissions as required to meet Date of Completion.
 2. Provide cost proposals for products being considered when requested by Design Professional.
 3. Notify Design Professional of any effect anticipated by selection of product or supplier under consideration as it relates to:
 a. Construction Schedule.
 b. Contract Sum.
 c. On notification of selection, enter into purchase agreement with designated supplier.

1.7 INSTALLATION
A. Comply with requirements of applicable specification section, including warranties/guarantees.

1.8 ADJUSTMENT OF COSTS
A. Should actual purchase cost be more or less than specified amount of allowance, Contract Sum shall be adjusted by Change Order equal to amount of difference. A percentage to cover Contractor's overhead and profit, as stated in Standard Contract Requirements, will be applied to difference in cost.
B. For products specified under unit cost allowance unit cost applies to quantity required to complete the Work as determined by the Contractor.
 1. Submit invoices or other data to substantiate quantity actually used.
C. Submit request for other costs, claimed for additional work caused by increase over amount of allowance, prior to required submission for product.

PART 2 PRODUCTS Not Used

PART 3 EXECUTION Not Used

- END -

PROJECT No. 10-21-4548-01
012100-2
ALLOWANCES
PART 1 GENERAL

1.1 DESCRIPTION OF WORK
 A. This Section identifies each Alternate by number and describes the basic changes to be incorporated into the Work, if that Alternate is made part of the Contract.

1.2 RELATED REQUIREMENTS SPECIFIED ELSEWHERE
 A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.

1.3 ADMINISTRATIVE PROCEDURES
 A. Referenced Sections of Specifications stipulate pertinent requirements for products and methods to achieve the Work stipulated under each Alternate.
 B. Coordinate pertinent related Work and modify surrounding Work as required to properly integrate the Work under each Alternate, and to provide the complete construction required by the Contract Documents.
 C. Immediately following the award of the Contract, prepare and distribute to each party involved, notification of the status of each Alternate. Indicate whether Alternates have been accepted, rejected or deferred for consideration at a later date.
 D. A “Schedule of Alternates” is included at the end of this Section. Specification Sections referenced in the Schedule contain requirements for materials and methods necessary to achieve the Work described under each Alternate. Include as part of each Alternate, miscellaneous devices, accessory objects and similar items incidental to or required for a complete installation whether or not mentioned as part of the Alternate.
 E. Award of Alternates will be made in sequential order as listed in the bid, i.e., Alternate 1 and 2 before Alternate 3 would be awarded.

1.4 DEFINITIONS
 A. Refer to Section 007200 Standard Contract Requirements.

PART 2 PRODUCTS
 Not Used

PART 3 EXECUTION

3.1 SCHEDULE OF ALTERNATES
 A. Add Alternate No. 1: Bidders to provide pricing to delay the commencement of all contract work until April 1, 2021. The Notice to Award will still take place in November 2020.

- END -
PART 1 GENERAL

1.1 DESCRIPTION OF WORK
A. This Section specifies each Prime Contractor’s administrative and procedural requirements for handling requests for substitutions made after award of the Contract. Procedural requirements governing the Contractor’s selection of products and product options are included under Section 016001 “Products and Materials”.

1.2 RELATED WORK SPECIFIED ELSEWHERE
A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.

1.3 DEFINITIONS
A. Definitions used in this Article are not intended to change or modify the meaning of other terms used in the Contract Documents.
B. Substitutions - Requests for changes in products, materials, equipment, and construction required by Contract Documents proposed by the Contractor after award of the Contract are considered requests for “substitutions”. The following shall not be considered substitutions:
 1. Substitutions requested by Bidders during the bidding period, and accepted in Addenda prior to award of Contract.
 2. Revisions to Contract Documents requested by the City or Design Professional.
 4. The Contractor’s determination of and compliance with governing regulations and orders issued by governing authorities.
C. “Or equal”, “or equivalent”, “approved equal”, “approved equivalent”, “equivalent substitution” and all other similar terms shall be interpreted as “substitution” as defined above.

1.4 SUBMITTALS
A. Submit three (3) copies of each request for substitution. Submit requests with the form attached at the end of this Section and in accordance with procedures required for Change Order proposals. Attach all other data and certification.
B. Identify the product, or the fabrication or installation method to be replaced in each request. Include related Specification Section and Drawing numbers. Provide complete documentation showing compliance with the requirements for substitutions, and the following information, as appropriate.
C. Product Data, including Drawings and descriptions of products, fabrication and installation procedures.
D. Samples, where applicable or requested.

E. A detailed comparison of salient features and qualities of the proposed substitution with those of the Work specified. Salient features and qualities may include elements such as size, weight, durability, performance and visual effect as determined by the Design Professional. Submit documentation of salient features and qualities from independent testing agencies performing industry recognized tests. The manufacturer’s claims of performance may or may not be used in evaluation of substitutions at the discretion of the Design Professional.

F. Coordination information, including a list of changes or modifications needed to other parts of the Work and to construction performed by the City and separate Contractors, that will become necessary to accommodate the proposed substitution.

G. A statement indicating the substitution’s effect on the Contractor’s Construction Schedule compared to the schedule without approval of the substitution. Indicate the effect of the proposed substitution on overall Contract Time.

H. Cost information, including a proposal of the net change, if any in the Contract Sum. The Contractor shall certify that the cost data presented is complete and includes all related costs under this Contract, but excludes the Design Professional’s redesign costs.

I. Certification by the Contractor that the substitution proposed is equal-to or better in every significant respect to that required by the Contract Documents, and that it will perform adequately in the application indicated. Include the Contractor’s waiver of rights to additional payment or time, that may subsequently become necessary because of the failure of the substitution to perform adequately.

J. Certification that the Contractor will reimburse the City for all costs for additional services by the Design Professional and/or the Department of Public Property relating to any substitution that necessitates a design change and related documentation.

K. Design Professional’s Action - The Design Professional will notify the Contractor of acceptance or rejection of the proposed substitution. The Design Professional will be the sole judge of the acceptability of the proposed substitution. Acceptance will be in the form of a Change Order. The Change Order will include a deduction from the Contract Sum for additional costs incurred by the City because of the substitution including, but not limited to, Design Professional’s fees.

PART 2 PRODUCTS

2.1 SUBSTITUTIONS

A. Conditions - The Contractor’s substitution request will be received and considered by the Design Professional when one or more of the following conditions are satisfied, as determined by the Design Professional; otherwise requests will be returned without action except to record noncompliance with these requirements.

1. Extensive revisions to Contract Documents are not required.

2. Proposed changes are in keeping with the general intent of Contract Documents.
3. The request is timely, fully documented and properly submitted.
4. The request is directly related to an “or approved substitution” clause or similar language in the Contract Documents.
5. The specified product or method of construction cannot be provided within the Contract Time. The request will not be considered if the product or method cannot be provided as a result of failure to pursue the Work promptly or coordinate activities properly.
6. The specified product or method of construction cannot receive necessary approval by a governing authority, and the requested substitution can be approved.
7. A substantial advantage is offered the City, in terms of cost, time, energy conservation or other considerations of merit, after deducting offsetting responsibilities the City may be required to bear. Additional responsibilities for the City may include additional compensation to the Design Professional for redesign and evaluation services, increased cost of other construction by the City or separate Contractors, and similar considerations.

B. The specified product or construction cannot be provided in a manner that is compatible with other materials, and where the Contractor certifies that the substitution will overcome the incompatibility.

C. The specified product or construction cannot be coordinated with other materials, and where the Contractor certifies that the proposed substitution can be coordinated.

D. The specified product or method of construction cannot provide a warranty required by the Contract Documents and where the Contractor certifies that the proposed substitution provide the required warranty.

E. Where a proposed substitution involves more than one Prime Contractor, each Contractor shall cooperate with the other Contractors involved to coordinate the Work, provide uniformity and consistency, and to assure compatibility of products.

F. The Contractor’s submittal and Design Professional acceptance of Shop Drawings, Product Data or Samples that relate to construction activities not complying with the Contract Documents does not constitute an acceptable or valid request for substitution, nor does it constitute approval.

PART 3 EXECUTION Not Applicable
Attachment - Substitution Request Form (4 pages)

- END -
CITY OF PHILADELPHIA SUBSTITUTION REQUEST FORM

INSTRUCTIONS:

A. This request must be submitted and signed by the Prime Contractor.

B. A request for each substitution must be exactly in this form, including all items. (One (1) item of substitution per form).

C. Attach complete information on changes to Drawings and Specifications that proposed substitution will require for its proper installation.

D. Submit with request, all necessary samples and substantiating data to prove quality and performance is equal to that which is specified. Clearly mark manufacturer’s literature to indicate equality in performance

CONTRACT AWARD DATE: ___________________________ DATE OF REQUEST: __________

CONTRACTOR:___

PROJECT:___

We hereby submit for your consideration the following substitution in lieu of the specified item for the above project:

SPEC. SECTION NO.: _________ PARAGRAPH: _______ SPECIFIED ITEM: ______________

PROPOSED SUBSTITUTION: __

REASON FOR REQUEST: ___

ITEMIZED COMPARISON OF SPECIFIED ITEM WITH THE PROPOSED SUBSTITUTION:

PERFORMANCE: __

__

APPEARANCE: __
REFERENCED STANDARDS:

DEDUCT CHANGE ORDER OFFERED FOR PROPOSED SUBSTITUTION:

MANUFACTURER’S WARRANTIES OF THE PROPOSED AND SPECIFIED ITEMS:
 LENGTH OF WARRANTY: AS SPECIFIED []. PROPOSED []

 MATERIALS COVERED: AS SPECIFIED []. PROPOSED []

 LABOR COVERED: AS SPECIFIED []. PROPOSED []

OTHER TERMS: AS SPECIFIED: ________________________________

PROPOSED SUBSTITUTION: ________________________________

DESIGNATION OF MAINTENANCE SERVICES AND SOURCES: ______________

DOES SUBSTITUTION AFFECT DIMENSIONS OR CLEARANCES SHOWN ON THE DRAWINGS? YES [] NO [].

IF YES, CLEARLY INDICATE CHANGES: __

WILL THE UNDERSIGNED PAY FOR CHANGES TO THE BUILDING DESIGN, INCLUDING ENGINEERING AND DETAILING COSTS CAUSED BY THE REQUESTED SUBSTITUTION? YES [] NO [].

IF NO, FULLY EXPLAIN: ___

PROJECT No. 10-21-4548-01
012500-5
SUBSTITUTION PROCEDURES
WHAT EFFECT DOES SUBSTITUTION HAVE ON OTHER CONTRACTS OR TRADES?

WHAT EFFECT DOES SUBSTITUTION HAVE ON CONSTRUCTION SCHEDULE?

CONTRACTORS CERTIFICATION OF EQUAL PERFORMANCE

The undersigned certifies that:

- He/she has investigated the proposed substitution and has determined that it is equal to or better than the product specified.
- He/she will guarantee the substitution in the same manner as the product specified.
- He/she will coordinate and make other changes as required in the Work as a result of the substitution.
- He/she waives all claims for additional costs as a result of the substitution, with the exception of those identified above under “cost data”.
- He/she will reimburse the City for all costs for design change resulting from the substitution.

Submitted by:
Signature ___________________________

Name:______________________________________Title:________________________

Firm:_______________________________________Date:_______________________

Street:__

City______________________________State__________________Zip Code________

Telephone:__

Signature shall be by person having authority to legally bind his firm to the above terms. Failure to provide legally binding signature will result in rejection without further review by Design Professional.

PROJECT No. 10-21-4548-01
012500-6
SUBSTITUTION PROCEDURES
Design Professional’s Action

 Accepted []
 Accepted as noted []
 Not accepted []
 Received too late []

 Signature: __

-END-
SECTION 012600
CONTRACT MODIFICATION PROCEDURES

PART 1 GENERAL

1.1 CHANGE ORDER PROCEDURE
A. If a change in the design of any portion of the work or the requirements of the Project Manual is deemed necessary by the Department of Public Property, the Department may order an alteration to, or a change in, the work covered by the Contract Documents, and the contractor shall comply with such orders. If such changes increase the cost of the work to the Contractor, the City will allow additional compensation. If such changes diminish the cost of the work to the Contractor the City may deduct the amount of the diminution. No consequential loss or profit due to reduction in the scope of work will be allowed the Contractor, but the Contractor may be entitled to an extension of time in these instances. No changes shall be made except upon a Department of Public Property standard Change Order Form, signed and executed by the Contractor and the Department of Public Property authorizing the change and fixing the method of compensation or deduction. This Section specifies administrative and procedural requirements for handling and processing Change Orders.

B. The execution of a change order (increase or decrease) will require a proposal from the Contractor on company letterhead. Such proposal will include a complete description of the change and schedule impact and a complete cost breakdown including such items as Labor, Materials, Equipment, Crew Composition, Sub-Contractor costs, and associated Insurance and Bonding costs (if applicable). The contractor is entitled to percentage mark-ups on some of these items as stated in the Standard Contract Requirements. The proposal is to be submitted to the identified Department of Public Property Project Coordinator. Upon review and approval by the Department of Public Property Project Team, a signed Department of Public Property standard Change Order Form will be forwarded to the Contractor for final execution.

1.2 RELATED WORK SPECIFIED ELSEWHERE
A. Applicable provisions of Bidding Requirements, Contract Requirements and other Division 1 sections including Sections 47 through 51 of the Standard Contract Requirements (007200).

1.3 CONTRACTOR’S RESPONSIBILITY TO INFORM
A. Communication, either verbal or written, between the City or Design Professional and the Contractor, Subcontractors, or other parties involved, during the normal course of administration of the Contract, does not in any way constitute acceptance of a Change Order or direction to modify the Contract unless said communication is in the form of a written Change Order or Construction Change Directive as specified herein.

B. Communication from the City or Design Professional including, but not limited to the following, does not constitute approval of a Change Order:
 1. Submittal review including submittals returned with notations and corrections;
 2. Site observation, conversation and reports;
 3. Participation in pre-construction, pre-installation, progress or other meetings;
4. Clarification sketches or drawings.

C. It is the responsibility of the Contractor to inform the City that any communication has, in the Contractor’s opinion, caused reason to modify the Contract. The Contractor shall not undertake work which, in his opinion, requires a Change Order without completing procedures outlined herein.

D. Work done without completing Change Order procedures is entirely at the Contractor’s own risk, even if the Contractor believes that communications from the City or Design Professional contain instructions to do work outside of the Contract scope.

E. The City and Design Professional will not willfully instruct work to be done that differs from the contract except through the Change Order procedures contained herein.

1.4 MINOR CHANGES IN THE WORK

A. Supplemental instructions, not involving an adjustment to the Contract Sum or Contract Time, may be issued in writing by the City.

1.5 CHANGE ORDER PROPOSALS

A. City-Initiated Change Order Proposal - Proposed changes in the Work that will require adjustment to the Contract Sum or Contract Time will be issued by the City, with a detailed description of the proposed change and supplemental or revised Drawings and Specifications, if necessary.

1. Change Order Proposal requests issued by the City are for information only. Do not consider them as instruction either to stop work in progress, accelerate the work or to execute the proposed change.

2. Unless otherwise indicated in the Change Order Proposal request, within 20 days of receipt of the Change Order Proposal request, submit to the City for review, an estimate of cost necessary to execute the proposed change.
 a. Include a list of quantities of products to be purchased and unit costs, along with the total amount of purchases to be made. Separate labor and material charges. Where requested, furnish survey data to substantiate quantities.
 b. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.
 c. Include a statement indicating the effect the proposed change in the Work will have on the Contract Time or any special efforts of the Contractor that will be employed to reduce the delay.
 d. Indicate that the Change Order Proposal is in response to a City request and submit it to the City as stated in 1.1 (B) of this section.

B. Contractor-Initiated Change Order Proposal – When Contractor claims latent or other unforeseen conditions require modifications to the Contract, the Contractor may propose changes by submitting a Change Order Proposal.

1. Include a statement outlining the reasons for the change and the effect of the change on the Work. Provide a complete description of the proposed change. Indicate the effect of the proposed change on the Contract Sum and Contract Time.

2. Include a list of quantities of products to be purchased and unit costs along with the total amount of purchases to be made. Where requested, furnish survey data to substantiate quantities.
3. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.

4. Comply with requirements in Section 012500 “Substitution Procedures” if the proposed change in the Work requires the substitution of one product or system for a product or system specified.

5. Submit the proposal to the City as stated in 1.1 (B) of this section.

1.6 ALLOWANCES
A. Refer to Section 012100, Allowances.

1.7 CONSTRUCTION CHANGE DIRECTIVE (Force Account)
A. When the City and Contractor are not in total agreement on the terms of a Change Order Proposal, the City may issue a Construction Change Directive instructing the Contractor to proceed with a change in the Work, for subsequent inclusion in a Change Order.

B. The Construction Change Directive will contain a complete description of the change in the Work.

C. Documentation - Maintain detailed records on a time and material basis of work required by the Construction Change Directive. After completion of the change, submit an itemized account and supporting data necessary to substantiate cost and time adjustments to the Contract.
 1. Contractor’s documentation will not, by itself, establish the final cost.
 2. The City reserves the right to determine the value of the change in Work per the requirements of this Section.

1.8 DETERMINATION OF COST
A. City reserves the right to use established estimating methods (including but not limited to industry standards and unit prices listed in this manual) to determine a fair and reasonable cost for changes in the Work.

PART 2 PRODUCTS Not used.

PART 3 EXECUTION
3.1 Sample Change Order Form, contact Project Coordinator for actual document.
CONTRACT MODIFICATION PROCEDURES

SAMPLE

CHANGE ORDER

CITY OF PHILADELPHIA
Department of Public Property
ONE PARKWAY BLDG. 1515 ARCH STREET
PHILADELPHIA, PA 19102

<table>
<thead>
<tr>
<th>Change Order No.</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project No.</td>
<td>Contractor Name:</td>
</tr>
<tr>
<td>Contract No.</td>
<td>Contractor Address:</td>
</tr>
<tr>
<td>Bill Number:</td>
<td></td>
</tr>
<tr>
<td>Project Title:</td>
<td></td>
</tr>
<tr>
<td>Facility Name:</td>
<td>Contact Person:</td>
</tr>
<tr>
<td>Facility Address:</td>
<td>Phone No.:</td>
</tr>
<tr>
<td>Fax:</td>
<td></td>
</tr>
</tbody>
</table>

JUSTIFICATION:

I) Description of Specified Work (What is Required by the Contract?) - Do not simply write "See Attached"

II) Explanation of Why Change is Necessary (What is the Problem?) - Include CO Code below - Do not simply write "See Attached"

III) Description of Changes and Cost (What is the Solution?) - Do not simply write "See Attached"

CO Category Codes: Unforeseen Condition (UF), Design Error/Omission (EO), User Scope Change (UC), DPP Scope Change (DPP), Time Extension Only (TO), Other (explain)

<table>
<thead>
<tr>
<th>CO Type:</th>
<th>Negotiated</th>
<th>Force Account</th>
<th>Cost Impact (COS):</th>
<th>Time Impact (days):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This Change Order shall cover all or Contractor's costs associated with the change reflected by this change order, including all costs incurred by the Contractor for labor, material, and all overhead. The contract time extension granted by the City for this Change Order shall be the sole time extension granted for this change and for which the contractor is entitled, and no other time extension shall be granted by the City. Contractor agrees that this Change Order shall supersede and release all items related to the change and nothing shall be considered individually or cumulatively, nor any claim by Contractor for extended time, cost, additional work, or any other conditions.

REVIEW BY

1. Construction Representative
 Date
 Additional Funding Required: [] Yes [] No

2. Project Coord/Manager
 Date
 Source: (a) Original Contract Limit
 Amount: $125,000.00

3. Project Director
 Date
 Source: (c) Contract Amount
 Amount: $100,000.00

4. Deputy Commissioner
 Date
 Source: (e) Contingency Available (d+e)
 Amount: $21,000.00

APPROVALS

Cost Recap:

- Original Contract Limit $125,000.00
- Prior Amendment(s) $100,000.00
- Contingency Available (d+e) $21,000.00
- Total COS After this CO (e+g) $5,000.00
- Change Order Category Amount $15,000.00

PROJECT No. 10-21-4548-01
012600-4
CONTRACT MODIFICATION PROCEDURES
PART 1 GENERAL

1.1 DESCRIPTION OF WORK
A. This Section specifies administrative and procedural requirements governing each Prime Contractor’s submission of invoices for Payment. These may also be referred to as “Current Estimates” in the Standard Contract Requirements (007200).
B. Coordinate the Contractor’s Construction Schedule, List of Subcontracts, and Submittal Schedule with the Standard Cost Breakdown.

1.2 RELATED WORK SPECIFIED ELSEWHERE
A. Applicable provisions of Bidding Requirements, Contract Requirements and other Division 1 sections including Sections 53 through 57 of the Standard Contract Requirements (007200).

1.3 GENERAL REQUIREMENTS
A. Each invoice for payment shall be consistent with previous applications and payments.
B. The initial submission of the Standard Cost Breakdown at time of Substantial Completion, and the final Standard Cost Breakdown involve additional requirements.
C. Withholding Payment - Any payment may be withheld in accordance with the Contract Documents
 1. Any payment may be withheld if the procedural requirements including submittal of current administrative items listed including Certificates of Insurance are incomplete or outdated.
 2. Portions of payment requested for Work installed without approved submittals may be withheld.
D. Use Department of Public Property, “Standard Cost Breakdown”.
E. Standard Cost Breakdown Preparation - Complete every entry on the Standard Cost Breakdown:
 1. Contractor (name and address)
 2. Contract number (from Notice to Proceed);
 3. Requisition No. (sequential number);
 4. Date Prepared;
 5. Project (title of project);
 6. Project No. (project number).
 7. STANDARD COST BREAKDOWN
 a. No. (sequentially numbering);
b. Item (phases of scope of work);
c. Unit (each, sq. ft., etc.);
d. Material;
e. Labor;
f. Unit Cost;
g. Total (total of Material and Labor).

8. PAYMENT APPLICATION
 a. Previous Billing (as billed previous application);
 b. Percent Complete (completed to date);
 c. Total Completed (Total column under COST BREAKDOWN multiplied
 by Percent Complete column under PAYMENT APPLICATION.)

 Incomplete Standard Cost Breakdowns will be returned without action.

F. Entries shall match data on the Contractor’s Construction Schedule. Use updated
 schedules if revisions have been made.

G. Include amounts of Change Orders issued prior to the last day of the construction
 period covered by the Standard Cost Breakdown.

H. Submit original plus 2 copies of each Standard Cost Breakdown to the Project
 Coordinator, Department of Public Property, Contracts Management, 1400 John
 F. Kennedy Blvd, 7th Floor, Philadelphia, PA 19107.

1.4 INITIAL STANDARD COST BREAKDOWN

A. Actions and submittals that shall precede or coincide with submittal of the first
 Standard Cost Breakdown include the following:

1. List of subcontractors.
2. List of principal suppliers and fabricators.
3. Schedule of Values.
4. Contractor’s Construction Schedule (preliminary if not final).
5. Schedule of unit prices.
6. Submittal Schedule (preliminary if not final).
7. List of Contractor’s staff assignments.
8. List of Contractor’s principal consultants.
10. Copies of authorizations and licenses from governing authorities for
 performance of the Work.
12. Certificates of insurance.
13. Performance and payment bonds.
14. Complete Submittals for each product or system included in the Application.
15. Initial settlement survey and damage report.
18. Initial Construction Photographs and/or videos.

1.5 STANDARD COST BREAKDOWN AT SUBSTANTIAL COMPLETION
A. This Standard Cost Breakdown shall reflect any Certificates of Partial Substantial Completion issued previously for City occupancy of designated portions of the Work.
B. Actions and submittals which shall proceed or coincide with this Standard Cost Breakdown include:
1. Occupancy permits and similar approvals.
2. Warranties (guarantees) and maintenance agreements.
3. Test/adjust/balance records.
5. Utility meter readings.
7. Certified improvement survey.
8. Change-over information related to City’s occupancy, use, operation and maintenance.
10. Final progress photographs.
11. List of incomplete Work (punchlist), recognized as exceptions to Certificate of Substantial Completion.
12. Record Documents.

1.6 FINAL STANDARD COST BREAKDOWN
A. Actions and submittals which shall precede or coincide with submittal of the final Standard Cost Breakdown include the following:
1. Project Closeout Form fully executed (signed).
2. Completion of items specified for completion after Substantial Completion (punchlist).
3. Assurance that unsettled claims will be settled.
4. Assurance that Work not complete and accepted will be completed without undue delay.
5. Transmittal of required Project construction records to City.
6. Proof that taxes, fees and similar obligations have been paid.
7. Removal of temporary facilities and services.
8. Removal of surplus materials, rubbish and similar elements.
9. Change of door locks to City’s access.
- END -
PART 1 GENERAL

1.1 DESCRIPTION OF WORK
A. This Section describes administrative requirements for each Prime Contractor’s Schedule of Values, referred to as “Current Estimate” in the Standard Contract requirements.

1.2 RELATED REQUIREMENTS SPECIFIED ELSEWHERE
A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.

1.3 COORDINATION
A. Correlate line items in the Schedule of Values with other required administrative schedules and forms, including:
 1. Contractor’s Construction Schedule.
 2. Standard Cost Breakdown
 3. List of subcontractors.
 4. Schedule of allowances.
 5. Schedule of alternates.
B. Submit the Schedule of Values to the City no later than ten (10) days after receipt of the Notice to Proceed. Digital submission to City and Designer.

1.4 FORMAT AND CONTENT
A. Arrange the Schedule of Values in a tabular form with separate columns to indicate the following for each item listed:
 1. Generic name.
 2. Related Specification Section.
 3. Name of subcontractor.
 4. Name of manufacturer or fabricator.
 5. Name of supplier.
 6. Change Orders (numbers) that have affected value.
 7. Dollar value.
 8. Percentage of Contract Sum to the nearest one-hundredth percent, adjusted to total 100 percent.
 9. Margins of Cost - Show line items for indirect costs, and margins on actual costs, only to the extent that such items will be listed individually in Standard Cost Breakdown. Each item in the Schedule of Values and Standard Cost Breakdown shall be complete including its total cost and
proportionate share of general overhead and profit margin unless otherwise indicated.

10. At the Contractor’s option, temporary facilities and other major cost items that are not direct cost of actual work-in-place may be shown as separate line items in the Schedule of Values or distributed as general overhead expense.

11. Itemize separate line item cost for the following items under Division 1:
 a. Field Engineering.
 b. Construction Photographs.
 c. Mock-up.

12. Itemize separate line item cost for each of the construction cost items under all applicable specification sections.

13. Itemize separate line item cost for each service contract.

14. Breakdown costs into:
 a. Delivered cost of material, with taxes paid, with overhead and profit.
 b. Installation cost, with overhead and profit.
 c. If requested, break down high value line items to list major materials or operations.
 d. Round off figures to nearest ten dollars.
 e. Make sum total costs of all items listed in Schedule equal to Contract Limit.

1.5 UPDATING
 A. After review by the City, revise and resubmit schedules as required.
 B. Update and resubmit the Schedule of Values when change orders or construction change directions result in a change in the Contract Limit.

PART 2 PRODUCTS Not Used
PART 3 EXECUTION Not Used

- END -
SECTION 013113
PROJECT COORDINATION

PART 1 GENERAL

1.1 DESCRIPTION OF WORK
 A. This Section describes each Prime Contractor’s responsibilities to coordinate the work and related administrative procedures.

1.2 RELATED REQUIREMENTS SPECIFIED ELSEWHERE
 A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.

1.3 SUBMITTALS
 A. Submit the following prior to or coincidental with the initial application for payment.
 1. List of contractor’s staff assigned to the project and responsibilities including personnel on and off-site. Include mailing address, delivery address, phone, fax, mobile phone, etc. For at least three (3) staff, list phones where personnel can be reached during non-work hours for emergencies.
 2. List of contractor’s consultants and sub-contractors with similar requirements as above.
 3. List of principal suppliers and fabricators with similar requirements as above. No emergency phone number required.

1.4 OBSERVATION OF WORK BY OTHERS
 A. Observation of the Work by the City, Design Professional, Inspection and Testing Agencies or any other party shall not be interpreted as relieving the Contractor from responsibility for coordination of all Work, superintendence of the Work, and scheduling and direction of the Work or any other requirement of the Contract.

1.5 GENERAL CONTRACTOR’S RESPONSIBILITIES
 A. Coordinate the Work and Schedules of each separate Prime Contractor.
 B. Coordinate construction activities included under each Prime Contractor to assure efficient and orderly installation of each part of the Work. Coordinate construction operations included under different Contracts that are dependent upon each other for proper installation, connection, and operation.
 C. Where installation of one part of the Work is dependent on installation of other components by other Prime Contractors, either before or after its own installation, schedule construction activities in the sequence required to obtain the best results.
 D. Where availability of space is limited, coordinate installation by each Prime Contractor of different components to assure maximum accessibility for required maintenance, service and repair.
E. Make adequate provisions to accommodate items scheduled for later installation.

F. Where necessary, prepare memoranda for distribution to each Prime Contractor outlining special procedures required for coordination. Include such items as required notices, reports, and attendance at meetings. Copy memoranda to City and Design Professional.

G. Coordinate compatibility of products furnished by each Prime Contractor. Refer to Section 016001 Products and Materials, Division 1.

H. Administrative Procedures - Coordinate scheduling and timing of each Prime Contractor’s required administrative procedures with other construction activities to avoid conflicts and ensure orderly progress of the Work. Such administrative activities include, but are not limited to, the following:

1. Preparation of Contractors Construction Schedules and Schedules of submittals.
2. Installation and removal of temporary facilities.
3. Delivery and processing of submittals.
4. Progress meetings.
5. Project Closeout activities.

1.6 EACH PRIME CONTRACTOR'S RESPONSIBILITIES (including the General Contractor)

A. Cooperate with the General Contractor’s coordination efforts for orderly progress of the Work without delay or covering work which needs to be accessible to other Primes.

B. Coordinate the Work of associated sub-contractors.

C. Establish a Contractor’s Construction Schedule and coordinate with General Contractor.

D. Maintain on the job-site at all times during the performance of the Work, a competent, English speaking superintendent.

E. Coordinate construction activities included under various Sections of these Specifications to assure efficient and orderly installation of each part of the work. Coordinate construction operations included under different Sections of the Specifications that are dependent upon each other for proper installation, connection, and operation.

F. Where availability of space is limited, coordinate installation of different components to assure maximum accessibility for required maintenance, service and repair.

G. Make adequate provisions to accommodate items scheduled for later installation.

H. When necessary, prepare memoranda for distribution to each party involved outlining special procedures required for coordination. Include such items as required notices, reports, and attendance at meetings. Copy memoranda to City and Design Professional.

I. Coordinate compatibility of products. Refer to Products and Materials, Division 1.
J. Administrative Procedures - Coordinate scheduling and timing of required administrative procedures with other construction activities to avoid conflicts and ensure orderly progress of the work. Such administrative activities include, but are not limited to, the following:
1. Preparation of schedules.
2. Installation and removal of temporary facilities.
3. Delivery and processing of submittals.
4. Progress meetings.
5. Project Closeout activities.

1.7 LACK OF COOPERATION BETWEEN CONTRACTORS
A. Delays attributable to lack of cooperation between the separate Prime Contractors and their sub-contractors shall not be recognized as a claim for delay. Claims by a contractor for costs due to such delays shall not be paid by the City.
B. Delays, including delays caused by lack of cooperation, shall result in penalties by the City as stipulated under paragraph 25e of the Standard Contract Requirements.

1.8 SUBCONTRACTOR’S RESPONSIBILITIES
A. Comply with the direction of each Prime Contractor in coordination efforts listed above.

PART 2 PRODUCTS
Not Used

PART 3 EXECUTION
Not Used

- END -
SECTION 013119
PROJECT MEETINGS

PART 1 GENERAL

1.1 DESCRIPTION OF WORK
A. This Section specifies each Prime Contractor’s administrative and procedural requirements for project meetings. Requirements contained herein in no way limit each Prime Contractor’s responsibility to effectively communicate with parties involved in order to meet the requirements of the Contract.

1.2 RELATED WORK SPECIFIED ELSEWHERE
A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.
B. Project Coordination: Division 1.
C. Construction Scheduling: Division 1.

1.3 ADMINISTRATION
A. The Project Coordinator will schedule and administer the pre-construction meetings, periodic project meetings, pre-installation, coordination and other specially called meetings throughout the progress of the work. She/he will also:
1. Prepare agenda for meetings.
2. Distribute written notice of each meeting four (4) days in advance of meeting date.
3. Make physical arrangements for meetings.
4. Preside at meetings.
B. During the course of the pre-construction meetings, periodic project meetings, pre-installation, coordination and other specially called meetings throughout the progress of the work, the Design Professional will:
1. Record the minutes, including all significant proceedings and decisions.
2. Reproduce and distribute copies of minutes within three (3) days after each meeting to: all participants in the meeting; and all parties affected by decisions made at the meeting.
C. Representatives of Contractors, subcontractors and suppliers attending the meetings shall be qualified and authorized to act on behalf of the entity each represents.

1.4 PRE-CONSTRUCTION MEETING
A. Attendance
1. Project Coordinator.
2. Design Professional's Representative.
3. Prime Contractor's Representatives.
4. Major subcontractors.
B. Suggested Agenda
1. Discussion of coordination of Prime Contracts.
2. Discussion on major subcontracts and suppliers and projected construction schedules.
3. Critical work sequencing.
4. Major equipment deliveries and priorities.
5. Project Coordination and designation of responsible personnel.
6. Procedures and processing of field decisions, proposal requests, submittals, change orders and applications for payment.
7. Procedures for maintaining Record Documents.
8. Use of premises, office, work and storage areas, and City's requirements.
9. Construction facilities.
10. Temporary utilities.
11. Housekeeping procedures.
12. Dispute resolution.

1.5 PROGRESS, PRE-INSTALLATION AND COORDINATION MEETINGS

A. Schedule regular and special meetings, as required by progress of the Work.
B. Location of the Meetings - The Project field office of the Contractor [or as otherwise directed].
C. Attendance
 1. Project Coordinator.
 2. Design Professional's Representative.
 3. Contractor's Representatives.
 4. Subcontractors as appropriate to the agenda.
 5. Suppliers as appropriate to the agenda.
 6. Others as appropriate.
D. Suggested Agenda
 1. Review and approval of minutes of previous meeting.
 2. Review of work progress since previous meeting.
 3. Field observations, problems, conflicts.
 4. Problems which impede Construction Schedule.
 5. Coordination issues between Prime Contractors.
 6. Review of off-site fabrication, delivery schedules.
 7. Corrective measures and procedures to regain projected schedule.
 8. Revisions to Construction Schedule.
 9. Plan progress, schedule, during succeeding work period.
 10. Coordination of schedules.
 11. Review submittal schedules; expedite as required.

13. Review proposed changes for:
 a. Effect on Construction Schedule and on completion date.
 b. Effect on other contracts of the Project.

15. Other business.

PART 2 PRODUCTS Not Used
PART 3 - EXECUTION Not Used

- END -
PART 1 GENERAL

1.1 DESCRIPTION OF WORK
A. This Section specifies administrative and procedural requirements for schedules prepared by each Prime Contractor.

1.2 RELATED WORK SPECIFIED ELSEWHERE
A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.

1.3 CONSTRUCTION SCHEDULE
A. Each Prime Contractor shall prepare a Contractor’s Construction Schedule including all phases of work as follows:

1. Initial Construction Schedule - Within 10 calendar days after Notice to Proceed, submit an initial construction schedule. Break down at least by 16 Division Specification format for General Construction and into at least 12 operations for Electrical, Plumbing, or Mechanical Construction. This schedule must be in agreement with the time frame stated in the Bid Proposal. Coordinate schedule with the following:
 a. Prepurchase products.
 b. Allowances.
 c. Application for Payments.
 d. Mock-ups.
 e. Schedule of Submittals.
 f. Schedule of Values.

2. Final Construction Schedule - Within 30 calendar days after Notice to Proceed, submit a complete detailed construction schedule showing each activity having impact upon the timely completion of the Project. Activities shall be broken down generally similar to the individual specification sections but not less than 20 separate operations. The schedule shall include, but not be limited to the following:
 a. Schedule each activity with a time limit per activity not to exceed ten (10) working days.
 b. Time frames for testing of materials.
 c. Time frames for shop fabrication and delivery of all parts of the work. Identify by specification section number and title. Coordinate with Schedule of Submittals. Allow time for reviews, resubmissions and approval.
 d. Decision dates for selection of finishes and colors.
 e. Decision dates for selection of products specified by allowances.
 f. Deadlines for submissions of substitutions.
 g. Identification for work of mock-ups, separate floors, separate buildings, separate phases or other logically grouped activities.
h. Separate network for each trade or operation.

1.4 FORMAT
A. Final Construction Schedule - Critical Path Method (CPM).

1.5 SCHEDULE OF SUBMITTALS
A. Submit a preliminary Schedule of Submittals within 30 days after the Notice to Proceed. Submit the final schedule with the final Contractor’s Construction Schedule.
B. Coordinate submittal schedule with the list of subcontracts, schedule of values, submittal register and the Contractor’s construction schedule.
C. Coordinate scheduling of interrelated submissions to allow for review of required data and to avoid delays in reviewing submittals caused by lack of coordinated submission.
D. Coordinate scheduling of submission to allow for approval of products prior to construction of mock-up.
E. Contractor shall estimate number of resubmissions required for each submittal based on complexity. However, the submittal schedule in no way binds the City to approve a submittal to meet the submittal schedule or construction schedule. It is the contractor’s sole responsibility to prepare acceptable submissions in a timely fashion in order to maintain schedule.
F. Allow for City’s and Design Professional’s review of each submission and resubmission.
G. Prepare the schedule in chronological order. Provide the following information:
 1. Related Section number.
 2. Submittal category.
 3. Name of subcontractor.
 4. Description of the part of the Work covered.
 5. Scheduled date for the first submittal.
 6. Scheduled date for resubmittal or resubmittals.
 7. Scheduled date the City’s final release or approval.
H. Distribution - Following response to initial submittal, print and distribute copies to the City, subcontractors, and other parties required to comply with submittal dates indicated. Post copies in the Project meeting room and field office.
I. When revisions are made, distribute to the same parties and post in the same locations. Delete parties from distribution when they have completed their assigned portion of the Work and are no longer involved in construction activities.

1.6 COORDINATION
A. All Prime Contractors shall submit their schedules to the General Contractor.
B. The General Contractor shall prepare an overall schedule including all trades and contracts.
C. The City will resolve conflicts among schedules of various Prime Contractors.
D. The General Contractor shall distribute copies of the approved final Construction Schedule to other Prime Contractors involved.

1.7 UPDATING
A. Updating of the final Construction Schedule and Schedule of Submittals shall be required on a monthly basis.
B. Show all changes occurring since previous submission of updated schedules.
C. Indicate progress of each activity, show completion dates.
D. Include major changes in scope, activities modified since previous updating, revised projections due to changes and other identifiable changes.

1.8 DISTRIBUTION
A. Distribute copies of revised schedules to:
 1. Project Coordinator.
 2. Design Professional.
 3. Other Prime Contractors.
 4. Subcontractors.
 5. Other Concerned Parties (surety, insurance, etc.).
 6. Instruct recipients to report any inability to comply, and provide detailed explanation, with suggested remedies.

PART 2 PRODUCTS Not Used
PART 3 EXECUTION Not Used

- END -
PART 1 GENERAL

1.1 DESCRIPTION OF WORK
 A. This Section specifies administrative and procedural requirements for progress reports prepared by each Prime Contractor.

1.2 RELATED WORK SPECIFIED ELSEWHERE
 A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.

1.3 DAILY REPORT
 A. Each Prime Contractor shall prepare a Daily Report including:
 1. Name of project.
 2. City Project number.
 3. Date of report.
 4. Weather conditions.
 5. Manpower status on each type of work being performed by floor.
 6. Overtime worked, and planned.
 7. Work progress.
 9. Other information, such as special events or occurrences, accidents, recommendations, suggestions, visitors, major equipment or materials received, tests, inspections, equipment start-up and check out, occupancy.

 B. Submit copies of reports weekly to Project Coordinator and Design Professional.

1.4 MONTHLY REPORT
 A. Each Prime Contractor shall prepare a synopsis of the previous month's activities, including:
 1. Name of project.
 2. City Project number.
 3. Date of report.
 4. Weather conditions for the month compared to normal.
 5. Work progress from previous month.
 6. Copies of all previous month’s schedules.
 7. Updated schedules with explanations of deviation from previous.
 8. Milestone schedule events for the upcoming month.
9. Corrective measures and procedures to regain projected construction schedule.
11. Review of status of Change Orders and/or requested Change Orders.
12. Other information of importance from previous month or forecasted for upcoming month.

B. Submit copies of reports monthly to Project Coordinator and Design Professional.

PART 2 PRODUCTS Not Used
PART 3 EXECUTION Not Used

- END -
PART 1 GENERAL

1.1 DESCRIPTION OF WORK
 A. This Section describes photographic services provided by the General Contractor required to record the progress of the work of all Prime Contractors.

1.2 RELATED WORK SPECIFIED ELSEWHERE
 A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.

1.3 SUBMITTALS
 A. Digital images – Forward digital files each to City and Design Professional and retain for Contractor's files. Submit also catalog of all views on PC-Formatted Compact Disc(s).
 B. Submit DVD with progress photographs with each monthly report.

PART 2 PRODUCTS

2.1 DIGITAL IMAGES (HARDCOPY)
 A. Color.
 B. 1 image/ 8.5 x 11” sheet.
 C. Minimum image size shall be 3 inches by 5 inches.
 D. Identify each image listing:
 1. Name of project.
 2. Orientation of view.
 3. Date and time recorded.

PART 3 EXECUTION

3.1 DIGITAL IMAGES (HARDCOPY)
 A. Take 72 initial photographs and 36 photographs once monthly, from points designated by the Project Coordinator and/or Design Professional for the length of the Contract. First photographs shall be taken prior to start of construction.
 C. Retain electronic files on PC-Formatted Compact Disc for three (3) years and make additional copies as may be requested by City or Design Professional at cost of reproduction.

- END -
PART 1 GENERAL

1.1 DESCRIPTION OF WORK
A. This Section describes each Prime Contractor’s administrative and procedural requirements for submission of shop drawings, product data, samples and other required information.

1.2 RELATED WORK SPECIFIED ELSEWHERE
A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.
B. Submittal Schedule specified in Construction Scheduling, Section 013216.

1.3 WORK WITHOUT APPROVED SUBMITTALS
A. City may withhold payment for the value of Work installed without first obtaining approved submittals, when submittal is required by individual specification sections. Refer to section 012900 “Payment Procedures”.

1.4 SHOP DRAWINGS
A. Shop drawings are Contractor's or subcontractor's Drawings made specifically for this Project, for use in fabrication and installation.
B. Shop drawings must show sufficient data including layout, fabrication and erection details to establish evidence of conformance with design concept and compliance with the Contract Documents. Shop drawings must show relationships with adjacent construction.
C. Do not use reproductions of Contract Drawings as Shop Drawings unless specifically permitted in the Contract Documents.
D. Identify details by reference to sheet and detail numbers shown on Contract Drawings and by reference to paragraphs and specification section.
E. Orient Shop Drawings in same manner as drawings.
F. Manufacturer's Standard Schematic Drawings
 1. Modify drawings to delete information that is not applicable to Project. Drawings showing information which is not applicable or unaltered standard drawings shall be returned without review.
 2. Add supplemental information applicable to Project.

1.5 PRODUCT DATA
A. Manufacturer's Catalog Sheets, Brochures, Diagrams, Schedules, Performance Charts, Illustrations and Other Standard Descriptive Data.
B. Clearly mark each copy to identify materials, products or models applicable to this Project. Submittals not marked shall be returned without review.
C. Show colors when required for evaluation, record or other purpose. Where product data is printed in color, submit all copies in original colors as published.
D. Show dimensions and clearances required.
E. Show performance, characteristics and capacities.
F. Show wiring and piping diagrams, and controls.
G. Show by reference to paragraphs and specification section.

1.6 SAMPLES
A. Samples: Actual samples of products proposed for use. Samples must be of sufficient size and quantity to clearly illustrate:
 1. Functional characteristics of product or material, with integrally related parts and attachment devices.
 2. Full range of color, texture and patterns.

1.7 FIELD SAMPLES AND MOCKUPS
A. Erect at project site in location as directed.
B. Construct each sample or mock-up complete, including work of all trades required in the finished work.
C. Remove mockup at conclusion of work or when directed by City.

1.8 COORDINATION
A. Coordinate preparation and processing of submittals with performance of construction activities. Transmit each submittal sufficiently in advance of performance of related construction activities to avoid delay.
B. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals and related activities that require sequential activity.
C. Coordinate transmittal of different types of submittals for related elements of the Work so processing will not be delayed by the need to review submittals concurrently for coordination.
D. The City reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.
E. When mock-ups are required, submittals for all products used in mock-up shall be coordinated with schedule for mock-up construction.

1.9 SUBMISSION REQUIREMENTS
A. Comply with Schedule of Submittals.
B. Accompany each submission with a transmittal indicating project name, location, City’s project number, referenced specification number, submission number, date, item submitted, Contractor’s name, Sub-contractor, supplier or manufacturer.
 1. Transmittal shall include Contractors certification that information complies with Contract Documents.
 2. Indicate on transmittal or on submittal deviations from Contract Documents requirements.
C. Copies
 1. Submit one (1) digital copy of each shop drawing to the Project Coordinator and Design Professional.
2. Submit one (1) digital copy of product data to the Project Coordinator and Design Professional.

3. For sample selections, submit one (1) set. For sample approval, submit three (3) sets. The Design Professional will retain one (1) set.

D. Where product data is printed in color and requires color for evaluation, record, or other purpose, all copies submitted shall be in original colors as published.

E. In addition to information required on the transmittal, submittals shall include:
 1. Relation to adjacent structure or materials.
 2. Field dimensions, clearly identified as such.
 3. Finishes.
 4. Shipping and operating weights
 5. Gauges, fastenings, reinforcements, welding details.
 6. Applicable standards, such as ASTM or Federal Specification numbers.
 7. A blank space, 3 inches by 10 inches for action stamp.

F. Contractor’s Review:
 1. Contractor shall review each submittal and indicate approval with a stamp, dated, initialed and/or signed. Review shall include but not be limited to; verification of field measurements, coordination with all trades involved and compliance with Contract Documents. The Contractor shall not be relieved of responsibility for any deviation from the requirements of the Contract Documents by the City’s or Design Professional's action on submittals unless the Contractor has given specific notice of deviation at the time of submission and written approval of the specific deviation is given. The Contractor shall not be relieved from responsibility for errors or omissions in submittals by the City’s or Design Professional's approval thereof.
 2. If Contractor does not review submittals and provide the signed approval stamp before sending them to the Design Professional, they will be returned unchecked.

1.10 SUBMISSION ROUTING
A. Forward submittal direct to Design Professional and fax copy of transmittal letter to Project Coordinator.
B. Design Professional will forward Submittals marked as “Approved” or Approved as Noted to Project Coordinator.
C. Design Professional will forward Submittals marked as “Revise and Resubmit” or “Rejected” back to Contractor and will fax copy of transmittal to Project Coordinator.
D. Project Coordinator will forward Submittals back to Contractor and will fax copy of transmittal to Design Professional.

1.11 DESIGN PROFESSIONAL’S DUTIES
A. Review submittals within 10 working days of receipt.
B. Review for conformance to design concept of Project and for compliance with information given in Contract Documents. Review of separate item does not constitute review of an assembly in which item functions.

C. Affix stamp and initials or signature certifying to review of submittal.

D. Design Professional's action on submittals will result in the making of one of the following notations with related meanings:

1. APPROVED: The work involved may proceed, and no further submission is required.

2. APPROVED AS NOTED: The work involved may proceed incorporating comments. Annotations do not authorize changes to Contract Sum.

3. REVISE AND RESUBMIT: The work involved may not proceed. Submittal must be corrected and resubmitted.

4. REJECTED: The submittal is not in accordance with the Contract Documents, and a completely new submittal is required.

E. In the event any comment made to the Submittal results in a claim for a change in the Contract, the Project Coordinator shall be notified immediately and fabrication may not be undertaken until contract modification procedures are completed.

1.12 CITY’S RESPONSIBILITY

A. Review submittals within 5 working days of receipt.

B. Review for compliance Contract Documents. Review of separate item does not constitute review of an assembly in which item functions.

C. Affix stamp and initials or signature certifying to review of submittal.

D. City's action on submittals will result in the making of one of the following notations with related meanings:

1. APPROVED FOR CONSTRUCTION: The work involved may proceed, and no further submission is required.

2. APPROVED AS NOTED: The work involved may proceed incorporating comments. Annotations do not authorize changes to Contract Sum.

3. REVISE AND RESUBMIT: The work involved may not proceed. Submittal must be corrected and resubmitted.

1.13 RESUBMISSION REQUIREMENTS

A. Identification of Changes - Clearly identify changes made from the initial submittal other than those requested by the Design Professional. The Design Professional will review only those changes requested and those identified by the Contractor.

1.14 DISTRIBUTION OF APPROVED SUBMITTALS

A. Contractor shall reproduce and distribute copies of submittals having the Design Professional's and City’s stamp ("Approved" or "Approved as Noted") as required to coordinate and complete the Work and to records documents file.
1.15 SUBSTITUTIONS

A. Substitutions submitted as a shop drawing, product data or sample will be returned without action.

PART 2 PRODUCTS Not Used
PART 3 EXECUTION Not Used

- END -
1.1 SUMMARY

A. General protection and treatment procedures for designated historic spaces, areas, rooms, and surfaces. It is the intention of this project to preserve designated areas within the building for future historic preservation.

1.2 QUALITY ASSURANCE

A. Preservation protection program.

B. Preservation Area Protection Plan.

C. Historic treatment preconstruction conference.

D. Before commencing work in the building, provide photographs and video of existing conditions of areas indicating on the Drawings as “Existing to Remain: Protect for Future Preservation.” Especially document existing conditions which could be misconstrued as damage resulting from selective demolition work. File photographs and video with the Construction Manager prior to starting work.

1.3 PROJECT CONDITIONS

A. City will not occupy portions of building immediately adjacent to removal and dismantling area.

1.4 EXECUTION

A. Areas for Preservation:

1. Areas indicating on the Drawings as “Existing to Remain: Protect for Future Preservation” are excluded from the scope of selective demolition. These areas are to be protected by the Contractors. No invasive work or removal of building and finish materials is allowed in these areas. This includes removal of building systems, ductwork, plumbing, conduit or abatement of installed hazardous building materials.

2. All selective demolition for all Contractors is to be terminated outside the envelope shown on the drawings for “Existing to Remain: Protect for Future Preservation.”
 a. All building systems i.e. conduit, ductwork, sprinkler and plumbing piping shall be terminated 12” outside the envelope of the preservation area.

3. Contractors shall enforce restricted access to areas indicated as “Existing to Remain: Protect for Future Preservation.” Entry to these areas shall only be by essential personnel as verified by the Construction Manager.

4. Access through these spaces shall be limited to access required within the spaces. Route all general circulation, egress and hauling routes around these areas.
5. Removal of existing debris and trash, including those areas requiring hazardous materials abatement, within the boundary of the areas indicating on the Drawings as “Existing to Remain: Protect for Future Preservation” shall be conducted under the supervision of the Construction Manager.

B. Protection:

1. Maintain supervisory personnel on-site and on duty during work in and adjacent to areas designated for preservation.
2. Provide barricades, barriers, and temporary directional signage to exclude non-essential construction personnel.
3. Provide shoring, bracing, and supports as required to maintain the perimeter of areas to be protected to prevent movement, settlement or collapse of areas to be demolished as adjacent facilities to remain.
4. Provide floor, wall, door, door frame and other surface protection along circulation, egress and haul routes.
5. Maintain protection for all exterior building and site feature surfaces and materials including, but not limited to masonry walls, windows, doors, stairs, site walls, fences, light fixtures, railings, roofing and other artifacts.
6. Prepare a Preservation Area Protection Plan for review by the Construction Manager. No construction shall commence until the Preservation Area Protection Plan is accepted by the Construction Manager. The Preservation Area Protection Plan shall show all barricades, barriers, directional signage, surface protection, circulation, egress and haul routes, and designation of access restriction.

1.5 HISTORIC REMOVAL AND DISMANTLING SCHEDULE

A. No existing building materials or finishes shall be removed from the areas indicating on the Drawings as “Existing to Remain: Protect for Future Preservation.” Any loose items in these areas shall be salvaged on site as per the direction and review of the Design Professional and Construction Manager.

B. Historic artifacts, including their contents, commemorative plaques and tablets, antiques and other articles of historic significance remain property of the City. Notify the Construction Manager if such items are encountered and obtain acceptance regarding method of removal and salvage from the Design Professional.

1.6 HISTORIC PRESERVATION SCHEDULE

A. Spaces, areas, rooms, and surfaces requiring special care and treatment to ensure successful preservation are indicated on Drawings as “Existing to Remain: Protect for Future Preservation.”

B. Please note that areas designated as “Existing to Remain: Protect for Future Preservation” may isolate the areas for selective demolition into two separate areas. Provide access and haul routes from these selective demolition areas that do not pass through the area for future preservation. This may require routes through intervening floors or two separate vertical routes.
PART 1 GENERAL

1.1 DESCRIPTION OF WORK
A. This Section describes each Prime Contractor’s responsibilities regarding codes, regulations and standards included in the Contract Documents by reference.

1.2 RELATED REQUIREMENTS
A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.
B. All technical sections.

1.3 APPLICABLE CODES AND REGULATIONS
A. The following codes and regulations are applicable to the project. The list does not represent all codes, regulations and standards:
 1. The Philadelphia Building Construction and Occupancy Code
 a. The Philadelphia Administrative Code
 b. The Philadelphia Building Code
 c. The Philadelphia Electrical Code
 d. The Philadelphia Fire Prevention Code
 e. The Philadelphia Mechanical Code
 f. The Philadelphia Plumbing Code
 g. The Philadelphia Property Management Code
B. It is not the intent of the Contract Documents to conflict with any Code, or Regulation. Report any conflicts to Design Professional for clarification.

1.4 REFERENCED STANDARDS
A. For products or workmanship specified by association, trade, or Federal Standards, comply with requirements of the standard, except when more rigid requirements are specified or are required by applicable codes or intended use.
B. The referenced standards shall have the same force and effect as if bound or copied directly into the Contract Documents to the extent referenced. Such standards are made a part of the Contract Documents by reference.
C. Should specified reference standards conflict with Contract Documents, request clarification from Design Professional before proceeding but generally the more stringent requirement shall apply.
D. In the absence of specific instructions in the specifications, materials, products, equipment, and their installation shall conform to the applicable codes, regulations and standards specified herein.
E. The contractual relationship of the parties to the Contract shall not be altered from the Contract Documents by mention or inference otherwise in any referenced document.

F. Dates of codes, regulations and standards specified shall be the latest date prior to the date of issue of this Project Manual, except where, prior to the date of issue of this Project Manual, modified or otherwise directed by the applicable codes and their supplements and amendments adopted by the code authorities having jurisdiction.

G. Each entity engaged in construction of the Project shall be familiar with industry standards applicable to its construction activity. If unfamiliar, obtain copies and review with all workers. Obtain copies of standards when required by individual specification sections. Maintain copy at job site until Substantial Completion.

1.5 ASSOCIATIONS, INSTITUTIONS AND SOCIETIES

A. Associations, Institutions, and Societies and their abbreviations if any, appearing in the Project Manual or elsewhere in the Contract Documents, shall be as generally recognized in the industry. Refer to the “Encyclopedia of Associations” published by Gale Research Company for abbreviations, addresses and phone numbers.

PART 2 PRODUCTS Not Used
PART 3 PRODUCTS Not Used

- END -
PART 1 – GENERAL

1.1 DESCRIPTION OF WORK
A. This section describes each Prime Contractor’s requirements for quality assurance including:
 1. Control of installation
 2. Tolerances
 3. Mockups
 4. Inspection and Testing services
 5. Manufacturer’s field services

1.2 RELATED WORK SPECIFIED ELSEWHERE
A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.
B. Each technical section required for materials and products in mockup
C. Each technical section requiring independent inspection and testing.

1.3 QUALITY ASSURANCE – CONTROL OF INSTALLATION
A. Each Prime Contractor is responsible to deliver Work of quality specified regardless Contractor’s sub-contracting or purchasing arrangements.
B. Monitor quality control over suppliers, manufacturer’s products, services, site conditions and workmanship to produce Work of specified quality.
C. Comply with manufacturers written instructions, including preparation and each step in sequence.
 1. Should manufacturer instructions differ from Contract Documents, request clarification but assume the more stringent will apply.
D. Comply with specified standards as minimum quality for the Work except where more stringent tolerances, codes or specified requirements indicate higher standards or more precise workmanship.
E. Perform work by persons qualified to produce workmanship of specified quality.

1.4 TOLERANCES
A. Monitor tolerance control of installed products to produce acceptable Work. Do not allow tolerances to accumulate.
B. Comply with manufacturers written tolerances.
 1. Should manufacturer tolerances differ from Contract Documents, request clarification but assume the more stringent will apply.
C. Adjust products to appropriate dimensions; position before securing products in place.
1.5 MOCK-UPS
A. Construct mock-up to meet all indicated requirements, identical to proposed final Work.
B. Locate mock-up [on-site [at location indicated] [at location directed]] [off-site at independent testing agencies facilities]
C. Mock-up [may be incorporated into final Work after acceptance by City.] [shall be constructed separate from final Work and shall be removed prior to Substantial Completion. Provide temporary structure to support mock-up]
D. Extent of mock-up shall be [one structural bay wide by one story high] [as indicated on drawings] [approximately 10 feet long plus a corner and a 4 feet long return leg by one story high] [as indicated on drawings]
E. Obtain approval of mock-up before performing construction involving products and systems included in mock-up.
F. Approved mock-up shall establish the required quality of final Work, notwithstanding other requirements of the specifications.
G. Maintain approved mock-up until all work included in the mock-up has been completed and accepted.

1.6 INSPECTION AND TESTING SERVICES
A. Each Prime Contractor shall retain independent inspection and testing services when required by individual specification sections or by building code authority.
B. The independent agency shall perform inspection and testing services on and off site as required by individual specification sections and as required to comply with requirements of the building code authority.
C. Independent agency shall submit reports to Prime Contractor and direct to City indicating compliance or non-compliance. Notify City the same day of non-compliance.
D. Cooperate with independent agency; furnish samples, mix designs, equipment, tools, storage, safe access, and assistance by incidental labor.
E. Inspection and testing does not relieve Contractor to perform Work to contract requirements.
F. Retesting required because of non-conformance to specified requirements shall be performed by the original agency at no additional cost to City.

1.7 MANUFACTURERS FIELD SERVICES
A. When specified in individual specification sections, require manufacturer to provide qualified technical staff personnel to observe site conditions, quality of workmanship, start-up or training of City personnel as specified.
B. Technical staff shall not be the local sales staff or independent manufacturers sales representatives.
C. Manufacturers technical representative shall submit written reports of findings to Contractor and direct to City. Notify City the same day of non-compliance

PART 2 PRODUCTS Not Used
PART 3 EXECUTION

Not Used

END
PART 1 GENERAL

1.1 DESCRIPTION OF WORK
 A. This Section describes each Prime Contractor’s construction facilities and services required for performance of the Work but not a permanent part of the finished construction. Included are temporary utilities, temporary construction and support facilities and security and protection services.

1.2 RELATED WORK SPECIFIED ELSEWHERE
 A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.
 B. Environmental Controls: Division 1.

1.3 SUBMITTALS
 A. Submit reports of tests, inspection, meter readings and similar procedures performed on temporary utilities.

1.4 INSPECTION
 A. Arrange for authorities having jurisdiction to inspect and test each temporary utility before use. Obtain required certificates and permits.

PART 2 PRODUCTS

2.1 TEMPORARY MATERIALS
 A. Materials may be new or used, but must be adequate in capacity for the required usage and must not violate requirements of applicable codes and standards. Generally, temporary materials shall comply with related specification sections for materials to be incorporated into final work.

PART 3 EXECUTION

3.1 TEMPORARY UTILITIES
 A. Provide temporary utilities including water, drainage, electrical power, communications, lighting, and steam where applicable.
 B. City will not charge Contractor for utilities used. Contractor shall not waste or misuse utilities.

3.2 TEMPORARY ELECTRICITY
 A. Provide electrical service adequate for work of all trades, and terminate in fused safety switch and circuit breaker distribution panels.
 B. For welding at site or electrical requirements beyond the capacity of temporary system, supply generator, fuel, maintenance, and other incidentals required.

3.3 TEMPORARY LIGHTING
A. Provide temporary lighting required for construction operations
B. Provide temporary lighting for exterior staging and storage areas for security purposes.
C. Provide temporary lighting in interior work areas after dark for security purposes.
D. Provide lighting at each landing of each stair or ladder run.
E. Permanent building lighting may [not] be utilized during construction.

3.4 HEATING AND VENTILATING
A. Provide temporary heat as required for construction operations. Temporary sources of heat shall be direct vented and thermostatically controlled. Open flame devices or solid fuels are not allowed.
B. Provide forced ventilation by portions of the permanent system or by portable units, to cure materials, to disperse humidity, and to prevent accumulations of dust, fumes, vapors, or gases. Provide ductwork with temporary filters to prevent the broadcasting of dust and debris.
C. In occupied facilities, while performing operations that generate fumes or dust, provide both fresh air intake and fan powered ventilation to control spread of fumes or dust to occupied areas of the building.

3.5 TEMPORARY TELEPHONE
A. Provide telephone service and a facsimile machine on-site for Contractor's, City's and Design Professional's use. Contractor shall pay cost service.
B. City telephones on-site may not be used by Contractors.

3.6 TEMPORARY WATER SUPPLY
A. Provide temporary water service of adequate size as required for fire protection and construction operations.
B. Provide drinking water, paper cups, and waste receptacles for personnel.

3.7 SANITARY FACILITIES
A. Temporary sanitary facilities are not required. Use of Owner’s toilet facilities by construction personnel will be permitted. Location to be agreed upon by the City. Provide toilet paper, waste receptacles, and daily janitorial services.
B. Enforce use of sanitary facilities. Evidence to the contrary shall require removal, disinfecting, and reconstruction of defaced work.

3.8 FIRE PROTECTION
A. Provide temporary fire protection and portable fire extinguishers according to law.

3.9 CONSTRUCTION AIDS
A. Provide construction aids required for execution of the work, including scaffolds, staging, ladders, stairs, ramps, runways, platforms, railings, hoists, cranes, chutes, and other facilities and equipment.

3.10 STAIRS AND ELEVATORS
A. A designated newly remodeled stair shall be used by Construction personnel. Coordinate with City.
B. A designated newly installed elevator shall be used by Construction personnel. Coordinate with City.

3.11 BARRIERS
A. Provide barriers to prevent unauthorized entry to construction areas to allow for City’s use of site and to protect existing facilities and adjacent properties from damage from construction operations.
B. Construct using scaffold or shoring framing, waterproofed wood plank overhead decking, protective plywood enclosure walls, handrails, barricades, warning signs, lights, safe and well-drained walkways and similar provisions for protection and safe passage. Extend the backwall beyond to complete the enclosure fence. Paint with colors approved by City.
C. Protect non-owned vehicular traffic, stored materials, site, and structures from damage.

3.12 FENCING
A. Construction – Contractor’s option.
B. Provide six (6) foot high fence around construction area, as required; equip with vehicular gates with locks.

3.13 EXTERIOR ENCLOSURES
A. Provide temporary weather tight closure of exterior openings to accommodate acceptable working conditions and protection for Products, to allow for temporary heating and maintenance of required ambient temperatures identified in individual specification sections, and to prevent entry of unauthorized persons. Provide access doors with self-closing hardware and locks.
B. Provide temporary tarps or other protection to roofs made open to weather by construction operations.

3.14 INTERIOR ENCLOSURES
A. Provide temporary partitions [and ceilings] to separate work areas from City occupied areas, to prevent penetration of dust and moisture into City occupied areas, to prevent damage to existing materials and equipment and as indicated.
B. Construction - Steel stud framing and gypsum board with closed joints and sealed edges at intersections with existing surfaces.

3.15 PROTECTION OF INSTALLED WORK
A. Protect installed Work and provide special protection where specified in individual specification sections.
B. Provide protective coverings at walls, projections, jambs, sills, and soffits of openings.
C. Protect finished floors, stairs, and other surfaces from traffic, dirt, wear, damage, or movement of heavy objects, by covering with durable sheet materials.
D. Prohibit traffic or activity is necessary, obtain recommendations for protection from waterproofing or roofing material manufacturer.
E. Prohibit traffic from landscaped areas.

3.16 SITE SECURITY
A. The City assumes no responsibility for loss, theft, or damage to the work, tools, equipment, and construction. In the instance of any such loss, theft, or damage, the Contractor shall be responsible to renew, restore, or remedy the work, tools, equipment, and construction in accordance with requirements of the Contract Documents without additional cost to the City.

B. The Contractor, at his own cost, may provide watchman services, and other means of site security.

C. Site parked equipment, operable machinery, and hazardous parts of the new construction subject to mischief and accidental operation, shall be inaccessible, locked, or otherwise made inoperable when left unattended.

D. Liability - The City is not responsible for damage, liability, theft, casualty, or other hazard to the automobiles or other vehicles, nor to injury including death to occupants of automobiles or other vehicles on the City's property. Provide signs to this effect in the designated parking area.

3.17 ACCESS ROADS AND PARKING AREAS
A. Access Roads
 1. Use existing roads on Site for access. Protect roads from damage from extra heavy loading by use of timbers or other approved means.

3.18 PROJECT SIGN
A. Clause 74 of the Standard Contract Requirements is deleted. No project sign is required.

3.19 FIELD OFFICE
A. Contractor shall provide a field office on the site where directed, as required to complete the Work.

3.20 TERMINATION AND REMOVAL
A. Remove each temporary facility when the need has ended, or when replaced by authorized use of a permanent facility, but no later than Substantial Completion. Complete or restore permanent construction that may have been delayed because of interference with the temporary facility. Repair damaged Work, clean exposed surfaces and replace construction that cannot be satisfactorily repaired.

B. Materials and facilities that constitute temporary facilities are property of the Contractor

C. Remove temporary paving that is not intended for or acceptable for integration into permanent paving. Where the area is intended for landscape development, remove soil and aggregate fill that does not comply with requirements for fill or subsoil in the area. Remove materials contaminated with road oil, asphalt and other petrochemical compounds, and other substances which might impair growth of plant materials or lawns. Repair or replace street paving, curbs and sidewalks at the temporary entrances, as required by the governing authority.

- END -
SECTION 015800

PROJECT IDENTIFICATION AND SIGNS

PART 1 GENERAL

1.1 DESCRIPTION OF WORK

Requirements include the following which shall be provided by the Contractor for General Construction:

A. Furnish, install and maintain project identification sign.

B. Provide temporary on-site information signs to identify Owner’s temporary relocation.

C. Remove signs on completion of construction.

D. Allow no other signs to be displayed without approval of owner.

1.2 RELATED REQUIREMENTS

A. Section 011100 – Summary of Work
B. Section 015000 – Temporary Facilities and Controls
C. Section 015719 – Environmental Controls

1.3 PROJECT IDENTIFICATION SIGN

A. Two (2) painted signs, not less than 4 feet x 8 feet, with painted graphic content as shown on sample exhibit attached on page 3 of this section.

B. Erect on the site at location shown on drawing or as directed by the owner.

1.4 INFORMATIONAL SIGNS

A. Provide at all public entrances, stairways and temporary gates painted signs with painted lettering indicating the building’s access locations. Each sign to be 3 feet by 3 feet with up to 100 letters. Allow for a total of eight [8] signs.

B. Erect at appropriate locations to provide required information. Coordinate location with owner/owner’s representative.

1.5 QUALITY ASSURANCE

A. Sign Painter: Professional experience in type of work required.

B. Finishes, Painting: Adequate to resist weathering and fading for scheduled construction period.

PART 2 PRODUCTS

PROJECT No. 10-21-4548-01
015800 –1
PROJECT IDENTIFICATION AND SIGNS
2.1 SIGN MATERIALS

A. Structure and framing: May be new or used, wood or metal, in sound condition structurally adequate to work and suitable for specified finish.

B. Sign surfaces: Exterior softwood plywood with medium density overlay, standard large sizes to minimize joints.
 1. Thickness: As required by standards to span framing members (not less than ¾ inch thick), to provide event, smooth surface without knots, waves or buckles.

C. Rough hardware: Galvanized.

D. Paint: Manufacturer’s Best Exterior quality as approved by architect.
 1. Use exhibit for colors and graphics.
 2. Colors for structure, framing, sign surfaces and graphics: As selected by Architect.

PART 3 EXECUTION

3.1 PROJECT IDENTIFICATION SIGN

A. Paint exposed surfaces of supports, framing and surface material; one coat of primer and one coat of exterior paint.

B. Paint graphics in style, sizes and colors shown on exhibit attached on page 4 of this section.

3.2 INFORMATION SIGNS

A. Paint exposed surfaces: One coat of primer and one coat of exterior paint.

B. Paint graphics in style, sizes and colors selected by the architect.

C. Install at a height for optimum visibility, on ground-mounted poles or attached to temporary structural surfaces.

3.3 MAINTENANCE

A. Maintain signs and supports in a neat, clean condition; repair damages to structure, framing or sign.

B. Relocate informational signs as required by progress of work.

3.4 REMOVAL

A. Remove signs, framing, supports and foundations at completion of project.

END OF SECTION
PROJECT IDENTIFICATION AND SIGNS

SPECIFICATIONS FOR SIGNS

This project shall be blue. The border shall be yellow.

PROJECT NAME

Progress

Milestone

Another Project

Of Philadelphia

Paid for by the Taxpayers

This border shall be blue.

This border shall be yellow.

NOTE

 Sinclair 1-4-01

Steel, 4-gauge, lapd, and sealed on all sides.

Face board on 12 centers. If metal is to be used, the sign face shall be galvanized. Spaced, top and bottom rails, 10 to be 2 x 4, surfaced for 4 sides and screwed to the frame. All edge extensions are plywood reinforced with four 1 x 4 battens 2 x 4. End panel shall be 3/4 inch exterior grade plywood reinforced with four 1 x 4 battens 2 x 4. End panel shall be

ON YELLOW FIELD

City seal shall be blue.

ON YELLOW FIELD

City seal shall be blue.
PART 1 GENERAL

1.1 DESCRIPTION OF WORK
A. This Section describes administrative procedures regarding each Prime Contractor’s selection of products, materials, and equipment required for the completion of the Work. Requirements for handling, storing and installing products are also included.

1.2 RELATED REQUIREMENTS SPECIFIED ELSEWHERE
A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.

1.3 DEFINITIONS
A. Definitions used in this Article are not intended to change the meaning of other terms used in the Contract Documents, such as “specialties”, “structure”, “finishes”, “accessories”, and similar terms. Such terms are self-explanatory and have well recognized meanings in the construction industry.
B. “Products” are items purchased for incorporation in the Work, whether purchased for the Project or taken from previously purchased stock. The term “product” includes the terms “material”, “equipment”, “system”, and terms of similar intent.
C. “Named Products” are items identified by manufacturer’s product name, including make or model designation, indicated in the manufacturer’s published product literature.
D. “Materials” are products that are substantially shaped, cut, worked, mixed, finished, refined or otherwise fabricated, processed, or installed to form a part of the Work.
E. “Equipment” is a product with operational parts, whether motorized or manually operated, that require service connections such as wiring or piping.
F. “System” is an integrated assembly of materials and/or equipment which when combined form an integral whole to serve a function.

1.4 QUALITY ASSURANCE
A. Source Limitations - To the fullest extent possible, provide products of the same kind, from a single source.
B. Compatibility of Options - When the Contractor is given the option of selecting between two or more products for use on the Project, the product selected shall be compatible with products previously selected, even if previously selected products were also options.
C. Each Prime Contractor is responsible for providing products and construction methods that are compatible with products and construction methods of other prime or separate Contractors.
D. If a dispute arises between prime Contractors over concurrently selectable, but incompatible products, the Design Professional will determine which products shall be retained and which are incompatible and must be replaced.

E. Nameplates - Except for required labels and operating data, do not attach or imprint manufacturer’s or producer’s nameplates or trademarks on exposed surfaces of products which will be exposed to view in occupied spaces or on the exterior.

F. Labels - Locate required product labels and stamps on a concealed surface or, where required for observation after installation, on an accessible surface that is not conspicuous.

G. Equipment Nameplates - Provide a permanent nameplate on each item of service-connected or power-operated equipment. Locate on an easily accessible surface that is inconspicuous in occupied spaces. The nameplate shall contain the following information and other essential operating data:
 1. Name of product and manufacturer.
 2. Model and serial number.
 3. Capacity.
 4. Speed.
 5. Ratings.

1.5 PRODUCT DELIVERY, STORAGE, AND HANDLING
A. Deliver, store and handle products in accordance with the manufacturer’s recommendations, using means and methods that will prevent damage, deterioration and loss, including theft.

B. Schedule delivery in accordance with the Construction Schedule and to minimize long-term storage at the site and to prevent overcrowding of construction spaces.

C. Coordinate delivery with installation time to ensure minimum holding time for items that are flammable, hazardous, easily damaged, or sensitive to deterioration, theft and other losses.

D. Deliver products to the site in the manufacturer’s original sealed container or other packaging system, complete with legible labels and instructions for handling, storing, unpacking, protecting and installing.

E. Inspect products upon delivery to ensure compliance with the Contract Documents, and to ensure that products are undamaged and properly protected.

F. Store products at the site in a manner that will facilitate inspection and measurement of quantity of counting of units.

G. Store heavy materials away from the Project structure in a manner that will not endanger the supporting construction.

H. Store product subject to damage by the elements above ground, under cover in a weather-tight enclosure, with ventilation adequate to prevent condensation. Maintain temperature and humidity within range required by manufacturer’s instructions.

1.6 OPERATION, MAINTENANCE, TRAINING AND CALIBRATION
A. Furnish manuals and services specified and as required to start-up, operate and maintain all equipment and systems.

PART 2 PRODUCTS

2.1 GENERAL PRODUCT REQUIREMENTS
A. Provide products that comply with the Contract Documents, that are undamaged and, unless otherwise indicated, unused at the time of installation. All products shall be certified asbestos-free.
B. Provide products complete with all accessories, trim, finish, safety guards and other devices and details needed for a complete installation and for the intended use and effect.
C. Where the work requires testing for assurance of performance, that portion of the work shall not proceed until such testing has been completed and written test report has been approved.
D. Do not use material or equipment for any purpose other than for which it is designed or specified.
E. Certification of Compatibility: If indicated, the material and equipment manufacturers shall certify in writing that:
 1. Other manufacturer’s materials or equipment coming into contact with their product are compatible with their product in every way and that the intended performance of the system in which their product is incorporated will not be affected as a result of such contact. Also, physical breakdown of their product by chemical reaction or otherwise will not occur as a result of such contact.
 2. The combination of products by one (1) manufacturer to make up the manufacturer’s specified system, will contribute to the performance of the system as intended, and will remain operational, reliable and durable. The manufacturer will be the source of routine maintenance and replacement parts.
F. Reuse of Existing Material
 1. Except where indicated or otherwise approved in writing, materials and equipment removed from an existing structure shall not be used in the work.
 2. Where use of existing material is indicated or approved, use special care in removing, handling, storing, and reinstallation to assure proper function in the completed work.

2.2 PRODUCT SELECTION PROCEDURES
A. Product selection is governed by the Contract Documents and governing regulations, not by previous Project experience. Procedures governing product selection include the following:
B. Where products or manufacturers are specified by name, description, or performance accompanied by the term “or equivalent substitution”, “or approved substitution”, “or approved equal” or similar terms comply with the Contract Document provisions concerning “substitutions” to obtain approval for use of an unnamed product.
C. Proprietary Specification Requirements - Where products or manufacturers are named, provide the product indicated or submit a substitution request.

D. Descriptive Specification Requirements - Where Specifications describe a product or assembly, listing exact characteristics required, without use of a brand or trade name, provide a product or assembly that provides the characteristics and otherwise complies with Contract requirements. If descriptive specification also includes manufacturers or products, provide product indicated of submit a substitution request.

E. Performance Specification Requirements - Where Specifications require compliance with performance requirements, provide products that comply with these requirements, and are recommended by the manufacturer for the application indicated. Compliance shall be certified by independent testing agencies furnished by manufacturer. General overall performance of a product is implied where the product is specified for a specific application.

F. Manufacturer’s recommendations may be contained in published product literature, or by the manufacturer’s certification of performance.

G. Compliance with Standards, Codes and Regulations - Where the Specifications require compliance with an imposed code, standard or regulation, select a product that complies with the standards, codes or regulations specified. Compliance shall be certified by independent testing agencies furnished by manufacturer.

H. Visual Matching - Where Specifications require matching an established sample or existing construction, the Design Professional’s decision will be final on whether a proposed product matches satisfactorily.

I. Visual Selection - Where specified product requirements include the phrase “...as selected from manufacturer’s standard colors, patterns, textures...” or a similar phrase, select a product and manufacturer that complies with other specified requirements. The Design Professional will select the color, pattern and texture from the product line selected.

J. Allowances - Refer to individual Specification Sections and “Allowance” provisions in Division 1 for allowances that control product selection, and for procedures required for processing such selections.

PART 3 EXECUTION

3.1 ACCEPTABLE INSTALLERS

A. Installers shall be familiar with products and experienced in their installation. Comply with more stringent requirements of individual sections for installer qualifications.

3.2 EXAMINATION OF SUBSTRATE

A. Each installer shall examine substrate onto which the product will be installed. Inspect for any condition which would in any way reduce the quality, performance or durability of the product including but not limited to; dimensional or location tolerances, dampness, dryness, installation not meeting specified criteria for substrate, poor workmanship, etc. Do not proceed with installation over unacceptable substrates. Notify Contractor to have substrate
repaired. Work installed over unacceptable substrates shall be redone after substrate is repaired at no cost to the City.

3.3 PREPARATION
A. Protect adjacent work from possible damage which installation could cause including but not limited to staining, overspray, denting, gouging, displacement, etc.
B. Clean and prepare substrates to receive products with primers, bonding agents, barrier coats, etc. as per manufacturer’s instructions.

3.4 PASSAGE OF MATERIALS AND EQUIPMENT
A. Establish passage clearances required to deliver and install materials and equipment.
B. Where there will be insufficient clearance for passage of materials and equipment, deliver and protect such equipment before confining construction is installed.
C. If existing structures, equipment and systems must be altered to provide passage of new materials and equipment, engage those skilled in the respective trade to restore structures, equipment, and systems to their original condition at no additional cost. Do not alter structure, equipment, or systems without written approval.
D. In lieu of altering structures to provide passage of materials and equipment, provide materials and equipment that can be disassembled, brought into the building, and reassembled.
E. If exterior windows or doors must be removed to provide passage of materials and equipment into the building, store and protect removed work at the site and reinstall as soon as possible. If any damage occurs to the work during their removal, transit, storage or reinstallation, replace or repair the work to like new condition at no cost to Owner.

3.5 INSTALLATION
A. Comply with manufacturer’s instructions and recommendations and requirements of individual specification sections in the applications indicated. If manufacturer’s instructions and specifications indicate differing installation techniques, request clarification from Design Professional but generally comply with more stringent requirement.
B. Anchor each product securely in place accurately located and aligned with other Work.
C. Coordinate installation with surrounding Work to allow for optimum end product.

3.6 FIELD QUALITY CONTROL
A. Have manufacturer’s technical representative on-site to observe crucial installation steps as required by individual specification sections or as required to meet manufacturer’s warranty or to meet other indicated criteria.

3.7 ADJUSTING
A. Adjust installed products for proper operation and fit.

- END -
SECTION 017123
FIELD ENGINEERING

PART 1 GENERAL

1.1 DESCRIPTION OF WORK
A. The General Contractor shall engage the services of a Surveyor to establish
 grades, lines and levels.
B. Each separate Prime Contractor shall be responsible for layout of their own work,
 from grades, lines and levels established by the General Contractor.

1.2 RELATED REQUIREMENTS
A. Applicable provisions of Bidding Requirements, Contract Requirements in
 Division 0 and all applicable Division 1 sections.

1.3 QUALITY ASSURANCE
A. Surveyor shall be licensed in the Commonwealth of Pennsylvania.

1.4 SUBMITTALS
A. Submit name, address, and telephone number of Surveyor prior to starting survey
 work.
B. On request, submit documentation verifying accuracy of survey work.
C. Submit reference point survey including field notes for record.
D. Submit certification, signed and sealed by the Surveyor showing that elevations
 and locations of all improvements are or are not in conformance with Contract
 Documents.

1.5 PROJECT RECORD DOCUMENTS
A. Maintain complete, accurate log of control and survey work as it progresses.
B. Record on record documents all pertinent information under provisions of
 Division 1.

PART 2 PRODUCTS
Not Used

PART 3 EXECUTION

3.1 INSPECTION
A. Verify locations of survey control points prior to starting work. Promptly notify
 Design Professional of any discrepancies discovered.

3.2 SURVEY REFERENCE POINTS
A. Protect survey control points prior to starting site work; preserve permanent
 reference points during construction. Make no changes without prior written
 notice to Design Professional.
B. Promptly report to Project Coordinator destruction of any reference point or relocation required because of changes in grades or other reasons. Replace dislocated survey control points based on original survey control.

3.3 SURVEY REQUIREMENTS

A. Use instruments to establish a minimum of two (2) permanent bench marks on the site. Reference benchmarks to data established by survey control points. Record bench mark locations with horizontal and vertical data for Project Record Documents. Reference these benchmarks to finish floor lines. Provide accurate alignment and level of the work, and correct slope and curvatures as required.

B. Periodically verify layouts by same means. No extra charges will be allowed for differences between dimensions shown and actual measurements. Advise the Project Coordinator of any differences.

C. Prepare as-built site utility plan showing all utilities including stormwater, sanitary, water, gas and electric lines for permanent record.

3.4 SETTLEMENT SURVEY

A. Prior to the start of construction operations, fix elevation targets to adjacent historic stone structure. Targets shall be located minimum at each corner of building and maximum 100 feet on center.

B. Perform surveys to determine elevation of targets in relation to benchmarks which will not be disturbed by construction.

C. During excavation operations, perform surveys daily to determine elevation of targets. Report results to Contractor in writing. If settlement over 1/4 inch has occurred, notify Contractor and Owner’s Representative/Project Manager immediately.

- END -
SECTION 017329
CUTTING, PATCHING, SLEEVES AND INSERTS

PART 1 GENERAL
1.1 DESCRIPTION OF WORK
 A. This Section describes each Prime Contractor’s cutting, fitting, patching, sleeves, and inserts required to complete the Work and to:
 1. Make the parts come together properly.
 2. Uncover or remove portions of the Work to provide for installation of ill-timed work.
 3. Remove and replace defective work.
 4. Remove samples of installed work for testing as specified.
 5. Provide penetrations for installation of piping and electrical conduit.
 6. Repair surfaces shown to remain in the finished work, which are damaged in the process of demolition.
 7. Coordinate penetrations, sleeves, and inserts that are specified in one specification section and installed by another.

1.2 RELATED WORK SPECIFIED ELSEWHERE
 A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.

1.3 REGULATORY REQUIREMENTS
 A. All cutting, fitting and patching shall be performed in compliance with governing code regulations relative to firestopping and smoke penetration.

PART 2 PRODUCTS
2.1 MATERIALS
 A. Use materials that exactly match materials being cut or patched. If exact materials are not available, match with new materials with installed performance matching or exceeding cut or patched material. Comply with specifications and standards for each material involved.
 B. Sleeves and Inserts: as specified in the Trade Sections requiring inserts and sleeves for the installation of their work.

PART 3 EXECUTION
3.1 INSPECTION
 A. Inspect existing conditions, including work subject to damage or movement during cutting and patching.
 B. Report unsatisfactory conditions to the City. Do not proceed until directed.

3.2 PREPARATION
A. Provide temporary support as required to maintain the structural integrity of work.
B. Provide materials and methods to protect other work from damage, including exposure to the elements.

3.3 PERFORMANCE
A. Do not cut or alter the work of another Prime Contractor without written consent of the City.
B. Perform cutting of structural steel, structural concrete or load bearing unit masonry only after approval of the City.
C. Execute cutting and demolition by methods that will prevent damage to other work, and provide proper surfaces to receive installation of repairs.
D. Remove excess materials resulting from cutting and patching and dispose of legally off site.
E. Perform excavating and backfilling by methods that will prevent settlement or damage to other work. Maintain excavations free of water.
G. Execute fitting and adjustment of products to provide a finished installation to comply with specified products, functions, tolerances and finishes.
H. Restore work to remain, or be reused, which has been cut or removed. Install new products to provide complete work in accordance with Contract Documents.
I. Refinish entire surface to provide an even finish to match adjacent surfaces. For continuous surfaces, refinish to nearest intersection. For an assembly, refinish the entire unit.
J. Furnish sleeves and inserts required under individual specification sections to Contractor installing the Work to be sleeved or to have insert embedded. Be responsible for their correct location and installation.
K. Penetrations required, but not shown on the Drawings, shall be cut into the work.

- END -
PART 1 - GENERAL

1.01 SUMMARY

A. This Section includes administrative and procedural requirements for the following:
 1. Salvaging nonhazardous demolition and construction waste.
 2. Recycling nonhazardous demolition and construction waste.
 3. Disposing of nonhazardous demolition and construction waste.

1.02 DEFINITIONS

A. Construction Waste: Building and site improvement materials and other solid waste resulting from construction, remodeling, renovation, or repair operations. Construction waste includes packaging.

B. Demolition Waste: Building and site improvement materials resulting from demolition or selective demolition operations.

C. Disposal: Removal off-site of demolition and construction waste and subsequent sale, recycling, reuse, or deposit in landfill or incinerator acceptable to authorities having jurisdiction.

D. Recycle: Recovery of demolition and construction waste for subsequent processing in preparation for reuse.

E. Salvage: Recovery of demolition and construction waste and subsequent sale or reuse in another facility.

F. Salvage and Reuse: Recovery of demolition and construction waste and subsequent incorporation into the Work.

1.03 PERFORMANCE REQUIREMENTS

A. General: Develop waste management plan that results in end-of-Project minimum rates for salvage/recycling of 75 percent by weight of total waste generated by the Work.
 1. Identify materials targeted for salvage and recycling.

1.04 SUBMITTALS

A. Waste Management Plan: Submit via e-Builder within 7 days of date established for the Notice to Proceed.
 1. Plan shall identify the diversion goals of the project, relevant construction debris
and materials diverted, implementation protocols, and parties responsible for implementation

B. Waste Reduction Progress Reports: Concurrent with each Application for Payment, submit via e-Builder. Include separate reports for demolition and construction waste. Include the following information:

1. Material category.
2. Generation point of waste.
3. Total quantity of waste in tons.
4. Quantity of waste salvaged, both estimated and actual in tons.
5. Quantity of waste recycled, both estimated and actual in tons.
6. Total quantity of waste recovered (salvaged plus recycled) in tons.
7. Total quantity of waste recovered (salvaged plus recycled) as a percentage of total waste.

C. Waste Reduction Calculations: Before request for Substantial Completion, submit 3 copies of calculated end-of-Project rates for salvage, recycling, and disposal as a percentage of total waste generated by the Work.

D. Records of Donations: Indicate receipt and acceptance of salvageable waste donated to individuals and organizations. Indicate whether organization is tax exempt.

E. Records of Sales: Indicate receipt and acceptance of salvageable waste sold to individuals and organizations. Indicate whether organization is tax exempt.

F. Recycling and Processing Facility Records: Indicate receipt and acceptance of recyclable waste by recycling and processing facilities licensed to accept them. Include manifests, weight tickets, receipts, and invoices.

G. Landfill and Incinerator Disposal Records: Indicate receipt and acceptance of waste by landfills and incinerator facilities licensed to accept them. Include manifests, weight tickets, receipts, and invoices.

H. LEED Submittals:

 a. Included LEED requirements for Credit MR 2 as defined in the LEED 2009 BD+C Reference Manual.

2. For commingled waste, provide documentation verifying the diversion rate of the waste. Documentation can be either a project-specific diversion rate provided by the sorting facility or the average annual recycling rate for the sorting facility
provided by the regulating local or state government authority.

3. Complete LEED letter template on LEED Online for Credit MR 2, tabulating total waste material, quantities diverted and means by which it is diverted. Upon request submit a statement that requirements for the LEED Credit have been met.
 a. Land clearing debris such as soil, vegetation and rocks are to be excluded from the calculations.
 b. Hazardous materials are the responsibility of the Owner and are to be excluded from calculations.
 c. Units to be consistent for all calculations (either tons or cubic yards).

I. Qualification Data: For refrigerant recovery technician.

J. Statement of Refrigerant Recovery: Signed by refrigerant recovery technician responsible for recovering refrigerant, stating that all refrigerant that was present was recovered and that recovery was performed according to EPA regulations. Include name and address of technician and date refrigerant was recovered.

1.05 QUALITY ASSURANCE

A. Refrigerant Recovery Technician Qualifications: Certified by EPA-approved certification program.

B. Regulatory Requirements: Comply with hauling and disposal regulations of authorities having jurisdiction.

C. Waste Management Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination." Review methods and procedures related to waste management.

1.06 WASTE MANAGEMENT PLAN

A. General: Develop plan consisting of waste identification, waste reduction work plan, and cost/revenue analysis. Indicate quantities by weight or volume, but use same units of measure throughout waste management plan.

1. Include separate sections in plan for demolition and construction waste.

B. Waste Identification: Indicate anticipated types and quantities of demolition and construction waste generated by the Work. Include estimated quantities and assumptions for estimates.

C. Waste Reduction Work Plan: List each type of waste and whether it will be salvaged, recycled, or disposed of in landfill or incinerator. Include points of waste generation, total quantity of each type of waste, quantity for each means of recovery, and handling and transportation procedures.

1. Salvaged Materials for Reuse: For materials that will be salvaged and reused in this Project, describe methods for preparing salvaged materials before
2. Salvaged Materials for Sale: For materials that will be sold to individuals and organizations, include list of their names, addresses, and telephone numbers.

3. Salvaged Materials for Donation: For materials that will be donated to individuals and organizations, include list of their names, addresses, and telephone numbers.

4. Recycled Materials: Include list of local receivers and processors and type of recycled materials each will accept. Include names, addresses, and telephone numbers.

5. Disposed Materials: Indicate how and where materials will be disposed of. Include name, address, and telephone number of each landfill and incinerator facility.

6. Handling and Transportation Procedures: Include method that will be used for separating recyclable waste including sizes of containers, container labeling, and designated location on Project site where materials separation will be located.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.01 PLAN IMPLEMENTATION

A. General: Implement waste management plan as approved by Owner. Provide handling, containers, storage, signage, transportation, and other items as required to implement waste management plan during the entire duration of the Contract.

B. Waste Management Coordinator: Engage a waste management coordinator to be responsible for implementing, monitoring, and reporting status of waste management work plan. Coordinator shall be present at Project site full time for duration of Project.

C. Training: Train workers, subcontractors, and suppliers on proper waste management procedures, as appropriate for the Work occurring at Project site.

1. Distribute waste management plan to everyone concerned within three days of submittal return.

2. Distribute waste management plan to entities when they first begin work on-site. Review plan procedures and locations established for salvage, recycling, and disposal.

D. Site Access and Temporary Controls: Conduct waste management operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
1. Designate and label specific areas on Project site necessary for separating materials that are to be salvaged, recycled, reused, donated, and sold.

2. Comply with Division 01 Section "Temporary Facilities and Controls" for controlling dust and dirt, environmental protection, and noise control.

3.02 SALVAGING DEMOLITION WASTE

A. Salvaged Items for Reuse in the Work:
 1. Clean salvaged items.
 2. Pack or crate items after cleaning. Identify contents of containers.
 3. Store items in a secure area until installation.
 4. Protect items from damage during transport and storage.
 5. Install salvaged items to comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make items functional for use indicated.

B. Salvaged Items for Sale and Donation: Not permitted on Project site.

C. Salvaged Items for Owner's Use:
 1. Clean salvaged items.
 2. Pack or crate items after cleaning. Identify contents of containers.
 3. Store items in a secure area until delivery to Owner.
 4. Transport items to Owner's storage area designated by Owner.
 5. Protect items from damage during transport and storage.

3.03 RECYCLING DEMOLITION AND CONSTRUCTION WASTE, GENERAL

A. General: Recycle paper and beverage containers used by on-site workers.

B. Recycling Incentives: Revenues, savings, rebates, tax credits, and other incentives received for recycling waste materials shall accrue to Contractor.

C. Procedures: Separate recyclable waste from other waste materials, trash, and debris. Separate recyclable waste by type at Project site to the maximum extent practical.
 1. Provide appropriately marked containers or bins for controlling recyclable waste until they are removed from Project site. Include list of acceptable and unacceptable materials at each container and bin.
a. Inspect containers and bins for contamination and remove contaminated materials if found.

2. Stockpile processed materials on-site without intermixing with other materials. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.

3. Stockpile materials away from construction area. Do not store within drip line of remaining trees.

4. Store components off the ground and protect from the weather.

5. Remove recyclable waste off Owner's property and transport to recycling receiver or processor.

3.04 RECYCLING DEMOLITION WASTE

A. Asphaltic Concrete Paving: Break up and transport paving to asphalt-recycling facility.

B. Concrete: Remove reinforcement and other metals from concrete and sort with other metals.

C. Masonry: Remove metal reinforcement, anchors, and ties from masonry and sort with other metals.
 1. Clean and stack undamaged, whole masonry units on wood pallets.

D. Wood Materials: Sort and stack members according to size, type, and length. Separate lumber, engineered wood products, panel products, and treated wood materials.

E. Metals: Separate metals by type.
 1. Structural Steel: Stack members according to size, type of member, and length.
 2. Remove and dispose of bolts, nuts, washers, and other rough hardware.

F. Asphalt Shingle Roofing: Separate organic and glass-fiber asphalt shingles and felts. Remove and dispose of nails, staples, and accessories.

G. Gypsum Board: Stack large clean pieces on wood pallets and store in a dry location. Remove edge trim and sort with other metals. Remove and dispose of fasteners.

H. Acoustical Ceiling Panels and Tile: Stack large clean pieces on wood pallets and store in a dry location.
 1. Separate suspension system, trim, and other metals from panels and tile and sort with other metals.

I. Carpet and Pad: Roll large pieces tightly after removing debris, trash, adhesive, and tack strips.
1. Store clean, dry carpet and pad (if present) in a closed container or trailer provided by Carpet Reclamation Agency or carpet recycler.

J. Equipment: Drain tanks, piping, and fixtures. Seal openings with caps or plugs. Protect equipment from exposure to weather.

K. Plumbing Fixtures: Separate by type and size.

L. Piping: Reduce piping to straight lengths and store by type and size. Separate supports, hangers, valves, sprinklers, and other components by type and size.

M. Lighting Fixtures: Separate lamps by type and protect from breakage.

N. Electrical Devices: Separate switches, receptacles, switchgear, transformers, meters, panelboards, circuit breakers, and other devices by type.

O. Conduit: Reduce conduit to straight lengths and store by type and size.

3.05 RECYCLING CONSTRUCTION WASTE

A. Packaging:
 1. Cardboard and Boxes: Break down packaging into flat sheets. Bundle and store in a dry location.
 3. Pallets: As much as possible, require deliveries using pallets to remove pallets from Project site. For pallets that remain on-site, break down pallets into component wood pieces and comply with requirements for recycling wood.
 4. Crates: Break down crates into component wood pieces and comply with requirements for recycling wood.

B. Site-Clearing Wastes: Chip brush, branches, and trees on-site or at landfill facility. Do not include land clearing debris such as soil, vegetation and rocks in LEED calculations.

C. Wood Materials:
 1. Clean Cut-Offs of Lumber: Grind or chip into small pieces.
 2. Clean Sawdust: Bag sawdust that does not contain painted or treated wood.

D. Gypsum Board: Stack large clean pieces on wood pallets and store in a dry location.

3.06 DISPOSAL OF WASTE

A. General: Except for items or materials to be salvaged, recycled, or otherwise reused, remove waste materials from Project site and legally dispose of them in a landfill or incinerator acceptable to authorities having jurisdiction.
1. Except as otherwise specified, do not allow waste materials that are to be disposed of accumulate on-site.

2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.

B. Burning: Do not burn waste materials.

C. Disposal: Transport waste materials off Owner's property and legally dispose of them.

-END-
PART 1 GENERAL
1.1 DESCRIPTION OF WORK
A. This Section specifies each Prime Contractor’s cleaning of the Work during construction and before completion.

1.2 RELATED WORK SPECIFIED ELSEWHERE
A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.
B. Additional cleaning is specified under the technical sections for that work.

PART 2 PRODUCTS
2.1 MATERIALS
A. Use only cleaning materials recommended by manufacturer of surface to be cleaned.
B. Use cleaning materials only on surfaces recommended by cleaning material manufacturer.

PART 3 EXECUTION
3.1 PERIODIC CLEANING
A. Maintain areas free of waste materials, debris, and rubbish. Maintain site in a clean and orderly condition.
B. Broom clean paved surfaces. Rake clean other surfaces of grounds. Remove snow and ice from access to building.
C. Remove debris and rubbish from pipe chases, plenums, attics, crawl spaces, and other closed or remote spaces, prior to enclosing the space.
D. Broom and vacuum clean interior areas prior to start of surface finishing, and continue cleaning to eliminate dust.
E. Collect and remove waste materials, debris, and rubbish from site periodically and dispose of legally off-site.
F. Open free-fall chutes not permitted. Terminate closed chutes into appropriate containers with lids.
G. Clean mechanical equipment, ductwork and replace filters as specified under Division 23.
H. Clean electrical work including lighting fixtures as specified under Division 26.
I. Maintain cleaning until Project or portion thereof is accepted by Certificate of Substantial Completion. If minor work is required after Substantial Completion, clean affected areas afterwards.
3.2 FINAL CLEANING

A. Immediately before observation of the Work for Substantial Completion, clean all sight-exposed surfaces. Clean all ledges and other horizontal or near horizontal surfaces that may not be sight-exposed but are contiguous to finished spaces.

B. At Substantial Completion, clean and renovate permanent facilities that have been used during the construction period, including but not limited to:

1. Replace air filters and clean inside of ductwork and housings.
2. Replace significantly worn parts and parts that have been subject to unusual operating conditions.
3. Replace lamps that are burned out or noticeably dimmed by substantial hours of use.

- END -
SECTION 017700
CLOSEOUT PROCEDURES

PART 1 GENERAL

1.1 DESCRIPTION OF WORK
A. This Section specifies each Prime Contractor’s administrative and procedural requirements for project closeout.

1.2 RELATED WORK SPECIFIED ELSEWHERE
A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.

1.3 SUBSTANTIAL COMPLETION
A. When the work is considered substantially complete, submit a written notice to Project Coordinator that the Work, or a designated portion thereof, is substantially complete. Include a list of all items that require completion or correction.
B. Within a reasonable time after receipt of such notice, an inspection by the City will be made to determine the status of completion.
C. If the Work is not considered substantially complete; the Contractor will be notified in writing, giving the reasons therefore.
D. Contractor shall remedy the deficiencies in the Work, and send a second written notice of substantial completion. This notice shall include a statement of action taken on each item noted as requiring correction or completion to achieve "Substantial Completion" status.
E. The Work will be inspected a second time and if not considered substantially complete, the two steps in paragraphs A and B above will be repeated.
F. When the Project Coordinator concurs that the Work is substantially complete, he/she will:
 1. Prepare a Certificate of Substantial Completion on City form, accompanied by Contractor's list of items to be completed or corrected, as verified and amended by the Project Coordinator.
 2. Submit the Certificate to Contractor for written notice of the responsibilities assigned in the Certificate.
G. Contractor shall prepare Application for Payment at Substantial Completion and complete administrative and submittal requirements per Section 012900 Payment Procedures.

1.4 FINAL OBSERVATION
A. When the Work is considered complete, submit written certification that:
 1. Contract Documents have been reviewed.
 2. Work has been inspected by the Contractor and has been completed in compliance with Contract Documents.
3. Equipment and systems have been tested in the presence of the Project Coordinator and are operational.

4. Work is ready for final observation.

B. Inspection by the City will be made to verify the status of completion with reasonable promptness after receipt of such certification.

C. If the Work is not considered complete; the Contractor will be notified in writing, listing the incomplete or defective Work.

D. Contractor shall take immediate steps to remedy the stated deficiencies, and, after correcting deficiencies, he shall send a second written certification that the Work is complete. This certification shall itemize each deficiency noted and a statement of action taken to remedy or complete the Work.

E. The Work will be observed a second time and if not considered substantially complete, the two steps in paragraphs A and B above will be repeated.

F. When the Work is acceptable under the Contract Documents, the Contractor shall be requested to make closeout submittals.

1.5 ADDITIONAL OBSERVATION FEES

A. Should more than two observations at substantial or final completion and/or for required mock ups be required due to failure of the Work to comply with the claims of status of completion made by the Contractor:

1. City will compensate the Design Professional for such additional services.

2. City will deduct the amount of such compensation from the final payment to the Contractor.

1.6 CLOSEOUT SUBMITTALS

A. When the Work is complete submit the following:

1. Evidence of compliance with requirement of governing authorities as follows:
 b. Certificates of Inspection for Work requiring Certificate of Inspection by governing authority.

2. Project Record Documents as specified under Division 1.

3. Operation and Maintenance Manuals as specified under Division 1.

4. Warranties as specified under Division 1.

5. Keys and Keying Schedule as specified under Finish Hardware - Division 8.

6. Spare Parts and Maintenance Materials as specified.

7. Evidence of Payment and Release of Liens to the requirements of General and Supplementary Conditions.

8. Requirements for Final Payment Application per Section 012900 Payment Procedures, Division 1.

1.7 SPARE PARTS AND MAINTENANCE MATERIALS
A. Furnish spare parts and maintenance materials as specified under various Sections of the Specifications.
B. Package and label parts and materials as directed and store in area of the building where directed by the Project Coordinator.

1.8 FINAL ADJUSTMENT OF ACCOUNTS
A. Submit a final statement of accounting.
B. Statement shall reflect all adjustments to the Contract Sum:
 1. The original Contract Sum.
 2. Additions and deductions resulting from:
 a. Previous Change Orders.
 b. Change Orders caused by substitutions including deductions for review.
 3. Deductions for uncorrected Work.
 4. Deductions for re-inspection payments.
 5. Other adjustments.
 6. Total Contract Sum, as adjusted.
 7. Previous payments.
 8. Sum remaining due.

C. The Project Coordinator will prepare a final Change Order, reflecting approved adjustments to the Contract Sum which were not previously made by Change Orders.

1.9 FINAL APPLICATION FOR PAYMENT
A. Submit the final Application for Payment in accordance with procedures and requirements stated herein.

PART 2 PRODUCTS Not Used

PART 3 EXECUTION
3.1 Sample Certificate of Substantial Completion Form, see Project Coordinator for actual form.
Certificate of Substantial Completion

City of Philadelphia
Department of Public Property
One Parkway Building / 1515 Arch Street
Philadelphia, PA 19102

Architect/Engineer:
[Design Consultant
Street Address
City, State, Zip Code]

Owner:
City of Philadelphia / Dept. Of Public Property
One Parkway Building / 1515 Arch Street
Philadelphia, PA 19102

Location:
[Using Agency Name
Name of Facility
Address of Facility
Philadelphia, PA Zip Code]

Inspection Date: [Date]
DPP Project Number: [00-00-0000-00]
Contract Number: [C00-0000]
Purchase Order Number: [POXX00000000]

Contractor:
[Name of Company
Address of Company
City, State, Zip Code]

Contract Description (Project Title):

The Work performed under this contract or designated portion of the contract has been observed by the Architect/Engineer and to the best of his/her knowledge, information and belief the Work is hereby found to be substantially completed on the above date in accordance with the contract documents.

Enter Information or None

The list of items to be completed or corrected is attached as exhibit “A”. All items listed are to be completed no later than [00/00/00]. The completion of these items on the proposed date constitutes the effective warranty date for said items.

A list of items to be completed or corrected, commonly known as a punch list, is attached hereto. This list may not be exhaustive, and the failure to include an item on it does not alter the responsibility of the Contractor to complete all of the work in accordance with the contract documents.

[Design Consultant
Street Address
City, State, Zip Code]

Authorized Representative

Date

The Contractor accepts this Certificate of Substantial Completion and agrees to complete and/or correct the items on the list by [00/00/00].

[Name of Contractor
Address of Company
City, State, Zip Code]

Authorized Representative

Date

The Owner accepts the Work as substantially complete and will assume full possession of the building on the date of [00/00/00]. The Owner accepts responsibility for utilities, security and insurance hereafter. All applicable warranties required by the contract documents become effective on the above date.

City of Philadelphia
Dept. Of Public Property
One Parkway Building
1515 Arch Street
Philadelphia, PA 19102

Authorized Representative (Project Coordinator)

Date

Definition of Substantial Completion

The date of substantial completion of a project or specified area of a project is the date when the contract is sufficiently completed, in accordance with the contract documents, as modified by any change orders agreed to by the parties, so that the Owner can occupy or utilize the project or specified area of the project for the use for which it was intended.

cc. File-Project #

Sect. 4.18

- END -

PROJECT No. 10-21-4548-01

017700-4

CLOSEOUT PROCEDURES
PART 1 GENERAL

1.1 DESCRIPTION OF WORK
A. This Section describes each Prime Contractor’s procedural requirements for compiling and submitting operation and maintenance data.

1.2 RELATED WORK SPECIFIED ELSEWHERE
A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.
B. Individual Specifications Sections: Specific requirements for operation and maintenance data.

1.3 QUALITY ASSURANCE
A. Prepare instructions and data by personnel experienced in maintenance and operation of described products.

1.4 FORMAT
A. Prepare data in the form of an instructional manual.
B. Binders: Commercial quality, 8-1/2 by 11 inch three ring binders with plastic covers. When multiple binders are used, correlate data into related consistent groupings.
C. Cover: Identify each binder with typed or printed title OPERATION AND MAINTENANCE INSTRUCTIONS; identify title of Project; identify subject matter of contents.
D. Provide tabbed flyleaf, indexed for each separate product and system, with typed description of product and major component parts of equipment.
E. Text: Manufacturer’s printed data or typewritten data.
F. Drawings: Provide with reinforced punched binder tab. Bind in with text; fold larger drawings to size of text pages.
G. Contents: Prepare a Table of Contents for each volume, with each Product or system description identified, in three parts as follows:
 1. Part 1: Directory, listing names, addresses, and telephone numbers of Design Professional, Contractor, Subcontractors, and major equipment suppliers.
 2. Part 2: Operation and maintenance instructions, arranged by system and subdivided by specification section. For each category, identify names, addresses and telephone numbers of Subcontractors and suppliers. Identify the following:
 a. Significant design criteria.
 b. List of equipment.
 c. Parts list for each component.
d. Operating instructions.
e. Maintenance equipment for equipment and systems.
f. Maintenance instructions for [special] finishes, including recommended cleaning methods and materials, and special precautions identifying detrimental agents.

3. Part 3 - Project documents and certificates, including the following:
 a. Shop drawings and product data.
 b. Air and water balance reports.
 c. Certificates.
 d. Photocopies of warranties and bonds.

H. Data
 1. For Each Product or System - List names, addresses and telephone numbers of Subcontractors and suppliers, including local source of supplies and replacement parts.
 2. Product Data - Mark each sheet to clearly identify specific products and component parts, and data applicable to installation. Delete inapplicable information.
 3. Drawings - Supplement product data to illustrate relations of component parts of equipment and systems, to show control and flow diagrams. Do not use Project Record Documents as maintenance drawing.

1.5 MANUAL FOR MATERIALS AND FINISHES
 A. Building Products, Applied Materials, and Finishes: Include product data, with catalog number, size, composition, and color and texture designations. Provide information for re-ordering custom manufactured products.
 B. Instructions for Care and Maintenance: Include manufacturer’s recommendations for cleaning agents and methods, precautions against detrimental agents and methods, and recommended schedule for cleaning and maintenance.
 D. Additional Requirements: As specified in individual Product Specification sections.

1.6 MANUAL FOR EQUIPMENT AND SYSTEMS
 A. Each Item of Equipment and Each System: Include description of unit or system, and component parts. Identify function, normal operating characteristics, and limiting conditions. Include performance curves, with engineering data and tests, and complete nomenclature and model number of replaceable parts.
 B. Panelboard Circuit Directories - Provide electrical service characteristics, controls, and communications.
 C. Include color-coded wiring diagrams as installed.
D. Operating Procedures - Include start-up, break-in, and routine normal operating instructions and sequences. Include regulation, control, stopping, shutdown and emergency instructions. Include summer, winter, and any special operating instructions.

E. Maintenance Requirements: Include routine procedures and guide for disassembly, repair, and reassembly instructions; and alignment, adjusting, balancing, and checking instructions.

F. Troubleshooting: Include step-by-step chart listing common problems with appropriate repairs.

G. Provide servicing and lubrication schedule, and list of lubricants required.

H. Include manufacturer’s printed operation and maintenance instructions.

I. Include sequences of operation by controls manufacturer.

J. Provide original manufacturer’s parts list, illustrations, assembly drawings, and diagrams required for maintenance.

K. Provide control diagrams by controls manufacturer as installed.

L. Provide charts of valve tag numbers, with location and function of each valve, keyed to flow and control diagrams.

M. Provide list of original manufacturer’s spare parts, current prices, and recommended quantities to be maintained in storage.

N. Include test and balancing reports as specified.

O. Additional Requirements - As specified in individual Product specification sections.

P. Where the complexity of machinery is such that regular maintenance by a specialty service company is normal, or may be required by law, give notice thereof in writing.

1.7 INSTRUCTION OF CITY PERSONNEL

A. Before final inspection, instruct City’s designated personnel in operation, adjustment, and maintenance of products, equipment, and systems, at agreed upon times.

B. For equipment requiring seasonal operation, perform instructions for other seasons within six (6) months.

C. Use operation and maintenance manuals as basis for instruction. Review contents of manual with personnel in detail to explain all aspects of operation and maintenance.

D. Prepare and insert additional data in Operation and Maintenance Manual when need for such data becomes apparent during instruction.

1.8 SUBMITTALS

A. For equipment, or component parts of equipment put into service during construction and operated by City, submit documents within ten days after acceptance.

B. Submit 2 copies of completed volumes fifteen (15) days prior to final inspection. This copy will be reviewed and returned after final observation, with comments. Revise content of all document sets as required prior to final submission.
C. Submit three (3) sets of revised final volumes in final form prior to or coincidental with Final Application for Payment.

PART 2 - PRODUCTS Not Used
PART 3 - EXECUTION Not Used

- END -
PART 1 GENERAL

1.1 DESCRIPTION OF WORK
A. This Section describes each Prime Contractor’s procedural requirements for executing, assembling and submitting warranties.

1.2 RELATED WORK SPECIFIED ELSEWHERE
A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.
B. Individual Specification sections requiring warranties or service/maintenance contracts.

1.3 SUBMITTAL REQUIREMENTS
A. Submit two (2) sets of original signed copies of warranties, bonds, service and maintenance contracts, executed by the respective manufacturers, suppliers, and subcontractors.
B. Contents - Neatly type, in orderly sequence, the following information for each item.
 1. Product or work item.
 2. Subcontractor supplier and manufacturers names, addresses, and telephone numbers.
 3. Date of beginning and duration time of warranty, bond, or service and maintenance contract.
 4. Proper procedure in case of failure.
 5. Instances which might affect the validity of warranty or bond.
C. Bind each set in 8 1/2 inch by 11 inch commercial quality, three-ring binders with plastic covers. Identify each binder with typed or printed title “Warranties” with title of project and location.

1.4 TIME OF SUBMITTALS
A. For equipment or component parts of equipment placed into service during progress of construction, submit documents within ten (10) days after inspection and acceptance.
B. Make other submittals within ten (10) days after Date of Substantial Completion, prior to final request for payment.
C. For items of work, where acceptance is delayed materially beyond the Date of Substantial Completion, provide updated submittal within ten (10) days after acceptance, listing the date of acceptance as the start of the warranty period.

PART 2 PRODUCTS Not Used
PART 3 EXECUTION Not Used

- END -
PART 1 GENERAL

1.1 DESCRIPTION OF WORK

A. This Section describes each Prime Contractor’s administrative and procedural requirements for recording final product and material selections, changes to the Contract, and recording Work concealed by subsequent construction.

1.2 RELATED WORK SPECIFIED ELSEWHERE

A. Applicable provisions of Bidding Requirements, Contract Requirements in Division 0 and all applicable Division 1 sections.

1.3 MAINTENANCE OF DOCUMENTS

A. Maintain at job site, one (1) copy of record documents including Drawings, Specifications, Addenda, Change Orders and other modifications, Shop Drawings, product data and samples.

B. In addition, maintain one (1) copy of field orders or written instructions, field test records, testing and inspection reports, progress reports, meeting minutes and construction photographs.

C. Maintain documents in a clean, dry, legible condition and in good order.

D. Make documents available at all times for inspection.

E. Review documents at progress meetings.

1.4 RECORDING

A. Neatly label each document and binder with "Project Record" and project name and location.

B. Record information concurrently with construction progress.

C. Do not conceal any work until required information is recorded.

D. Record Construction Drawings and Shop Drawings: Mark the set to show the actual installation where the installation varies substantially from the Work as originally shown. Mark whichever drawing is most capable of showing conditions fully and accurately; where Shop Drawings are used, record a cross-reference at the corresponding location on the Contract Drawings. Give particular attention to concealed elements that would be difficult to measure and record at a later date.

1. Note horizontal and vertical locations of concealed elements, referenced to permanent, visible features.

2. Note field changes of dimension and detail.

3. Note details not on original Contract Drawings.
E. Record Project Manual: Mark to show substantial variations in actual Work performed in comparison with the text of the original. Give particular attention to substitutions, selection of options and similar information on elements that are concealed or cannot otherwise be readily discerned later by direct observation. Note related record drawing information and Product Data.

F. Record Product Data: Maintain one copy of each Product Data submittal. Mark documents to show significant variations in actual Work performed in comparison with information submitted. Give particular attention to concealed products and portions of the Work that cannot otherwise be readily discerned later by direct observation. Note related Change Orders and mark-up of record drawings and Specifications.

1.5 SUBMITTALS

A. Preceding or coincidental with the final pay application, submit the following:
B. Record Construction Drawings: [One (1) set] of reproducible mylar transparencies showing all notations specified above. Transparencies of the Design Professional’s drawings may be used for this purpose upon reimbursement of the printing costs to the Design Professional.
C. Record Shop Drawings: One (1) copy of any shop drawings.
D. Record Project Manual: One (1) copy bound in 3 ring binders.
E. Record Product Data: One (1) copy organized by CSI format bound in 3 ring binders.
F. If review of Record Documents reveals noncompliance with Contract Documents, Contractor shall correct deficiencies and resubmit.

PART 2 PRODUCTS Not Used

PART 3 EXECUTION Not Used

- END -
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements and procedures for compliance with USGBC's LEED prerequisites and credits needed for Project to obtain LEED Certified certification based on USGBC's "LEED Version 4.1 for Interior Design and Construction" (hereafter, LEED v4.1 ID+C).

1. Specific requirements for LEED are also included in other Sections.
2. Other LEED prerequisites and credits needed to obtain LEED certification depend on product selections and may not be specifically identified as LEED requirements. Compliance with requirements needed to obtain LEED prerequisites and credits may be used as one criterion to evaluate substitution requests and comparable product requests.
3. A copy of LEED Project checklist shall be provided upon award of contract.

a. Some LEED prerequisites and credits needed to obtain indicated LEED certification depend on Architect's design and other aspects of Project that are not part of the Work of the Contract.

1.3 DEFINITIONS

A. Chain-of-Custody Certificates: Certificates signed by manufacturers certifying that wood used to make products was obtained from forests certified by an FSC-accredited certification body to comply with FSC STD-01-001. Certificates shall include evidence that manufacturer is certified for chain of custody by an FSC-accredited certification body.

B. Cradle-to-Gate Assessment: Analysis of a product's partial life-cycle from extraction (cradle) to gate (factory completion prior to distribution).

C. LEED: USGBC's "LEED Version 4 for Interior Design and Construction." Definitions that are a part of this document apply to this Section.

D. Life-Cycle Assessment: Evaluation of environmental impacts of a product from cradle to gate, defined by ISO 14040 and ISO 14044.

E. Life-Cycle Inventory: Database that defines environmental input and output for each step in a material or assembly's life cycle.
F. Recycled Content: The recycled content value of a material assembly shall be determined by weight. The recycled fraction of the assembly is then multiplied by the cost of assembly to determine the recycled content value.

1. "Postconsumer" material is defined as waste material generated by households or by commercial, industrial, and institutional facilities in their role as end users of the product, which can no longer be used for its intended purpose.
2. "Preconsumer" material is defined as material diverted from the waste stream during the manufacturing process. Reutilization of materials (such as rework, regrind, or scrap generated in a process and capable of being reclaimed within the same process that generated it) is excluded.

G. Regional Materials: Materials that have been extracted, harvested, or recovered, as well as manufactured, within 100 miles of Project site. If only a fraction of a product or material is extracted/harvested/recovered and manufactured locally, then only that percentage (by weight) shall contribute to the regional value.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site. Review LEED requirements and action plans for compliance with requirements.

1.5 ADMINISTRATIVE REQUIREMENTS

A. Submit documentation to USGBC and respond to questions and requests from USGBC about its LEED prerequisites and credits that are Contractor's responsibility, that depend on product selection or product qualities, or that depend on Contractor's procedures, until USGBC has made its determination on Project's LEED certification application.

1. Document correspondence with USGBC as informational submittals.

1.6 ACTION SUBMITTALS

A. General: Submit additional sustainable design submittals required by other Sections.

B. Sustainable design submittals are in addition to other submittals.

1. If submitted item is identical to that proposed to comply with other requirements, include additional copy with other submittal as a record of compliance with indicated LEED instead of separate sustainable design submittal. Mark additional copy "Sustainable design submittal."

C. Sustainable Design Documentation Submittals:

1. Environmental Product Declarations (EPDs) complying with LEED requirements.
2. Documentation for products that comply with LEED requirements for multi-attribute optimization.
a. Include documentation for regional materials, indicating location and distance from Project of material manufacturer and point of extraction, harvest, or recovery for each raw material and costs of regional materials.

3. Sustainability reports for products that comply with LEED requirements for raw material and source extraction reporting.

4. Documentation for products that comply with LEED requirements for leadership extraction practices. Include the following:

 a. Product Data and certification letter from product manufacturers, indicating participation in an extended producer responsibility program and statement of costs.
 b. Product Data and certification for bio-based materials, indicating that they comply with requirements. Include statement of costs.
 c. Product Data and chain-of-custody certificates for products containing certified wood. Include invoices.
 d. Receipts for salvaged and refurbished materials used for Project, indicating sources and costs.
 e. Product Data and certification letter from product manufacturers, indicating percentages by weight of postconsumer and preconsumer recycled content for products having recycled content. Include statement of costs.
 f. Documentation for regional materials, indicating location and distance from Project of material manufacturer and point of extraction, harvest, or recovery for each raw material and costs of regional materials.

5. Material ingredient reports for products that comply with LEED requirements for material ingredient reporting.

6. Documentation for products that comply with LEED requirements for material ingredient optimization.

7. Documentation for products that comply with LEED requirements for product manufacturer supply chain optimization.

 a. Include documentation for regional materials, indicating location and distance from Project of material manufacturer and point of extraction, harvest, or recovery for each raw material and costs of regional materials.

8. Documentation complying with Section 017419 "Construction Waste Management and Disposal."

9. Product Data for adhesives and sealants used inside weatherproofing system, indicating VOC content and laboratory test reports showing compliance with requirements for low-emitting materials.

10. Product Data for paints and coatings used inside weatherproofing system, indicating VOC content and laboratory test reports showing compliance with requirements for low-emitting materials.

11. Laboratory test reports for flooring, indicating compliance with requirements for low-emitting materials.

12. Laboratory test reports for products containing composite wood or agrifiber products or wood glues, indicating compliance with requirements for low-emitting materials.

13. Laboratory test reports for ceilings, walls, and thermal insulation, indicating compliance with requirements for low-emitting materials.

14. Construction Indoor-Air-Quality (IAQ) Management:
a. Construction IAQ management plan.
b. Product Data for temporary filtration media.
c. Product Data for filtration media used during occupancy.
d. Construction Documentation: Six photographs at three different times during construction period, along with brief description of SMACNA approach employed, documenting implementation of IAQ management measures, including protection of ducts and on-site stored or installed absorptive materials.

15. Calculations performed using the LEED calculators to determine the value of the materials being submitted for LEED acceptance.

16. IAQ Assessment:
 a. Signed statement describing the building air flush-out procedures, including dates when flush-out was begun and completed and statement that filtration media was replaced after flush-out.
 b. Product Data for filtration media used during flush-out and during occupancy.
 c. Report from testing and inspecting agency, indicating results of IAQ testing and documentation that show compliance with IAQ testing procedures and requirements.

1.7 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Sustainability Consultant.

B. Project Materials Cost Data: Provide statement indicating total cost for materials used for Project. Costs exclude labor, overhead, and profit. Include breakout of costs for the following categories of items:
 1. Plumbing.
 2. Mechanical.
 3. Electrical.
 4. Specialty items, such as elevators and equipment.

C. Sustainable Design Action Plans: Provide preliminary submittals within 14 days of date established for the Notice to Proceed, indicating how the following requirements will be met:
 1. List of proposed products with EPDs.
 2. List of proposed products complying with requirements for multi-attribute optimization.
 3. List of proposed products complying with requirements for raw material and source extraction reporting.
 4. List of proposed products complying with requirements for leadership extraction practices.
 5. List of proposed products complying with requirements for material ingredient reporting.
 6. List of proposed products complying with requirements for material ingredient optimization.
 7. List of proposed products complying with requirements for product manufacturer supply chain optimization.
 8. Waste management plan complying with Section 017419 "Construction Waste Management and Disposal."

D. Sustainable Design Progress Reports: Concurrent with each Application for Payment, submit reports comparing actual construction and purchasing activities with sustainable design action plans.

1.8 QUALITY ASSURANCE

A. Sustainability Consultant: Engage an experienced LEED Accredited Professional to coordinate LEED requirements. Sustainability Consultant may also serve as waste management coordinator.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Provide products and procedures necessary to obtain LEED credits indicated as Contractor's responsibility. Although other Sections may specify some requirements that contribute to these LEED credits, Contractor shall provide additional materials and procedures necessary to obtain LEED credits indicated.

B. At least 20 different products from at least five different manufacturers shall have EPDs that comply with LEED requirements. Industry-wide (generic) EPDs shall be valued as one-half of a product.

C. At least 50 percent, by cost, of permanently installed products for Project shall comply with LEED requirements for multi-attribute optimization.

D. At least 20 different products from at least five different manufacturers shall have publicly released reports that comply with LEED requirements for raw material source and extraction reporting. Self-declared reports by manufacturers shall be valued as one-half of a product.

E. At least 20 different products from at least five different manufacturers shall comply with LEED requirements for material ingredient reporting.

F. At least 25 percent, by cost, of permanently installed products for Project shall comply with LEED requirements for material ingredient optimization.

G. At least 25 percent, by cost, of permanently installed products for Project shall comply with LEED requirements for product manufacturer supply chain optimization.

H. Not less than 25 percent of building materials, by cost, shall comply with LEED requirements for leadership extraction practices.

1. Structure and enclosure materials shall not be more than 30 percent, by cost, of materials used to comply with this requirement.
1. Extended Producer Responsibility Program: Not less than `<Insert number>` percent of building materials, by cost, shall be manufactured by a participant in an extended producer responsibility program.

2.2 LOW-EMITTING MATERIALS

A. Paints and Coatings: For field applications that are inside weatherproofing system, paints and coatings shall comply with VOC content limits of authorities having jurisdiction and the following VOC content limits:

1. Flat Paints and Coatings: 50 g/L.
2. Nonflat Paints and Coatings: 50 g/L.
3. Dry-Fog Coatings: 150 g/L.
4. Primers, Sealers, and Undercoaters: 100 g/L.
5. Rust-Preventive Coatings: 100 g/L.
6. Zinc-Rich Industrial Maintenance Primers: 100 g/L.
7. Pretreatment Wash Primers: 420 g/L.
8. Clear Wood Finishes, Varnishes: 275 g/L.
9. Clear Wood Finishes, Lacquers: 275 g/L.
10. Floor Coatings: 50 g/L.
11. Shellacs, Clear: 730 g/L.
12. Shellacs, Pigmented: 550 g/L.
13. Stains: 100 g/L.

B. Paints and Coatings: For field applications that are inside weatherproofing system, 90 percent of paints and coatings shall comply with requirements of California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

C. Adhesives and Sealants: For field applications that are inside weatherproofing system, paints and coatings shall comply with VOC content limits of authorities having jurisdiction and the following VOC content limits:

1. Wood Glues: 30 g/L.
2. Metal-to-Metal Adhesives: 30 g/L.
3. Adhesives for Porous Materials (except Wood): 50 g/L.
4. Subfloor Adhesives: 50 g/L.
5. Plastic Foam Adhesives: 50 g/L.
6. Carpet Adhesives: 50 g/L.
7. Carpet Pad Adhesives: 50 g/L.
8. VCT and Asphalt Tile Adhesives: 50 g/L.
9. Cove Base Adhesives: 50 g/L.
10. Gypsum Board and Panel Adhesives: 50 g/L.
11. Rubber Floor Adhesives: 60 g/L.
12. Ceramic Tile Adhesives: 65 g/L.
13. Multipurpose Construction Adhesives: 70 g/L.
14. Fiberglass Adhesives: 80 g/L.
15. Contact Adhesive: 80 g/L.
16. Structural Glazing Adhesives: 100 g/L.
17. Wood Flooring Adhesive: 100 g/L.
18. Structural Wood Member Adhesive: 140 g/L.
19. Single-Ply Roof Membrane Adhesive: 250 g/L.
20. Special-Purpose Contact Adhesive (Used to Bond Melamine-Covered Board, Metal, Unsupported Vinyl, Rubber, or Wood Veneer 1/16 Inch or Less in Thickness to Any Surface): 250 g/L.
21. Top and Trim Adhesive: 250 g/L.
22. Plastic Cement Welding Compounds: 250 g/L.
23. ABS Welding Compounds: 325 g/L.
24. CPVC Welding Compounds: 490 g/L.
25. PVC Welding Compounds: 510 g/L.
26. Adhesive Primer for Plastic: 550 g/L.
27. Sheet-Applied Rubber Lining Adhesive: 850 g/L.
30. Special-Purpose Aerosol Adhesive (All Types): 70 percent by weight.
31. Other Adhesives: 250 g/L.
32. Architectural Sealants: 250 g/L.
33. Nonmembrane Roof Sealants: 300 g/L.
34. Single-Ply Roof Membrane Sealants: 450 g/L.
35. Other Sealants: 420 g/L.
36. Sealant Primers for Nonporous Substrates: 250 g/L.
37. Sealant Primers for Porous Substrates: 775 g/L.
38. Modified Bituminous Sealant Primers: 500 g/L.
39. Other Sealant Primers: 750 g/L.

D. Adhesives and Sealants: For field applications that are inside weatherproofing system, 90 percent of adhesives and sealants shall comply with requirements of California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

F. Composite Wood, Agrifiber Products, and Adhesives: Shall be made using ultra-low-emitting formaldehyde resins as defined in California Air Resources Board's "Airborne Toxic Control Measure to Reduce Formaldehyde Emissions from Composite Wood Products" or shall be made with no added formaldehyde.

PART 3 - EXECUTION

3.1 NONSMOKING BUILDING

A. Smoking is not permitted within the building or within 25 ft. of entrances, operable windows, or outdoor-air intakes.
3.2 CONSTRUCTION WASTE MANAGEMENT

A. Comply with Section 017419 "Construction Waste Management and Disposal."

3.3 CONSTRUCTION INDOOR-AIR-QUALITY (IAQ) MANAGEMENT

A. Comply with SMACNA's "SMACNA IAQ Guideline for Occupied Buildings under Construction."

1. If Owner authorizes use of permanent heating, cooling, and ventilating systems during construction period as specified in Section 015000 "Temporary Facilities and Controls," install MERV 8 filter media at each return-air inlet for the air-handling system used during construction.

2. Replace air filters immediately prior to occupancy with new filters specified in Section 234100 "Particulate Air Filtration."

3.4 INDOOR-AIR-QUALITY (IAQ) ASSESSMENT

A. Flush-Out:

1. After construction ends, prior to occupancy and with all interior finishes installed, perform a building flush-out by supplying a total volume of 14,000 cu. ft. of outdoor air per sq. ft. of floor area while maintaining an internal temperature of at least 60 deg F and a relative humidity of no higher than 60 percent.

 a. <Insert operating requirements>.

2. If occupancy is desired prior to flush-out completion, the space may be occupied following delivery of a minimum of 3500 cu. ft. of outdoor air per sq. ft. of floor area to the space. Once a space is occupied, it shall be ventilated at a minimum rate of 0.30 cfm per sq. ft. of outside air or the design minimum outside air rate, whichever is greater. During each day of the flush-out period, ventilation shall begin a minimum of three hours prior to occupancy and continue during occupancy. These conditions shall be maintained until a total of 14,000 cu. ft./sq. ft. of outside air has been delivered to the space.

 a. <Insert operating requirements>.

B. Air-Quality Testing: Owner will engage testing agency to perform the following:

1. Conduct baseline IAQ testing, after construction ends and prior to occupancy, using testing protocols consistent with the EPA's "Compendium of Methods for the Determination of Air Pollutants in Indoor Air," and as additionally detailed in USGBC's "LEED Reference Guide for Interior Design and Construction v4."

2. Demonstrate that contaminant maximum concentrations listed below are not exceeded:

 a. Formaldehyde: 27 ppb.
 b. Particulates (PM10): 50 mcg/cu. m.
 c. Ozone: 0.075 ppm, according to ASTM D5149.
 d. Total Volatile Organic Compounds (TVOC): 500 mcg/cu. m.
e. 4-Phenylcyclohexene (4-PH): 6.5 mcg/cu. m.
f. Carbon Monoxide: 9 ppm and no greater than 2 ppm above outdoor levels.
g. Target Chemicals in California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers," Table 4-1 (except formaldehyde).

3. For each sampling point where maximum concentration limits are exceeded, take corrective action until requirements have been met.

4. Air-sample testing shall be conducted as follows:

a. All measurements shall be conducted prior to occupancy but during normal occupied hours, and with building ventilation system starting at the normal daily start time and operated at the minimum outside airflow rate for the occupied mode throughout the duration of the air testing.

b. Building shall have all interior finishes installed including, but not limited to, millwork, doors, paint, carpet, and acoustic tiles. Nonfixed furnishings, such as workstations and partitions, are required to be in place for the testing.

c. Number of sampling locations varies depending on the size of building and number of ventilation systems. For each portion of building served by a separate ventilation system, the number of sampling points shall not be less than one per 5000 sq. ft.

d. Air samples shall be collected between 3 and 6 ft. from the floor to represent the breathing zone of occupants, and over a minimum four-hour period.
SECTION 02 41 19 - SELECTIVE DEMOLITION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Demolition and removal of selected portions of building or structure.
2. Salvage of existing items to be reused or recycled.

1.3 RELATED REQUIREMENTS

A. Section 011000 "Summary" for restrictions on use of the premises, Owner-occupancy requirements, and phasing requirements.

B. Section 017300 "Execution" for cutting and patching procedures.

C. Comply with requirements in Section 013516 "Alteration Project Procedures."

1.4 DEFINITIONS

A. Remove: Detach items from existing construction and dispose of them off-site unless indicated to be salvaged or reinstalled.

B. Remove and Salvage: Detach items from existing construction, in a manner to prevent damage, and deliver to Owner ready for reuse or store.

C. Remove and Reinstall: Detach items from existing construction, in a manner to prevent damage, prepare for reuse, and reinstall where indicated.

D. Existing to Remain: Leave existing items that are not to be removed and that are not otherwise indicated to be salvaged or reinstalled.

E. Dismantle: To remove by disassembling or detaching an item from a surface, using gentle methods and equipment to prevent damage to the item and surfaces; disposing of items unless indicated to be salvaged or reinstalled.
1.5 MATERIALS OWNERSHIP

A. Unless otherwise indicated, demolition waste becomes property of Contractor.

B. Historic items, relics, antiques, and similar objects including, but not limited to, cornerstones and their contents, commemorative plaques and tablets, and other items of interest or value to Owner that may be uncovered during demolition remain the property of Owner.

1. Carefully salvage in a manner to prevent damage and promptly return to Owner.

1.6 PREINSTALLATION MEETINGS

A. Predemolition Conference: Conduct conference at Project site.

1. Inspect and discuss condition of construction to be selectively demolished.
2. Review structural load limitations of existing structure.
3. Review and finalize selective demolition schedule and verify availability of materials, demolition personnel, equipment, and facilities needed to make progress and avoid delays.
4. Review requirements of work performed by other trades that rely on substrates exposed by selective demolition operations.
5. Review areas where existing construction is to remain and requires protection.

1.7 INFORMATIONAL SUBMITTALS

A. Qualification Data: For refrigerant recovery technician.

C. Proposed Protection Measures: Submit report, including Drawings, that indicates the measures proposed for protecting individuals and property, for environmental protection, for dust control and, for noise control. Indicate proposed locations and construction of barriers.

D. Schedule of selective demolition activities with starting and ending dates for each activity.

E. Predemolition photographs or video.

F. Statement of Refrigerant Recovery: Signed by refrigerant recovery technician responsible for recovering refrigerant, stating that all refrigerant that was present was recovered and that recovery was performed according to EPA regulations. Include name and address of technician and date refrigerant was recovered.

G. Warranties: Documentation indicating that existing warranties are still in effect after completion of selective demolition.

1.8 QUALITY ASSURANCE

A. Refrigerant Recovery Technician Qualifications: Certified by an EPA-approved certification program.
1.9 FIELD CONDITIONS

A. Owner will occupy portions of building immediately adjacent to selective demolition area. Conduct selective demolition so Owner's operations will not be disrupted.

B. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.

C. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with selective demolition.

D. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.
 1. If suspected hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Hazardous materials will be removed by Owner under a separate contract.

E. Storage or sale of removed items or materials on-site is not permitted.

F. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.
 1. Maintain fire-protection facilities in service during selective demolition operations.

G. Arrange selective demolition schedule so as not to interfere with Owner's operations.

1.10 WARRANTY

A. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during selective demolition, by methods and with materials and using approved contractors so as not to void existing warranties.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.

B. Standards: Comply with ASSE A10.6 and NFPA 241.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Verify that utilities have been disconnected and capped before starting selective demolition operations.
B. Perform an engineering survey of condition of building to determine whether removing any element might result in structural deficiency or unplanned collapse of any portion of structure or adjacent structures during selective building demolition operations.
C. Survey of Existing Conditions: Record existing conditions by use of preconstruction photographs or video.
 1. Comply with requirements specified in Section 013233 "Photographic Documentation."
 2. Inventory and record the condition of items to be removed and salvaged. Provide photographs or video of conditions that might be misconstrued as damage caused by salvage operations.

3.2 PREPARATION
A. Refrigerant: Before starting demolition, remove refrigerant from mechanical equipment according to 40 CFR 82 and regulations of authorities having jurisdiction.

3.3 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS
A. Existing Services/Systems to Remain: Maintain services/systems indicated to remain and protect them against damage.
B. Existing Services/Systems to Be Removed, Relocated, or Abandoned: Locate, identify, disconnect, and seal or cap off utility services and mechanical/electrical systems serving areas to be selectively demolished.
 1. Arrange to shut off utilities with utility companies.
 2. If services/systems are required to be removed, relocated, or abandoned, provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building.
 3. Disconnect, demolish, and remove fire-suppression systems, plumbing, and HVAC systems, equipment, and components indicated on Drawings to be removed.
 a. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 b. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material and leave in place.
 c. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 d. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
e. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.

f. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.

g. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material and leave in place.

3.4 PROTECTION

A. Temporary Protection: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.

1. Provide protection to ensure safe passage of people around selective demolition area and to and from occupied portions of building.

2. Protect walls, ceilings, floors, and other existing finish work that are to remain or that are exposed during selective demolition operations.

B. Temporary Shoring: Design, provide, and maintain shoring, bracing, and structural supports as required to preserve stability and prevent movement, settlement, or collapse of construction and finishes to remain, and to prevent unexpected or uncontrolled movement or collapse of construction being demolished.

C. Remove temporary barricades and protections where hazards no longer exist.

3.5 SELECTIVE DEMOLITION

A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:

1. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. Use hand tools or small power tools designed for sawing or grinding, not hammering and chopping. Temporarily cover openings to remain.

2. Cut or drill from the exposed or finished side into concealed surfaces to avoid marring existing finished surfaces.

3. Use of open-flame equipment is not permitted. Maintain portable fire-suppression devices during heat-generating equipment operations.

4. Maintain fire watch during and for at least 2 hours after heat-generating equipment operations. Comply with requirements in Section 013516 "Alteration Project Procedures."

5. Locate selective demolition equipment and remove debris and materials so as not to impose excessive loads on supporting walls, floors, or framing.

B. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
C. Removed and Salvaged Items.
 1. Clean salvaged items.
 2. Pack or crate items after cleaning. Identify contents of containers.
 3. Store items in a secure area until delivery to Owner.
 4. Transport items to Owner's storage area on-site.
 5. Protect items from damage during transport and storage.

D. Removed and Reinstalled Items:
 1. Clean and repair items to functional condition adequate for intended reuse.
 2. Pack or crate items after cleaning and repairing. Identify contents of containers.
 3. Protect items from damage during transport and storage.
 4. Reinstall items in locations indicated. Comply with installation requirements for new materials and equipment. Provide connections, supports, and miscellaneous materials necessary to make item functional for use indicated.

E. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by architect, items may be removed to a suitable, protected storage location during selective demolition and cleaned and reinstalled in their original locations after selective demolition operations are complete.

3.6 SELECTIVE DEMOLITION PROCEDURES FOR SPECIFIC MATERIALS

A. Concrete: Demolish in sections. Cut concrete full depth at junctures with construction to remain and at regular intervals using power-driven saw, and then remove concrete between saw cuts.

B. Masonry: Demolish in small sections. Cut masonry at junctures with construction to remain, using power-driven saw, and then remove masonry between saw cuts.

C. Resilient Floor Coverings: Remove floor coverings and adhesive according to recommendations in RFCI's "Recommended Work Practices for the Removal of Resilient Floor Coverings." Do not use methods requiring solvent-based adhesive strippers.

3.7 DISPOSAL OF DEMOLISHED MATERIALS

A. Remove demolition waste materials from Project site and recycle or dispose of them according to Section 017419 "Construction Waste Management and Disposal."
 1. Do not allow demolished materials to accumulate on-site.
 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
 3. Remove debris from elevated portions of building by chute, hoist, or other device that will convey debris to grade level in a controlled descent.
 4. Comply with requirements specified in Section 017419 "Construction Waste Management and Disposal."

B. Burning: Do not burn demolished materials.
3.8 CLEANING

A. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.

END OF SECTION 02 41 19
SECTION 05 12 00 – STRUCTURAL STEEL FRAMING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes:
 1. Structural steel.
 2. Architecturally exposed structural steel.
 3. Prefabricated building columns.

B. Related Sections:
 1. Division 01 Section "Quality Requirements" for independent testing agency procedures and administrative requirements.
 2. Division 05 Section "Architecturally Exposed Steel Framing" for additional requirements for Architecturally Exposed Structural Steel.
 3. Division 05 Section "Steel Decking" for field installation of shear connectors through deck.
 4. Division 05 Section "Metal Fabrications" for steel lintels and shelf angles not attached to structural-steel frame, miscellaneous steel fabrications, and other metal items not defined as structural steel.
 5. Division 05 Section "Metal Stairs."
 6. Division 09 painting Sections and Division 09 Section "High-Performance Coatings" for surface preparation and priming requirements.
 7. Division 13 Section "Metal Building Systems" for structural steel.

1.3 DEFINITIONS

A. Structural Steel: Elements of structural-steel frame, as classified by AISC 303, "Code of Standard Practice for Steel Buildings and Bridges."

B. Architecturally Exposed Structural Steel: Structural steel designated as architecturally exposed structural steel in the Contract Documents.

C. Heavy Sections: Rolled and built-up sections as follows:
 1. Shapes included in ASTM A 6/A 6M with flanges thicker than 1-1/2 inches (38 mm).
 2. Welded built-up members with plates thicker than 2 inches (50 mm).
 3. Column baseplates thicker than 2 inches (50 mm).
1.4 PERFORMANCE REQUIREMENTS

A. Connections: Provide details of connections required by the Contract Documents to be selected or completed by structural-steel fabricator, including comprehensive engineering design by a qualified professional engineer, to withstand loads indicated and comply with other information and restrictions indicated.

1. Select and complete connections using schematic details indicated and AISC 360.
2. Use ASD; data are given at service-load level.

B. Moment Connections: Type PR, partially and FR, fully restrained.

C. Construction: As indicated on Contract Documents.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. LEED Submittals:

1. Product Data for Credit MR 4: For products having recycled content, documentation indicating percentages by weight of postconsumer and preconsumer recycled content. Include statement indicating cost for each product having recycled content.
2. Laboratory Test Reports for Credit IEQ 4: For primers, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Shop Drawings: Show fabrication of structural-steel components. The contractor shall deliver to the engineer, at the completion of the job, one (1) electronic version of the final field copies of all steel erection drawing shop drawings.

1. Include details of cuts, connections, splices, camber, holes, and other pertinent data.
2. Include embedment drawings.
3. Indicate welds by standard AWS symbols, distinguishing between shop and field welds, and show size, length, and type of each weld. Show backing bars that are to be removed and supplemental fillet welds where backing bars are to remain.
4. Indicate type, size, and length of bolts, distinguishing between shop and field bolts. Identify pretensioned and slip-critical high-strength bolted connections.
5. For structural-steel connections indicated to comply with design loads, include structural design data signed and sealed by the qualified professional engineer responsible for their preparation.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer, Fabricator, Professional Engineer, and Testing Agency.

B. Welding certificates.
C. Paint Compatibility Certificates: From manufacturers of topcoats applied over shop primers, certifying that shop primers are compatible with topcoats.

D. Mill test reports for structural steel, including chemical and physical properties.

E. Product Test Reports: For the following:
 1. Bolts, nuts, and washers including mechanical properties and chemical analysis.
 2. Direct-tension indicators.
 3. Tension-control, high-strength bolt-nut-washer assemblies.
 4. Shear stud connectors.
 5. Shop primers.

F. Source quality-control reports.

1.7 QUALITY ASSURANCE

A. Fabricator Qualifications: A qualified fabricator that participates in the AISC Quality Certification Program and is designated an AISC-Certified Plant, Category STD.

B. Shop-Painting Applicators: Qualified according to AISC's Sophisticated Paint Endorsement P3 or SSPC-QP 3, "Standard Procedure for Evaluating Qualifications of Shop Painting Applicators."

C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

D. Comply with applicable provisions of the following specifications and documents:
 1. AISC 303.
 2. AISC 360.
 3. RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."

E. Mockups: Build mockups of architecturally exposed structural steel to set quality standards for fabrication and installation.
 1. Coordinate finish painting requirements with Division 09 painting Sections.
 2. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

F. Preinstallation Conference: Conduct conference at Project site.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Store materials to permit easy access for inspection and identification. Keep steel members off ground and spaced by using pallets, dunnage, or other supports and spacers. Protect steel members and packaged materials from erosion and deterioration.
1. Do not store materials on structure in a manner that might cause distortion, damage, or overload to members or supporting structures. Repair or replace damaged materials or structures as directed.

B. Store fasteners in a protected place in sealed containers with manufacturer's labels intact.

1. Fasteners may be repackaged provided Owner's testing and inspecting agency observes repackaging and seals containers.
2. Clean and relubricate bolts and nuts that become dry or rusty before use.
3. Comply with manufacturers' written recommendations for cleaning and lubricating ASTM F 1852 fasteners and for retesting fasteners after lubrication.

1.9 COORDINATION

A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' recommendations to ensure that shop primers and topcoats are compatible with one another.

B. Coordinate installation of anchorage items to be embedded in or attached to other construction without delaying the Work. Provide setting diagrams, sheet metal templates, instructions, and directions for installation.

PART 2 - PRODUCTS

2.1 STRUCTURAL-STEEL MATERIALS

A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.

B. Recycled Content of Steel Products: Provide products with an average recycled content of steel products so postconsumer recycled content plus one-half of preconsumer recycled content is not less than the following:

1. W-Shapes: 60 percent.
2. Channels, Angles: 60 percent.
3. Plate and Bar: 25 percent.
4. Cold-Formed Hollow Structural Sections: 25 percent.
5. Steel Pipe: 25 percent.
6. All Other Steel Materials: 25 percent.

C. W-Shapes: ASTM A 992/A 992M.

D. Channels, Angles: ASTM A 36/A 36M or as noted on documents.

E. Plate and Bar: ASTM A 36/A 36M or as noted on documents.

F. Corrosion-Resisting Structural Steel, Shapes, Plates, and Bars: ASTM A 588/A 588M, Grade 50 (345).
G. Cold-Formed Hollow Structural Sections: ASTM A 500, Grade C structural tubing, \(F_y = 50 \text{ ksi} \) for square/rectangular sections and \(F_y = 46 \text{ ksi} \) for round sections.

H. Steel Pipe: ASTM A 53/A 53M, Type E or S, Grade B.
 1. Weight Class: As indicated on documents.
 2. Finish: Black, except where indicated to be galvanized.

I. Steel Castings: ASTM A 216/A 216M, Grade WCB with supplementary requirement S11.

J. Steel Forgings: ASTM A 668/A 668M.

K. Welding Electrodes: Comply with AWS requirements.

2.2 BOLTS, CONNECTORS, AND ANCHORS

A. High-Strength Bolts, Nuts, and Washers: ASTM A 325 (ASTM A 325M), Type 1, heavy-hex steel structural bolts; ASTM A 563, Grade C, (ASTM A 563M, Class 8S) heavy-hex carbon-steel nuts; and ASTM F 436 (ASTM F 436M), Type 1, hardened carbon-steel washers; all with plain finish.
 1. Direct-Tension Indicators: ASTM F 959, Type 325 (ASTM F 959M, Type 8.8), compressible-washer type with plain finish.

B. High-Strength Bolts, Nuts, and Washers: ASTM A 490 (ASTM A 490M), Type 1, heavy-hex steel structural bolts or tension-control, bolt-nut-washer assemblies with splined ends; ASTM A 563, Grade DH, (ASTM A 563M, Class 10S) heavy-hex carbon-steel nuts; and ASTM F 436 (ASTM F 436M), Type 1, hardened carbon-steel washers with plain finish.
 1. Direct-Tension Indicators: ASTM F 959, Type 490 (ASTM F 959M, Type 10.9), compressible-washer type with plain finish.

C. Zinc-Coated High-Strength Bolts, Nuts, and Washers: ASTM A 325 (ASTM A 325M), Type 1, heavy-hex steel structural bolts; ASTM A 563, Grade DH (ASTM A 563M, Class 10S) heavy-hex carbon-steel nuts; and ASTM F 436 (ASTM F 436M), Type 1, hardened carbon-steel washers.
 1. Finish: Hot-dip zinc coating.
 2. Direct-Tension Indicators: ASTM F 959, Type 325 (ASTM F 959M, Type 8.8), compressible-washer type with mechanically deposited zinc coating finish.

D. Tension-Control, High-Strength Bolt-Nut-Washer Assemblies: ASTM F 1852, Type 1, heavy-hex or round head assemblies consisting of steel structural bolts with splined ends, heavy-hex carbon-steel nuts, and hardened carbon-steel washers.
 1. Finish: Plain.

E. Shear Connectors: ASTM A 108, Grades 1015 through 1020, headed-stud type, cold-finished carbon steel; AWS D1.1/D1.1M, Type B.
F. Unheaded Anchor Rods: ASTM F1554, Grade 36 (ASTM F1554 Grade 55, weldable can be substituted for Grade 36) or as indicated on documents.
 3. Plate Washers: ASTM A 36/A 36M carbon steel to be used at all column baseplate locations.
 5. Finish: Plain.

G. Headed Anchor Rods: ASTM F 1554, Grade 36 (ASTM F 1554, Grade 55, weldable can be substituted for Grade 36) straight with heavy-hex head, or as indicated on documents.
 2. Plate Washers: ASTM A 36/A 36M carbon steel to be used at all column baseplate locations.

H. Threaded Rods: ASTM A 36/A 36M.
 2. Washers: ASTM F 436 (ASTM F 436M) Type 1, hardened carbon steel.
 3. Finish: Plain.

I. Clevises and/or Turnbuckles: Made from cold-finished carbon steel bars, ASTM A 108, Grade 1035.

J. Eye Bolts and Nuts: Made from cold-finished carbon steel bars, ASTM A 108, Grade 1030.

L. Expansion Anchors: Type and size as indicated on documents. Wedge type, torque-controlled, with impact section to prevent thread damage and wedge ridges to prevent spinning during installation, complete with required nuts, washers, and manufacturer’s installation instructions. All expansion anchors shall be equipped with length identification markings.
 1. Interior Use: For use in conditioned environments free from potential moisture, provide carbon steel anchors with zinc plating in accordance with ASTM B633.
 2. Exposed Use: In exposed, potentially wet, or otherwise corrosive environment, provide anchors of Type 304 or Type 316 stainless steel with stainless steel nuts, and washers of matching alloy group and minimum proof stress equal to or greater than the specified minimum full-size tensile strength of the externally threaded faster. All nuts shall conform to ASTM A563 Grade A unless otherwise specified. Stainless steel anchors shall not be installed in contact with galvanized steel, aluminum, or other galvanically dissimilar metals.
 3. Products: Provide the following:
 a. Hilti Kwik Bolt TZ Expansion Anchor for installation into concrete.
 b. Hilti Kwik Bolt III Expansion Anchor for installation into masonry.
M. Cartridge Injection Adhesive Anchors and rebar doweling: Threaded steel rod or inserts, complete with nuts, washers, polymer, cementitious, epoxy, or hybrid mortar adhesive injection system, and manufacturer’s installation instructions. Type and size as indicated on documents.

1. Interior Use: For use in conditioned environments free from potential moisture, provide threaded carbon steel rods conforming to ISO898, ASTM A36, or ASTM A 193, Grade B7 as indicated on documents.

2. Exposed Use: In exposed, potentially wet or otherwise corrosive environments provide stainless steel anchors, nuts, and washers in accordance with ASTM F593. Provide nuts and washers with matching alloy group and minimum proof stress equal to or greater than the specified minimum full-size tensile strength of the externally threaded fastener. All nuts shall conform with ASTM F594 unless other otherwise specified. Stainless steel anchors shall not be installed in contact with galvanized steel, aluminum, or other galvanically dissimilar metals.

3. Products: Provide the following:
 a. Hilti HAS or HIT threaded rods or rebar (by others) with Hilti HIT HY-150 Adhesive for anchorage to masonry or stone. Hilti HIT HY-20 Adhesive System for anchorage to brick or concrete masonry (with screen tubes).
 b. Hilti HAS, HIS threaded rods or rebar (by others) for doweling with Hilti HIT-RE 500v3 Adhesive Anchoring System for anchorage to concrete.

2.3 PRIMER

A. Low-Emitting Materials: Paints and coatings shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. Primer: Fabricator's standard lead- and chromate-free, nonasphalthic, rust-inhibiting primer, complying with MPI #79 and compatible with topcoat unless otherwise indicated on documents or in Division 09.

C. Galvanizing Repair Paint: MPI#18, MPI#19, or SSPC-Paint 20, ASTM A 780.

2.4 GROUT

A. Metallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, metallic aggregate grout, mixed with water to consistency suitable for application and a 30-minute working time.

B. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

2.5 FABRICATION

A. Structural Steel: Fabricate and assemble in shop to greatest extent possible. Fabricate according to AISC’s "Code of Standard Practice for Steel Buildings and Bridges" and AISC 360.
1. Camber structural-steel members where indicated.
2. Fabricate beams with rolling camber up.
3. Identify high-strength structural steel according to ASTM A 6/ A 6M and maintain markings until structural steel has been erected.
4. Mark and match-mark materials for field assembly.
5. Complete structural-steel assemblies, including welding of units, before starting shop-priming operations.

B. Architecturally Exposed Structural Steel: Comply with fabrication requirements, including tolerance limits, of AISC 303 for structural steel identified as architecturally exposed structural steel.
 1. Fabricate with exposed surfaces smooth, square, and free of surface blemishes including pitting, rust, scale, seam marks, roller marks, rolled trade names, and roughness.
 2. Remove blemishes by filling or grinding or by welding and grinding, before cleaning, treating, and shop priming.

C. Thermal Cutting: Perform thermal cutting by machine to greatest extent possible.
 1. Plane thermally cut edges to be welded to comply with requirements in AWS D1.1/D1.1M.

D. Bolt Holes: Cut, drill, mechanically thermal cut, or punch standard bolt holes perpendicular to metal surfaces.

E. Finishing: Accurately finish ends of columns and other members transmitting bearing loads.

F. Cleaning: Clean and prepare steel surfaces that are to remain unpainted according to SSPC-SP 3, "Power Tool Cleaning."

G. Shear Connectors: Prepare steel surfaces as recommended by manufacturer of shear connectors. Use automatic end welding of headed-stud shear connectors according to AWS D1.1/D1.1M and manufacturer's written instructions.

H. Steel Wall-Opening Framing: Select true and straight members for fabricating steel wall-opening framing to be attached to structural steel. Straighten as required to provide uniform, square, and true members in completed wall framing.

I. Welded Door Frames: Build up welded door frames attached to structural steel. Weld exposed joints continuously and grind smooth. Plug-weld fixed steel bar stops to frames. Secure removable stops to frames with countersunk, machine screws, uniformly spaced not more than 10 inches (250 mm) o.c., unless otherwise indicated on documents.

J. Holes: Provide holes required for securing other work to structural steel and for other work to pass through steel framing members with reinforcing as indicated on documents.
 1. Cut, drill, or punch holes perpendicular to steel surfaces.
 2. Base-Plate Holes: Cut, drill, mechanically thermal cut, or punch holes perpendicular to steel surfaces.
 3. Weld threaded nuts to framing and other specialty items indicated to receive other work.
2.6 SHOP CONNECTIONS

A. High-Strength Bolts: Shop install high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts" for type of bolt and type of joint specified.

 1. Joint Type: Snug tightened, Pretensioned, Slip critical, or as shown on documents.

B. Weld Connections: Comply with AWS D1.1/D1.1M and AWS D1.8/D1.8M for tolerances, appearances, welding procedure specifications, weld quality, and methods used in correcting welding work.

 1. Remove backing bars or runoff tabs, back gouge, and grind steel smooth.
 2. Assemble and weld built-up sections by methods that will maintain true alignment of axes without exceeding tolerances of AISC 303 for mill material.
 3. Verify that weld sizes, fabrication sequence, and equipment used for architecturally exposed structural steel will limit distortions to allowable tolerances. Prevent weld show-through on exposed steel surfaces.

 a. Grind butt welds flush.
 b. Grind or fill exposed fillet welds to smooth profile. Dress exposed welds.

2.7 PREFABRICATED BUILDING COLUMNS

A. Prefabricated building columns consisting of load-bearing structural-steel members protected by concrete fireproofing encased in an outer non-load-bearing steel shell.

 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Black Rock Column, Inc.
 b. Dean, George H., Inc.
 c. Dean Lally L. P.; Fire-Trol Division.

B. Fire-Resistance Ratings: Provide prefabricated building column listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction for ratings indicated, based on testing according to ASTM E 119.

 1. Fire-Resistance Rating: As indicated.

2.8 SHOP PRIMING

A. Shop prime steel surfaces except the following:

 1. Surfaces embedded in concrete or mortar. Extend priming of partially embedded members to a depth of 2 inches (50 mm).
 2. Surfaces to be field welded.
 3. Surfaces to be high-strength bolted with slip-critical connections.
 4. Surfaces to receive sprayed fire-resistive materials.
5. Galvanized surfaces.

B. Surface Preparation: Clean surfaces to be painted. Remove loose rust and mill scale and spatter, slag, or flux deposits. Prepare surfaces according to the following specifications and standards:
 1. SSPC-SP 3, "Power Tool Cleaning", unless indicated otherwise on documents or in Division 09.

2.9 GALVANIZING

A. Hot-Dip Galvanized Finish: Apply zinc coating by the hot-dip process to structural steel according to ASTM A 123/ A 123M.

 1. Fill vent and drain holes that will be exposed in the finished Work unless they will function as weep holes, by plugging with zinc solder and filing off smooth.
 2. Galvanize lintels and shelf angles attached to structural-steel frames and/or located in exterior walls.

2.10 SOURCE QUALITY CONTROL

A. Testing Agency: Owner will engage an independent testing and inspecting agency to perform shop tests and inspections and prepare test reports.

 1. Provide testing agency with access to places where structural-steel work is being fabricated or produced to perform tests and inspections.

B. Correct deficiencies in Work that test reports and inspections indicate does not comply with the Contract Documents.

C. Bolted Connections: Shop-bolted connections will be tested and inspected according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."

D. Welded Connections: In addition to visual inspection, shop-welded connections will be tested and inspected according to AWS D1.1/D1.1M and the following inspection procedures, at testing agency's option:

 1. Liquid Penetrant Inspection: ASTM E 165.
 2. Magnetic Particle Inspection: ASTM E 709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration will not be accepted.
 4. Radiographic Inspection: ASTM E 94.

E. In addition to visual inspection, shop-welded shear connectors will be tested and inspected according to requirements in AWS D1.1/D1.1M for stud welding and as follows:

 1. Bend tests will be performed if visual inspections reveal either a less-than- continuous 360-degree flash or welding repairs to any shear connector.
 2. Tests will be conducted on additional shear connectors if weld fracture occurs on shear connectors already tested, according to requirements in AWS D1.1/D1.1M.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Verify, with Steel Erector present, elevations of concrete- and masonry-bearing surfaces and locations of anchor rods, bearing plates, and other embedments, for compliance with requirements.
 1. Prepare a certified survey of bearing surfaces, anchor rods, bearing plates, and other embedments showing dimensions, locations, angles, and elevations.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Provide temporary shores, guys, braces, and other supports during erection to keep structural steel secure, plumb, and in alignment against temporary construction loads and loads equal in intensity to design loads. Remove temporary supports when permanent structural steel, connections, and bracing are in place unless otherwise indicated.
 1. Do not remove temporary shoring supporting composite deck construction until cast-in-place concrete has attained its design compressive strength.

3.3 ERECTION
A. Set structural steel accurately in locations, to elevations indicated, and according to AISC 303 and AISC 360.
 1. Set plates for structural members on wedges, shims, or setting nuts as required.
 2. Weld plate washers to top of base plate.
 3. Snug-tighten anchor rods after supported members have been positioned and plumbed. Do not remove wedges or shims but, if protruding, cut off flush with edge of plate before packing with grout.
 4. Promptly pack grout solidly between bearing surfaces and plates so no voids remain. Neatly finish exposed surfaces; protect grout and allow to cure. Comply with manufacturer's written installation instructions for shrinkage-resistant grouts.
C. Maintain erection tolerances of structural steel and architecturally exposed structural steel within AISC’s “Code of Standard Practice for Steel Buildings and Bridges.”
D. Align and adjust various members forming part of complete frame or structure before permanently fastening. Before assembly, clean bearing surfaces and other surfaces that will be in permanent contact with members. Perform necessary adjustments to compensate for discrepancies in elevations and alignment.
 1. Level and plumb individual members of structure.
2. Make allowances for difference between temperature at time of erection and mean temperature when structure is completed and in service.

E. Splice members only where indicated.

F. Remove erection bolts on welded, architecturally exposed structural steel; fill holes with plug welds; and grind smooth at exposed surfaces.

G. Do not use thermal cutting during erection unless approved by Architect. Finish thermally cut sections within smoothness limits in AWS D1.1/D1.1M.

H. Do not enlarge unfair holes in members by burning or using drift pins. Ream holes that must be enlarged to admit bolts.

I. Shear Connectors: Prepare steel surfaces as recommended by manufacturer of shear connectors. Use automatic end welding of headed-stud shear connectors according to AWS D1.1/D1.1M and manufacturer's written instructions.

3.4 FIELD CONNECTIONS

A. High-Strength Bolts: Install high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts" for type of bolt and type of joint specified.

1. Joint Type: Snug tightened, Pretensioned, Slip critical or as noted on documents.

B. Weld Connections: Comply with AWS D1.1/D1.1M and AWS D1.8/D1.8M for tolerances, appearances, welding procedure specifications, weld quality, and methods used in correcting welding work.

1. Comply with AISC 303 and AISC 360 for bearing, alignment, adequacy of temporary connections, and removal of paint on surfaces adjacent to field welds.

2. Remove backing bars or runoff tabs, back gouge, and grind steel smooth.

3. Assemble and weld built-up sections by methods that will maintain true alignment of axes without exceeding tolerances of AISC's "Code of Standard Practice for Steel Buildings and Bridges" for mill material.

4. Verify that weld sizes, fabrication sequence, and equipment used for architecturally exposed structural steel will limit distortions to allowable tolerances. Prevent weld show-through on exposed steel surfaces.

 a. Grind butt welds flush.

 b. Grind or fill exposed fillet welds to smooth profile. Dress exposed welds.

3.5 PREFABRICATED BUILDING COLUMNS

A. Install prefabricated building columns to comply with AISC 360, manufacturer's written recommendations, and requirements of testing and inspecting agency that apply to the fire-resistance rating indicated.
3.6 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified independent testing and inspecting agency to inspect field welds and high-strength bolted connections.

B. Bolted Connections: Field-bolted connections will be tested and inspected according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."

C. Welded Connections: Field fillet welds will be visually inspected according to AWS D1.1/D1.1M.

1. In addition to visual inspection, all suspect field fillet welds and all field full/partial penetration welds will be tested and inspected according to AWS D1.1/D1.1M and the following inspection procedures, at testing agency's option:
 a. Liquid Penetrant Inspection: ASTM E 165.
 b. Magnetic Particle Inspection: ASTM E 709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration will not be accepted.
 c. Ultrasonic Inspection: ASTM E 164.
 d. Radiographic Inspection: ASTM E 94.

D. In addition to visual inspection, test and inspect field-welded shear connectors according to requirements in AWS D1.1/D1.1M for stud welding and as follows:

1. Perform bend tests if visual inspections reveal either a less-than-continuous 360-degree flash or welding repairs to any shear connector.
2. Conduct tests on additional shear connectors if weld fracture occurs on shear connectors already tested, according to requirements in AWS D1.1/D1.1M.

E. Correct deficiencies in Work that test reports and inspections indicate does not comply with the Contract Documents.

3.7 REPAIRS AND PROTECTION

A. Galvanized Surfaces: Clean areas where galvanizing is damaged or missing and repair galvanizing to comply with ASTM A 780.

B. Touchup Painting: Immediately after erection, clean exposed areas where primer is damaged or missing and paint with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.

1. Clean and prepare surfaces by SSPC-SP 2 hand-tool cleaning or SSPC-SP 3 power-tool cleaning.

C. Touchup Painting: Cleaning and touchup painting are specified in Division 09 painting Sections.

END OF SECTION 05 12 00
SECTION 06 10 53 - MISCELLANEOUS ROUGH CARPENTRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Rooftop equipment bases and support curbs.
 2. Wood blocking, cants, and nailers.
 4. Plywood backing panels.

1.3 DEFINITIONS
 A. Boards or Strips: Lumber of less than 2 inches nominal size in least dimension.
 B. Dimension Lumber: Lumber of 2 inches nominal or greater size but less than 5 inches nominal size in least dimension.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.
 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Indicate type of preservative used and net amount of preservative retained.
 2. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Include physical properties of treated materials based on testing by a qualified independent testing agency.
 3. For fire-retardant treatments, include physical properties of treated lumber both before and after exposure to elevated temperatures, based on testing by a qualified independent testing agency according to ASTM D5664.
 4. For products receiving a waterborne treatment, include statement that moisture content of treated materials was reduced to levels specified before shipment to Project site.

1.5 INFORMATIONAL SUBMITTALS
 A. Evaluation Reports: For the following, from ICC-ES:
1. Preservative-treated wood.
2. Fire-retardant-treated wood.
4. Post-installed anchors.
5. Metal framing anchors.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: For testing agency providing classification marking for fire-retardant-treated material, an inspection agency acceptable to authorities having jurisdiction that periodically performs inspections to verify that the material bearing the classification marking is representative of the material tested.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Stack lumber flat with spacers beneath and between each bundle to provide air circulation. Protect lumber from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 WOOD PRODUCTS, GENERAL

A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, provide lumber that complies with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Provide lumber graded by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.

1. Factory mark each piece of lumber with grade stamp of grading agency.
2. For exposed lumber indicated to receive a stained or natural finish, mark grade stamp on end or back of each piece or omit grade stamp and provide certificates of grade compliance issued by grading agency.
3. Dress lumber, S4S, unless otherwise indicated.

B. Maximum Moisture Content of Lumber: 19 percent unless otherwise indicated.

2.2 WOOD-PRESERVATIVE-TREATED MATERIALS

A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2 for interior construction not in contact with ground, Use Category UC3b for exterior construction not in contact with ground, and Use Category UC4a for items in contact with ground.

1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium.
B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or does not comply with requirements for untreated material.

C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.

D. Application: Treat items indicated on Drawings, and the following:

1. Wood cants, nailers, curbs, equipment support bases, blocking, stripping, and similar members in connection with roofing, flashing, vapor barriers, and waterproofing.
2. Wood sills, sleepers, blocking, furring, stripping, and similar concealed members in contact with masonry or concrete.

2.3 FIRE-RETARDANT-TREATED MATERIALS

A. General: Where fire-retardant-treated materials are indicated, materials shall comply with requirements in this article, that are acceptable to authorities having jurisdiction, and with fire-test-response characteristics specified as determined by testing identical products per test method indicated by a qualified testing agency.

B. Fire-Retardant-Treated Lumber and Plywood by Pressure Process: Products with a flame-spread index of 25 or less when tested according to ASTM E84, and with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not extending more than 10.5 feet beyond the centerline of the burners at any time during the test.

1. Treatment shall not promote corrosion of metal fasteners.
2. Exterior Type: Treated materials shall comply with requirements specified above for fire-retardant-treated lumber and plywood by pressure process after being subjected to accelerated weathering according to ASTM D2898. Use for exterior locations and where indicated.
3. Interior Type A: Treated materials shall have a moisture content of 28 percent or less when tested according to ASTM D3201 at 92 percent relative humidity. Use where exterior type is not indicated.
4. Design Value Adjustment Factors: Treated lumber shall be tested according to ASTM D5664, and design value adjustment factors shall be calculated according to ASTM D6841.

C. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Kiln-dry plywood after treatment to a maximum moisture content of 15 percent.

D. Identify fire-retardant-treated wood with appropriate classification marking of qualified testing agency.

1. For exposed lumber indicated to receive a stained or natural finish, mark end or back of each piece or omit marking and provide certificates of treatment compliance issued by inspection agency.

E. For exposed items indicated to receive a stained or natural finish, chemical formulations shall not bleed through, contain colorants, or otherwise adversely affect finishes.
F. Application: Treat all miscellaneous carpentry unless otherwise indicated MISCELLANEOUS LUMBER

A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including the following:

1. Blocking.
2. Nailers.
3. Rooftop equipment bases and support curbs.
5. Grounds.

B. Dimension Lumber Items: Standard, Stud, or No. 3 grade lumber of any species.

C. Concealed Boards: 19 percent maximum moisture content of any of the following species and grades:

1. Mixed southern pine or southern pine, No. 3 grade; SPIB.
2. Hem-fir or hem-fir (north), Standard or No. 3 Common grade; NLGA, WCLIB, or WWPA.
3. Spruce-pine-fir (south) or spruce-pine-fir, Standard or No. 3 Common grade; NeLMA, NLGA, WCLIB, or WWPA.

D. For blocking not used for attachment of other construction, Utility, Stud, or No. 3 grade lumber of any species may be used provided that it is cut and selected to eliminate defects that will interfere with its attachment and purpose.

E. For blocking and nailers used for attachment of other construction, select and cut lumber to eliminate knots and other defects that will interfere with attachment of other work.

F. For furring strips for installing plywood or hardboard paneling, select boards with no knots capable of producing bent-over nails and damage to paneling.

2.5 PLYWOOD BACKING PANELS

A. Equipment Backing Panels: Plywood, DOC PS 1,, fire-retardant treated, in thickness indicated or, if not indicated, not less than 3/4-inch nominal thickness.

2.6 FASTENERS

A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.

1. Where carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in area of high relative humidity, provide fasteners with hot-dip zinc coating complying with ASTM A153/A153M.

B. Nails, Brads, and Staples: ASTM F1667.
C. Screws for Fastening to Metal Framing: ASTM C1002, length as recommended by screw manufacturer for material being fastened.

D. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.

E. Post-Installed Anchors: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC01, ICC-ES AC193 or ICC-ES AC308 as appropriate for the substrate.

2. Material: Stainless steel with bolts and nuts complying with ASTM F593 and ASTM F594, Alloy Group 1 or 2.

2.7 METAL FRAMING ANCHORS

1. Use for interior locations unless otherwise indicated.

B. Hot-Dip, Heavy-Galvanized Steel Sheet: ASTM A653/A653M; Structural Steel (SS), high-strength low-alloy steel Type A (HSLAS Type A), or high-strength low-alloy steel Type B (HSLAS Type B); G185 coating designation; and not less than 0.036 inch thick.

1. Use for wood-preservative-treated lumber and where indicated.

2.8 MISCELLANEOUS MATERIALS

A. Adhesives for Gluing Furring and Sleepers to Concrete or Masonry: Formulation complying with ASTM D3498 that is approved for use indicated by adhesive manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Framing Standard: Comply with AF&PA's WCD 1, "Details for Conventional Wood Frame Construction," unless otherwise indicated.

B. Set carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit carpentry accurately to other construction. Locate furring, nailers, blocking, grounds, and similar supports to comply with requirements for attaching other construction.

C. Install plywood backing panels by fastening to studs; coordinate locations with utilities requiring backing panels. Install fire-retardant-treated plywood backing panels with classification marking of testing agency exposed to view.
D. Install metal framing anchors to comply with manufacturer's written instructions. Install fasteners through each fastener hole.

E. Do not splice structural members between supports unless otherwise indicated.

F. Provide blocking and framing as indicated and as required to support facing materials, fixtures, specialty items, and trim.
 1. Provide metal clips for fastening gypsum board or lath at corners and intersections where framing or blocking does not provide a surface for fastening edges of panels. Space clips not more than 16 inches o.c.

G. Sort and select lumber so that natural characteristics do not interfere with installation or with fastening other materials to lumber. Do not use materials with defects that interfere with function of member or pieces that are too small to use with minimum number of joints or optimum joint arrangement.

H. Comply with AWPA M4 for applying field treatment to cut surfaces of preservative-treated lumber.
 1. Use inorganic boron for items that are continuously protected from liquid water.
 2. Use copper naphthenate for items not continuously protected from liquid water.

I. Where wood-preservative-treated lumber is installed adjacent to metal decking, install continuous flexible flashing separator between wood and metal decking.

J. Securely attach carpentry work to substrate by anchoring and fastening as indicated, complying with the following:
 2. ICC-ES evaluation report for fastener.

K. Use steel common nails unless otherwise indicated. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting wood. Drive nails snug but do not countersink nail heads unless otherwise indicated.

3.2 INSTALLATION OF WOOD BLOCKING AND NAILER

A. Install where indicated and where required for attaching other work. Form to shapes indicated and cut as required for true line and level of attached work. Coordinate locations with other work involved.

B. Attach items to substrates to support applied loading. Recess bolts and nuts flush with surfaces unless otherwise indicated.

C. Provide permanent grounds of dressed, pressure-preservative-treated, key-beveled lumber not less than 1-1/2 inches wide and of thickness required to bring face of ground to exact thickness of finish material. Remove temporary grounds when no longer required.
3.3 PROTECTION

A. Protect wood that has been treated with inorganic boron (SBX) from weather. If, despite protection, inorganic boron-treated wood becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

B. Protect miscellaneous rough carpentry from weather. If, despite protection, miscellaneous rough carpentry becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

END OF SECTION 06 10 53
SECTION 06 20 23 - INTERIOR FINISH CARPENTRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Shelving and clothes rods.

B. Related Sections include the following:
 1. Section 06 10 53 "Miscellaneous Rough Carpentry" for furring, blocking, and other carpentry work not exposed to view.
 2. Section 09 91 23 "Interior Painting" for priming and backpriming of interior finish carpentry.

1.3 DEFINITIONS

A. MDF: Medium-density fiberboard.

B. MDO: Plywood with a medium-density overlay on the face.

C. PVC: Polyvinyl chloride.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of process and factory-fabricated product.

B. Sustainable Design Submittals:
 1. Product Certificates: For materials manufactured within 100 miles of Project, indicating location of material manufacturer and point of extraction, harvest, or recovery for each raw material. Include distance to Project and cost for each raw material.
 3. Chain-of-Custody Qualification Data: For manufacturer and vendor.
 4. Laboratory Test Reports: For composite wood products, indicating compliance with requirements for low-emitting materials.
 5. Product Data: For installation adhesives, indicating VOC content.
 6. Laboratory Test Reports: For installation adhesives, indicating compliance with requirements for low-emitting materials.

C. Samples: For each exposed product and for each color and texture specified.
1.5 QUALITY ASSURANCE

A. Manufacturer Qualifications: A qualified manufacturer that is certified for chain of custody by an FSC-accredited certification body.

B. Vendor Qualifications: A vendor that is certified for chain of custody by an FSC-accredited certification body.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Stack lumber, plywood, and other panels flat with spacers between each bundle to provide air circulation.
 1. Protect materials from weather by covering with waterproof sheeting, securely anchored.
 2. Provide for air circulation around stacks and under coverings.

B. Deliver interior finish carpentry materials only when environmental conditions comply with requirements specified for installation areas. If interior finish carpentry materials must be stored in other than installation areas, store only where environmental conditions comply with requirements specified for installation areas.

1.7 FIELD CONDITIONS

A. Environmental Limitations: Do not deliver or install interior finish carpentry materials until building is enclosed and weatherproof, wet-work in space is completed and nominally dry, and HVAC system is operating and maintaining temperature and relative humidity at occupancy levels during the remainder of the construction period.

B. Do not install finish carpentry materials that are wet, moisture damaged, or mold damaged.
 1. Indications that materials are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 2. Indications that materials are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

A. Regional Materials: The following wood products shall be manufactured within 100 miles of Project site from materials that have been extracted, harvested, or recovered, as well as manufactured, within 100 miles of Project site.
 1. Shelving and clothes rods.

B. Certified Wood: The following wood products shall be certified as "FSC Pure" or "FSC Mixed Credit" according to FSC STD-01-001 and FSC STD-40-004.
 1. Shelving and clothes rods.
C. **Composite Wood Products:** Products shall be made using ultra-low-emitting formaldehyde resins as defined in the California Air Resources Board's "Airborne Toxic Control Measure to Reduce Formaldehyde Emissions from Composite Wood Products" or shall be made with no added formaldehyde.

D. Particleboard: ANSI A208.1, Grade M-2.

E. Melamine-Faced Particleboard: Particleboard complying with ANSI A208.1, Grade M-2, finished on both faces with thermally fused, melamine-impregnated decorative paper and complying with NEMA LD 3, Grade VGL, for Test Methods 3.3, 3.4, 3.6, 3.8, and 3.10.

2.2 **SHELVING AND CLOTHES RODS**

A. Closet Utility Shelving: Made from the following material, 3/4 inch thick:
 1. Melamine-faced particleboard with applied-PVC front edge.

B. Shelf Brackets with Rod Support: BHMA A156.16, B04051; prime-painted formed steel.

C. Standards for Adjustable Shelf Brackets: BHMA A156.9, B04102; powder-coat-finished steel.

D. Adjustable Shelf Brackets: BHMA A156.9, B04112; powder-coat-finished steel.

E. Clothes Rods: 1-1/2-inch-diameter, clear, kiln-dried Douglas fir or southern pine.

2.3 **MISCELLANEOUS MATERIALS**

A. Fasteners for Interior Finish Carpentry: Nails, screws, and other anchoring devices of type, size, material, and finish required for application indicated to provide secure attachment, concealed where possible.

C. Glue: Aliphatic-resin, polyurethane, or resorcinol wood glue recommended by manufacturer for general carpentry use.
 1. **Adhesive shall comply with the** testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
 2. **Adhesives shall have a VOC** content of 30 g/L or less.
 3. **Adhesive shall comply with the** testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
D. Multipurpose Construction Adhesive: Formulation, complying with ASTM D 3498, that is recommended for indicated use by adhesive manufacturer.

1. Adhesives shall have a VOC content of 70 g/L or less.
2. Adhesive shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine finish carpentry materials before installation. Reject materials that are wet, moisture damaged, and mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean substrates of projections and substances detrimental to application.

B. Before installing interior finish carpentry, condition materials to average prevailing humidity in installation areas for a minimum of 24 hours unless longer conditioning is recommended by manufacturer.

3.3 INSTALLATION, GENERAL

A. Do not use materials that are unsound; warped; improperly treated or finished; inadequately seasoned; too small to fabricate with proper jointing arrangements; or with defective surfaces, sizes, or patterns.

B. Install interior finish carpentry level, plumb, true, and aligned with adjacent materials.

1. Use concealed shims where necessary for alignment.
2. Scribe and cut interior finish carpentry to fit adjoining work. Refinish and seal cuts as recommended by manufacturer.
3. Where face fastening is unavoidable, countersink fasteners, fill surface flush, and sand unless otherwise indicated.
4. Install to tolerance of 1/8 inch in 96 inches for level and plumb. Install adjoining interior finish carpentry with 1/32-inch maximum offset for flush installation and 1/16-inch maximum offset for reveal installation.
5. Coordinate interior finish carpentry with materials and systems in or adjacent to it. Provide cutouts for mechanical and electrical items that penetrate interior finish carpentry.
3.4 SHELVING AND CLOTHES ROD INSTALLATION

A. Install shelf brackets according to manufacturer's written instructions, spaced not more than 32 inches o.c. Fasten to framing members, blocking, or metal backing, or use toggle bolts or hollow wall anchors.

B. Install standards for adjustable shelf supports according to manufacturer's written instructions. Fasten to framing members, blocking, or metal backing, or use toggle bolts or hollow wall anchors. Space fasteners not more than 12 inches o.c.

C. Install standards for adjustable shelf brackets according to manufacturer's written instructions, spaced not more than 36 inches o.c. and within 6 inches of ends of shelves. Fasten to framing members, blocking, or metal backing, or use toggle bolts or hollow wall anchors.

D. Cut shelves to neatly fit openings with only enough gap to allow shelves to be removed and reinstalled.
 1. Install shelves, fully seated on cleats, brackets, and supports.

E. Install rod flanges for rods as indicated.
 1. Fasten to shelf cleats, framing members, blocking, or metal backing, or use toggle bolts or hollow wall anchors.
 2. Install rods in rod flanges.

3.5 ADJUSTING

A. Replace interior finish carpentry that is damaged or does not comply with requirements.
 1. Interior finish carpentry may be repaired or refinished if work complies with requirements and shows no evidence of repair or refinishing.

B. Adjust joinery for uniform appearance.

3.6 CLEANING

A. Clean interior finish carpentry on exposed and semiexposed surfaces.

B. Restore damaged or soiled areas and touch up factory-applied finishes if any.

3.7 PROTECTION

A. Protect installed products from damage from weather and other causes during construction.

B. Remove and replace finish carpentry materials that are wet, moisture damaged, and mold damaged.
 1. Indications that materials are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
2. Indications that materials are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

END OF SECTION 06 20 23
SECTION 06 26 14 – MINERAL PROFILE PANELING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes: Light weight composite mineral profile paneling and seam finishing materials to create a monolithic sculptured wall surface.

B. Products Furnished But Not Installed/Used Under This Section: Installation kit.

C. Related Requirements:
 1. Section 092900 Gypsum Board for substrate and seam finishing.
 2. Section 099123 Interior Painting for sealing and painting of modular screen wall.

1.3 REFERENCES

A. Abbreviations and Acronyms:
 2. GA: Gypsum Association.

B. Reference Standards:
 5. GA-214 Recommended Levels of Gypsum Board Finish.

1.4 ADMINISTRATIVE REQUIREMENTS

A. Pre-installation Meetings:
 1. Convene meeting at project site within one week of scheduled start of installation with representatives of the following in attendance: Owner, Architect, General Contractor, Installer, Finisher, and Painter.
2. Review substrate conditions, requirements of related work, installation instructions, seam finishing, and painting instructions, storage and handling procedures, and protection measures.

3. Keep minutes of meeting including responsibilities of various parties and deviations from specifications and installation instructions.

1.5. ACTION SUBMITTALS

A. Product Data: Each product specified.

B. Sustainable Design Submittals:
 1. **Product Data:** For adhesives, indicating VOC content.
 2. **Laboratory Test Reports:** For adhesives, indicating compliance with requirements for low-emitting materials.

C. Project List: Minimum 5 previous completed installations or 5 installations of similar materials and complexity. Include contact name and e-mail address or telephone number for each project.

D. Shop Drawings: Show standard and project specific details including termination at adjacent surfaces.

E. Samples: Minimum 15 by 15 inch panel of specified design(s).

1.6. INFORMATIONAL SUBMITTALS

A. Manufacturer's installation instructions.

B. Qualification Statements: Proof of manufacturer, installer, and finisher qualifications.

1.8. QUALITY ASSURANCE

A. Qualifications:
 1. Manufacturer: Minimum five years experience in producing mineral profile paneling.
 2. Installer: Minimum three years experience in finish carpentry/architectural woodwork installation.
 3. Finisher: Minimum three years experience in executing Level 5 finish in accordance with GA-214.

B. Field Samples:
 1. Provide in a location selected by Architect showing representative sample of installed product including finished seam.
 2. Minimum Size: 8 by 8 feet.
 3. Approved field samples may remain as part of completed Work.

1.8. DELIVERY, STORAGE, AND HANDLING

A. Storage and Handling Requirements:
 1. Store panels in fully enclosed space, protected against damage from moisture, direct sunlight, and surface contamination.
2. Store panels vertically, in shipping crates, until ready to be installed. Loosen crate lids to allow for venting. Do not stack or lean against walls.

3. Store panels in area of installation minimum 24 hours prior to installation.

B. Packaging Waste Management: 100 percent of materials used to package components of this section shall be recyclable.

1.9. FIELD CONDITIONS

A. Ambient Conditions:

1. HVAC: Operate HVAC system to maintain occupancy level temperature and relative humidity conditions (35 to 67 percent) in the area of installation from 24 hours prior to delivery of panels to the installation area through remainder of construction period.

2. Lighting: Permanent project lighting, including any special lighting used to highlight the profiled panels, must be operational prior to seam finishing.

1.10. WARRANTY

A. Manufacturer Warranty: Provide manufacturer’s standard limited warranty.

PART 2 - PRODUCTS

2.1 MANUFACTURER

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Modular Arts, Inc.

2.2 COMPONENTS – WA-2

A. Profile Panel: Smooth surface mineral composite panel with light weight plant-based foam back.

1. Size: 32 by 32 by 1.0 inch maximum profile relief.

2. Physical Properties:

a. Izod Impact Strength: ASTM D 256 9.4 ft-lb/in²

b. Thermal Expansion: ASTM D 696 3.8x10⁻⁷in/in °F.

c. Compressive Strength: ASTM D 696 2.3 ksi.

d. Room Corner Burn Test: NFPA 286 Pass

e. Flame Spread Index: ASTM E 84 0

f. Smoke Development Index: ASTM E 84 50

g. Weight (for all designs excluding MUDD formerly YUMA) 1.5 psf

h. Weight (for MUDD design only) 3 psf

3. Design: CLIF ©; vertical orientation.

B. Installation Kit: Item quantities in parenthesis denote quantities for (Small Kit—up to 50 panels/Large Kit—up to 100 panels). (Not applicable to EZ-Seam™ Designs.)
1. Dry Mix Joint Compound: One 18 lb bag SHEETROCK® brand EASY SAND™ 45, or BEADEX® brand SILVER SET™ 40.
2. Acrylic Fortifier: (One/Two) quart THORO® ACRYL 60®.
 a. Adhesives shall have a VOC content of 50 g/L or less.
5. Countersink Drill Bit with Depth Stop-Collar: (One/Two) No. 7.
6. Flexible Spreader: (One/Two) MUDTOOLS SMT-Y2.
7. Sandpaper: (15/30) sheets No-Load 220G, (10/20) sheets No-Load 150G.
9. Measuring Cup: One 8 oz.

2.3 ACCESSORIES
A. Anchors: 30 lb. self-drilling, drywall anchor.
B. Screws: Coarse thread, drywall type, length as required by panel design and in accordance with Manufacturer's Installation Instructions.

2.4 SOURCE QUALITY CONTROL
A. Fabrication Tolerances:
 1. Dimensions, length and width: ± 1/16 inch.
 2. Thickness: ± 1/16 inch.
 3. Weight: ± 1/2 lb.

PART 3 - EXECUTION
3.1 EXAMINATION
A. Examine substrates upon which profile paneling will be installed.
 1. Verify that substrate is a material listed as an acceptable substrate by the profile paneling manufacturer.
B. Verify that permanent project lighting is in place and operational prior to start of seam finishing.
C. Coordinate with responsible entity to correct unsatisfactory conditions.
D. Commencement of work by installer is acceptance of substrate conditions.

3.2 INSTALLATION
A. Install profile paneling in accordance with Manufacturer's Installation Instructions except that seam finishing shall be performed under Section 092900 “Gypsum Board”, and sealing and painting shall be performed under Section 099123 “Interior Painting”.

MINERAL PROFILE PANELING 06 26 14-4
3.3 ADJUSTING AND CLEANING

A. Repair damaged and defective paneling, where possible, to eliminate functional and visual defects. Where not possible to repair, replace paneling. Adjust for uniform appearance.

B. Clean profile paneling in accordance with manufacturer's recommendations. Touch up shop-applied finishes to restore damaged or soiled areas.

3.4 PROTECTION

A. Protect finished work from damage during remainder of construction period.

END OF SECTION 06 26 14
SECTION 06 41 16 - PLASTIC-LAMINATE-CLAD ARCHITECTURAL CABINETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Plastic-laminate-clad architectural cabinets.
 2. Wood furring, blocking, shims, and hanging strips for installing plastic-laminate-clad architectural cabinets that are not concealed within other construction.
 B. Related Sections include the following:
 1. Section 06 10 00 "Rough Carpentry" for wood furring, blocking, shims, and hanging strips required for installing cabinets that are concealed within other construction before cabinet installation.
 2. Section 06 20 23 "Interior Finish Carpentry" for plastic-laminate-clad countertops.
 3. Section 12 36 61 "Solid Surface Countertops".

1.3 COORDINATION
 A. Coordinate sizes and locations of framing, blocking, furring, reinforcements, and other related units of Work specified in other Sections to support loads imposed by installed and fully loaded cabinets.

1.4 PREINSTALLATION MEETINGS
 A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include data for fire-retardant treatment from chemical-treatment manufacturer and certification by treating plant that treated materials comply with requirements.
 B. Sustainable Design Submittals:
 1. Product Data: For recycled content, indicating postconsumer and preconsumer recycled content and cost.
2. **Product Certificates**: For materials manufactured within 100 miles of Project, indicating location of material manufacturer and point of extraction, harvest, or recovery for each raw material. Include distance to Project and cost for each raw material.

3. **Chain-of-Custody Certificates**: For certified wood products. Include statement of costs.

4. **Laboratory Test Reports**: For adhesives, indicating compliance with requirements for low-emitting materials.

5. **Laboratory Test Reports**: For composite wood products, indicating compliance with requirements for low-emitting materials.

C. **Shop Drawings**:
 1. Include plans, elevations, sections, and attachment details.
 2. Show large-scale details.
 3. Show locations and sizes of furring, blocking, and hanging strips, including concealed blocking and reinforcement specified in other Sections.
 4. Show locations and sizes of cutouts and holes for items installed in plastic-laminate architectural cabinets.
 5. Apply AWI Quality Certification Program label to Shop Drawings.

D. **Samples**: For each exposed product and for each color and texture specified.

1.6 **INFORMATIONAL SUBMITTALS**

 A. **Qualification Data**: For manufacturer and Installer.

 B. Research reports.

1.7 **CLOSEOUT SUBMITTALS**

 A. **Quality Standard Compliance Certificates**: AWI Quality Certification Program certificates.

1.8 **QUALITY ASSURANCE**

 A. **Manufacturer's Qualifications**: Employs skilled workers who custom fabricate products similar to those required for this Project and whose products have a record of successful in-service performance.

 1. **Manufacturer's Certification**: Licensed participant in AWI's Quality Certification Program.

 B. **Installer Qualifications**: Manufacturer of products, or licensed participant in AWI's Quality Certification Program.

1.9 **DELIVERY, STORAGE, AND HANDLING**

 A. Do not deliver cabinets until painting and similar finish operations that might damage architectural cabinets have been completed in installation areas. Store cabinets in installation
areas or in areas where environmental conditions comply with requirements specified in "Field Conditions" Article.

1.10 FIELD CONDITIONS

A. Environmental Limitations: Do not deliver or install cabinets until building is enclosed, wet-work is complete, and HVAC system is operating and maintaining temperature between 60 and 90 deg F and relative humidity between 25 and 55 percent during the remainder of the construction period.

B. Field Measurements: Where cabinets are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication, and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

1. Locate concealed framing, blocking, and reinforcements that support cabinets by field measurements before being enclosed/concealed by construction, and indicate measurements on Shop Drawings.

PART 2 - PRODUCTS

2.1 PLASTIC-LAMINATE-CLAD ARCHITECTURAL CABINETS

A. Quality Standard: Unless otherwise indicated, comply with the Architectural Woodwork Standards for grades of cabinets indicated for construction, finishes, installation, and other requirements.

1. Provide labels and certificates from AWI certification program indicating that woodwork complies with requirements of grades specified.

B. Architectural Woodwork Standards Grade: Custom.

C. Regional Materials: Wood products shall be manufactured within 100 miles of Project site from materials that have been extracted, harvested, or recovered, as well as manufactured, within 100 miles of Project site.

D. Certified Wood: Wood products shall be certified as "FSC Pure" or "FSC Mixed Credit" according to FSC STD-01-001 and FSC STD-40-004.

E. Type of Construction: Face frame.

F. Door and Drawer-Front Style: Flush overlay.

G. High-Pressure Decorative Laminate: NEMA LD 3, grades as indicated or if not indicated, as required by quality standard.

H. Laminate Cladding for Exposed Surfaces:

1. Postformed Surfaces: Grade HGP.
2. Vertical Surfaces: Grade VGS.

I. Concealed Backs of Panels with Exposed Plastic-Laminate Surfaces: High-pressure decorative laminate, NEMA LD 3, Grade BKL.

J. Drawer Construction: Fabricate with exposed fronts fastened to subfront with mounting screws from interior of body.
1. Join subfronts, backs, and sides with glued rabbeted joints supplemented by mechanical fasteners.

K. Colors, Patterns, and Finishes: Provide materials and products that result in colors and textures of exposed laminate surfaces complying with the following requirements:
1. As indicated by laminate manufacturer's designations.

2.2 WOOD MATERIALS

A. Wood Products: Provide materials that comply with requirements of referenced quality standard for each type of architectural cabinet and quality grade specified unless otherwise indicated.
1. Wood Moisture Content: 5 to 10 percent.

B. Composite Wood and Agrifiber Products: Provide materials that comply with requirements of referenced quality standard for each type of architectural cabinet and quality grade specified unless otherwise indicated.
1. Recycled Content of MDF and Particleboard: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.

C. Composite Wood Products: Products shall be made using ultra-low-emitting formaldehyde resins as defined in the California Air Resources Board's "Airborne Toxic Control Measure to Reduce Formaldehyde Emissions from Composite Wood Products" or shall be made with no added formaldehyde.
1. Medium-Density Fiberboard (MDF): ANSI A208.2, Grade 130.
5. Thermoset Decorative Panels: Particleboard or MDF finished with thermally fused, melamine-impregnated decorative paper and complying with requirements of NEMA LD 3, Grade VGL, for Test Methods 3.3, 3.4, 3.6, 3.8, and 3.10.

2.3 FIRE-RETARDANT-TREATED MATERIALS

A. Fire-Retardant-Treated Materials, General: Where fire-retardant-treated materials are indicated, use materials that are acceptable to authorities having jurisdiction as determined by testing performed on identical products by a qualified testing agency.
1. Use treated materials that comply with requirements of referenced quality standard. Do not use materials that are warped, discolored, or otherwise defective.
2. Use fire-retardant-treatment formulations that do not bleed through or otherwise adversely affect finishes. Do not use colorants to distinguish treated materials from untreated materials.
3. Identify fire-retardant-treated materials with appropriate classification marking of qualified testing agency in the form of removable paper label or imprint on surfaces that will be concealed from view after installation.

B. Fire-Retardant-Treated Lumber and Plywood: Products with a flame-spread index of 25 or less when tested according to ASTM E84, with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not extending more than 10.5 feet beyond the centerline of the burners at any time during the test.

1. Kiln-dry lumber and plywood after treatment to a maximum moisture content of 19 and 15 percent, respectively.
2. Mill lumber before treatment and implement procedures during treatment and drying processes that prevent lumber from warping and developing discolorations from drying sticks or other causes, marring, and other defects affecting appearance of architectural cabinets.

C. Fire-Retardant Particleboard: Made from softwood particles and fire-retardant chemicals mixed together at time of panel manufacture to achieve flame-spread index of 25 or less and smoke-developed index of 25 or less per ASTM E84.

1. For panels 3/4 inch thick and less, comply with ANSI A208.1 for Grade M-2 except for the following minimum properties: modulus of rupture, 1600 psi; modulus of elasticity, 300,000 psi; internal bond, 80 psi; and screw-holding capacity on face and edge, 250 and 225 lbf, respectively.
2. For panels 13/16 to 1-1/4 inches thick, comply with ANSI A208.1 for Grade M-1 except for the following minimum properties: modulus of rupture, 1300 psi; modulus of elasticity, 250,000 psi; linear expansion, 0.50 percent; and screw-holding capacity on face and edge, 250 and 175 lbf, respectively.

D. Fire-Retardant Fiberboard: MDF panels complying with ANSI A208.2, made from softwood fibers, synthetic resins, and fire-retardant chemicals mixed together at time of panel manufacture to achieve flame-spread index of 25 or less and smoke-developed index of 200 or less per ASTM E84.

2.4 CABINET HARDWARE AND ACCESSORIES

A. General: Provide cabinet hardware and accessory materials associated with architectural cabinets.

B. Frameless Concealed Hinges (European Type): BHMA A156.9, B01602, 100 degrees of opening.

C. Wire Pulls: Back mounted, solid metal, 4 inches long, 5/16 inch in diameter.

D. Catches: Magnetic catches, BHMA A156.9, B03141.
E. Shelf Rests: BHMA A156.9, B04013; metal.

F. Drawer Slides: BHMA A156.9.
 1. Grade 1 and Grade 2: Side mounted and extending under bottom edge of drawer.
 a. Type: Full extension.
 b. Material: Zinc-plated steel with polymer rollers.
 2. Grade 1HD-100 and Grade 1HD-200: Side mounted; full-extension type; zinc-plated-
 steel ball-bearing slides.
 3. For drawers not more than 3 inches high and not more than 24 inches wide, provide
 Grade 2.
 4. For drawers more than 3 inches high, but not more than 6 inches high and not more than
 24 inches wide, provide Grade 1.
 5. For drawers more than 6 inches high or more than 24 inches wide, provide Grade 1HD-
 100.
 6. For computer keyboard shelves, provide Grade 1.

G. Door and Drawer Silencers: BHMA A156.16, L03011.

H. Grommets for Cable Passage: 1-1/4-inch OD, molded-plastic grommets and matching plastic
 caps with slot for wire passage.

I. Exposed Hardware Finishes: For exposed hardware, provide finish that complies with
 BHMA A156.18 for BHMA finish number indicated.
 1. Satin Chromium Plated: BHMA 626 for brass or bronze base; BHMA 652 for steel base.

J. For concealed hardware, provide manufacturer's standard finish that complies with product class
 requirements in BHMA A156.9.

2.5 MISCELLANEOUS MATERIALS

A. Furring, Blocking, Shims, and Hanging Strips: Fire-retardant-treated softwood lumber, kiln-
 dried to less than 15 percent moisture content.

B. Anchors: Select material, type, size, and finish required for each substrate for secure anchorage.
 Provide metal expansion sleeves or expansion bolts for post-installed anchors. Use nonferrous-
 metal or hot-dip galvanized anchors and inserts at inside face of exterior walls and at floors.

C. Adhesives: Use adhesives that meet the testing and product requirements of the California
 Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile
 Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

2.6 FABRICATION

A. Fabricate architectural cabinets to dimensions, profiles, and details indicated.
B. Complete fabrication, including assembly and hardware application, to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.

C. Shop-cut openings to maximum extent possible to receive hardware, appliances, electrical work, and similar items. Locate openings accurately and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Sand edges of cutouts to remove splinters and burrs.

PART 3 - EXECUTION

3.1 PREPARATION

A. Before installation, condition cabinets to humidity conditions in installation areas for not less than 72 hours.

3.2 INSTALLATION

A. Architectural Woodwork Standards Grade: Install cabinets to comply with quality standard grade of item to be installed.

B. Assemble cabinets and complete fabrication at Project site to extent that it was not completed in the shop.

C. Anchor cabinets to anchors or blocking built in or directly attached to substrates. Secure with wafer-head cabinet installation screws.

D. Install cabinets level, plumb, and true in line to a tolerance of 1/8 inch in 96 inches using concealed shims.
 1. Scribe and cut cabinets to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.
 2. Install cabinets without distortion so doors and drawers fit openings and are accurately aligned. Adjust hardware to center doors and drawers in openings and to provide unencumbered operation. Complete installation of hardware and accessory items as indicated.
 3. Fasten wall cabinets through back, near top and bottom, and at ends not more than 16 inches o.c. with No. 10 wafer-head screws sized for not less than 1-1/2-inch penetration into wood framing, blocking, or hanging strips; or No. 10 wafer-head sheet metal screws through metal backing or metal framing behind wall finish.

3.3 ADJUSTING AND CLEANING

A. Repair damaged and defective cabinets, where possible, to eliminate functional and visual defects. Where not possible to repair, replace architectural cabinets. Adjust joinery for uniform appearance.
B. Clean, lubricate, and adjust hardware.

C. Clean cabinets on exposed and semiexposed surfaces.

END OF SECTION 06 41 16
SECTION 07 50 20 - WORK ASSOCIATED WITH EXISTING ROOF

PART 1 - GENERAL

1.01 GENERAL REQUIREMENT

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to the Work of this Section.

1.02 SECTION INCLUDES

A. Installation of curbs and other accessories for new roof mounted HVAC equipment.
B. Roofing repair and infill at removed and new HVAC equipment.
C. Protection of existing roofing membrane in the vicinity of the work area against damage caused by the work.
D. Repair work shall include patching, flashing and counterflashing at new openings in existing roof, curbs, joints, parapets, or other new construction at existing roofs.
E. Repair existing roof damaged during the work of this contract in accordance with instructions of existing roof warranty manufacturer or, in the absence of a warranty, in accordance with acceptable industry standards, including, but not limited to N.R.C.A., FM, UL, SPRI and ASTM.
F. Coordinate and communicate with existing roof warranty manufacturer.
G. Perform repair until existing roof manufacturer states the original warranty is enforceable or replace entire affected roof area to Owner acceptance.

1.03 SUBMITTALS

A. Certification:

1. Procedures: Submit prior to start of work a detailed list of repair procedures with comments of existing roof warranty manufacturer.

2. Certificate for Final Closeout: Signed letter from existing roof manufacturer that repairs were made and existing warranty shall remain in force.

B. Shop Drawing:

1. Submit shop drawing showing areas to be repaired.

1.04 QUALITY ASSURANCE

A. Repair work shall be performed by an installer acceptable to the existing roof manufacturer to maintain warranty.
1.05 PRODUCT HANDLING
 A. Storing:
 1. Store materials in accordance with roofing manufacturer’s instructions.
 B. Deliver, store, and handle materials to prevent their deterioration or damage due to moisture, temperature changes, contaminants, physical abuse, corrosion, or other causes.

1.06 PROJECT MEETING
 A. Schedule a Special Project Meeting requiring the attendance of Contractor, existing roof manufacturer, Owner's Representative and Architect/Engineer.
 B. Attendance is mandatory.
 C. Meeting shall be scheduled and take place prior to work being performed on roof.

1.07 WARRANTY
 A. Existing roofing warranty shall not be reduced in scope with the repairs performed under this Work.
 B. Submit letters from existing roof manufacturer stating that the proposed repair work does not limit the original roof warranty and complies with manufacturer’s recommendations.
 C. Existing Roof Warranty: Existing roof is currently under warranty.

PART 2 PRODUCTS
2.01 ACCEPTABLE MANUFACTURER
 A. Existing Roof Manufacturer: Carlisle.

2.02 MATERIALS
 A. Perform work with materials acceptable to existing roof manufacturer.
 1. Existing Roofing Membrane Material: Sure-White EPDM.
 2. Existing Insulation – Rigid insulation on top of roof deck

PART 3 EXECUTION
3.01 INSTALLATION
 A. Perform work to the existing roof required to repair damaged caused by work being performed on the roof by workmen traffic and the movement of tools, equipment and products across the existing roof surface.
 B. Install new materials as required in strict accordance with manufacturer's or insuring agency's instructions, whichever is more stringent.
C. The finished Work shall be thorough, uniform, neat appearance and watertight.
SECTION 07 84 13 - PENETRATION FIRESTOPPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Penetration firestopping systems for the following applications:
 a. Penetrations in fire-resistance-rated walls.
 b. Penetrations in horizontal assemblies.
 c. Penetrations in smoke barriers.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Sustainable Design Submittals:
 1. Product Data: For sealants, indicating VOC content.
 2. Laboratory Test Reports: For sealants, indicating compliance with requirements for low-emitting materials.
 C. Product Schedule: For each penetration firestopping system. Include location, illustration of firestopping system, and design designation of qualified testing and inspecting agency.
 1. Engineering Judgments: Where Project conditions require modification to a qualified testing and inspecting agency's illustration for a particular penetration firestopping system, submit illustration, with modifications marked, approved by penetration firestopping system manufacturer's fire-protection engineer as an engineering judgment or equivalent fire-resistance-rated assembly. Obtain approval of authorities having jurisdiction prior to submittal.

1.4 INFORMATIONAL SUBMITTALS
 A. Product test reports.
1.5 CLOSEOUT SUBMITTALS

A. Installer Certificates: From Installer indicating that penetration firestopping systems have been installed in compliance with requirements and manufacturer's written instructions.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: A firm that has been approved by FM Approval according to FM Approval 4991, "Approval of Firestop Contractors," or been evaluated by UL and found to comply with its "Qualified Firestop Contractor Program Requirements."

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics:

1. Perform penetration firestopping system tests by a qualified testing agency acceptable to authorities having jurisdiction.

2. Test per testing standards referenced in "Penetration Firestopping Systems" Article. Provide rated systems complying with the following requirements:

 a. Penetration firestopping systems shall bear classification marking of a qualified testing agency.

 1) UL in its "Fire Resistance Directory."
 2) Intertek Group in its "Directory of Listed Building Products."
 3) FM Approval in its "Approval Guide."

2.2 PENETRATION FIRESTOPPING SYSTEMS

A. Penetration Firestopping Systems: Systems that resist spread of fire, passage of smoke and other gases, and maintain original fire-resistance rating of construction penetrated. Penetration firestopping systems shall be compatible with one another, with the substrates forming openings, and with penetrating items if any.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Hilti, Inc.

B. Penetrations in Fire-Resistance-Rated Walls: Penetration firestopping systems with ratings determined per ASTM E814 or UL 1479, based on testing at a positive pressure differential of 0.01-inch wg.

1. F-Rating: Not less than the fire-resistance rating of constructions penetrated.
C. Penetrations in Horizontal Assemblies: Penetration firestopping systems with ratings
determined per ASTM E814 or UL 1479, based on testing at a positive pressure differential of
0.01-inch wg.

1. F-Rating: At least one hour, but not less than the fire-resistance rating of constructions
penetrated.
2. T-Rating: At least one hour, but not less than the fire-resistance rating of constructions
penetrated except for floor penetrations within the cavity of a wall.

D. Penetrations in Smoke Barriers: Penetration firestopping systems with ratings determined per
UL 1479, based on testing at a positive pressure differential of 0.30-inch wg.

1. L-Rating: Not exceeding 5.0 cfm/sq. ft. of penetration opening at and no more than 50-
cfm cumulative total for any 100 sq. ft. at both ambient and elevated temperatures.

E. Exposed Penetration Firestopping Systems: Flame-spread and smoke-developed indexes of less
than 25 and 450, respectively, per ASTM E84.

1. Verify sealant has a VOC content of 250 g/L or less.
2. Verify sealant complies with the testing and product requirements of the California
Department of Public Health's "Standard Method for the Testing and Evaluation of
Volatile Organic Chemical Emissions from Indoor Sources Using Environmental
Chambers."

F. Accessories: Provide components for each penetration firestopping system that are needed to
install fill materials and to maintain ratings required. Use only those components specified by
penetration firestopping system manufacturer and approved by qualified testing and inspecting
agency for conditions indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for
opening configurations, penetrating items, substrates, and other conditions affecting
performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning: Before installing penetration firestopping systems, clean out openings
immediately to comply with manufacturer's written instructions and with the following
requirements:
1. Remove from surfaces of opening substrates and from penetrating items foreign materials
that could interfere with adhesion of penetration firestopping materials.
2. Clean opening substrates and penetrating items to produce clean, sound surfaces capable of developing optimum bond with penetration firestopping materials. Remove loose particles remaining from cleaning operation.

3. Remove laitance and form-release agents from concrete.

B. Prime substrates where recommended in writing by manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.

3.3 INSTALLATION

A. General: Install penetration firestopping systems to comply with manufacturer's written installation instructions and published drawings for products and applications.

B. Install forming materials and other accessories of types required to support fill materials during their application and in the position needed to produce cross-sectional shapes and depths required to achieve fire ratings.

1. After installing fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not forming permanent components of firestopping.

C. Install fill materials by proven techniques to produce the following results:

1. Fill voids and cavities formed by openings, forming materials, accessories and penetrating items to achieve required fire-resistance ratings.

2. Apply materials so they contact and adhere to substrates formed by openings and penetrating items.

3. For fill materials that will remain exposed after completing the Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

3.4 IDENTIFICATION

A. Wall Identification: Permanently label walls containing penetration firestopping systems with the words "FIRE AND/OR SMOKE BARRIER - PROTECT ALL OPENINGS," using lettering not less than 3 inches high and with minimum 0.375-inch strokes.

1. Locate in accessible concealed floor, floor-ceiling, or attic space at 15 feet from end of wall and at intervals not exceeding 30 feet.

B. Penetration Identification: Identify each penetration firestopping system with legible metal or plastic labels. Attach labels permanently to surfaces adjacent to and within 6 inches of penetration firestopping system edge so labels are visible to anyone seeking to remove penetrating items or firestopping systems. Use mechanical fasteners or self-adhering-type labels with adhesives capable of permanently bonding labels to surfaces on which labels are placed. Include the following information on labels:

1. The words "Warning - Penetration Firestopping - Do Not Disturb. Notify Building Management of Any Damage."
2. Contractor's name, address, and phone number.
3. Designation of applicable testing and inspecting agency.
4. Date of installation.
5. Manufacturer's name.
6. Installer's name.

3.5 FIELD QUALITY CONTROL

A. Owner will engage a qualified testing agency to perform tests and inspections according to ASTM E2174.

B. Where deficiencies are found or penetration firestopping system is damaged or removed because of testing, repair or replace penetration firestopping system to comply with requirements.

C. Proceed with enclosing penetration firestopping systems with other construction only after inspection reports are issued and installations comply with requirements.

END OF SECTION 07 84 13
SECTION 07 92 00 – JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Urethane joint sealants.
 2. Mildew-resistant joint sealants.
 3. Latex joint sealants.

B. Related Sections include the following:
 1. Section 07 92 19 "Acoustical Joint Sealants" for sealing joints in sound-rated construction.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS

A. Product Data: For each joint-sealant product.

B. Sustainable Design Submittals:
 1. Product Data: For sealants, indicating VOC content.
 2. Laboratory Test Reports: For sealants, indicating compliance with requirements for low-emitting materials.

C. Samples: For each kind and color of joint sealant required.

D. Joint-Sealant Schedule: Include the following information:
 1. Joint-sealant application, joint location, and designation.
 2. Joint-sealant manufacturer and product name.
1.5 INFORMATIONAL SUBMITTALS

A. Product Test Reports: For each kind of joint sealant, for tests performed by manufacturer and witnessed by a qualified testing agency.

B. Preconstruction Field-Adhesion-Test Reports: Indicate which sealants and joint preparation methods resulted in optimum adhesion to joint substrates based on testing specified in "Preconstruction Testing" Article.

C. Field-Adhesion-Test Reports: For each sealant application tested.

D. Sample Warranties: For special warranties.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

B. Product Testing: Test joint sealants using a qualified testing agency.

 1. Testing Agency Qualifications: Qualified according to ASTM C1021 to conduct the testing indicated.

C. Mockups: Install sealant in mockups of assemblies specified in other Sections that are indicated to receive joint sealants specified in this Section. Use materials and installation methods specified in this Section.

1.7 FIELD CONDITIONS

A. Do not proceed with installation of joint sealants under the following conditions:

 1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer or are below 40 deg F.
 2. When joint substrates are wet.
 3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
 4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

1.8 WARRANTY

A. Special Installer's Warranty: Installer agrees to repair or replace joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.

 1. Warranty Period: Two years from date of Substantial Completion.
B. Special Manufacturer's Warranty: Manufacturer agrees to furnish joint sealants to repair or replace those joint sealants that do not comply with performance and other requirements specified in this Section within a specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion.

C. Special warranties specified in this article exclude deterioration or failure of joint sealants from the following:

1. Movement of the structure caused by stresses on the sealant exceeding the manufacturer's written specifications for sealant elongation and compression.
2. Disintegration of joint substrates from causes exceeding design specifications.
3. Mechanical damage caused by individuals, tools, or other outside agents.
4. Changes in sealant appearance caused by accumulation of dirt or other atmospheric contaminants.

PART 2 - PRODUCTS

2.1 JOINT SEALANTS, GENERAL

A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by the joint-sealant manufacturer, based on testing and field experience.

B. VOC Content: Sealants and sealant primers shall comply with the following:

1. Architectural sealants shall have a VOC content of 250 g/L or less.
2. Sealants and sealant primers for nonporous substrates shall have a VOC content of 250 g/L or less.
3. Sealants and sealant primers for porous substrates shall have a VOC content of 775 g/L or less.
4. Sealant shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

C. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer's full range.

2.2 URETHANE JOINT SEALANTS

A. Urethane, S, NS, 25, NT: Single-component, nonsag, nontraffic-use, plus 25 percent and minus 25 percent movement capability, urethane joint sealant; ASTM C920, Type S, Grade NS, Class 25, Use NT.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to the following:

 a. Pecora Corporation; Dynatrol I-XL Hybrid.
b. Sherwin-Williams Company (The); Loxon S1.
c. Tremco Incorporated; Dymonic 100.

B. Urethane, S, P, 25, T, NT: Single-component, pourable, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, urethane joint sealant; ASTM C920, Type S, Grade P, Class 25, Uses T and NT.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to the following:

a. Pecora Corporation; NR-201.
b. Tremco Incorporated; Vulkem 45 SSL.

2.3 MILDEW-RESISTANT JOINT SEALANTS

A. Mildew-Resistant Joint Sealants: Formulated for prolonged exposure to humidity with fungicide to prevent mold and mildew growth.

B. Silicone, Mildew Resistant, Acid Curing, S, NS, 25, NT: Mildew-resistant, single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, acid-curing silicone joint sealant; ASTM C920, Type S, Grade NS, Class 25, Use NT.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to the following:

a. Pecora Corporation; Pecora 898NST.
b. Sherwin-Williams Company (The); White Lightning All Purpose Silicone Rubber.
c. Tremco Incorporated; Tremsil 200.

2.4 LATEX JOINT SEALANTS

A. Acrylic Latex: Acrylic latex or siliconized acrylic latex, ASTM C834, Type OP, Grade NF.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to the following:

b. Sherwin-Williams Company (The); 950A Siliconized Acrylic Latex Caulk.
c. Tremco Incorporated; Tremflex 834.

2.5 JOINT-SEALANT BACKING

A. Sealant Backing Material, General: Nonstaining; compatible with joint substrates, sealants, primers, and other joint fillers; and approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.

B. Cylindrical Sealant Backings: ASTM C1330, Type C (closed-cell material with a surface skin), and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance.
C. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint. Provide self-adhesive tape where applicable.

2.6 MISCELLANEOUS MATERIALS

A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.

B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.

C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section "Construction Waste Management."

3.2 EXAMINATION

A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 PREPARATION

A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:

1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.

2. Clean porous joint substrate surfaces by brushing, grinding, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining after cleaning.
operations above by vacuuming or blowing out joints with oil-free compressed air. Porous joint substrates include the following:

a. Concrete.
b. Masonry.
c. Unglazed surfaces of ceramic tile.

3. Remove laitance and form-release agents from concrete.
4. Clean nonporous joint substrate surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous joint substrates include the following:

a. Metal.
b. Glass.
c. Porcelain enamel.
d. Glazed surfaces of ceramic tile.

B. Joint Priming: Prime joint substrates where recommended by joint-sealant manufacturer or as indicated by preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.4 INSTALLATION OF JOINT SEALANTS

A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.

B. Sealant Installation Standard: Comply with recommendations in ASTM C1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.

C. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.

1. Do not leave gaps between ends of sealant backings.
2. Do not stretch, twist, puncture, or tear sealant backings.
3. Remove absorbent sealant backings that have become wet before sealant application, and replace them with dry materials.

D. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.

E. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
1. Place sealants so they directly contact and fully wet joint substrates.
2. Completely fill recesses in each joint configuration.
3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.

F. Tooling of Nonsag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified in subparagraphs below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.

1. Remove excess sealant from surfaces adjacent to joints.
2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
3. Provide concave joint profile per Figure 8A in ASTM C1193 unless otherwise indicated.

3.5 CLEANING

A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.6 PROTECTION

A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out, remove, and repair damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.

3.7 JOINT-SEALANT SCHEDULE

A. Joint-Sealant Application: Interior joints in horizontal traffic surfaces JS-1.

1. Joint Locations:
 b. Control and expansion joints in tile flooring.
 c. Other joints as indicated on Drawings.

3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

1. Joint Locations:
 a. Control and expansion joints on exposed interior surfaces of exterior walls.
b. Tile control and expansion joints.
c. Vertical joints on exposed surfaces of unit masonry, concrete walls and partitions.
d. Insert other joints.
e. Other joints as indicated on Drawings.

2. Joint Sealant: Urethane, S, NS, 25, NT.
3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

C. Joint-Sealant Application: Interior joints in vertical surfaces and horizontal nontraffic surfaces not subject to significant movement **JS-3**.

1. Joint Locations:
 a. Control joints on exposed interior surfaces of exterior walls.
 b. Perimeter joints between interior wall surfaces and frames of interior doors, windows and elevator entrances.
 c. Other joints as indicated on Drawings.

3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

D. Joint-Sealant Application: Mildew-resistant interior joints in vertical surfaces and horizontal nontraffic surfaces **JS-4**.

1. Joint Locations:
 a. Joints between plumbing fixtures and adjoining walls, floors, and counters.
 b. Tile control and expansion joints where indicated.
 c. Other joints as indicated on Drawings.

2. Joint Sealant: Silicone, mildew resistant, acid curing, S, NS, 25, NT.
3. Joint-Sealant Color: As selected by Architect from manufacturer's full range of colors.

END OF SECTION 07 92 00
SECTION 07 92 19 - ACOUSTICAL JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes acoustical joint sealants.
B. Related Sections include the following:
 1. Section 07 92 00 "Joint Sealants" for elastomeric, latex, and butyl-rubber-based joint sealants for nonacoustical applications.

1.3 ACTION SUBMITTALS
A. Product Data: For each acoustical joint sealant.
B. Sustainable Design Submittals:
 1. Product Data: For sealants, indicating VOC content.
 2. Laboratory Test Reports: For sealants, indicating compliance with requirements for low-emitting materials.
C. Samples for Initial Selection: Manufacturer's color charts consisting of strips of cured sealants showing the full range of colors available for each product exposed to view.
D. Samples for Verification: For each kind and color of acoustical joint sealant required, provide Samples with joint sealants in 1/2-inch-wide joints formed between two 6-inch-long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.
E. Acoustical-Joint-Sealant Schedule: Include the following information:
 1. Joint-sealant application, joint location, and designation.
 2. Joint-sealant manufacturer and product name.

1.4 INFORMATIONAL SUBMITTALS
A. Product Test Reports: For each kind of acoustical joint sealant, for tests performed by manufacturer and witnessed by a qualified testing agency.
B. Sample Warranties: For special warranties.

1.5 WARRANTY

A. Special Installer's Warranty: Installer agrees to repair or replace acoustical joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.

1. Warranty Period: Two years from date of Substantial Completion.

B. Special Manufacturer's Warranty: Manufacturer agrees to furnish acoustical joint sealants to repair or replace those joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion.

C. Special warranties specified in this article exclude deterioration or failure of joint sealants from the following:

1. Movement of the structure caused by stresses on the sealant exceeding sealant manufacturer's written specifications for sealant elongation and compression.
2. Disintegration of joint substrates from causes exceeding design specifications.
3. Mechanical damage caused by individuals, tools, or other outside agents.
4. Changes in sealant appearance caused by accumulation of dirt or other atmospheric contaminants.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Provide acoustical joint-sealant products that effectively reduce airborne sound transmission through perimeter joints and openings in building construction, as demonstrated by testing representative assemblies according to ASTM E90.

1. Sealant shall have a VOC content of 250 g/L or less.
2. Sealant shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

2.2 ACOUSTICAL JOINT SEALANTS

A. Acoustical Sealant for Exposed Joints: Manufacturer's standard nonsag, paintable, nonstaining latex acoustical sealant complying with ASTM C834.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Pecora Corporation.
b. Tremco Incorporated.
c. USG Corporation.

2. Colors of Exposed Acoustical Joint Sealants: As selected by Architect from manufacturer's full range of colors.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Pecora Corporation.

2.3 MISCELLANEOUS MATERIALS

A. Primer: Material recommended by acoustical-joint-sealant manufacturer where required for adhesion of sealant to joint substrates.

B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.

C. Masking Tape: Nonstaining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine joints indicated to receive acoustical joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Cleaning of Joints: Clean out joints immediately before installing acoustical joint sealants to comply with joint-sealant manufacturer's written instructions.

B. Joint Priming: Prime joint substrates where recommended by acoustical-joint-sealant manufacturer. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.
C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF ACOUSTICAL JOINT SEALANTS

A. Comply with acoustical joint-sealant manufacturer's written installation instructions unless more stringent requirements apply.

B. Partitions and STC-Rated Assemblies: Seal construction at perimeters, behind control joints, and at openings and penetrations with a continuous bead of acoustical joint sealant. Install acoustical joint sealants at both faces of partitions, at perimeters, and through penetrations. Comply with ASTM C919, ASTM C1193, and manufacturer's written recommendations for closing off sound-flanking paths around or through assemblies, including sealing partitions to underside of floor slabs above acoustical ceilings.

C. Acoustical Ceiling Areas: Apply acoustical joint sealant at perimeter edge moldings of acoustical ceiling areas in a continuous ribbon concealed on back of vertical legs of moldings before they are installed.

3.4 CLEANING

A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of acoustical joint sealants and of products in which joints occur.

3.5 PROTECTION

A. Protect acoustical joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out, remove, and repair damaged or deteriorated acoustical joint sealants immediately so installations with repaired areas are indistinguishable from original work.

END OF SECTION 07 92 19
SECTION 08 11 13 - HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes:
 1. Interior standard steel doors and frames.

B. Related Requirements:
 1. Section 087100 "Door Hardware" for door hardware for hollow-metal doors.

1.3 DEFINITIONS

A. Minimum Thickness: Minimum thickness of base metal without coatings according to NAAMM-HMMA 803 or ANSI/SDI A250.8.

1.4 COORDINATION

A. Coordinate anchorage installation for hollow-metal frames. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors. Deliver such items to Project site in time for installation.

B. Coordinate requirements for installation of door hardware, electrified door hardware, and access control and security systems.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, core descriptions, fire-resistance ratings, temperature-rise ratings, and finishes.

B. Sustainable Design Submittals:
 1. Product Data: For recycled content, indicating postconsumer and preconsumer recycled content and cost.
C. Shop Drawings: Include the following:
 1. Elevations of each door type.
 2. Details of doors, including vertical- and horizontal-edge details and metal thicknesses.
 3. Frame details for each frame type, including dimensioned profiles and metal thicknesses.
 4. Locations of reinforcement and preparations for hardware.
 5. Details of each different wall opening condition.
 6. Details of electrical raceway and preparation for electrified hardware, access control systems, and security systems.
 7. Details of anchorages, joints, field splices, and connections.
 8. Details of accessories.
 9. Details of moldings, removable stops, and glazing.

D. Product Schedule: For hollow-metal doors and frames, prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings. Coordinate with final door hardware schedule.

1.6 INFORMATIONAL SUBMITTALS

A. Product Test Reports: For each type of fire-rated hollow-metal door and frame assembly and fire-rated borrowed-lite assembly for tests performed by a qualified testing agency indicating compliance with performance requirements.

B. Oversize Construction Certification: For assemblies required to be fire-rated and exceeding limitations of labeled assemblies.

1.7 CLOSEOUT SUBMITTALS

A. Record Documents: For fire-rated doors, list of door numbers and applicable room name and number to which door accesses.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver hollow-metal doors and frames palletized, packaged, or crated to provide protection during transit and Project-site storage. Do not use nonvented plastic.
 1. Provide additional protection to prevent damage to factory-finished units.

B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.

C. Store hollow-metal doors and frames vertically under cover at Project site with head up. Place on minimum 4-inch-high wood blocking. Provide minimum 1/4-inch space between each stacked door to permit air circulation.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Curries Company; ASSA ABLOY.
2. Mesker Door Inc.
3. Steelcraft; an Allegion brand.

2.2 PERFORMANCE REQUIREMENTS

A. Fire-Rated Door Assemblies: Assemblies complying with NFPA 80 that are listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction for fire-protection ratings and temperature-rise limits indicated on Drawings, based on testing at positive pressure according to NFPA 252 or UL 10C.

1. Smoke- and Draft-Control Door Assemblies: Listed and labeled for smoke and draft control by a qualified testing agency acceptable to authorities having jurisdiction, based on testing according to UL 1784 and installed in compliance with NFPA 105.

2.3 INTERIOR STANDARD STEEL DOORS AND FRAMES

A. Construct hollow-metal doors and frames to comply with standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.

B. Heavy-Duty Doors and Frames: ANSI/SDI A250.8, Level 2; ANSI/SDI A250.4, Level B. At all locations unless noted otherwise.

1. Doors:
 a. Type: As indicated in the Door and Frame Schedule.
 c. Face: Uncoated steel sheet, minimum thickness of 0.042 inch.
 d. Edge Construction: Model 1, Full Flush.
 e. Edge Bevel: Provide manufacturer's standard beveled or square edges.
 f. Core: Manufacturer's standard with vertical steel stiffener.
 g. Fire-Rated Core: Manufacturer's standard core with vertical steel stiffener for fire-rated and temperature-rise-rated doors.

2. Frames:
 a. Materials: Uncoated steel sheet, minimum thickness of 0.053 inch.
 b. Sidelite Frames: Fabricated from same thickness material as adjacent door frame.
 c. Construction: Face welded.

1. Doors:
 a. Type: As indicated in the Door and Frame Schedule.
 c. Face: Uncoated steel sheet, minimum thickness of 0.053 inch.
 d. Edge Construction: Model 1, Full Flush.
 e. Edge Bevel: Provide manufacturer's standard beveled or square edges.
 f. Core: Manufacturer's standard with vertical steel stiffener.
 g. Fire-Rated Core: Manufacturer's standard core with vertical steel stiffener for fire-rated and temperature-rise-rated doors.

2. Frames:
 a. Materials: Uncoated steel sheet, minimum thickness of 0.053 inch.
 b. Sidelite Frames: Fabricated from same thickness material as adjacent door frame.
 c. Construction: Face welded.

2.4 BORROWED LITES

A. Fabricate of uncoated steel sheet, minimum thickness of 0.042 inch.

B. Construction: Full profile welded.

C. Fabricate in one piece except where handling and shipping limitations require multiple sections. Where frames are fabricated in sections due to shipping or handling limitations, provide alignment plates or angles at each joint, fabricated of metal of same or greater thickness as metal as frames.

D. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.

2.5 FRAME ANCHORS

A. Jamb Anchors:
 1. Type: Anchors of minimum size and type required by applicable door and frame standard, and suitable for performance level indicated.
 2. Quantity: Minimum of three anchors per jamb, with one additional anchor for frames with no floor anchor. Provide one additional anchor for each 24 inches of frame height above 7 feet.

B. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor.
C. Floor Anchors for Concrete Slabs with Underlayment: Adjustable-type anchors with extension clips, allowing not less than 2-inch height adjustment. Terminate bottom of frames at top of underlayment.

D. Material: ASTM A879/A879M, Commercial Steel (CS), 04Z coating designation; mill phosphatized.
 1. For anchors built into exterior walls, steel sheet complying with ASTM A1008/A1008M or ASTM A1011/A1011M; hot-dip galvanized according to ASTM A153/A153M, Class B.

2.6 MATERIALS

A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.

B. Cold-Rolled Steel Sheet: ASTM A1008/A1008M, Commercial Steel (CS), Type B; suitable for exposed applications.

C. Hot-Rolled Steel Sheet: ASTM A1011/A1011M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.

D. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A153/A153M.

E. Power-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hollow-metal frames of type indicated.

F. Glazing: Comply with requirements in Section 088000 "Glazing."

2.7 FABRICATION

A. Hollow-Metal Frames: Fabricate in one piece except where handling and shipping limitations require multiple sections. Where frames are fabricated in sections, provide alignment plates or angles at each joint, fabricated of metal of same or greater thickness as frames.
 1. Sidelite Frames: Provide closed tubular members with no visible face seams or joints, fabricated from same material as door frame. Fasten members at crossings and to jambs by welding.
 2. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
 3. Door Silencers: Except on weather-stripped frames, drill stops to receive door silencers as follows. Keep holes clear during construction.
 a. Single-Door Frames: Drill stop in strike jamb to receive three door silencers.
 b. Double-Door Frames: Drill stop in head jamb to receive two door silencers.
B. Hardware Preparation: Factory prepare hollow-metal doors and frames to receive templated mortised hardware, and electrical wiring; include cutouts, reinforcement, mortising, drilling, and tapping according to ANSI/SDI A250.6, the Door Hardware Schedule, and templates.

1. Reinforce doors and frames to receive non-templated, mortised, and surface-mounted door hardware.
2. Comply with BHMA A156.115 for preparing hollow-metal doors and frames for hardware.

C. Glazed Lites: Provide stops and moldings around glazed lites where indicated. Form corners of stops and moldings with mitered hairline joints.

1. Provide stops and moldings flush with face of door, and with [beveled] [square] stops unless otherwise indicated.
2. Multiple Glazed Lites: Provide fixed and removable stops and moldings so that each glazed lite is capable of being removed independently.
3. Provide fixed frame moldings on outside of exterior and on secure side of interior doors and frames. Provide loose stops and moldings on inside of hollow-metal doors and frames.
4. Coordinate rabbet width between fixed and removable stops with glazing and installation types indicated.
5. Provide stops for installation with countersunk flat- or oval-head machine screws spaced uniformly not more than 9 inches o.c. and not more than 2 inches o.c. from each corner.

2.8 STEEL FINISHES

A. Prime Finish: Clean, pretreat, and apply manufacturer's standard primer.

1. Shop Primer: Manufacturer's standard, fast-curing, lead- and chromate-free primer complying with ANSI/SDI A250.10; recommended by primer manufacturer for substrate; compatible with substrate and field-applied coatings despite prolonged exposure.

PART 3 - EXECUTION

3.1 PREPARATION

A. Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces. Touch up factory-applied finishes where spreaders are removed.

B. Drill and tap doors and frames to receive non-templated, mortised, and surface-mounted door hardware.

3.2 INSTALLATION

A. Install hollow-metal doors and frames plumb, rigid, properly aligned, and securely fastened in place. Comply with approved Shop Drawings and with manufacturer's written instructions.
B. Hollow-Metal Frames: Comply with ANSI/SDI A250.11.

1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces without damage to completed Work.
 a. Where frames are fabricated in sections, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces. Touch-up finishes.
 b. Install frames with removable stops located on secure side of opening.

2. Fire-Rated Openings: Install frames according to NFPA 80.
3. Floor Anchors: Secure with postinstalled expansion anchors.
 a. Floor anchors may be set with power-actuated fasteners instead of postinstalled expansion anchors if so indicated and approved on Shop Drawings.

4. Solidly pack mineral-fiber insulation inside frames.
5. Installation Tolerances: Adjust hollow-metal frames to the following tolerances:
 a. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 b. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.
 c. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 d. Plumbness: Plus or minus 1/16 inch, measured at jambs at floor.

C. Hollow-Metal Doors: Fit and adjust hollow-metal doors accurately in frames, within clearances specified below.

2. Fire-Rated Doors: Install doors with clearances according to NFPA 80.
3. Smoke-Control Doors: Install doors according to NFPA 105.

D. Glazing: Comply with installation requirements in Section 088000 "Glazing" and with hollow-metal manufacturer's written instructions.

3.3 REPAIR

A. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.

END OF SECTION 08 11 13
SECTION 08 14 16 - FLUSH WOOD DOORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Five-ply flush wood veneer-faced doors for transparent finish.
 2. Factory finishing flush wood doors.
 3. Factory fitting flush wood doors to frames and factory machining for hardware.
 B. Related Sections include the following:
 1. Division 08 Section "Hollow Metal Doors and Frames" for use with flush wood doors.
 2. Division 08 Section "Glazing" for glass view panels in flush wood doors.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product, including the following:
 1. Door core materials and construction.
 2. Door edge construction
 3. Door face type and characteristics.
 4. Door louvers.
 5. Door trim for openings.
 6. Door frame construction.
 7. Factory-machining criteria.
 B. Sustainable Design Submittals:
 1. Product Certificates: For materials manufactured within 100 miles of Project, indicating location of material manufacturer and point of extraction, harvest, or recovery for each raw material. Include distance to Project and cost for each raw material.
 3. Chain-of-Custody Qualification Data: For manufacturer and vendor.
 4. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials.
 5. Laboratory Test Reports: For composite wood products, indicating compliance with requirements for low-emitting materials.
C. Shop Drawings: Indicate location, size, and hand of each door; elevation of each type of door; construction details not covered in Product Data; and the following:

1. Door schedule indicating door and frame location, type, size, fire protection rating, and swing.
2. Door elevations, dimension and locations of hardware, lite and louver cutouts, and glazing thicknesses.
3. Details of frame for each frame type, including dimensions and profile.
4. Details of electrical raceway and preparation for electrified hardware, access control systems, and security systems.
5. Dimensions and locations of blocking for hardware attachment.
6. Clearances and undercuts.
7. Requirements for veneer matching.
8. Apply AWI Quality Certification Program label to Shop Drawings.

D. Samples: For factory-finished doors.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For door inspector.

1. Fire-Rated Door Inspector: Submit documentation of compliance with NFPA 80, Section 5.2.3.1.

B. Field quality-control reports.

C. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Special warranties.

B. Quality Standard Compliance Certificates: AWI Quality Certification Program certificates.

C. Record Documents: For fire-rated doors, list of door numbers and applicable room name and number to which door accesses.

1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: A qualified manufacturer that is certified for chain of custody by an FSC-accredited certification body.

B. Vendor Qualifications: A vendor that is certified for chain of custody by an FSC-accredited certification body.

C. Manufacturer's Certification: Licensed participant in AWI's Quality Certification Program.

D. Source Limitations: Obtain flush wood doors from single manufacturer.
1.7 DELIVERY, STORAGE, AND HANDLING

A. Comply with requirements of referenced standard and manufacturer's written instructions.

B. Package doors individually in plastic bags or cardboard cartons.

C. Mark each door on top and bottom rail with opening number used on Shop Drawings.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install doors until spaces are enclosed and weathertight, wet work in spaces is complete and dry, and HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.9 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace doors that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Delamination of veneer.
 b. Warping (bow, cup, or twist) more than 1/4 inch in a 42-by-84-inch section.
 c. Telegraphing of core construction in face veneers exceeding 0.01 inch in a 3-inch span.

2. Warranty shall also include installation and finishing that may be required due to repair or replacement of defective doors.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Rated Wood Door and Frame Assemblies: Assemblies complying with NFPA 80 that are listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction, for fire-protection ratings indicated on Drawings, based on testing at positive pressure in accordance with UL 10C or NFPA 252.

1. Oversize Fire-Rated Door Assemblies: For units exceeding sizes of tested assemblies, provide certification by a qualified testing agency that doors comply with standard construction requirements for tested and labeled fire-rated door assemblies except for size.

B. Smoke- and Draft-Control Door Assemblies: Listed and labeled for smoke and draft control by a qualified testing agency acceptable to authorities having jurisdiction, based on testing in accordance with UL 1784 and installed in compliance with NFPA 105.
2.2 FLUSH WOOD DOORS, GENERAL

A. Quality Standard: In addition to requirements specified, comply with WDMA I.S. 1A.
 1. Provide certificates from AWI certification program indicating that doors comply with requirements of grades specified.

B. Certified Wood: Wood doors shall be certified as "FSC Pure" or "FSC Mixed Credit" according to FSC STD-01-001 and FSC STD-40-004.

C. Adhesives: Use adhesives that meet the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

D. Composite Wood Products: Products shall be made using ultra-low-emitting formaldehyde resins as defined in the California Air Resources Board's "Airborne Toxic Control Measure to Reduce Formaldehyde Emissions from Composite Wood Products" or shall be made with no added formaldehyde.

2.3 FIVE-PLY FLUSH WOOD VENEER-FACED DOORS FOR TRANSPARENT FINISH

A. Interior Doors:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aspiro (formerly Marshfield-Algoma); a Masonite company.
 b. Eggers Industries.
 c. VT Industries Inc.
 2. Performance Grade:
 a. WDMA I.S. 1A Heavy Duty unless otherwise indicated on Drawings.
 b. WDMA I.S. 1A Extra Heavy Duty: Suite entrances, public toilets, janitor's closets, assembly spaces, and exits.
 c. WDMA I.S. 1A Standard Duty: Closets (not including janitor's closets) and private toilets.
 3. WDMA I.S. 1A Grade: Premium.
 a. Species: Red oak.
 b. Cut: Plain sliced (flat sliced).
 c. Match between Veneer Leaves: Slip match.
 d. Assembly of Veneer Leaves on Door Faces: Center-balance match.
 e. Pair and Set Match: Provide for doors hung in same opening or separated only by mullions.
 5. Exposed Vertical Edges: Same species as faces - Architectural Woodwork Standards edge Type A.
a. Fire-Rated Single Doors: Provide edge construction with intumescent seals concealed by outer stile. Comply with specified requirements for exposed vertical edges.
b. Fire-Rated Pairs of Doors: Provide fire-retardant stiles that are listed and labeled for applications indicated without formed-steel edges and astragals. Provide stiles with concealed intumescent seals. Comply with specified requirements for exposed edges.
c. Mineral-Core Doors: At hinge stiles, provide laminated-edge construction with improved screw-holding capability and split resistance. Comply with specified requirements for exposed edges.

1) Screw-Holding Capability: In accordance with WDMA T.M. 10 duty rating specified.

6. Core for Non-Fire-Rated Doors: Either glued wood stave or WDMA I.S. 10 structural composite lumber.
7. Core for Fire-Rated Doors: As required to achieve fire-protection rating indicated on Drawings.

a. Blocking for Mineral-Core Doors: Provide composite blocking with improved screw-holding capability approved for use in doors of fire-protection ratings indicated on Drawings as needed to eliminate through-bolting hardware.

8. Construction: Five plies, hot-pressed bonded (vertical and horizontal edging is bonded to core), with entire unit abrasive planed before veneering.

2.4 LIGHT FRAMES

A. Wood Beads for Light Openings in Wood Doors: Provide manufacturer's standard wood beads unless otherwise indicated.

1. Wood Species: Same species as door faces.
2. Profile: Manufacturer's standard shape.
3. At wood-core doors with 20-minute fire-protection ratings, provide wood beads and metal glazing clips approved for such use.

B. Wood-Veneered Beads for Light Openings in Fire-Rated Doors: Manufacturer's standard wood-veneered noncombustible beads matching veneer species of door faces and approved for use in doors of fire-protection rating indicated on Drawings. Include concealed metal glazing clips where required for opening size and fire-protection rating indicated.

2.5 FABRICATION

A. Factory fit doors to suit frame-opening sizes indicated.

1. Comply with clearance requirements of referenced quality standard for fitting unless otherwise indicated.
2. Comply with NFPA 80 requirements for fire-rated doors.

B. Factory machine doors for hardware that is not surface applied.
1. Locate hardware to comply with DHI-WDHS-3.
2. Comply with final hardware schedules, door frame Shop Drawings, BHMA-156.115-W, and hardware templates.
3. Coordinate with hardware mortises in metal frames, to verify dimensions and alignment before factory machining.
4. For doors scheduled to receive electrified locksets, provide factory-installed raceway and wiring to accommodate specified hardware.

C. Openings: Factory cut and trim openings through doors.
 1. Light Openings: Trim openings with moldings of material and profile indicated.
 2. Glazing: Factory install glazing in doors indicated to be factory finished. Comply with applicable requirements in Section 08 80 00 "Glazing."

2.6 FACTORY FINISHING

A. Comply with referenced quality standard for factory finishing.
 1. Complete fabrication, including fitting doors for openings and machining for hardware that is not surface applied, before finishing.
 2. Finish faces, all four edges, edges of cutouts, and mortises.
 3. Stains and fillers may be omitted on top and bottom edges, edges of cutouts, and mortises.

B. Factory finish doors.

C. Transparent Finish:
 1. WDMA I.S. 1A Grade: Premium.
 2. Finish: WDMA I.S. 1A TR-6 Catalyzed Polyurethane.
 4. Sheen: Satin or semigloss as selected by Architect.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine doors and installed door frames, with Installer present, before hanging doors.
 1. Verify that installed frames comply with indicated requirements for type, size, location, and swing characteristics and have been installed with level heads and plumb jambs.
 2. Reject doors with defects.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Hardware: For installation, see Section 08 71 00 "Door Hardware."
B. Install doors to comply with manufacturer's written instructions and referenced quality standard, and as indicated.
 1. Install fire-rated doors and frames in accordance with NFPA 80.
 1. Install smoke- and draft-control doors in accordance with NFPA 105.

C. Factory-Fitted Doors: Align in frames for uniform clearance at each edge.

D. Factory-Finished Doors: Restore finish before installation if fitting or machining is required at Project site.

3.3 FIELD QUALITY CONTROL

A. Inspection Agency: Engage a qualified inspector to perform inspections and to furnish reports to Architect.

B. Inspections:
 1. Fire-Rated Door Inspections: Inspect each fire-rated door in accordance with NFPA 80, Section 5.2.

C. Repair or remove and replace installations where inspections indicate that they do not comply with specified requirements.

D. Reinspect repaired or replaced installations to determine if replaced or repaired door assembly installations comply with specified requirements.

E. Prepare and submit separate inspection report for each fire-rated door assembly indicating compliance with each item listed in NFPA 80.

3.4 ADJUSTING

A. Operation: Rehang or replace doors that do not swing or operate freely.

B. Finished Doors: Replace doors that are damaged or that do not comply with requirements. Doors may be repaired or refinished if Work complies with requirements and shows no evidence of repair or refinishing.

END OF SECTION 08 14 16
SECTION 08 31 13 - ACCESS DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes access doors and frames for walls and ceilings.
 B. Related Sections include the following:
 1. Division 23 Section "Air Duct Accessories" for heating and air-conditioning duct access doors.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, fire ratings, material descriptions, dimensions of individual components and profiles, and finishes.
 B. Samples: For each type of access door and frame and for each finish specified.
 C. Product Schedule: For access doors and frames.

1.4 CLOSEOUT SUBMITTALS
 A. Record Documents: For fire-rated doors, list of applicable room name and number in which access door is located.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Fire-Rated Access Doors and Frames: Assemblies complying with NFPA 80 that are listed and labeled by a qualified testing agency, for fire-protection and temperature-rise limit ratings indicated, according to NFPA 252 or UL 10B.
2.2 ACCESS DOORS AND FRAMES

A. Flush Access Doors with Exposed Flanges:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Babcock-Davis.
 b. Larsens Manufacturing Company.
 c. MIFAB, Inc.
 d. Milcor; Commercial Products Group of Hart & Cooley, Inc.
 e. Nystrom, Inc.

2. Description: Face of door flush with frame, with exposed flange and concealed hinge.

3. Locations: Wall and ceiling.

4. Uncoated Steel Sheet for Door: Nominal 0.060 inch, 16 gage, factory primed.

5. Frame Material: Same material, thickness, and finish as door.

FIRE-RATED ACCESS DOORS AND FRAMES

A. Fire-Rated, Flush Access Doors with Exposed Flanges:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Babcock-Davis.
 b. Larsens Manufacturing Company.
 c. MIFAB, Inc.
 d. Milcor; Commercial Products Group of Hart & Cooley, Inc.
 e. Nystrom, Inc.

2. Description: Door face flush with frame, with a core of mineral-fiber insulation enclosed in sheet metal; with exposed flange, self-closing door, and concealed hinge.

3. Locations: Wall and ceiling.

4. Fire-Resistance Rating: Not less than that of adjacent construction.

5. Temperature-Rise Rating: 450 deg F at the end of 30 minutes.

6. Uncoated Steel Sheet for Door: Nominal 0.036 inch, 20 gage, factory primed.

7. Frame Material: Same material, thickness, and finish as door.

8. Latch and Lock: Self-latching door hardware, operated by knurled-knob.

MATERIALS

A. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.

B. Steel Sheet: Uncoated or electrolytic zinc coated, ASTM A 879/A 879M, with cold-rolled steel sheet substrate complying with ASTM A 1008/A 1008M, Commercial Steel (CS), exposed.
C. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS), Type B; with minimum G60 or A60 metallic coating.

D. Frame Anchors: Same material as door face.

E. Inserts, Bolts, and Anchor Fasteners: Hot-dip galvanized steel according to ASTM A 153/A 153M or ASTM F 2329.

2.5 FABRICATION

A. General: Provide access door and frame assemblies manufactured as integral units ready for installation.

B. Metal Surfaces: For metal surfaces exposed to view in the completed Work, provide materials with smooth, flat surfaces without blemishes. Do not use materials with exposed pitting, seam marks, roller marks, rolled trade names, or roughness.

C. Doors and Frames: Grind exposed welds smooth and flush with adjacent surfaces. Furnish mounting holes, attachment devices and fasteners of type required to secure access doors to types of supports indicated.

1. For concealed flanges with drywall bead, provide edge trim for gypsum panels securely attached to perimeter of frames.

D. Recessed Access Doors: Form face of panel to provide recess for application of applied finish. Reinforce panel as required to prevent buckling. Provide access sleeves for each latch operator and install in holes cut through finish.

E. Latch and Lock Hardware:

1. Quantity: Furnish number of latches and locks required to hold doors tightly closed.

2.6 FINISHES

A. Painted Finishes: Comply with coating manufacturer's written instructions for cleaning, conversion coating, and applying and baking finish.

1. Factory Primed: Apply manufacturer's standard, lead- and chromate-free, universal primer immediately after surface preparation and pretreatment.

PART 3 - EXECUTION

3.1 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section "Construction Waste Management."
3.2 EXAMINATION
A. Examine substrates for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 INSTALLATION
A. Comply with manufacturer's written instructions for installing access doors and frames.

3.4 ADJUSTING
A. Adjust doors and hardware, after installation, for proper operation.

END OF SECTION 08 31 13
SECTION 08 34 73 - METAL SOUND CONTROL DOOR ASSEMBLIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes metal sound control door assemblies.

1.3 COORDINATION

A. Coordinate installation of anchorages for sound control door assemblies. Furnish setting drawings, templates, and directions for installing anchorages. Deliver sleeves, inserts, anchor bolts, and items with integral anchors to Project site in time for installation.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product. Include sound ratings, construction details, material descriptions, core descriptions, and finishes.

B. Sustainable Design Submittals:

1. Product Data: For recycled content, indicating postconsumer and preconsumer recycled content and cost.
2. Environmental Product Declaration: For each product.
3. Health Product Declaration: For each product.
4. Sourcing of Raw Materials: Corporate sustainability report for each manufacturer.

C. Shop Drawings: For sound control door assemblies.

1. Include elevations of each door design.
2. Include details of sound control seals, door bottoms, and thresholds.
3. Include details of doors, including vertical- and horizontal-edge details and metal thicknesses.
4. Include frame details for each frame type, including dimensioned profiles and metal thicknesses.
5. Include locations of reinforcements and preparations for hardware.
6. Include details of each different wall opening condition.
7. Include details of anchorages, joints, field splices, and connections.
8. Include details of accessories.
9. Include details of moldings, removable stops, and glazing.
10. Include details of conduits and preparations for power, signal, and control systems.
D. D. Samples for Initial Selection: For units with factory-applied finishes.

E. E. Samples for Verification: For each type of exposed finish not less than 3 by 5 inches

1. Doors and Frames: Samples approximately 12 by 12 inches.

a. Doors: Include section of vertical-edge, top, and bottom construction; automatic door bottom or gasket; core construction; glazing; and hinge and other applied hardware reinforcement.

b. Frames: Include profile, corner joint, floor and wall anchors, and seals.

F. F. Schedule: Provide a schedule of sound control door assemblies prepared using same reference numbers for details and openings as those on Drawings. Coordinate with the Door Hardware Schedule.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer, manufacturer and acoustical testing agency.

B. Product Certificates: For each type of sound control door assembly.

C. Product Test Reports: For each sound control door assembly, for tests performed by a qualified testing agency.

D. Field quality-control reports.

E. Sample Warranty: For manufacturer's special warranties.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For sound control door assemblies to include in maintenance manuals.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

B. Acoustical Testing Agency Qualifications: An independent agency accredited as an acoustical laboratory according to the National Voluntary Laboratory Accreditation Program of NIST.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver doors and frames palletized, wrapped, or crated to provide protection during transit and Project-site storage. Avoid the use of nonvented plastic.

1. Provide additional protection to prevent damage to factory-finished units.
B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.

C. Store doors and frames vertically under cover at Project site with head up. Place on minimum 4-inch-high wood blocking. Provide minimum 1/4-inch space between each stacked door to permit air circulation.

1.9 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of sound control door assemblies that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Failure to meet sound rating requirements.
 b. Faulty operation of sound seals.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use or weathering.

2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Sound Rating: Provide sound control door assemblies identical to those of assemblies tested as sound-retardant units by an acoustical testing agency, and have the following minimum rating:

1. STC Rating: As indicated in the Door Schedule as calculated by ASTM E413 when tested in an operable condition according to ASTM E90.

2.2 STEEL SOUND CONTROL DOORS

A. Basis-of-Design Product: Subject to compliance with requirements, provide IAC Acoustics; Noise-Lock or a comparable product by one of the following:

2. Noise Barriers, LLC.; QuiteSwing.
3. Wenger Corp.; Acoustical Door.

B. Source Limitations: Obtain steel sound control door assemblies, including doors, frames, sound control seals, hinges, thresholds, and other items essential for sound control, from single source from single manufacturer.

C. Doors: Flush-design sound control doors, 2-1/2 inches thick, of seamless construction; with manufacturer's standard sound-retardant core as required to provide STC rating indicated. Construct doors with smooth, flush surfaces without visible joints or seams on exposed faces or stile edges. Fabricate according to NAAMM-HMMA 865.
1. **Interior Doors**: Fabricate from cold-rolled steel sheet unless otherwise indicated, 0.078-inch (14 gauge) nominal thickness or thicker as required to achieve STC rating indicated.

2. **Core**: Manufacturer's standard sound control core.

3. **Loose Stops for Glazed Lites in Doors**: Same material as face sheets.

4. **Top and Bottom Channels**: Closed with continuous channels of same material as face sheets, spot welded to face sheets not more than 6 inches o.c.

5. **Hardware Reinforcement**: Same material as face sheets.

D. Materials:

1. **Recycled Content of Steel Products**: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.

2. **Cold-Rolled Steel Sheet**: ASTM A1008/A1008M, Commercial Steel (CS), Type B, suitable for exposed applications.

3. **Hot-Rolled Steel Sheet**: ASTM A1011/A1011M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.

4. **Metallic-Coated Steel Sheet**: ASTM A653/A653M, Commercial Steel (CS), Type B, with G60 zinc (galvanized) or A40 zinc-iron-alloy (galvannealed) coating designation.

5. **Glazing**: As required by sound control door assembly manufacturer to comply with sound control requirements.

E. Finishes:

1. **Prime Finish**: Apply manufacturer's standard primer immediately after cleaning and pretreating.

 a. **Shop Primer**: Manufacturer's standard, fast-curing, lead- and chromate-free primer complying with SDI A250.10 acceptance criteria; recommended by primer manufacturer for substrate; compatible with substrate and factory applied wood veneer finish.

2.3 SOUND CONTROL FRAMES

A. Frames:

Fabricate sound control door frames with corners mitered, reinforced, and continuously welded the full depth and width of frame. Fabricate according to NAAMM-HMMA 865.

1. Weld frames according to NAAMM-HMMA 820.

2. **Exterior Frames**: Fabricate from metallic-coated steel sheet 0.078-inch (14 gauge) nominal thickness or thicker as required to provide STC rating indicated.

3. **Interior Frames**: Fabricate from cold-rolled steel sheet unless otherwise indicated, 0.075-inch nominal thickness or thicker as required to provide STC rating indicated.

4. **Hardware Reinforcement**: Fabricate according to NAAMM-HMMA 865 of same material as face sheets.

5. **Head Reinforcement**: Metallic-coated steel channel or angle stiffener, 0.108-inch nominal thickness.

6. **Jamb Anchors**:

THE CITY OF PHILADELPHIA

Office of Emergency Management

METAL SOUND CONTROL DOOR ASSEMBLIES

08 34 73 - 4
a. Stud-Wall Type: Designed to engage stud, welded to back of frames; not less than 0.048-inch nominal-thickness uncoated steel unless otherwise indicated.

b. Postinstalled Expansion Type for In-Place Concrete or Masonry: Minimum 3/8-inch-diameter, metallic-coated steel bolts with expansion shields or inserts. Provide pipe spacer from frame to wall, with throat reinforcement plate, welded to frame at each anchor location.

7. Floor Anchors: Not less than 0.079-inch nominal-thickness metallic-coated steel, and as follows:
 a. Monolithic Concrete Slabs: Clip-type anchors, with two holes to receive fasteners.

B. Materials:

1. **Recycled Content of Steel Products**: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.
2. Cold-Rolled Steel Sheet: ASTM A1008/A1008M, Commercial Steel (CS), Type B, suitable for exposed applications.
3. Hot-Rolled Steel Sheet: ASTM A1011/A1011M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.
4. Metallic-Coated Steel Sheet: ASTM A653/A653M, Commercial Steel (CS), Type B, with G60 zinc (galvanized) or A40 zinc-iron-alloy (galvannealed) coating designation.
5. Supports and Anchors: After fabricating, galvanize units to be built into exterior walls according to ASTM A153/A153M, Class B.
6. Inserts, Bolts, and Fasteners: Provide items to be built into exterior walls, hot-dip galvanized according to ASTM A153/A153M or ASTM F2329.
7. Powder-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching sound control door frames of type indicated.

C. Finishes:

1. Prime Finish: Apply manufacturer's standard primer immediately after cleaning and pretreating.
 a. Shop Primer: Manufacturer's standard, fast-curing, lead- and chromate-free primer complying with SDI A250.10 acceptance criteria; recommended by primer manufacturer for substrate; compatible with substrate and field-applied coatings despite prolonged exposure.

2.4 HARDWARE

A. Sound Control Door Hardware: Manufacturer's standard sound control system, including head and jamb seals, door bottoms, cam-lift hinges, and thresholds, as required by testing to achieve STC rating indicated.
1. Head and Jamb Seals:
 a. Magnetic Seals: One-piece units consisting of closed-cell sponge neoprene seal and resiliently mounted magnet held in place by metal retainer, with retainer cover of same material as door frame; attached to door frame with concealed screws.
2. Door Bottoms: Neoprene or silicone gasket held in place by metal housing; mortised into bottom edge of door.
3. Cam-Lift Hinges: Full-mortise template type that raises door 1/2 inch when door is fully open; with hardened pin; fabricated from stainless steel.
4. Thresholds: Flat, smooth, unfluted type as recommended by manufacturer; fabricated from aluminum or stainless steel.
 a. Finish: Clear anodic finish.

B. Other Hardware: Comply with requirements in Section 087100 "Door Hardware."

2.5 SOUND CONTROL ACCESSORIES

A. Glazing: Manufacturers' standard factory-installed glazing.
B. Corrosion-Resistant Coating: Cold-applied asphalt mastic, compounded for 15-mil dry film thickness per coat. Provide inert-type noncorrosive compound free of asbestos fibers, sulfur components, and other deleterious impurities.

2.6 FABRICATION

A. Steel Sound Control Door Fabrication: Sound control doors to be rigid and free of defects, warp, or buckle. Accurately form metal to required sizes and profiles, with minimum radius for thickness of metal.

1. Seamless Edge Construction: Fabricate doors with faces joined at vertical edges by welding; welds shall be ground, filled, and dressed to make them invisible and to provide a smooth, flush surface.
2. Glazed Lites: Factory install glazed lites according to requirements of tested assembly to achieve STC rating indicated. Provide fixed stops and moldings welded on secure side of door.
3. Hardware Preparation: Factory prepare sound control doors to receive templated mortised hardware; include cutouts, reinforcement, mortising, drilling, and tapping.
 a. Reinforce doors to receive nontemplated mortised and surface-mounted door hardware.
 b. Locate door hardware as indicated, or if not indicated, according to NAAMM-HMMA 831, "Recommended Hardware Locations for Custom Hollow Metal Doors and Frames."
4. Tolerances: Fabricate doors to tolerances indicated in NAAMM-HMMA 865.
B. Sound Control Frame Fabrication: Fabricate sound control frames to be rigid and free of defects, warp, or buckle. Accurately form metal to required sizes and profiles, with minimum radius for thickness of metal. Where practical, fit and assemble units in manufacturer's plant. To ensure proper assembly at Project site, clearly identify work that cannot be permanently factory assembled before shipment.

1. Weld flush face joints continuously; grind, fill, dress, and make smooth, flush, and invisible. Where frames are fabricated in sections due to shipping or handling limitations, provide alignment plates or angles at each joint, fabricated from same thickness metal as frames.
2. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
3. Floor Anchors: Weld anchors to bottom of jambs and mullions with at least four spot welds per anchor.
4. Jamb Anchors: Provide number and spacing of anchors as follows:
 a. Masonry Type: Locate anchors not more than 18 inches from top and bottom of frame. Space anchors not more than 32 inches o.c. and as follows:
 1) Two anchors per jamb up to 60 inches in height.
 2) Three anchors per jamb from 60 to 90 inches in height.
 3) Four anchors per jamb from 90 to 96 inches in height.
 4) Four anchors per jamb plus one additional anchor per jamb for each 24 inches, or fraction thereof, more than 96 inches in height.
 b. Stud-Wall Type: Locate anchors not more than 18 inches from top and bottom of frame. Space anchors not more than 32 inches o.c. and as follows:
 1) Three anchors per jamb up to 60 inches in height.
 2) Four anchors per jamb from 60 to 90 inches in height.
 3) Five anchors per jamb from 90 to 96 inches in height.
 4) Five anchors per jamb plus one additional anchor per jamb for each 24 inches, or fraction thereof, more than 96 inches in height.
 5) Two anchors per head for frames more than 42 inches wide and mounted in metal-stud partitions.
 c. Postinstalled Expansion Type: Locate anchors not more than 6 inches from top and bottom of frame. Space anchors not more than 26 inches o.c.
5. Head Reinforcement: For grouted frames more than 48 inches wide, weld continuous head reinforcement to back of frame at head full width of opening.
6. Hardware Preparation: Factory prepare sound control frames to receive templated mortised hardware; include cutouts, reinforcement, mortising, drilling, and tapping.
 a. Reinforce frames to receive nontemplated mortised and surface-mounted door hardware.
 b. Locate hardware as indicated, or if not indicated, according to NAAMM-HMMA 831, "Recommended Hardware Locations for Custom Hollow Metal Doors and Frames."
7. Tolerances: Fabricate frames to tolerances indicated in NAAMM-HMMA 865.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.

B. Examine roughing-in for embedded and built-in anchors to verify actual locations of sound control door frame connections before frame installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces.

B. Prior to installation, adjust and securely brace sound control door frames to the following tolerances:

1. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
2. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.
3. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
4. Plumbness: Plus or minus 1/16 inch, measured at jambs on a perpendicular line from head to floor.

C. Drill and tap doors and frames to receive nontemplated mortised and surface-mounted door hardware.

3.3 INSTALLATION

A. General: Install sound control door assemblies plumb, rigid, properly aligned, and securely fastened in place; comply with manufacturer's written instructions.

B. Frames: Install sound control door frames in sizes and profiles indicated.

1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces, leaving surfaces smooth and undamaged.
 a. Where frames are fabricated in sections due to shipping or handling limitations, field splice at approved locations by welding face joint continuously; grind, fill, and dress; make splice smooth, flush, and invisible on exposed faces.
b. Install sound control frames with removable glazing stops located on secure side of opening.

c. Remove temporary braces only after frames or bucks have been properly set and secured.

d. Check squareness, twist, and plumbness of frames as walls are constructed. Shim as necessary to comply with installation tolerances.

e. Apply corrosion-resistant coating to backs of frames to be filled with mortar, grout, and plaster containing antifreezing agents.

2. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor, and secure with postinstalled expansion anchors.

 a. Floor anchors may be set with powder-actuated fasteners instead of postinstalled expansion anchors if so indicated and approved on Shop Drawings.

4. In-Place Concrete or Masonry Construction: Secure frames in place with postinstalled expansion anchors. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.

5. In-Place Gypsum Board Partitions: Secure frames in place with postinstalled expansion anchors through floor anchors at each jamb. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.

6. Ceiling Struts: Extend struts vertically from top of frame at each jamb to supporting construction above unless frame is anchored to masonry or to other structural support at each jamb. Bend top of struts to provide flush contact for securing to supporting construction above. Provide adjustable wedged or bolted anchorage to frame jamb members.

7. Installation Tolerances: Adjust sound control door frames for squareness, alignment, twist, and plumbness to the following tolerances:

 a. Squareness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 b. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.
 c. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 d. Plumbness: Plus or minus 1/16 inch, measured at jambs on a perpendicular line from head to floor.

C. Doors: Fit sound control doors accurately in frames, within clearances indicated below. Shim as necessary.

1. Non-Fire-Rated Doors: Fit non-fire-rated doors accurately in frames with the following clearances:

 b. Head with Butt Hinges: 1/8 inch.
 c. Head with Cam-Lift Hinges: As required by manufacturer, but not more than 3/8 inch.
 d. Sill: Manufacturer's standard.
 e. Between Edges of Pairs of Doors: 1/8 inch.
D. Sound Control Seals: Where seals have been factory prefit and preinstalled and subsequently removed for shipping, reinstall seals and adjust according to manufacturer's written instructions.

E. Cam-Lift Hinges: Install hinges according to manufacturer's written instructions.

F. Thresholds: Set thresholds in full bed of sealant complying with requirements in Section 079200 "Joint Sealants."

G. Glazing: Comply with installation requirements in Section 088000 "Glazing" and with sound control door assembly manufacturer's written instructions.
1. Secure stops with countersunk flat- or oval-head machine screws spaced uniformly not more than 9 inches o.c. and not more than 2 inches o.c. from each corner.

3.4 FIELD QUALITY CONTROL
A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Testing Services: Perform testing for verification that assembly complies with STC rating requirements.
1. Acoustical testing and inspecting agency shall select two sound control door(s) at random from sound control door assemblies that are completely installed for testing.
2. Field tests shall be conducted according to ASTM E336, with results calculated according to ASTM E413. Acceptable field NIC values shall be within 5 dB of laboratory STC values.
3. Inspection Report: Acoustical testing agency shall submit report in writing to Architect and Contractor within 24 hours after testing.
4. If tested door fails, replace or rework all sound control door assemblies to bring them into compliance at Contractor's expense.
 a. Additional testing and inspecting at Contractor's expense will be performed to determine if replaced or additional work complies with specified requirements.

C. Prepare test and inspection reports.

3.5 ADJUSTING AND CLEANING
A. Final Adjustments: Check and adjust seals, door bottoms, and other sound control hardware items right before final inspection. Leave work in complete and proper operating condition.

B. Remove and replace defective work, including defective or damaged sound seals and doors and frames that are warped, bowed, or otherwise unacceptable.
1. Adjust gaskets, gasket retainers, and retainer covers to provide contact required to achieve STC rating.

C. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible, rust-inhibitive, air-drying primer.

END OF SECTION 08 34 73
SECTION 08 41 13 – ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Storefront framing.
 B. Related Requirements:
 1. Division 08 Section "Door Hardware" for storefront systems door hardware.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 B. Sustainable Design Submittals:
 1. **Product Data**: For sealants, indicating VOC content.
 2. **Laboratory Test Reports**: For sealants, indicating compliance with requirements for low-emitting materials.
 3. **Product Data**: For recycled content, indicating postconsumer and preconsumer recycled content and cost.
 4. **Product Certificates**: For materials manufactured within 100 miles of Project, indicating location of material manufacturer and point of extraction, harvest, or recovery for each raw material. Include distance to Project and cost for each raw material.
 5. **Environmental Product Declaration**: For each product.
 6. **Health Product Declaration**: For each product.
 7. **Sourcing of Raw Materials**: Corporate sustainability report for each manufacturer.
 C. Shop Drawings: For aluminum-framed entrances and storefronts. Include plans, elevations, sections, full-size details, and attachments to other work.
 1. Include details of provisions for assembly expansion and contraction and for draining moisture occurring within the assembly to the exterior.
2. Include full-size isometric details of each type of vertical-to-horizontal intersection of aluminum-framed entrances and storefronts, showing the following:
 a. Joinery, including concealed welds.
 b. Anchorage.
 c. Expansion provisions.
 d. Glazing.
 e. Flashing and drainage.

3. Show connection to and continuity with adjacent thermal, weather, air, and vapor barriers.

4. Include point-to-point wiring diagrams showing the following:
 a. Power requirements for each electrically operated door hardware.
 b. Location and types of switches, signal device, conduit sizes, and number and size of wires.

D. Samples for Initial Selection: For units with factory-applied color finishes.

E. Samples for Verification: For each type of exposed finish required, in manufacturer's standard sizes.

F. Fabrication Sample: Of each vertical-to-horizontal intersection of assemblies, made from 12-inch lengths of full-size components and showing details of the following:
 1. Joinery, including concealed welds.
 2. Anchorage.

G. Entrance Door Hardware Schedule: Prepared by or under supervision of supplier, detailing fabrication and assembly of entrance door hardware, as well as procedures and diagrams. Coordinate final entrance door hardware schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of entrance door hardware.

H. Delegated-Design Submittal: For aluminum-framed entrances and storefronts indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Product Test Reports: For aluminum-framed entrances and storefronts, for tests performed by manufacturer and witnessed by a qualified testing agency.

C. Source quality-control reports.

D. Sample Warranties: For special warranties.
1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For aluminum-framed entrances and storefronts to include in maintenance manuals.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

B. Product Options: Information on Drawings and in Specifications establishes requirements for aesthetic effects and performance characteristics of assemblies. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction.

1. Do not change intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If changes are proposed, submit comprehensive explanatory data to Architect for review.

1.7 WARRANTY

A. Special Warranty: Manufacturer Installer agrees to repair or replace components of aluminum-framed entrances and storefronts that do not comply with requirements or that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures, including, but not limited to, excessive deflection.
 b. Noise or vibration created by wind and thermal and structural movements.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 d. Failure of operating components.

2. Warranty Period: Five years from date of Substantial Completion.

B. Special Finish Warranty: Standard form in which manufacturer agrees to repair finishes or replace aluminum that shows evidence of deterioration of factory-applied finishes within specified warranty period.

1. Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Hunter units when tested according to ASTM D2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

2. Warranty Period: 20 years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain all components of aluminum-framed entrance and storefront system, including framing, doors and accessories, from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design aluminum-framed entrances and storefronts.

B. General Performance: Comply with performance requirements specified, as determined by testing of aluminum-framed entrances and storefronts representing those indicated for this Project without failure due to defective manufacture, fabrication, installation, or other defects in construction.

1. Aluminum-framed entrances and storefronts shall withstand movements of supporting structure, including, but not limited to, twist, column shortening, long-term creep, and deflection from uniformly distributed and concentrated live loads.

2. Failure also includes the following:
 a. Thermal stresses transferring to building structure.
 b. Glass breakage.
 c. Noise or vibration created by wind and thermal and structural movements.
 d. Loosening or weakening of fasteners, attachments, and other components.
 e. Failure of operating units.

C. Structural Loads:

1. Wind Loads: As indicated on Drawings.
2. Other Design Loads: As indicated on Drawings.

D. Deflection of Framing Members: At design wind pressure, as follows:

1. Deflection Normal to Wall Plane: Limited to 1/175 of clear span for spans of up to 13 feet 6 inches and to 1/240 of clear span plus 1/4 inch for spans greater than 13 feet 6 inches or an amount that restricts edge deflection of individual glazing lites to 3/4 inch, whichever is less.
2. Deflection Parallel to Glazing Plane: Limited to 1/360 of clear span or 1/8 inch, whichever is smaller.

E. Structural: Test according to ASTM E330/E330M as follows:

1. When tested at positive and negative wind-load design pressures, storefront assemblies, including entrance doors, do not evidence deflection exceeding specified limits.
2. When tested at 150 percent of positive and negative wind-load design pressures, storefront assemblies, including entrance doors and anchorage, do not evidence material
failures, structural distress, or permanent deformation of main framing members exceeding 0.2 percent of span.

3. Test Durations: As required by design wind velocity, but not less than 10 seconds.

F. Seismic Performance: Aluminum-framed entrances and storefronts shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. Seismic Drift Causing Glass Fallout: Complying with criteria for passing based on building occupancy type when tested according to AAMA 501.6 at design displacement and 1.5 times the design displacement.

2.3 STOREFRONT SYSTEMS

A. Basis-of-Design Product: Subject to compliance with requirements, provide YKK AP America Inc.; YES 45 FS, or comparable product by one of the following:

1. EFCO Corporation.
2. Kawneer North America, an Arconic company.

B. Framing Members: Manufacturer's extruded- or formed-aluminum framing members of thickness required and reinforced as required to support imposed loads.

1. Interior Framing Construction: Nonthermal.
2. Interior Vestibule Framing Construction: Nonthermal.
5. Finish: Baked-enamel or powder-coat finish.
6. Fabrication Method: Field-fabricated stick system.
7. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
8. Steel Reinforcement: As required by manufacturer.

C. Backer Plates: Manufacturer's standard, continuous backer plates for framing members, if not integral, where framing abuts adjacent construction.

D. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.

2.4 ENTRANCE DOOR SYSTEMS

A. Basis-of-Design Product: Subject to compliance with requirements, provide YKK AP America Inc.; Series 20D Narrow Stile Swing Doors or comparable product by one of the following:

1. EFCO Corporation.
2. Kawneer North America, an Arconic company.
B. Entrance Doors: Manufacturer's standard glazed entrance doors for manual-swing or automatic operation.

1. Door Construction: 1-3/4-inch overall thickness, with minimum 0.125-inch-thick, extruded-aluminum tubular rail and stile members. Mechanically fasten corners with reinforcing brackets that are deeply penetrated and fillet welded or that incorporate concealed tie rods.
2. Door Design: Narrow stile; 2-1/8-inch nominal width, with 10-inch high bottom rail.

2.5 ENTRANCE DOOR HARDWARE

A. Entrance Door Hardware: Hardware not specified in this Section is specified in Division 08 Section "Door Hardware."

2.6 GLAZING

A. Glazing: Comply with Section 08 80 00 "Glazing."

B. Glazing Gaskets: Manufacturer's standard sealed-corner pressure-glazing system of black, resilient elastomeric glazing gaskets, setting blocks, and shims or spacers.

2.7 MATERIALS

A. Sheet and Plate: ASTM B209.

B. Extruded Bars, Rods, Profiles, and Tubes: ASTM B221.

C. Extruded Structural Pipe and Tubes: ASTM B429/B429M.

D. Structural Profiles: ASTM B308/B308M.

E. Steel Reinforcement:

1. Structural Shapes, Plates, and Bars: ASTM A36/A36M.
2. Cold-Rolled Sheet and Strip: ASTM A1008/A1008M.
3. Hot-Rolled Sheet and Strip: ASTM A1011/A1011M.
4. Primer: Manufacturer's standard zinc-rich, corrosion-resistant primer complying with SSPC-PS Guide No. 12.00; applied immediately after surface preparation and pretreatment. Select surface preparation methods according to recommendations in SSPC-SP COM, and prepare surfaces according to applicable SSPC standard.

F. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.

G. Recycled Content of Aluminum Components: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.
H. **Regional Materials:** Products shall be manufactured within 100 miles of Project site from materials that have been extracted, harvested, or recovered, as well as manufactured, within 100 miles of Project site.

2.8 **ACCESSORIES**

A. Fasteners and Accessories: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding fasteners and accessories compatible with adjacent materials.

1. Use self-locking devices where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration.
2. Reinforce members as required to receive fastener threads.

B. Anchors: Three-way adjustable anchors with minimum adjustment of 1 inch that accommodate fabrication and installation tolerances in material and finish compatible with adjoining materials and recommended by manufacturer.

1. Concrete and Masonry Inserts: Hot-dip galvanized cast-iron, malleable-iron, or steel inserts complying with ASTM A123/A123M or ASTM A153/A153M requirements.

C. Concealed Flashing: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding flashing compatible with adjacent materials. Provide at vestibule framing only.

D. Bituminous Paint: Cold-applied asphalt-mastic paint containing no asbestos, formulated for 30-mil thickness per coat.

E. Rigid PVC Filler.

2.9 **FABRICATION**

A. Form or extrude aluminum shapes before finishing.

B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.

C. Fabricate components that, when assembled, have the following characteristics:

1. Profiles that are sharp, straight, and free of defects or deformations.
2. Accurately fitted joints with ends coped or mitered.
3. Physical and thermal isolation of glazing from framing members.
4. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
5. Provisions for field replacement of glazing from interior.
6. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.

D. Mechanically Glazed Framing Members: Fabricate for flush glazing without projecting stops.
E. Storefront Framing: Fabricate components for assembly using shear-block system or screw-spline system.

F. Entrance Door Frames: Reinforce as required to support loads imposed by door operation and for installing entrance door hardware.
 1. At interior and exterior doors, provide compression weather stripping at fixed stops.

G. Entrance Doors: Reinforce doors as required for installing entrance door hardware.
 1. At pairs of exterior doors, provide sliding-type weather stripping retained in adjustable strip and mortised into door edge.
 2. At exterior doors, provide weather sweeps applied to door bottoms.

H. Entrance Door Hardware Installation: Factory install entrance door hardware to the greatest extent possible. Cut, drill, and tap for factory-installed entrance door hardware before applying finishes.

I. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.

2.10 ALUMINUM FINISHES

A. Baked-Enamel or Powder-Coat Finish: AAMA 2603 except with a minimum dry film thickness of 1.5 mils. Comply with coating manufacturer's written instructions for cleaning, conversion coating, and applying and baking finish.
 1. Color and Gloss: As selected by Architect from manufacturer's full range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. General:
 1. Comply with manufacturer's written instructions.
 2. Do not install damaged components.
 3. Fit joints to produce hairline joints free of burrs and distortion.
 4. Rigidly secure nonmovement joints.
 5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration and to prevent impeding movement of moving joints.
6. Seal perimeter and other joints watertight unless otherwise indicated.

B. Metal Protection:
 1. Where aluminum is in contact with dissimilar metals, protect against galvanic action by painting contact surfaces with materials recommended by manufacturer for this purpose or by installing nonconductive spacers.
 2. Where aluminum is in contact with concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.

C. Set continuous sill members and flashing in full sealant bed, as specified in Section 07 92 00 "Joint Sealants," to produce weathertight installation.

D. Install components plumb and true in alignment with established lines and grades.

E. Install glazing as specified in Section 08 80 00 "Glazing."

F. Entrance Doors: Install doors to produce smooth operation and tight fit at contact points.
 1. Field-Installed Entrance Door Hardware: Install surface-mounted entrance door hardware according to entrance door hardware manufacturers' written instructions using concealed fasteners to greatest extent possible.

3.3 ERECTION TOLERANCES

A. Erection Tolerances: Install aluminum-framed entrances and storefronts to comply with the following maximum tolerances:
 1. Plumb: 1/8 inch in 10 feet; 1/4 inch in 40 feet.
 2. Level: 1/8 inch in 20 feet; 1/4 inch in 40 feet.
 3. Alignment:
 a. Where surfaces abut in line or are separated by reveal or protruding element up to 1/2 inch wide, limit offset from true alignment to 1/16 inch.
 b. Where surfaces are separated by reveal or protruding element from 1/2 to 1 inch wide, limit offset from true alignment to 1/8 inch.
 c. Where surfaces are separated by reveal or protruding element of 1 inch wide or more, limit offset from true alignment to 1/4 inch.
 4. Location: Limit variation from plane to 1/8 inch in 12 feet; 1/2 inch over total length.

3.4 MAINTENANCE SERVICE

A. Entrance Door Hardware:
 1. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions as needed for Owner's continued adjustment, maintenance, and removal and replacement of entrance door hardware.
2. Initial Maintenance Service: Beginning at Substantial Completion, provide six months' full maintenance by skilled employees of entrance door hardware Installer. Include quarterly preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper entrance door hardware operation at rated speed and capacity. Use parts and supplies that are the same as those used in the manufacture and installation of original equipment.

3.5 ENTRANCE DOOR HARDWARE SETS

A. See Division 08 Section “Door Hardware”.

END OF SECTION 08 41 13
SECTION 08 57 00 - SOUND CONTROL WINDOW SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Provide sound control window assemblies where shown on the Drawings, as specified herein. The work includes window assemblies complete with frames, stops, glazing, sound-absorbing material and concealed fasteners factory installed. Glass and glazing material are factory assembled in frame and shipped complete as one unit.

B. Related Sections:

1. Section 088000: Glazing

3. Section 092216: Non-Structural Metal Framing.

4. Section 092900: Gypsum Board.

5. Section 099123: Interior Painting.

1.3 SYSTEM PERFORMANCE REQUIREMENTS

A. Sound Rating: Provide window assemblies that have been fabricated as sound-retardant units, tested according to ASTM E 90 and have the following certified Sound Transmission Class (STC) rating as determined according to ASTM E 413.

1. STC Rating – As indicated on drawings

1.4 SUBMITTALS

A. Product Data: submit the following:

1. Material lists of items provided under this Section.

2. Manufacturer’s specifications and other data needed to prove compliance with the specified requirements.

3. Shop Drawings showing details of each frame type, elevations of door designs, details of openings, and details of construction, installation and anchorage.

4. Manufacturer’s recommended installation procedures which, when approved by the Architect, will become the basis for accepting or rejecting actual installation procedures used on the work.
5. Test Reports from a qualified independent testing agency indicating and interpreting test results from Part 3 of this Section relative to compliance of sound ratings with the indicated requirements.

7. Field test reports from qualified independent testing agency indicating and interpreting test results relative to compliance with performance requirements of installed sound control windows.

B. Sustainable Design Submittals:

1. **Product Data**: For recycled content, indicating postconsumer and preconsumer recycled content and cost.
2. **Environmental Product Declaration**: For each product.
3. **Health Product Declaration**: For each product.
4. **Sourcing of Raw Materials**: Corporate sustainability report for each manufacturer.

1.5 QUALITY ASSURANCE

A. Use adequate numbers of skilled workmen who are thoroughly trained and experienced in the necessary crafts and who are completely familiar with the specified requirements and the methods needed for proper performance of the work of this Section.

B. Acoustical Performance:

1. The acoustical window manufacturer shall be required to submit acoustical performance data in the form of up-to-date test reports from an independent testing laboratory indicating the windows to be provided will have the required Sound Transmission Class Rating (ASTM E-90-90).

2. For the required STC rating, refer to drawings.

3. Owner may at his option order performance tests of installed window assemblies by an independent consultant to verify compliance with the specifications. Any discrepancies shall be repaired or replaced without cost to the Owner.

C. Single-Source Responsibility: Provide sound control windows, including stops, glazing, frame and sound-absorbing material essential for sound control as an assembly and by a single firm specializing in producing this type of work for a minimum of ten (10) years.

1.6 DELIVERY, STORAGE AND HANDLING

A. Use all means necessary to protect the materials of this section before, during and after installation and to protect the installed work and materials of all other trades.

1.7 WARRANTY

A. Acoustic window materials and associated hardware shall be guaranteed against defective workmanship for one (1) year from date of shipment.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide IAC Acoustics; “Noise Lock” acoustic windows or a comparable product by the following:

a. Noise Barriers, LLC; QuietLite.

2.2 MANUFACTURED ASSEMBLIES

A. Provide double glazed acoustic windows and frames, complete with stops, glazing, sound-absorbing material, and concealed fasteners.

B. Glass panes minimum thickness: STC 53 Rating, ¼” (6 mm) interior, ¼” (6 mm) exterior – double pane.

1. Glass type shall be: ¼” Laminated Safety Glass.

B. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.

C. Frames shall be 1 ¼” thick, fabricated from not less than 12 gauge cold rolled, galvannealed steel with an A60 coating weight, reinforced and filled with sound-absorbing acoustic fill. Inside and outside corners shall be mitered and interlocked to hairline measurements, made square, continuously welded, and ground smooth, flush and invisible. The window assembly can be installed into either existing or new construction openings.

C. Acoustic seals for glazing shall be vibration-isolating resilient gaskets, U-shaped and continuous santoprene UV grade 65-75 durometer black. Self-contained, sound absorptive interior perimeter of not less than 22 gauge (0.76 mm) steel shall be perforated and pre-finished black. Desiccant material shall be incorporated into multiple glazed units.

D. Stops: Provide stops that are 1” (25 mm) high (min) and readily removable, fabricated from not less than 16 gauge (2 mm) rolled steel sections predrilled and aligned with frame to form tight square acoustical joints. Stop fasteners shall be concealed.

E. Assembly: The assembly of the acoustic window units including frames, stops, glazing, acoustic seals, sound-absorbing material and concealed fasteners shall take place at the factory to insure required noise reduction is achieved. Glazing shall not need to be removed to facilitate fastening or anchoring at the job site.

2.3 FABRICATION

A. General: Fabricate units to be rigid, neat in appearance and free from defects, warp or buckle. Accurately form metal to required sizes and profiles. Wherever practical, fit and
assemble units in the manufacturer’s plant. Identify work that is not permanently factory-assembled before shipment to ensure proper assembly at the Project site. Weld exposed joints continuously: grind, fill dress and make smooth flush and invisible.

2.4 FINISHES

A. Frames shall receive a shop coat of a rust-inhibitive primer. The primer shall be applied over properly prepared metal, in accordance with the manufacturer’s standard shop prime coat procedure and oven-baked dry.

B. Perform finish painting, under section 099123 Interior Painting.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine openings, substrates, structural support, anchorage, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Verify rough opening dimensions and levelness of sill plate.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 PREPARATION

A. Adjacent Surfaces Protection: Protect adjacent work areas and finish surfaces from damage during product installation.

B. Adjacent Construction: Coordinate window assembly details with details of adjacent work to ensure proper attachments and clean junctions.

3.03 INSTALLATION

A. Comply with manufacturer’s product data, including product technical bulletins, product catalog installation instructions and product carton instructions.

B. Install work in accordance with reviewed shop drawings and these specifications using only factory-trained personnel as required by the Manufacturer and approved by the Architect.

1. Install windows and shim accordingly to allow for a plumb and square installation without excessive clearances.

2. During installation, solidly pack acoustic insulation around frames that are installed in stud and gypsum-wallboard partitions.

3. Caulk exterior joint prior to painting.
4. Install sound control window assemblies during finish phase of construction to protect units from damage.

3.04 FIELD QUALITY CONTROL

A. Upon completion of this portion of work, and prior to its acceptance by the Owner, secure a visit to the job site by a qualified representative of the manufacturer of the sound control window systems to confirm that installation is in conformance with the manufacturer’s recommendations.

3.05 FIELD TESTING

A. Testing Agency: Provide the service of an independent testing agency experienced in testing sound control windows and is acceptable to architect to perform sound control field-testing.

B. Selection: Randomly selected by Owner, except not-completely installed sound windows.

C. Testing Requirements: Conduct field tests according to ASTM E336 with results calculated according to ASTM E413 to confirm that the operating field NIC values are within 5 dB of laboratory STC values.

D. Test results shall be reported promptly and in writing by testing agency to Owner, Contractor and Architect.

E. Repair or replace components of sound control windows where test results indicate STC rating does not meet requirements.

3.06 DEMONSTRATION

A. Instruct the Owner’s maintenance personnel regarding the maintenance of all acoustic windows.

END OF SECTION 08 57 00
SECTION 08 71 00 – DOOR HARDWARE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Commercial door hardware for the following:
 a. Swinging doors.
 b. Sliding doors.
 c. Folding doors.
 d. Other doors to the extent indicated.

B. Related Sections include the following:

1. Division 8 Section "Hollow Metal Doors and Frames"
2. Division 8 Section "Flush Wood Doors"
3. Division 8 Section "Aluminum-Framed Entrances and Storefronts"

1.3 SUBMITTALS

A. Product Data: Include installation details, material descriptions, dimensions of individual components and profiles, and finishes.

B. Shop Drawings: Details of electrified door hardware, indicating the following:

1. Wiring Diagrams: Detail wiring for power, signal, and control systems and differentiate between manufacturer-installed and field-installed wiring. Include the following:
 a. System schematic.
 b. Point-to-point wiring diagram.
 c. Riser diagram.
 d. Elevation of each door.

2. Detail interface between electrified door hardware and access fire alarm, control, and security building control system.

C. Samples for Initial Selection: Manufacturer's color charts consisting of units or sections of units showing the full range of colors, textures, and patterns available for each type of door hardware indicated.
1. Samples will be returned to Contractor. Units that are acceptable and remain undamaged through submittal, review, and field comparison process may, after final check of operation, be incorporated into the Work, within limitations of keying requirements.

D. Door Hardware Schedule: Prepared by or under the supervision of supplier, detailing fabrication and assembly of door hardware, as well as procedures and diagrams. Coordinate the final Door Hardware Schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of door hardware.

1. Format: Comply with scheduling sequence and vertical format in DHI's "Sequence and Format for the Hardware Schedule."
2. Organization: Organize the Door Hardware Schedule into door hardware sets indicating complete designations of every item required for each door or opening.
 a. Organize door hardware sets in same order as in the Door Hardware Schedule at the end of Part 3.

3. Content: Include the following information:
 a. Type, style, function, size, label, hand, and finish of each door hardware item.
 b. Manufacturer of each item.
 c. Fastenings and other pertinent information.
 d. Location of each door hardware set, cross-referenced to Drawings, both on floor plans and in door and frame schedule.
 e. Explanation of abbreviations, symbols, and codes contained in schedule.
 f. Mounting locations for door hardware.
 g. Door and frame sizes and materials.
 h. Description of each electrified door hardware function, including location, sequence of operation, and interface with other building control systems.

 1) Sequence of Operation: Include description of component functions that occur in the following situations: authorized person wants to enter; authorized person wants to exit; unauthorized person wants to enter; unauthorized person wants to exit.

4. Submittal Sequence: Submit the final Door Hardware Schedule at earliest possible date, particularly where approval of the Door Hardware Schedule must precede fabrication of other work that is critical in the Project construction schedule. Include Product Data, Samples, Shop Drawings of other work affected by door hardware, and other information essential to the coordinated review of the Door Hardware Schedule.

5. Submittal Sequence: Submit initial draft of final schedule along with essential Product Data to facilitate the fabrication of other work that is critical in the Project construction schedule. Submit the final Door Hardware Schedule after Samples, Product Data, coordination with Shop Drawings of other work, delivery schedules, and similar information has been completed and accepted.

E. Keying Schedule: Prepared by or under the supervision of supplier, detailing Owner's final keying instructions for locks. Include schematic keying diagram and index each key set to unique door designations.
F. Product Certificates: Signed by manufacturers of electrified door hardware certifying that products furnished comply with requirements.

1. Certify that door hardware approved for use on types and sizes of labeled fire doors complies with listed fire door assemblies.

G. Qualification Data: For firms and persons specified in "Quality Assurance" Article.

1. Include lists of completed projects with project names and addresses of architects and owners, and other information specified.

H. Product Test Reports: Based on evaluation of comprehensive tests performed by manufacturer and witnessed by a qualified testing agency, indicating current products comply with requirements.

I. Maintenance Data: For each type of door hardware to include in maintenance manuals specified in Division 1.

J. Warranties: Special warranties specified in this Section.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer who has completed door hardware similar in material, design, and extent to that indicated for this Project and whose work has resulted in construction with a record of successful in-service performance.

B. Supplier Qualifications: Door hardware supplier with warehousing facilities in Project's vicinity and who is or employs a qualified Architectural Hardware Consultant, available during the course of the Work to consult with Contractor, Architect, and Owner about door hardware and keying.

1. Electrified Door Hardware Supplier Qualifications: An experienced door hardware supplier who has completed projects with electrified door hardware similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance, and who is acceptable to manufacturer of primary materials.

a. Engineering Responsibility: Prepare data for electrified door hardware, including Shop Drawings, based on testing and engineering analysis of manufacturer's standard units in assemblies similar to those indicated for this Project.

2. Scheduling Responsibility: Preparation of door hardware and keying schedules.

C. Architectural Hardware Consultant Qualifications: A person who is currently certified by the Door and Hardware Institute as an Architectural Hardware Consultant and who is experienced in providing consulting services for door hardware installations that are comparable in material, design, and extent to that indicated for this Project.

1. Electrified Door Hardware Qualifications: Experienced in providing consulting services for electrified door hardware installations.
D. Source Limitations: Obtain each type and variety of door hardware from a single manufacturer, unless otherwise indicated.

1. Provide electrified door hardware from same manufacturer as mechanical door hardware, unless otherwise indicated. Manufacturers that are listed to perform electrical modifications, by a testing and inspecting agency acceptable to authorities having jurisdiction, are acceptable.

E. Regulatory Requirements: Comply with provisions of the following:

1. Where indicated to comply with accessibility requirements, comply with Americans with Disabilities Act (ADA), "Accessibility Guidelines for Buildings and Facilities (ADAAG)," ANSI A117.1, FED-STD-795, "Uniform Federal Accessibility Standards," as follows:
 a. Handles, Pulls, Latches, Locks, and other Operating Devices: Shape that is easy to grasp with one hand and does not require tight grasping, tight pinching, or twisting of the wrist.
 b. Door Closers: Comply with the following maximum opening-force requirements indicated:
 1) Interior Hinged Doors: 5 lbf applied perpendicular to door.
 2) Sliding or Folding Doors: 5 lbf applied parallel to door at latch.
 3) Fire Doors: Minimum opening force allowable by authorities having jurisdiction.
 c. Thresholds: Not more than 1/2 inch high, Not more than 3/4 inch high for exterior sliding doors. Bevel raised thresholds with a slope of not more than 1:2.

2. NFPA 101: Comply with the following for means of egress doors:
 a. Latches, Locks, and Exit Devices: Not more than 15 lbf to release the latch. Locks shall not require the use of a key, tool, or special knowledge for operation.
 b. Delayed-Egress Locks: Lock releases within 15 seconds after applying a force not more than 15 lbf for not more than 3 seconds.
 c. Door Closers: Not more than 30 lbf to set door in motion and not more than 15 lbf to open door to minimum required width.
 d. Thresholds: Not more than 1/2 inch high.

3. Electrified Door Hardware: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction.

F. Fire-Rated Door Assemblies: Provide door hardware for assemblies complying with NFPA 80 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire ratings indicated, based on testing according to NFPA 252.

1. Test Pressure: Test at atmospheric pressure.

G. Keying Conference: Conduct conference at Project site to comply with requirements in Division 1 Section "Project Meetings." Incorporate keying conference decisions into final
keying schedule after reviewing door hardware keying system including, but not limited to, the following:

1. Function of building, flow of traffic, purpose of each area, degree of security required, and plans for future expansion.
2. Preliminary key system schematic diagram.
3. Requirements for key control system.
4. Address for delivery of keys.

H. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 1 Section "Project Meetings."

I. All Electric Door Hardware shall be furnished and installed by the General Contractor. All Electric Door Hardware shall be wired by the Electrical Contractor. Both the Electrical & General Contractor shall meet and coordinate all work before proceeding.

J. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 1 Section "Project Meetings." Review methods and procedures related to electrified door hardware including, but not limited to, the following:

1. Inspect and discuss electrical roughing-in and other preparatory work performed by other trades.
2. Review sequence of operation for each type of electrified door hardware.
3. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
4. Review required testing, inspecting, and certifying procedures.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Inventory door hardware on receipt and provide secure lock-up for door hardware delivered to Project site.

B. Tag each item with Door Number related to the final Approved Door Hardware Schedule, and include basic installation instructions with each item or package.

C. Deliver keys to manufacturer of key control system, or Owner as Directed.

D. Deliver keys to Owner by registered mail or overnight package service.

1.6 COORDINATION

A. Coordinate layout and installation of recessed pivots and closers with floor construction. Cast anchoring inserts into concrete. Concrete, reinforcement, and formwork requirements are specified in Division 3 Section "Cast-in-Place Concrete."

B. Templates: Obtain and distribute to the parties involved templates for doors, frames, and other work specified to be factory prepared for installing door hardware. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing door hardware to comply with indicated requirements.
C. Electrical System Roughing-in: Coordinate layout and installation of electrified door hardware with connections to power supplies, fire alarm system and detection devices, access control system, security system, and building control system.

1.7 WARRANTY

A. General Warranty: Special warranties specified in this Article shall not deprive Owner of other rights Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of the Contract Documents.

B. Special Warranty: Written warranty, executed by manufacturer agreeing to repair or replace components of door hardware that fail in materials or workmanship within specified warranty period. Failures include, but are not limited to, the following:

1. Structural failures including excessive deflection, cracking, or breakage.
2. Faulty operation of operators and door hardware.
3. Deterioration of metals, metal finishes, and other materials beyond normal weathering.

C. Warranty Period for Locksets: Ten, (10) years from date of Substantial Completion, unless otherwise indicated.

D. Warranty Period for Manual Closers: Twenty Five, (25) years from date of Substantial Completion, unless otherwise indicated.

E. Warranty Period for Exit Devices: Ten, (10) years from date of Substantial Completion, unless otherwise indicated.

F. Warranty Period for Electrical Exit Devices: Two, (2) years from date of Substantial Completion, unless otherwise indicated.

1.8 MAINTENANCE SERVICE

A. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions as needed for Owner's continued adjustment, maintenance, and removal and replacement of door hardware.

B. Maintenance Service: Beginning at Substantial Completion, provide six months' full maintenance by skilled employees of door hardware Installer. Include quarterly preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper door hardware operation. Provide parts and supplies as used in the manufacture and installation of original products.

C. Engage a factory authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain door hardware and door hardware finishes.

PART 2 - PRODUCTS
2.1 SCHEDULED DOOR HARDWARE

A. General: Provide door hardware for each door to comply with requirements in this Section, door hardware sets indicated in door and frame schedule, and the Door Hardware Schedule at the end of Part 3.

 1. Door Hardware Sets: Provide quantity, item, size, finish or color indicated, and named manufacturer's products. Retain subparagraph below for electrified door hardware.
 2. Sequence of Operation: Provide electrified door hardware function, sequence of operation, and interface with other building control systems indicated.

B. Designations: Requirements for design, grade, function, finish, size, and other distinctive qualities of each type of door hardware are indicated in the Door Hardware Schedule at the end of Part 3. Products are identified by using door hardware designations, as follows:

 1. Named Manufacturer's Products: Product designation and manufacturer are listed for each door hardware type required for the purpose of establishing minimum requirements. Manufacturers' names are abbreviated in the Door Hardware Schedule.
 2. References to BHMA Standards: Provide products complying with these standards and requirements for description, quality, and function.

2.2 HINGES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Butt Hinges:
 2. Continuous Hinges:
 a. Architectural Builders Hardware Mfg., Inc.
 b. Dormakaba / Stanley Hinge Company, Inc.
 c. Select Hinges, Inc.

B. Standards: Comply with the following:

 1. Hinges ANSI/BHMA Standard A156.1 Grade 1
 2. Continuous Hinges ANSI/BHMA Standard A156.26 Grade 1

C. Template Requirements: Except for hinges and pivots to be installed entirely (both leaves) into wood doors and frames, provide only template-produced units.

D. Concealed bearings are made from engineered polymer material with PTFE and Aramid fiber; bearing is maintenance free, no oil, no grease.

E. Butt hinges equipped with easily seated, non-rising pin. Hole in bottom of pin enables quick pin removal for ease of installation.
F. Continuous hinge material to be 14 gauge, 304 stainless steel
G. Continuous hinge steel pin to be .25 diameter, 304 stainless steel
H. Continuous hinge exterior barrel diameter .438 (7/16)
I. Continuous hinge knuckle to be 2", including split nylon bearing at each separation for a quiet, smooth, self-lubricating operation
J. All hinges to carry Warnock Hersey Int. or UL for fire rated doors and frames up to 3 hours
K. Continuous hinges to have Symmetrically templated hole pattern
L. Continuous hinge to have a 10 year Warranty
M. Hinge Weight: Unless otherwise indicated, provide the following:
 1. Supports weights up to 600lbs.
N. Hinge Base Metal: Unless otherwise indicated, provide the following:
 1. Exterior Continuous Hinges: Stainless steel, with stainless-steel pin,
 2. Interior Continuous Hinges: Stainless steel, with stainless-steel pin.
 4. Exterior Butt Hinges: Stainless Steel or Brass or Bronze
 5. Interior Butt Hinges: Steel or Brass or Bronze
O. Hinge Options: Comply with the following where indicated in the Door Hardware Schedule or on Drawings:
 1. Hospital Tips: Slope ends of hinge barrel.
 3. Nonremovable Pins: Provide set screw in hinge barrel that, when tightened into a groove in hinge pin, prevents removal of pin while door is closed; for the following applications:
 a. Outswinging exterior doors.
 b. Outswinging corridor doors with locks.
P. Continuous-Geared Aluminum Hinges: Minimum 0.120-inch-thick, hinge leaves with minimum overall width of 4 inches; fabricated to full height of door and frame. Finish components after milling and drilling are complete. Fabricate hinges to template screw locations.
Q. All geared hinges to be heavy-gauge aluminum alloy with solid support blocks of self-lubricating DELRIN.
R. All geared hinges to meet Dynamic and static load test for compliance with ANSI A156.1, (BHMA) for 350,000 cycles at 15 cycles per minute.
S. Fasteners: Comply with the following:
2. Wood Screws: For wood doors and frames.
3. Threaded-to-the-Head Wood Screws: For fire-rated wood doors.
4. Screws: Phillips flat-head screws; machine screws drilled and tapped holes for metal
doors, wood screws for wood doors and frames. Finish screw heads to match surface of
hinges.

2.3 LOCKS AND LATCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the
following:
 1. Mechanical Locks and Latches:
 a. Dormakaba / Best Locksets

B. Standards: Comply with the following:

C. Mortise Locks: Stamped steel case with steel or brass parts; ANSI A156.13, Series 1000,
BHMA Grade 1 Operational and Grade 2 Security and be UL Listed.

D. Certified Products: Provide door hardware listed in the following BHMA directories:
 2. Electromagnetic Locks: BHMA's "Directory of Certified Electromagnetic & Delayed
 Egress Locks."

E. Lock Trim: Comply with the following:
 1. Lever: Mortise Locks & Latches, Forged or Cast brass, bronze or stainless steel
 construction
 2. Dummy Trim: Match lever lock trim and escutcheons.

F. Lock Functions: Function numbers and descriptions indicated in the Door Hardware Schedule
comply with the following:
 1. Bored Locks: BHMA A156.2.

G. Lock Throw: Comply with testing requirements for length of bolts to comply with labeled fire
door requirements, and as follows:

H. Backset: 2-3/4 inches, unless otherwise indicated.
I. Mortise Locks & Latches shall have an anti-friction, 3/4-inch throw latch bolt with anti-friction piece made of self-lubricated stainless steel. Latch bolt with plastic insert and three-piece latch bolt are unacceptable on this project.

J. Mortise Locks & Latches shall have levers to be operated with a roller bearing spindle hub mechanism.

K. Cylindrical Locks & Latches to have solid shank with no opening for access to keyed lever keeper.

2.4 DOOR BOLTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Flush Bolts:
 a. Triangle Brass Manufacturing Company, Inc.

B. Standards: Comply with the following:

1. Automatic and Self-Latching Flush Bolts: BHMA A156.3.

C. Flush Bolts: BHMA Grade 1, designed for mortising into door edge.

D. Bolt Throw: Comply with testing requirements for length of bolts to comply with labeled fire door requirements, and as follows:

2.5 EXIT DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Precision Manufacturing, Inc.

B. Standard: BHMA A156.3.

1. BHMA Grade: Grade 1

C. Certified Products: Provide exit devices listed in BHMA's "Directory of Certified Exit Devices."

D. Panic Exit Devices: Listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for panic protection, based on testing according to UL 305.

E. Fire Exit Devices: Complying with NFPA 80 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire and panic protection, based on testing according to UL 305 and NFPA 252.
F. Exit device shall be “touch pad” type with a touch pad that shall extend a minimum of one half (1/2) of the door width.

G. Exit device shall have a one-quarter (1/4) gap between the face of the door and the touch bar channel eliminating the need for shims or cutting away the glass molding.

H. Exit device lock stile chassis shall be investment cast steel. Stamped steel units will not be accepted. All device latch bolts shall be stainless steel and shall be deadlocking type.

I. Exit device strikes shall be adjustable type investment cast stainless steel.

J. Exit device shall include sound reduction dampening for both depression and extension of the touch pad.

K. Exit device end cap shall be all metal and secured with a bracket that interlocks both at the touch bar channel base and hinge side filler to prevent end cap “peel-back”.

L. All exposed surfaces of the exit device housing shall be no less than 14 gauge brass or bronze; or no less than 16 gauge stainless steel. Aluminum housing type exit devices are not acceptable.

 1. Operation: Rigid

N. Outside Trim: Lever, Lever with cylinder, Pull, Pull with cylinder, material and finish to match locksets, unless otherwise indicated.
 1. Match design for locksets and latchsets, unless otherwise indicated.

2.6 CYLINDERS AND KEYING

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cylinders:
 a. Dormakaba / Best IC Cylinders
 b. All cylinders shall be Cormax 7-pin interchangeable cores.

B. Standards: Comply with the following:
 1. Cylinders: BHMA A156.5.

C. Cylinder Grade: BHMA Grade 1, Cylinders: Manufacturer's standard tumbler type, constructed from brass or bronze, stainless steel, or nickel silver, and complying with the following:
 1. Number of Pins: Seven.
 2. Mortise Type: Threaded cylinders with rings and straight- or clover-type cam.
 3. Rim Type: Cylinders with back plate, flat-type vertical or horizontal tailpiece, and raised trim ring.
4. Bored-Lock Type: Cylinders with tailpieces to suit locks.

D. Permanent Cores: Manufacturer's standard; finish face to match lockset; complying with the following:

1. Removable Cores: Core insert, removable by use of a special key, and for use with only the core manufacturer's locksets.

E. Construction Keying: Comply with the following:

1. Construction Cores: Provide Brass construction cores in all locksets and cylinders that are replaceable by permanent cores.
 a. Replace Brass construction cores with permanent cores, as indicated in keying schedule

F. Keying System: Unless otherwise indicated, provide a factory-registered keying system complying with the following requirements:

1. No Master Key System: Cylinders are operated by change keys only.
2. Master Key System: Cylinders are operated by a change key and a master key.
3. Grand Master Key System: Cylinders are operated by a change key, a master key, and a grand master key.
4. Great-Grand Master Key System: Cylinders are operated by a change key, a master key, a grand master key, and a great-grand master key.
5. Existing System: Master key or grand master key locks to Owner's existing system.
6. Keyed Alike: Key all cylinders to the same change key.

G. Keys: Provide nickel-silver keys complying with the following:

1. Stamping: Permanently inscribe each key with a visual key control number and include the following notation:
 a. Notation: "DO NOT DUPLICATE."

2. Quantity: In addition to one extra blank key for each lock, provide the following:
 b. Master Keys: Five.
 e. Control Keys: Five
 f. Construction Master Keys: Ten
 g. Construction Core Control Keys: Five

2.7 STRIKES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Electric Strikes:
 a. RCI Manufacturing, Inc.
 b. Dormakaba, Inc.

B. Standards: Comply with the following:
 2. Dustproof Strikes: BHMA A156.16.
 3. Electric Strikes: BHMA A156.5.

C. Strikes: Provide manufacturer's standard strike with strike box for each latch or lock bolt, with curved lip extended to protect frame, finished to match door hardware set, unless otherwise indicated, and as follows:
 1. Flat-Lip Strikes: For locks with three-piece antifriction latch bolts, as recommended by manufacturer.
 2. Extra-Long-Lip Strikes: For locks used on frames with applied wood casing trim.
 3. Aluminum-Frame Strike Box: Provide manufacturer's special strike box fabricated for aluminum framing.

D. Dustproof Strikes: BHMA Grade 1

E. Electric Strikes: BHMA Grade 1

2.8 ACCESSORIES FOR PAIRS OF DOORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Coordinators:
 a. Triangle Brass Manufacturing Company, Inc.
 b. Burns Manufacturing Company, Inc.
 2. Astragals:
 a. Architectural Builders Hardware, Inc.

B. Standards: Comply with the following:
 1. Coordinators: BHMA A156.3.
 2. Removable Mullions: BHMA A156.3.

2.9 CLOSERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Surface-Mounted Closers:
a. Dormakaba USA, Inc.

B. Standards: Comply with the following:
 1. Closers: BHMA A156.4.

C. Surface Closers: BHMA Grade 1

D. Certified Products: Provide door closers listed in BHMA's "Directory of Certified Door Closers."

E. Size of Units: Unless otherwise indicated, comply with manufacturer's written recommendations for size of door closers depending on size of door, exposure to weather, and anticipated frequency of use. Provide factory-sized closers, adjustable to meet field conditions and requirements for opening force.

2.10 PROTECTIVE TRIM UNITS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Metal Protective Trim Units:
 a. Triangle Brass Manufacturing Company, Inc.
 b. Burns Manufacturing Company, Inc.

B. Standard: Comply with BHMA A156.6.

C. Materials: Fabricate protection plates from the following:
 1. Stainless Steel: 0.050 inch thick; beveled 4 sides.

D. Fasteners: Provide manufacturer's standard exposed fasteners for door trim units consisting of either machine or self-tapping screws.

E. Furnish protection plates sized 2" less than door width on push side and 1" less than door width on pull side, by height specified in Door Hardware Schedule.

2.11 STOPS AND HOLDERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Architectural Builders Hardware Mfg., Inc.
 2. Triangle Brass Manufacturing Company, Inc.

B. Standards: Comply with the following:
 1. Stops and Bumpers: BHMA A156.16.
 2. Mechanical Door Holders: BHMA A156.16.
3. Electromagnetic Door Holders: BHMA A156.15.
4. Combination Overhead Holders and Stops: BHMA A156.8.
5. Door Silencers: BHMA A156.16.

C. Stops and Bumpers: BHMA Grade 1

D. Mechanical Door Holders: BHMA Grade 1

E. Combination Overhead Stops and Holders: BHMA Grade 1

F. Electromagnetic Door Holders for Labeled Fire Door Assemblies: Coordinate with fire detectors and interface with fire alarm system.

G. Silencers for Metal Door Frames: BHMA Grade 1; neoprene or rubber, minimum diameter 1/2 inch; fabricated for drilled-in application to frame.

2.12 DOOR GASKETING

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Door Gasketing:
 a. Reese Manufacturing Co., Inc.
 b. National Guard Products, Inc.
 2. Door Bottoms:
 a. Reese Manufacturing Co., Inc.
 b. National Guard Products

B. Standard: Comply with BHMA A156.22.

C. General: Provide continuous weather-strip gasketing on exterior doors and provide smoke, light, or sound gasketing on interior doors where indicated or scheduled. Provide noncorrosive fasteners for exterior applications and elsewhere as indicated.
 1. Perimeter Gasketing: Apply to head and jamb, forming seal between door and frame.
 2. Meeting Stile Gasketing: Fasten to meeting stiles, forming seal when doors are closed.
 3. Door Bottoms: Apply to bottom of door, forming seal with threshold when door is closed.

D. Air Leakage: Not to exceed 0.50 cfm per foot of crack length for gasketing other than for smoke control, as tested according to ASTM E 283.

E. Smoke-Labeled Gasketing: Assemblies complying with NFPA 105 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for smoke-control ratings indicated, based on testing according to UL 1784.
 1. Provide smoke-labeled gasketing on 20-minute-rated doors and on smoke-labeled doors.
F. Fire-Labeled Gasketing: Assemblies complying with NFPA 80 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire ratings indicated, based on testing according to UL 10B or NFPA 252.

G. Sound-Rated Gasketing: Assemblies that are listed and labeled by a testing and inspecting agency, for sound ratings indicated, based on testing according to ASTM E 1408.

H. Replaceable Seal Strips: Provide only those units where resilient or flexible seal strips are easily replaceable and readily available from stocks maintained by manufacturer.

2.13 THRESHOLDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Reese Manufacturing Co., Inc.
2. National Guard Products, Inc.

B. Standard: Comply with BHMA A156.21.

2.14 FABRICATION

A. Manufacturer's Nameplate: Do not provide manufacturers' products that have manufacturer's name or trade name displayed in a visible location (omit removable nameplates) except in conjunction with required fire-rated labels and as otherwise approved by Architect.

1. Manufacturer's identification will be permitted on rim of lock cylinders only.

B. Base Metals: Produce door hardware units of base metal, fabricated by forming method indicated, using manufacturer's standard metal alloy, composition, temper, and hardness. Furnish metals of a quality equal to or greater than that of specified door hardware units and BHMA A156.18 for finishes. Do not furnish manufacturer's standard materials or forming methods if different from specified standard.

C. Fasteners: Provide door hardware manufactured to comply with published templates generally prepared for machine, wood, and sheet metal screws. Provide screws according to commercially recognized industry standards for application intended. Provide Phillips flat-head screws with finished heads to match surface of door hardware, unless otherwise indicated.

1. Concealed Fasteners: For door hardware units that are exposed when door is closed, except for units already specified with concealed fasteners. Do not use through bolts for installation where bolt head or nut on opposite face is exposed unless it is the only means of securely attaching the door hardware. Where through bolts are used on hollow door and frame construction, provide sleeves for each through bolt.

2. Steel Machine or Wood Screws: For the following fire-rated applications:

 a. Mortise hinges to doors.
b. Strike plates to frames.
c. Closers to doors and frames.

3. Steel Through Bolts: For the following fire-rated applications, unless door blocking is provided:
 a. Surface hinges to doors.
 b. Closers to doors and frames.
 c. Surface-mounted exit devices.

4. Spacers or Sex Bolts: For through bolting of hollow metal doors.
5. Fasteners for Wood Doors: Comply with requirements of DHI WDHS.2, "Recommended Fasteners for Wood Doors."

2.15 FINISHES
A. Standard: Comply with BHMA A156.18.
B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
C. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
D. BHMA Designations: Comply with base material and finish requirements indicated by the following:
 1. BHMA 600: Primed for painting, over steel base metal.
 2. BHMA 626: Satin chromium plated over nickel, over brass or bronze base metal.
 3. BHMA 628: Satin aluminum, clear anodized, over aluminum base metal.
 4. BHMA 630: Satin stainless steel, over stainless steel base metal.
 5. BHMA 652: Satin chromium plated over nickel, over steel base metal.
 6. BHMA 689: Aluminum painted, over any base metal.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine doors and frames, with Installer present, for compliance with requirements for installation tolerances, labeled fire door assembly construction, wall and floor construction, and other conditions affecting performance.
B. Examine roughing-in for electrical power systems to verify actual locations of wiring connections before electrified door hardware installation.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Steel Doors and Frames: Comply with DHI A115 series.
 1. Surface-Applied Door Hardware: Drill and tap doors and frames according to SDI 107.
B. Wood Doors: Comply with DHI A115-W series.

3.3 INSTALLATION

A. Mounting Heights: Mount door hardware units at heights indicated in following applicable publications, unless specifically indicated or required to comply with governing regulations:
 2. Custom Steel Doors and Frames: DHI's "Recommended Locations for Builders' Hardware for Custom Steel Doors and Frames."

B. Install each door hardware item to comply with manufacturer's written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation of surface protective trim units with finishing work specified in Division 9 Sections. Do not install surface-mounted items until finishes have been completed on substrates involved.
 1. Set units level, plumb, and true to line and location. Adjust and reinforce attachment substrates as necessary for proper installation and operation.
 2. Drill and countersink units that are not factory prepared for anchorage fasteners. Space fasteners and anchors according to industry standards.

C. Key Control System: Place keys on markers and hooks in key control system cabinet, as determined by final keying schedule. Supply key cabinet with 25% expansion. Factory install keys in cabinet or in field with owner’s representative. Key cabinet to be supplied with a “Complete System” equal to the Telkee System.

D. Boxed Power Supplies: Locate power supplies as indicated or, if not indicated, above accessible ceilings, in equipment room. Verify location with Architect.
 1. Configuration: Provide one power supply for each door opening.
 2. Configuration: Provide the least number of power supplies required to adequately serve doors with electrified door hardware.

E. Thresholds: Set thresholds for exterior and acoustical doors in full bed of sealant complying with requirements specified in Division 7 Section "Joint Sealants."
3.4 FIELD QUALITY CONTROL

A. Independent Architectural Hardware Consultant: Owner or Architect will engage a qualified independent Architectural Hardware Consultant to perform inspections and to prepare inspection reports.

1. Independent Architectural Hardware Consultant will inspect door hardware and state in each report whether installed work complies with or deviates from requirements, including whether door hardware is properly installed and adjusted.

3.5 ADJUSTING

A. Initial Adjustment: Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.

1. Spring Hinges: Adjust to achieve positive latching when door is allowed to close freely from an open position of 30 degrees.
2. Electric Strikes: Adjust horizontal and vertical alignment of keeper to properly engage lock bolt.
3. Door Closers: Adjust sweep period so that, from an open position of 70 degrees, the door will take at least 3 seconds to move to a point 3 inches from the latch, measured to the leading edge of the door.

B. Six-Month Adjustment: Approximately six months after date of Substantial Completion, Installer shall perform the following:

1. Examine and readjust each item of door hardware as necessary to ensure function of doors, door hardware, and electrified door hardware.
2. Consult with and instruct Owner's personnel on recommended maintenance procedures.
3. Replace door hardware items that have deteriorated or failed due to faulty design, materials, or installation of door hardware units.

3.6 CLEANING AND PROTECTION

A. Clean adjacent surfaces soiled by door hardware installation.

B. Clean operating items as necessary to restore proper function and finish.

C. Provide final protection and maintain conditions that ensure door hardware is without damage or deterioration at time of Substantial Completion.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain door hardware and door hardware finishes.
3.8 DOOR HARDWARE SCHEDULE

Hardware Set #: 0001 - PRS DRS HMD & HMF LABEL
08-006.1 09-006.1 10-006.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>HINGE CB168 4.5 x 4.5 x NRP</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>AUTOMATIC FLUSH BOLTS 3810 x 3850 (TOP ONLY)</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>DUMMY TRIM 45H0-1DT-14H</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>ELECTRIC LOCKSET 45HW7-DEU-14H-RQE x C x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>ASTRAGAL A548B x BEVEL EDGE x FULL HEIGHT</td>
<td>630</td>
<td>ABH</td>
</tr>
<tr>
<td>1</td>
<td>POWER TRANSFER PT1000 x EZ</td>
<td>628</td>
<td>ABH</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER / COORDINATOR TS9315 x GSR/PT x LSN x MK397</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>WIRE HARNESS WH-32"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>WIRE HARNESS WH-192"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>WIRE HARNESS WH-6E"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MOP PLATE 6" x 1" LDW .050 x B4E x CTSK x ULS</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>TEAR DROP SEAL 797B x HEAD & JAMBS</td>
<td>BLK</td>
<td>REESE</td>
</tr>
<tr>
<td>1</td>
<td>TEAR DROP SEAL 797B x ASTRAGAL x FULL HEIGHT</td>
<td>BLK</td>
<td>REESE</td>
</tr>
<tr>
<td>2</td>
<td>DOOR CONTACT MC-7 x SPDT x 1" DIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CARD READER BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardware Set #: 0002 - SGL DRS WD & ALUM FR
08-013.1 08-024.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE CB168 4.5 x 4.5</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>OFFICE LOCKSET 45H7-A-14H-LESS STK x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>EXTENDED STRIKE LIP REQUIRED FOR ALUMINUM FRAME</td>
<td></td>
<td>ROCKWOOD</td>
</tr>
<tr>
<td>1</td>
<td>O/H CONCEALED STOP N1012A x HO (30" TO 36" DR)</td>
<td>630</td>
<td>ABH</td>
</tr>
</tbody>
</table>

Hardware Set #: 0003 - SGL DRS HMD & HMF (STC50)
08-021.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CAM LIFT HINGES BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>OFFICE LOCKSET 45H7-A-14H x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP 1270WV</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>THRESHOLD BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SOUND SEALS BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AUTOMATIC DOOR BOTTOM BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hardware Set #: 0004 - SGL DRS WD & ALUM FR
08-017.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE CB168 4.5 x 4.5</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>CLASSROOM LOCKSET 45H7-R-14H-LESS STK x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>EXTENDED STRIKE LIP REQUIRED FOR ALUMINUM FRAME</td>
<td>630</td>
<td>ROCKWOOD</td>
</tr>
<tr>
<td>1</td>
<td>O/H CONCEALED STOP N1012A x HO (30" TO 36" DR)</td>
<td>630</td>
<td>ABH</td>
</tr>
</tbody>
</table>

Hardware Set #: 0005 - SGL DRS WD & ALUM FR
08-011.1 08-016.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE CB168 4.5 x 4.5</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>CLASSROOM LOCKSET 45H7-R-14H-LESS STK x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>EXTENDED STRIKE LIP REQUIRED FOR ALUMINUM FRAME</td>
<td>630</td>
<td>ROCKWOOD</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP 1270WV</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
</tbody>
</table>

Hardware Set #: 0006 - SGL DRS WD & ALUM FR
08-012.1 08-025.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE CB168 4.5 x 4.5</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>PASSAGE LATCHSET 45H0-N-14H-LESS STK</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>EXTENDED STRIKE LIP REQUIRED FOR ALUMINUM FRAME</td>
<td>630</td>
<td>ROCKWOOD</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP 1270WV</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
</tbody>
</table>

Hardware Set #: 0007 - SGL DRS WD & HMF
09-002.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE CB168 4.5 x 4.5</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>RIM CYLINDER (IC) 1E72 x RP x ABC x CORMAX</td>
<td>626</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>POWER TRANSFER PT1000 x EZ</td>
<td>628</td>
<td>ABH</td>
</tr>
<tr>
<td>1</td>
<td>POWER SUPPLY RPSMLR2</td>
<td>600</td>
<td>PRECISION</td>
</tr>
<tr>
<td>1</td>
<td>RIM EXIT DEVICE MLR-TS-C-2103 x 4903D x S301</td>
<td>630</td>
<td>PRECISION</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER TS9315 x PT x CS</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>WIRE HARNESS WH-26"</td>
<td></td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>WIRE HARNESS WH-192"</td>
<td></td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>WIRE HARNESS WH-6E"</td>
<td></td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP 1270WV</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CONTACT MC-7 x SPDT x 1" DIA</td>
<td></td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>CARD READER BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hardware Set #: 0008 - PRS DRS WD & HMF (UNEQUAL PAIR)
09-002.2

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>HINGE CB168 4.5 x 4.5 x NRP</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>2</td>
<td>FLUSH BOLT 3917 1" x 6-3/4" x 12"</td>
<td>626</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>DUST PROOF STRIKE 3910</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>ASTRAGAL A548B x BEVEL EDGE x FULL HEIGHT</td>
<td>630</td>
<td>ABH</td>
</tr>
<tr>
<td>1</td>
<td>POWER TRANSFER PT1000 x EZ</td>
<td>628</td>
<td>ABH</td>
</tr>
<tr>
<td>1</td>
<td>POWER SUPPLY RPSMLR2</td>
<td>600</td>
<td>PRECISION</td>
</tr>
<tr>
<td>1</td>
<td>MORTISE EXIT DEVICE MLR-TS-LS-C-2303 x VM4908D x S983</td>
<td>630</td>
<td>PRECISION</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER TS9315 x PT x CS</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>WIRE HARNESS WH-26"</td>
<td>600</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>WIRE HARNESS WH-192"</td>
<td>600</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>WIRE HARNESS WH-6E"</td>
<td>600</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP 1270WV</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>2</td>
<td>DOOR CONTACT MC-7 x SPDT x 1" DIA</td>
<td></td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>CARD READER BY SECURITY CONTRACTOR</td>
<td></td>
<td>DORMAKABA</td>
</tr>
</tbody>
</table>

Hardware Set #: 0009 - SGL DRS WD & HMF
09-013.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE CB168 4.5 x 4.5 x NRP</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>STOREROOM LOCKSET 45H7-D-14H x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER TS9315 x PT x CS</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP 1270WV</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>TEAR DROP SEAL 797B x HEAD & JAMBS</td>
<td>BLK</td>
<td>REESE</td>
</tr>
<tr>
<td>1</td>
<td>AUTOMATIC DOOR BOTTOM 330C x FULL WIDTH</td>
<td>628</td>
<td>REESE</td>
</tr>
<tr>
<td>1</td>
<td>THRESHOLD 2145-SS x FHSL x FULL WIDTH</td>
<td>630</td>
<td>REESE</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CONTACT MC-7 x SPDT x 1" DIA</td>
<td></td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>ELECTRIC STRIKE ES74F x 24VDC</td>
<td>630</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>CARD READER BY SECURITY CONTRACTOR</td>
<td></td>
<td>DORMAKABA</td>
</tr>
</tbody>
</table>

Hardware Set #: 0010 - SGL DRS WD & HMF
09-013.2

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE CB168 4.5 x 4.5 x NRP</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>OFFICE LOCKSET 45H7-A-14H x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER TS9315 x PTH x CS</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>TEAR DROP SEAL 797B x HEAD & JAMBS</td>
<td>BLK</td>
<td>REESE</td>
</tr>
<tr>
<td>1</td>
<td>AUTOMATIC DOOR BOTTOM 330C x FULL WIDTH</td>
<td>628</td>
<td>REESE</td>
</tr>
<tr>
<td>1</td>
<td>THRESHOLD 2145-SS x FHSL x FULL WIDTH</td>
<td>630</td>
<td>REESE</td>
</tr>
</tbody>
</table>
Door Hardware

<table>
<thead>
<tr>
<th>Hardware Set #: 0011 - SGL DRS WD & HMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>09-015.1</td>
</tr>
</tbody>
</table>

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE CB168 4.5 x 4.5</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>STOREROOM LOCKSET 45H7-D-14H x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER TS9315 x T x CS</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP 1270W</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>TEAR DROP SEAL 797B x HEAD & JAMBS</td>
<td>BLK</td>
<td>REESE</td>
</tr>
<tr>
<td>1</td>
<td>AUTOMATIC DOOR BOTTOM 330C x FULL WIDTH</td>
<td>628</td>
<td>REESE</td>
</tr>
<tr>
<td>1</td>
<td>THRESHOLD 2145-SS x FHS x FULL WIDTH</td>
<td>630</td>
<td>REESE</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CONTACT MC-7 x SPDT x 1" DIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ELECTRIC STRIKE ES74F x 24VDC</td>
<td>630</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>CARD READER BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardware Set #: 0012 - SGL DRS HMD & HMF (STC50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09-016.1 09-016.2</td>
</tr>
</tbody>
</table>

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CAM LIFT HINGES BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>STOREROOM LOCKSET 45H7-D-14H x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER 8916FC x AF89J x LSN</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP 1270W</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CONTACT MC-7 x SPDT x 1" DIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ELECTRIC STRIKE ES74F x 24VDC</td>
<td>630</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>SOUND SEALS BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AUTOMATIC DOOR BOTTOM BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CARD READER BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PASSIVE INFRARED BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardware Set #: 0013 - SGL DRS WD & HMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>09-017.1</td>
</tr>
</tbody>
</table>

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE CB168 4.5 x 4.5 x NRP</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>CLASSROOM LOCKSET 45H7-R-14H-7/8 x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER TS9315 x PT x CS</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>TOUCHLESS SWITCH 910TC</td>
<td>RCI</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP 1270W</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>3</td>
<td>SILENCERS 1229A</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CONTACT MC-7 x SPDT x 1" DIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EMERGENCY PULL STATION 39043B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ELECTROMAGNETIC LOCK EML310 x 24VDC</td>
<td>628</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>CARD READER BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PASSIVE INFRARED BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hardware Set #: 0014 - SGL DRS HMD & HMF (STC52)
09-015.2

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CAM LIFT HINGES BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>OFFICE LOCKSET 45H7-A-14H x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER 8916FC x AF89J x LSN</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE 10" x 2" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>MOP PLATE 6" x 1" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>FLOOR STOP 1211 x MS/ES</td>
<td>613</td>
<td>TRIMCO</td>
</tr>
<tr>
<td></td>
<td>THRESHOLD BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOUND SEALS BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AUTOMATIC DOOR BOTTOM BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardware Set #: 0015 - SGL DRS HMD & HMF (STC52)
09-017.2

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CAM LIFT HINGES BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>OFFICE LOCKSET 45H7-A-14H x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER 8916FC x AF89J x LSN</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE 10" x 2" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>MOP PLATE 6" x 1" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>FLOOR STOP 1211 x MS/ES</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td></td>
<td>THRESHOLD BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOUND SEALS BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AUTOMATIC DOOR BOTTOM BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardware Set #: 0016 - SGL DRS WD & ALUM FR
09-012.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE CB168 4.5 x 4.5</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>CLASSROOM LOCKSET 45H7-R-14H-LESS STK x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>EXTENDED STRIKE LIP REQUIRED FOR ALUMINUM FRAME</td>
<td>630</td>
<td>ROCKWOOD</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER TS9315 x T x CS</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>O/H CONCEALED STOP N1022A x STOP (30" TO 36" DR)</td>
<td>630</td>
<td>ABH</td>
</tr>
</tbody>
</table>
Hardware Set #: 0017 - PRS DRS HMD & HMF (UNEQUAL PAIR)
10-012.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>HINGE CB168 4.5 x 4.5 x NRP</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>2</td>
<td>FLUSH BOLT 3917 1" x 6-3/4" x 12"</td>
<td>626</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>DUST PROOF STRIKE 3910</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>ELECTRIC LOCKSET 45HW7-DEU-14H-RQE-7/8 x C x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>ASTRAGAL A548B x BEVEL EDGE x FULL HEIGHT</td>
<td>630</td>
<td>ABH</td>
</tr>
<tr>
<td>1</td>
<td>POWER TRANSFER PT1000 x EZ</td>
<td>628</td>
<td>ABH</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER 8916FC x SPAT x LSN</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>WIRE HARNESS WH-32"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>KICK PLATE 16" x 1" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>2</td>
<td>MOP PLATE 6" x 1" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>2</td>
<td>WALL STOP 1270WV</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>2</td>
<td>SILENCERS 1229A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DOOR CONTACT MC-7 x SPDT x 1" DIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DOOR TO SWING 140 DEGREES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CARD READER BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardware Set #: 0018 - PRS DRS WD & HMF (UNEQUAL PAIR)

10-013.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>HINGE CB168 4.5 x 4.5</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>2</td>
<td>FLUSH BOLT 3917 1" x 6-3/4" x 12"</td>
<td>626</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>DUST PROOF STRIKE 3910</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>CLASSROOM LOCKSET 45H7-R-14H-7/8 x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>DUMMY TRIM 45H0-2DT-14H</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>ASTRAGAL A548B x BEVEL EDGE x FULL HEIGHT</td>
<td>630</td>
<td>ABH</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER TS9315 x T x CS</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>TOUCHLESS SWITCH 910TC</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>2</td>
<td>WALL STOP 1270WV</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>2</td>
<td>SILENCERS 1229A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DOOR CONTACT MC-7 x SPDT x 1" DIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EMERGENCY PULL STATION 39043B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ELECTROMAGNETIC LOCK EML310 x 24VDC</td>
<td>628</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>CARD READER BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PASSIVE INFRARED BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardware Set #: 0019 - SGL DRS HMD & HMF (STC52)

10-014.1

10-014.2

10-015.1

10-015.2

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CAM LIFT HINGES BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MORTISE CYLINDER (IC) 1E74 x C4 x RP3 x ABC x CORMAX</td>
<td>626</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>RIM CYLINDER (IC) 1E72 x RP x ABC x CORMAX</td>
<td>626</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>RIM EXIT DEVICE 2108CD x V4908D</td>
<td>630</td>
<td>PRECISION</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER 8916FC x SDST x PD x LSN</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE 10" x 2" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>MOP PLATE 6" x 1" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>THRESHOLD BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SOUND SEALS BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AUTOMATIC DOOR BOTTOM BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hardware Set #: 0020 - PRS DRS WD (POCKET DOORS)

10-018.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MORTISE CYLINDER (IC) 1E74 x C4 x RP3 x ABC x CORMAX</td>
<td>626</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>POCKET DOOR JOINER KIT CPD x CC x DOUBLE DOOR JOINER</td>
<td>630</td>
<td>KNC</td>
</tr>
<tr>
<td>1</td>
<td>DOOR EDGE PULL C-21-BB</td>
<td>630</td>
<td>KNC</td>
</tr>
<tr>
<td>2</td>
<td>POCKET DOOR KIT TYPE CC-3HD</td>
<td>630</td>
<td>KNC</td>
</tr>
<tr>
<td>1</td>
<td>LOCKSET C-90L-CC</td>
<td>630</td>
<td>KNC</td>
</tr>
</tbody>
</table>

Hardware Set #: 0021 - SGL DRS WD & HMF

10-020.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE CB168 4.5 x 4.5</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>PRIVACY LOCKSET 45HO-L-14H x VIB</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER TS9315 x T x CS</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE 10" x 2" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>MOP PLATE 6" x 1" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP 1270WV</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>TEAR DROP SEAL 797B x HEAD & JAMBS</td>
<td>BLK</td>
<td>REESE</td>
</tr>
</tbody>
</table>

Hardware Set #: 0022 - PRS DRS HMD & HMF

10-021.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>HINGE CB168 4.5 x 4.5</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>2</td>
<td>FLUSH BOLT 3917 1" x 6-3/4" x 12"</td>
<td>626</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>DUST PROOF STRIKE 3910</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>ELECTRIC LOCKSET 45HW7-DEU-14H-RQE-7/8 x C x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>ASTRAGAL A548B x BEVEL EDGE x FULL HEIGHT</td>
<td>630</td>
<td>ABH</td>
</tr>
<tr>
<td>1</td>
<td>POWER TRANSFER PT1000 x EZ</td>
<td>628</td>
<td>ABH</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER TS9315 x TH x CS</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>WIRE HARNESS WH-32"</td>
<td>630</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>WIRE HARNESS WH-192"</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>WIRE HARNESS WH-6E"</td>
<td>630</td>
<td>STANLEY</td>
</tr>
<tr>
<td>2</td>
<td>KICK PLATE 16" x 1" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>2</td>
<td>SILENCERS 1229A</td>
<td>GRAY</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>2</td>
<td>DOOR CONTACT MC-7 x SPDT x 1" DIA</td>
<td>630</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>DOOR TO SWING 180 DEGREES</td>
<td>630</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>CARD READER BY SECURITY CONTRACTOR</td>
<td>630</td>
<td>ABH</td>
</tr>
</tbody>
</table>

Hardware Set #: 0023 - PRS DRS WD & ALUM FR

10-016.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>HINGE CB168 4.5 x 4.5</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>FLUSH BOLT 3917 1" x 6-3/4" x 12" x TOP ONLY</td>
<td>626</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>2</td>
<td>MORTISE CYLINDER (IC) 1E74 x C181 x RP3 x ABC x CORMAX</td>
<td>626</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>DEADBOLT (SWINGING DOOR) MS1850S</td>
<td>628</td>
<td>ADAMS-RITE</td>
</tr>
<tr>
<td>4</td>
<td>DOOR PULL AP314 x G x 74 x S x 4 x N</td>
<td>710</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>2</td>
<td>DOOR CLOSER TS9315 x TH x CS</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>2</td>
<td>O/H CONCEALED STOP N1022A x STOP (30" TO 36" DR)</td>
<td>630</td>
<td>ABH</td>
</tr>
</tbody>
</table>
Hardware Set #: 0024 - SGL DRS WD & ALUM FR

10-023.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE CB168 4.5 x 4.5</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>CLASSROOM LOCKSET 45H7-R-14H-LESS STK x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>EXTENDED STRIKE LIP REQUIRED FOR ALUMINUM FRAME</td>
<td>630</td>
<td>ROCKWOOD</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER TS9315 x TH x CS</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP 1270WV</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
</tbody>
</table>

Hardware Set #: 0025 - SGL DRS WD & HMF

10-025.1 **10-026.1**

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE CB168 4.5 x 4.5</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>PRIVACY LOCKSET 45H0-L-14H x VIB</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER TS9315 x T x CS</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE 10" x 2" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>MOP PLATE 6" x 1" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP 1270WV</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>TEAR DROP SEAL 797B x HEAD & JAMBS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardware Set #: 0026 - SGL DRS WD & HMF

10-029.1 **10-030.1**

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE CB199 4.5 x 4.5</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>PRIVACY LOCKSET 45H0-L-14H x VIB</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER TS9315 x T x CS</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE 10" x 2" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>MOP PLATE 6" x 1" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP 1270WV</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>TEAR DROP SEAL 797B x HEAD & JAMBS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardware Set #: 0027 - SGL DRS HMD & HMF (STC52)

10-031.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CAM LIFT HINGES BY STC DOOR MANUFACTURER</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>PASSAGE LATCHSET 45H0-N-14H</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER 8916FC x AF89 (REG ARM MOUNT) x LSN</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE 10" x 2" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>MOP PLATE 6" x 1" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP 1270WV</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>THRESHOLD BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SOUND SEALS BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AUTOMATIC DOOR BOTTOM BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Door Hardware Hardware Set #: 0028 - SGL DRS HMD & HMF (STC52)

10-031.2

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CAM LIFT HINGES BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PASSAGE LATCHSET 45H0-N-14H</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER 8916FC x SDS x PD x LSN</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE 10" x 2" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>MOP PLATE 6" x 1" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>THRESHOLD BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SOUND SEALS BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AUTOMATIC DOOR BOTTOM BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Door Hardware Hardware Set #: 0029 - SGL DRS HMD & HMF

10-032.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE CB168 4.5 x 4.5</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>STOREROOM LOCKSET 45H7-D-14H x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE 16" x 2" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP 1270WV</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>3</td>
<td>SILENCERS 1229A</td>
<td>GRAY</td>
<td>TRIMCO</td>
</tr>
</tbody>
</table>

Door Hardware Hardware Set #: 0030 - SGL DRS HMD & HMF

10-022.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE CB168 4.5 x 4.5</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>ELECTRIC LOCKSET 45HW7-DEU-14H-RQE x C x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER 8916FC x SPA x LSN</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>WIRE HARNESS WH-32"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>WIRE HARNESS WH-192"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>WIRE HARNESS WH-6E"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE 16" x 2" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>MOP PLATE 6" x 1" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP 1270WV</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>3</td>
<td>SILENCERS 1229A</td>
<td>GRAY</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CONTACT MC-7 x SPDT x 1" DIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DOOR TO SWING 180 DEGREES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CARD READER BY SECURITY CONTRACTOR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Door Hardware Hardware Set #: 0031 - SGL DRS WD & HMF

12-002.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE CB168 4.5 x 4.5</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>STOREROOM LOCKSET 45H7-D-14H x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE 10" x 2" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>MOP PLATE 6" x 1" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP 1270WV</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>3</td>
<td>SILENCERS 1229A</td>
<td>GRAY</td>
<td>TRIMCO</td>
</tr>
</tbody>
</table>
Hardware Set #: 0032 - SGL DRS HMD & HMF (STC45)
08-018.1

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CAM LIFT HINGES BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>OFFICE LOCKSET 45H7-A-14H x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>WALL STOP 1270WV</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>THRESHOLD BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SOUND SEALS BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AUTOMATIC DOOR BOTTOM BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardware Set #: 0033 - SGL DRS HMD & HMF (STC50)
08-022.1 08-022.2

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CAM LIFT HINGES BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CLASSROOM LOCKSET 45H7-R-14H x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>O/H CONCEALED STOP N1012A x HO (30" TO 36" DR)</td>
<td>630</td>
<td>ABH</td>
</tr>
<tr>
<td>1</td>
<td>THRESHOLD BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SOUND SEALS BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AUTOMATIC DOOR BOTTOM BY STC DOOR MANUFACTURER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardware Set #: 0034 - SGL DRS HMD & HMF
10-012.2

Opening to Have:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
<th>Finish</th>
<th>Mfg</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>HINGE CB168 4.5 x 4.5 x NRP</td>
<td>652</td>
<td>STANLEY</td>
</tr>
<tr>
<td>1</td>
<td>CLASSROOM LOCKSET 45H7-R-14H x ABC x CORMAX</td>
<td>630</td>
<td>BEST</td>
</tr>
<tr>
<td>1</td>
<td>DOOR CLOSER 8916FC x SDST x LSN</td>
<td>689</td>
<td>DORMAKABA</td>
</tr>
<tr>
<td>1</td>
<td>KICK PLATE 16" x 2" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>1</td>
<td>MOP PLATE 6" x 1" LDW .050 x B4E x CTSK</td>
<td>630</td>
<td>TRIMCO</td>
</tr>
<tr>
<td>3</td>
<td>SILENCERS 1229A</td>
<td>GRAY</td>
<td>TRIMCO</td>
</tr>
</tbody>
</table>

END OF SECTION 08 71 00
SECTION 08 80 00 - GLAZING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Glass products.
2. Miscellaneous glazing materials.
3. Decorative film.

1.3 DEFINITIONS

A. Glass Manufacturers: Firms that produce primary glass, fabricated glass, or both, as defined in referenced glazing publications.

B. Glass Thicknesses: Indicated by thickness designations in millimeters in accordance with ASTM C1036.

1.4 COORDINATION

A. Coordinate glazing channel dimensions to provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

Glazing Schedule: List glass types and thicknesses for each size opening and location. Use same designations indicated on Drawings.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.
B. Product Certificates: For glass.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: A qualified glazing contractor for this Project who is certified under the North American Contractor Certification Program (NACC) for Architectural Glass & Metal (AG&M) contractors.

B. Glass Testing Agency Qualifications: A qualified independent testing agency accredited according to the NFRC CAP 1 Certification Agency Program.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Protect glazing materials in accordance with manufacturer's written instructions. Prevent damage to glass and glazing materials from condensation, temperature changes, direct exposure to sun, or other causes.

1.9 FIELD CONDITIONS

A. Environmental Limitations: Do not proceed with glazing when ambient and substrate temperature conditions are outside limits permitted by glazing material manufacturers and when glazing channel substrates are wet from rain, frost, condensation, or other causes.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations for Glass: Obtain glass from single source from single manufacturer.

B. Source Limitations for Glazing Accessories: For each product and installation method, obtain from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. General: Installed glazing systems shall withstand normal thermal movement and wind and impact loads (where applicable) without failure, including loss or glass breakage attributable to defective manufacture, fabrication, or installation; failure of sealants or gaskets to remain watertight and airtight; deterioration of glazing materials; or other defects in construction.

B. Safety Glazing: Where safety glazing is indicated, provide glazing that complies with 16 CFR 1201, Category II.

C. Thermal and Optical Performance Properties: Provide glass with performance properties specified, as indicated in manufacturer's published test data, based on procedures indicated below:
1. For monolithic-glass lites, properties are based on units with lites 6 mm thick.

2.3 GLASS PRODUCTS, GENERAL

A. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below unless more stringent requirements are indicated. See these publications for glazing terms not otherwise defined in this Section or in referenced standards.

1. NGA Publications: "Glazing Manual."

B. Safety Glazing Labeling: Where safety glazing is indicated, permanently mark glazing with certification label of the SGCC or another certification agency acceptable to authorities having jurisdiction or manufacturer. Label shall indicate manufacturer's name, type of glass, thickness, and safety glazing standard with which glass complies.

C. Thickness: Where glass thickness is indicated, it is a minimum. Provide glass that complies with performance requirements and is not less than thickness indicated.

D. Strength: Where annealed float glass is indicated, provide annealed float glass, heat-strengthened float glass, or fully tempered float glass as needed to comply with "Performance Requirements" Article. Where heat-strengthened float glass is indicated, provide heat-strengthened float glass or fully tempered float glass as needed to comply with "Performance Requirements" Article. Where fully tempered float glass is indicated, provide fully tempered float glass.

2.4 GLASS PRODUCTS

A. Fully Tempered Float Glass: ASTM C1048, Kind FT (fully tempered), Condition A (uncoated) unless otherwise indicated, Type I, Class 1 (clear) or Class 2 (tinted) as indicated, Quality-Q3.

1. Fabrication Process: By horizontal (roller-hearth) process with roll-wave distortion parallel to bottom edge of glass as installed unless otherwise indicated.

B. Heat-Strengthened Float Glass: ASTM C1048, Kind HS (heat strengthened), Type I, Condition A (uncoated) unless otherwise indicated, Type I, Class 1 (clear) or Class 2 (tinted) as indicated, Quality-Q3.

2.5 DECORATIVE FILM

A. Decorative Plastic Film: Polyvinyl Chloride (PVC) type.

1. Application: Locations as indicated on drawings.

a. Install in accordance with manufacturer’s instructions.

3. Film Thickness: 3.2 Mil.
4. **Basis of Design Product:** subject to compliance with requirements, provide 3M; CRYSTAL Glass Finishes 7725SE-314, Dusted Crystal, or comparable product from another manufacturer.

2.6 BLAST/IMPACT RESISTANT FILM

A. Blast/Impact Resistant Plastic Film: Micro-layered construction.

1. **Application:** Locations as indicated on drawings.
 a. Install in accordance with manufacturer’s instructions.

2. **Pattern & Color:** Clear.

3. **Film Thickness:** 8 mil (0.22mm).

4. **Performance Requirements:**
 a. Tear Resistance: 1,200 lbs%
 b. Tensile Strength: 32,000 psi
 c. Break Strength: 225 lbs/in
 d. Elongation at Break: 130%
 e. Peel Strength: > 6 lbs/in
 f. Abrasion Resistance: < 3%

5. **Blast Resistance GSA Rating of 3B,** when tested in accordance with ASTM F1642 Low Hazard, with a blast minimum load of 10 psi and 42 psi*msec, on 1 inch (25mm) double pane glass without film attachment system.

6. **Basis of Design Product:** subject to compliance with requirements, provide 3M; Ultra 800, or comparable product from another manufacturer.

2.7 MISCELLANEOUS GLAZING MATERIALS

A. General: Provide products of material, size, and shape complying with referenced glazing standard, recommended in writing by manufacturers of glass and other glazing materials for application indicated, and with a proven record of compatibility with surfaces contacted in installation.

B. Cleaners, Primers, and Sealers: Types recommended by sealant or gasket manufacturer.

C. Setting Blocks:

1. Neoprene with Shore A durometer hardness of 85, plus or minus 5.
2. Type recommended in writing by sealant or glass manufacturer.

D. Spacers:

1. Neoprene blocks or continuous extrusions of hardness required by glass manufacturer to maintain glass lites in place for installation indicated.
2. Type recommended in writing by sealant or glass manufacturer.

E. Edge Blocks:
 1. Neoprene with Shore A durometer hardness per manufacturer's written instructions.
 2. Type recommended in writing by sealant or glass manufacturer.

2.8 FABRICATION OF GLAZING UNITS

A. Fabricate glazing units in sizes required to fit openings indicated for Project, with edge and face clearances, edge and surface conditions, and bite complying with written instructions of product manufacturer and referenced glazing publications, to comply with system performance requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine framing, glazing channels, and stops, with Installer present, for compliance with the following:
 1. Manufacturing and installation tolerances, including those for size, squareness, and offsets at corners.
 2. Presence and functioning of weep systems.
 3. Minimum required face and edge clearances.
 4. Effective sealing between joints of glass-framing members.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean glazing channels and other framing members receiving glass immediately before glazing. Remove coatings not firmly bonded to substrates.

B. Examine glazing units to locate exterior and interior surfaces. Label or mark units as needed so that exterior and interior surfaces are readily identifiable. Do not use materials that leave visible marks in the completed Work.

3.3 GLAZING, GENERAL

A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.

B. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass includes glass with edge
damage or other imperfections that, when installed, could weaken glass, impair performance, or impair appearance.

C. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction testing.

D. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.

E. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.

F. Provide spacers for glass lites where length plus width is larger than 50 inches.
 1. Locate spacers directly opposite each other on both inside and outside faces of glass. Install correct size and spacing to preserve required face clearances, unless gaskets and glazing tapes are used that have demonstrated ability to maintain required face clearances and to comply with system performance requirements.
 2. Provide 1/8-inch-minimum bite of spacers on glass and use thickness equal to sealant width. With glazing tape, use thickness slightly less than final compressed thickness of tape.

G. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and in accordance with requirements in referenced glazing publications.

H. Set glass lites in each series with uniform pattern, draw, bow, and similar characteristics.

I. Set glass lites with proper orientation so that coatings face exterior or interior as specified.

J. Where wedge-shaped gaskets are driven into one side of channel to pressurize sealant or gasket on opposite side, provide adequate anchorage so gasket cannot walk out when installation is subjected to movement.

K. Square cut wedge-shaped gaskets at corners and install gaskets in a manner recommended by gasket manufacturer to prevent corners from pulling away; seal corner joints and butt joints with sealant recommended in writing by gasket manufacturer.

3.4 GASKET GLAZING (DRY)

A. Cut compression gaskets to lengths recommended by gasket manufacturer to fit openings exactly, with allowance for stretch during installation.

B. Insert soft compression gasket between glass and frame or fixed stop so it is securely in place with joints miter cut and bonded together at corners.

C. Installation with Drive-in Wedge Gaskets: Center glass lites in openings on setting blocks, and press firmly against soft compression gasket by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings. Compress gaskets to produce a weathertight seal without
developing bending stresses in glass. Seal gasket joints with sealant recommended in writing by gasket manufacturer.

D. Installation with Pressure-Glazing Stops: Center glass lites in openings on setting blocks, and press firmly against soft compression gasket. Install dense compression gaskets and pressure-glazing stops, applying pressure uniformly to compression gaskets. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended in writing by gasket manufacturer.

E. Install gaskets so they protrude past face of glazing stops.

3.5 CLEANING AND PROTECTION

A. Immediately after installation, remove nonpermanent labels and clean surfaces.

B. Protect glass from contact with contaminating substances resulting from construction operations. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains.

1. If, despite such protection, contaminating substances do contact with glass, remove substances immediately as recommended in writing by glass manufacturer. Remove and replace glass that cannot be cleaned without damage to coatings.

C. Remove and replace glass that is damaged during construction period.

D. Wash glass on both exposed surfaces not more than four days before date scheduled for inspections that establish date of Substantial Completion. Wash glass as recommended in writing by glass manufacturer.

3.6 MONOLITHIC GLASS SCHEDULE

A. Clear Glass Type GL-1: Fully tempered float glass.

1. Minimum Thickness: 6 mm.
2. Safety glazing required.

END OF SECTION 08 80 00
SECTION 092116 - GYPSUM BOARD SHAFT WALL ASSEMBLIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Gypsum board shaft wall assemblies.

1.3 ACTION SUBMITTALS
 A. Product Data: For each component of gypsum board shaft wall assembly.
 B. Sustainable Design Submittals:
 1. **Product Data**: For recycled content, indicating postconsumer and preconsumer recycled content and cost.
 2. **Environmental Product Declaration (EPD)**: For each product.

1.4 DELIVERY, STORAGE, AND HANDLING
 A. Store materials inside under cover and keep them dry and protected against weather, condensation, direct sunlight, construction traffic, and other potential causes of damage. Stack panels flat and support them on risers on a flat platform to prevent sagging.

1.5 FIELD CONDITIONS
 A. Environmental Limitations: Comply with gypsum-shaftliner-board manufacturer's written instructions.
 B. Do not install finish panels until installation areas are enclosed and conditioned.
 C. Do not install panels that are wet, moisture damaged, or mold damaged.
 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, and irregular shape.
 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Resistance-Rated Assemblies: For fire-resistance-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E119 by an independent testing agency.

B. STC-Rated Assemblies: Provide materials and construction identical to those of assemblies tested according to ASTM E90 and classified according to ASTM E413 by a testing and inspecting agency.

C. Recycled Content: Postconsumer recycled content plus one-half of preconsumer recycled content not less than <Insert value> percent.

D. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.

E. Regional Materials: Manufacture products within 100 miles of Project site from materials that have been extracted, harvested, or recovered, as well as manufactured, within 100 miles of Project site.

2.2 GYPSUM BOARD SHAFT WALL ASSEMBLIES

A. Fire-Resistance Rating: As indicated on Drawings.

B. STC Rating: As indicated on Drawings.

C. Gypsum Shaftliner Board:

1. Moisture- and Mold-Resistant Type X: ASTM C1396/C1396M; manufacturer's proprietary fire-resistive liner panels with ASTM D3273 mold-resistance score of 10 as rated according to ASTM D3274, 1 inch thick, and with double beveled long edges.

a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1) CertainTeed Corporation; Saint-Gobain North America.
 2) Georgia-Pacific Gypsum LLC.
 3) National Gypsum Company.
 4) USG Corporation.

Non-Load-Bearing Steel Framing, General: Complying with ASTM C645 requirements for metal unless otherwise indicated and complying with requirements for fire-resistance-rated assembly indicated.

E. Studs: Manufacturer's standard profile for repetitive, corner, and end members as follows:

1. Depth: As indicated.
2. Minimum Base-Metal Thickness: 0.030 inch.

F. Runner Tracks: Manufacturer's standard J-profile track with manufacturer's standard long-leg length, but at least 2 inches long and matching studs in depth.

1. Minimum Base-Metal Thickness: Matching steel studs.

G. Firestop Tracks: Top runner manufactured to allow partition heads to expand and contract with movement of the structure while maintaining continuity of fire-resistance-rated assembly indicated; in thickness not less than indicated for studs and in width to accommodate depth of studs.

Finish Panels: As indicated.

I. Sound Attenuation Blankets: As specified in Section 092900 "Gypsum Board."

2.3 AUXILIARY MATERIALS

A. Provide auxiliary materials that comply with shaft wall manufacturer's written instructions.

B. Trim Accessories: Cornerbead, edge trim, and control joints of material and shapes as specified in Section 092900 "Gypsum Board" that comply with gypsum board shaft wall assembly manufacturer's written instructions for application indicated.

C. Steel Drill Screws: ASTM C1002 unless otherwise indicated.

D. Track Fasteners: Power-driven fasteners of size and material required to withstand loading conditions imposed on shaft wall assemblies without exceeding allowable design stress of track, fasteners, or structural substrates in which anchors are embedded.

1. Expansion Anchors: Fabricated from corrosion-resistant materials, with allowable load or strength design capacities calculated according to ICC-ES AC193 and ACI 318 greater than or equal to the design load, as determined by testing per ASTM E488/E488M conducted by a qualified testing agency.

2. Power-Actuated Anchors: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with allowable load capacities calculated according to ICC-ES AC70, greater than or equal to the design load, as determined by testing per ASTM E1190 conducted by a qualified testing agency.

E. Acoustical Sealant: Section 079219 "Acoustical Joint Sealants."
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine panels before installation. Reject panels that are wet, moisture damaged, or mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. General: Install gypsum board shaft wall assemblies to comply with requirements of fire-resistance-rated assemblies indicated and manufacturer's written installation instructions.

B. Do not bridge building expansion joints with shaft wall assemblies; frame both sides of expansion joints with furring and other support.

C. Install supplementary framing in gypsum board shaft wall assemblies around openings and as required for blocking, bracing, and support of gravity and pullout loads of fixtures, equipment, services, heavy trim, furnishings, wall-mounted door stops, and similar items that cannot be supported directly by shaft wall assembly framing.

1. Reinforcing: Provide where items attach directly to shaft wall assembly as indicated on Drawings; accurately position and secure behind at least one layer of face panel.

D. Penetrations: At penetrations in shaft wall, maintain fire-resistance rating of shaft wall assembly by installing supplementary steel framing around perimeter of penetration and fire protection behind boxes containing wiring devices, elevator call buttons and floor indicators, and similar items.

E. Isolate perimeter of gypsum panels from building structure to prevent cracking of panels while maintaining continuity of fire-rated construction.

F. Firestop Tracks: Where indicated, install to maintain continuity of fire-resistance-rated assembly indicated.

G. Control Joints: Install control joints according to ASTM C840 and in specific locations approved by Architect while maintaining fire-resistance rating of gypsum board shaft wall assemblies.

H. Installation Tolerance: Install each framing member so fastening surfaces vary not more than 1/8 inch from the plane formed by faces of adjacent framing.
3.3 PROTECTION

A. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.

B. Remove and replace panels that are wet, moisture damaged, or mold damaged.
 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, and irregular shape.
 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

END OF SECTION 09 21 16
SECTION 09 22 16 - NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Non-load-bearing steel framing systems for interior partitions.
2. Grid suspension systems for gypsum board ceilings.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:

1. **Product Data**: For recycled content, indicating postconsumer and preconsumer recycled content and cost.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of code-compliance certification for studs and tracks.

B. Evaluation reports for firestop tracks, post-installed anchors, and power-actuated fasteners.

1.5 QUALITY ASSURANCE

A. Code-Compliance Certification of Studs and Tracks: Provide documentation that framing members are certified according to the product-certification program of the Certified Steel Stud Association, the Steel Framing Industry Association or the Steel Stud Manufacturers Association.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics: For fire-resistance-rated assemblies that incorporate non-load-bearing steel framing, provide materials and construction identical to those tested in assembly indicated, according to ASTM E 119 by an independent testing agency.

B. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated on Drawings, according to ASTM E 90 and classified according to ASTM E 413 by an independent testing agency.

2.2 FRAMING SYSTEMS

A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.

B. Framing Members, General: Comply with ASTM C 754 for conditions indicated.

1. Steel Sheet Components: Comply with ASTM C 645 requirements for metal unless otherwise indicated.

C. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

2. MarinoWARE.
3. Telling Industries.
4. The Steel Network, Inc.

D. Studs and Tracks: ASTM C 645.

1. Steel Studs and Tracks:

 a. Minimum Base-Metal Thickness: 0.0329 inch.
 b. Depth: As indicated on Drawings.

E. Slip-Type Head Joints: Where indicated, provide one of the following:

1. Single Long-Leg Track System: ASTM C 645 top track with 2-inch-deep flanges in thickness not less than indicated for studs, installed with studs friction fit into top track and with continuous bridging located within 12 inches of the top of studs to provide lateral bracing.

2. Double-Track System: ASTM C 645 top outer tracks, inside track with 2-inch-deep flanges in thickness not less than indicated for studs and fastened to studs, and outer track sized to friction-fit over inner track.
3. Deflection Track: Steel sheet top track manufactured to prevent cracking of finishes applied to interior partition framing resulting from deflection of structure above; in thickness not less than indicated for studs and in width to accommodate depth of studs.

F. Firestop Tracks: Top track manufactured to allow partition heads to expand and contract with movement of structure while maintaining continuity of fire-resistance-rated assembly indicated; in thickness not less than indicated for studs and in width to accommodate depth of studs.

G. Flat Strap and Backing Plate: Steel sheet for blocking and bracing in length and width indicated.
 1. Minimum Base-Metal Thickness: 0.0329 inch.

H. Cold-Rolled Channel Bridging: Steel, 0.0538-inch minimum base-metal thickness, with minimum 1/2-inch-wide flanges.
 1. Depth: 1-1/2 inches.
 2. Clip Angle: Not less than 1-1/2 by 1-1/2 inches, 0.068-inch-thick, galvanized steel.

I. Hat-Shaped, Rigid Furring Channels: ASTM C 645.
 1. Minimum Base-Metal Thickness: 0.0329 inch.
 2. Depth: As indicated on Drawings.

J. Resilient Furring Channels: 1/2-inch-deep, steel sheet members designed to reduce sound transmission.
 1. Configuration: Asymmetrical or hat shaped.

K. Cold-Rolled Furring Channels: 0.053-inch uncoated-steel thickness, with minimum 1/2-inch-wide flanges.
 1. Depth: 3/4 inch.
 2. Furring Brackets: Adjustable, corrugated-edge-type steel sheet with minimum uncoated-steel thickness of 0.0329 inch.
 3. Tie Wire: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.062-inch-diameter wire, or double strand of 0.048-inch-diameter wire.

2.3 SUSPENSION SYSTEMS

A. Hanger Attachments to Concrete:
 1. Post-Installed Anchors: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC58 or AC308 as appropriate for the substrate.
 a. Uses: Securing hangers to structure.
 b. Type: adhesive anchor.
 c. Material for Interior Locations: Carbon-steel components zinc-plated to comply with ASTM B633 or ASTM F1941, Class Fe/Zn 5, unless otherwise indicated.

B. Wire Hangers: ASTM A641/A641M, Class 1 zinc coating, soft temper, 0.16 inch in diameter.
C. Grid Suspension System for Gypsum Board Ceilings: ASTM C645, direct-hung system composed of main beams and cross-furring members that interlock.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to the following:

 b. Chicago Metallic Corporation; Drywall Grid System.
 c. USG Corporation; Drywall Suspension System.

2.4 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that comply with referenced installation standards.

1. Fasteners for Steel Framing: Of type, material, size, corrosion resistance, holding power, and other properties required to fasten steel members to substrates.

B. Isolation Strip at Exterior Walls: Provide one of the following:

2. Foam Gasket: Adhesive-backed, closed-cell vinyl foam strips that allow fastener penetration without foam displacement, 1/8 inch thick, in width to suit steel stud size.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and substrates, with Installer present, and including welded hollow-metal frames, cast-in anchors, and structural framing, for compliance with requirements and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Coordination with Sprayed Fire-Resistive Materials:

1. Before sprayed fire-resistive materials are applied, attach offset anchor plates or ceiling tracks to surfaces indicated to receive sprayed fire-resistive materials. Where offset anchor plates are required, provide continuous plates fastened to building structure not more than 24 inches o.c.
2. After sprayed fire-resistive materials are applied, remove them only to extent necessary for installation of non-load-bearing steel framing. Do not reduce thickness of fire-resistive materials below that are required for fire-resistance ratings indicated. Protect adjacent fire-resistive materials from damage.
3.3 INSTALLATION, GENERAL

A. Installation Standard: ASTM C 754.
 1. Gypsum Board Assemblies: Also comply with requirements in ASTM C 840 that apply to framing installation.

B. Install framing and accessories plumb, square, and true to line, with connections securely fastened.

C. Install supplementary framing, and blocking to support fixtures, equipment services, heavy trim, grab bars, toilet accessories, furnishings, or similar construction.

D. Install bracing at terminations in assemblies.

E. Do not bridge building control and expansion joints with non-load-bearing steel framing members. Frame both sides of joints independently.

3.4 INSTALLING FRAMED ASSEMBLIES

A. Install framing system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.
 1. Single-Layer Application: 16 inches o.c. unless otherwise indicated.
 2. Multilayer Application: 16 inches o.c. unless otherwise indicated.
 3. Tile Backing Panels: 16 inches o.c. unless otherwise indicated.

B. Where studs are installed directly against exterior masonry walls or dissimilar metals at exterior walls, install isolation strip between studs and exterior wall.

C. Install studs so flanges within framing system point in same direction.

D. Install tracks at floors and overhead supports. Extend framing full height to structural supports or substrates above suspended ceilings except where partitions are indicated to terminate at suspended ceilings. Continue framing around ducts that penetrate partitions above ceiling.
 1. Slip-Type Head Joints: Where framing extends to overhead structural supports, install to produce joints at tops of framing systems that prevent axial loading of finished assemblies.
 2. Door Openings: Screw vertical studs at jambs to jamb anchor clips on door frames; install track section (for cripple studs) at head and secure to jamb studs.
 a. Install two studs at each jamb unless otherwise indicated.
 b. Install cripple studs at head adjacent to each jamb stud, with a minimum 1/2-inch clearance from jamb stud to allow for installation of control joint in finished assembly.
 c. Extend jamb studs through suspended ceilings and attach to underside of overhead structure.
3. Other Framed Openings: Frame openings other than door openings the same as required for door openings unless otherwise indicated. Install framing below sills of openings to match framing required above door heads.

4. Fire-Resistance-Rated Partitions: Install framing to comply with fire-resistance-rated assembly indicated and support closures and to make partitions continuous from floor to underside of solid structure.
 a. Firestop Track: Where indicated, install to maintain continuity of fire-resistance-rated assembly indicated.

5. Sound-Rated Partitions: Install framing to comply with sound-rated assembly indicated.

6. Curved Partitions:
 a. Bend track to uniform curve and locate straight lengths so they are tangent to arcs.
 b. Begin and end each arc with a stud, and space intermediate studs equally along arcs. On straight lengths of no fewer than two studs at ends of arcs, place studs 6 inches o.c.

E. Direct Furring:
 1. Screw to wood framing.
 2. Attach to concrete or masonry with stub nails, screws designed for masonry attachment, or powder-driven fasteners spaced 24 inches o.c.

F. Installation Tolerance: Install each framing member so fastening surfaces vary not more than 1/8 inch from the plane formed by faces of adjacent framing.

3.5 INSTALLING CEILING SUSPENSION SYSTEMS

A. Install suspension system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.
 1. Hangers: 48 inches o.c.
 2. Carrying Channels (Main Runners): 48 inches o.c.
 3. Furring Channels (Furring Members): 16 inches o.c.

B. Isolate suspension systems from building structure where they abut or are penetrated by building structure to prevent transfer of loading imposed by structural movement.

C. Suspend hangers from building structure as follows:
 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structural or suspension system.
 a. Splay hangers only where required to miss obstructions and offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
 2. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with locations of hangers required to support standard suspension system members, install supplemental suspension members and hangers in the form of trapezes or equivalent devices.
a. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced installation standards.

3. Wire Hangers: Secure by looping and wire tying, either directly to structures or to inserts, eye screws, or other devices and fasteners that are secure and appropriate for substrate, and in a manner that will not cause hangers to deteriorate or otherwise fail.

4. Do not attach hangers to steel roof deck.

5. Do not attach hangers to rolled-in hanger tabs of composite steel floor deck.

6. Do not connect or suspend steel framing from ducts, pipes, or conduit.

D. Fire-Resistance-Rated Assemblies: Wire tie furring channels to supports.

E. Seismic Bracing: Sway-brace suspension systems with hangers used for support.

F. Grid Suspension Systems: Attach perimeter wall track or angle where grid suspension systems meet vertical surfaces. Mechanically join main beam and cross-furring members to each other and butt-cut to fit into wall track.

G. Installation Tolerances: Install suspension systems that are level to within 1/8 inch in 12 feet measured lengthwise on each member that will receive finishes and transversely between parallel members that will receive finishes.

END OF SECTION 09 22 16
SECTION 09 29 00 - GYPSUM BOARD

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Interior gypsum board.
 2. Tile backing panels.

B. Related Sections include the following:
 1. Division 09 Section "Gypsum Board Shaft Wall Assemblies" for metal shaft-wall framing, gypsum shaft liners, and other components of shaft-wall assemblies.
 2. Division 09 Section "Non-Structural Metal Framing" for non-structural steel framing and suspension systems that support gypsum board panels.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:

1. Product Data: For recycled content, indicating postconsumer and preconsumer recycled content and cost.
2. Product Certificates: For materials manufactured within 100 miles of Project, indicating location of material manufacturer and point of extraction, harvest, or recovery for each raw material. Include distance to Project and cost for each raw material.
3. Product Data: For adhesives and sealants, indicating VOC content.
4. Laboratory Test Reports: For adhesives and sealants, indicating compliance with requirements for low-emitting materials.
5. Laboratory Test Reports: For ceiling and wall materials, indicating compliance with requirements for low-emitting materials.

1.4 DELIVERY, STORAGE AND HANDLING

A. Store materials inside under cover and keep them dry and protected against weather, condensation, direct sunlight, construction traffic, and other potential causes of damage. Stack panels flat and supported on risers on a flat platform to prevent sagging.
1.5 FIELD CONDITIONS

A. Environmental Limitations: Comply with ASTM C840 requirements or gypsum board manufacturer's written instructions, whichever are more stringent.

B. Do not install paper-faced gypsum panels until installation areas are enclosed and conditioned.

C. Do not install panels that are wet, moisture damaged, and mold damaged.
 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Resistance-Rated Assemblies: For fire-resistance-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 119 by an independent testing agency.

B. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 90 and classified according to ASTM E 413 by an independent testing agency.

C. Ceiling and wall materials shall comply with the requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

2.2 GYPSUM BOARD, GENERAL

A. Recycled Content: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 50 percent.

B. Size: Provide maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.

2.3 INTERIOR GYPSUM BOARD

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. CertainTeed Corporation.
 2. Georgia-Pacific Gypsum LLC.
 4. USG Corporation.
B. Gypsum Board, Type X: ASTM C 1396/C 1396M.
 1. Thickness: 5/8 inch.
 2. Long Edges: Tapered.

C. Flexible Gypsum Board: ASTM C 1396/C 1396M. Manufactured to bend to fit radii and to be more flexible than standard regular-type gypsum board of same thickness.
 1. Thickness: 1/4 inch.
 2. Long Edges: Tapered.

D. Gypsum Ceiling Board: ASTM C 1396/C 1396M.
 1. Thickness: 1/2 inch.
 2. Long Edges: Tapered.

E. Impact-Resistant Gypsum Board: ASTM C 1396/C 1396M gypsum board, tested according to ASTM C 1629/C 1629M.
 1. Core: 5/8 inch, Type X.
 2. Surface Abrasion: ASTM C 1629/C 1629M, meets or exceeds Level 2 requirements.
 3. Indentation: ASTM C 1629/C 1629M, meets or exceeds Level 1 requirements.
 7. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

F. Mold-Resistant Gypsum Board: ASTM C 1396/C 1396M. With moisture- and mold-resistant core and paper surfaces.
 1. Core:
 a. 1/2 inch, regular type or Type X: ceilings above showers.
 b. 5/8 inch, Type X: wall applications.
 2. Long Edges: Tapered.
 3. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

G. Acoustically Enhanced Gypsum Board: ASTM C1396/C1396M. Multilayer products constructed of two layers of gypsum boards sandwiching a viscoelastic sound-absorbing polymer core.
 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to the following:
 a. National Gypsum Company; Gold Bond® SoundBreak XPTM Retrofit™ Board.
 2. Core: As indicated.
2.4 TILE BACKING PANELS

A. Glass-Mat, Water-Resistant Backing Board: ASTM C 1178/C 1178M, with manufacturer's standard edges.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. CertainTeed Corporation.
 b. Georgia-Pacific Gypsum LLC.
 c. National Gypsum Company.
 d. USG Corporation.

2. Core: 5/8 inch, Type X.
3. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

2.5 TRIM ACCESSORIES

A. Interior Trim: ASTM C 1047.

1. Material: Galvanized or aluminum-coated steel sheet, rolled zinc, plastic, or paper-faced galvanized-steel sheet.
2. Shapes:
 a. Corner bead.
 b. Bullnose bead.
 c. LC-Bead: J-shaped; exposed long flange receives joint compound.
 d. L-Bead: L-shaped; exposed long flange receives joint compound.
 e. U-Bead: J-shaped; exposed short flange does not receive joint compound.
 f. Expansion (control) joint.
 g. Curved-Edge Cornerbead: With notched or flexible flanges.

2.6 JOINT TREATMENT MATERIALS

A. General: Comply with ASTM C 475/C 475M.

B. Joint Tape:

1. Interior Gypsum Board: Paper.
4. Tile Backing Panels: As recommended by panel manufacturer.

C. Joint Compound for Interior Gypsum Board: For each coat, use formulation that is compatible with other compounds applied on previous or for successive coats.

1. Prefilling: At open joints, rounded or beveled panel edges, and damaged surface areas, use setting-type taping compound.
2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use setting-type taping compound.
 a. Use setting-type compound for installing paper-faced metal trim accessories.

3. Fill Coat: For second coat, use drying-type, all-purpose compound.
4. Finish Coat: For third coat, use drying-type, all-purpose compound.

D. Joint Compound for Tile Backing Panels:
 1. Glass-Mat, Water-Resistant Backing Panel: As recommended by backing panel manufacturer.
 2. Cementitious Backer Units: As recommended by backer unit manufacturer.

2.7 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer's written instructions.

B. Laminating Adhesive: Adhesive or joint compound recommended for directly adhering gypsum panels to continuous substrate.
 1. Adhesives shall have a VOC content of 50 g/L or less.
 2. Adhesive shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

C. Steel Drill Screws: ASTM C 1002 unless otherwise indicated.
 1. Use screws complying with ASTM C 954 for fastening panels to steel members from 0.033 to 0.112 inch thick.
 2. For fastening cementitious backer units, use screws of type and size recommended by panel manufacturer.

D. Sound-Attenuation Blankets: Mineral-Wool Blanket Insulation, Unfaced, ASTM C665, Type I (blankets without membrane facing); consisting of fibers; passing ASTM E136 for combustion characteristics.
 1. Fire-Resistance-Rated Assemblies: Comply with mineral-fiber requirements of assembly.
 2. Flame-Spread Index: Not more than 25 when tested in accordance with ASTM E84.
 3. Smoke-Developed Index: Not more than 50 when tested in accordance with ASTM E84.
 4. Recycled Content: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 55 percent.

E. Acoustical Sealant: Manufacturer's standard nonsag, paintable, nonstaining latex sealant complying with ASTM C 834. Product effectively reduces airborne sound transmission through perimeter joints and openings in building construction as demonstrated by testing representative assemblies according to ASTM E 90.
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Hilti, Inc.
 b. Pecora Corporation.
 c. USG Corporation.

2. Sealant shall have a VOC content of 250 g/L or less.

3. Sealant shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

F. Thermal Insulation: As specified in Section 072100 "Thermal Insulation."

G. Vapor Retarder: As specified in Section 072600 "Vapor Retarders."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and substrates including welded hollow-metal frames and support framing, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.

B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLYING AND FINISHING PANELS, GENERAL

A. Comply with ASTM C840.

B. Install ceiling panels across framing to minimize the number of abutting end joints and to avoid abutting end joints in central area of each ceiling. Stagger abutting end joints of adjacent panels not less than one framing member.

C. Install panels with face side out. Butt panels together for a light contact at edges and ends with not more than 1/16 inch of open space between panels. Do not force into place.

D. Locate edge and end joints over supports, except in ceiling applications where intermediate supports or gypsum board back-blocking is provided behind end joints. Do not place tapered edges against cut edges or ends. Stagger vertical joints on opposite sides of partitions. Do not make joints other than control joints at corners of framed openings.

E. Form control and expansion joints with space between edges of adjoining gypsum panels.
F. Cover both faces of support framing with gypsum panels in concealed spaces (above ceilings, etc.), except in chases braced internally.

1. Unless concealed application is indicated or required for sound, fire, air, or smoke ratings, coverage may be accomplished with scraps of not less than 8 sq. ft. in area.
2. Fit gypsum panels around ducts, pipes, and conduits.
3. Where partitions intersect structural members projecting below underside of floor/roof slabs and decks, cut gypsum panels to fit profile formed by structural members; allow 1/4- to 3/8-inch-wide joints to install sealant.

G. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments. Provide 1/4- to 1/2-inch-wide spaces at these locations and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.

H. Attachment to Steel Framing: Attach panels so leading edge or end of each panel is attached to open (unsupported) edges of stud flanges first.

I. STC-Rated Assemblies: Seal construction at perimeters, behind control joints, and at openings and penetrations with a continuous bead of acoustical sealant. Install acoustical sealant at both faces of partitions at perimeters and through penetrations. Comply with ASTM C919 and with manufacturer's written instructions for locating edge trim and closing off sound-flanking paths around or through assemblies, including sealing partitions above acoustical ceilings.

J. Install sound attenuation blankets before installing gypsum panels unless blankets are readily installed after panels have been installed on one side.

3.3 APPLYING INTERIOR GYPSUM BOARD

A. Install interior gypsum board in the following locations:

1. Type X: Vertical surfaces unless otherwise indicated, including where required for fire-resistance-rated assembly.
2. Flexible Type: Apply in double layer at curved assemblies.
3. Ceiling Type: Ceiling surfaces.
4. Impact-Resistant Type: As indicated on Drawings.
5. Mold-Resistant Type:
 a. Vertical surfaces at all furred exterior walls.
 b. Vertical surfaces in toilet rooms, janitor’s closets, other wet rooms.
 c. Ceilings in shower rooms.
6. Glass-Mat Interior Type: substrate for ceramic tile finish.

B. Single-Layer Application:

1. On ceilings, apply gypsum panels before wall/partition board application to greatest extent possible and at right angles to framing unless otherwise indicated.
2. On partitions/walls, apply gypsum panels vertically (parallel to framing) unless otherwise indicated or required by fire-resistance-rated assembly, and minimize end joints.
a. Stagger abutting end joints not less than one framing member in alternate courses of panels.
b. At stairwells and other high walls, install panels horizontally unless otherwise indicated or required by fire-resistance-rated assembly.

3. On Z-shaped furring members, apply gypsum panels vertically (parallel to framing) with no end joints. Locate edge joints over furring members.
4. Fastening Methods: Apply gypsum panels to supports with steel drill screws.

C. Multilayer Application:

1. On ceilings, apply gypsum board indicated for base layers before applying base layers on walls/partitions; apply face layers in same sequence. Apply base layers at right angles to framing members and offset face-layer joints one framing member, 16 inches minimum, from parallel base-layer joints, unless otherwise indicated or required by fire-resistance-rated assembly.
2. On partitions/walls, apply gypsum board indicated for base layers and face layers vertically (parallel to framing) with joints of base layers located over stud or furring member and face-layer joints offset at least one stud or furring member with base-layer joints unless otherwise indicated or required by fire-resistance-rated assembly. Stagger joints on opposite sides of partitions.
3. On Z-shaped furring members, apply base layer vertically (parallel to framing) and face layer either vertically (parallel to framing) or horizontally (perpendicular to framing) with vertical joints offset at least one furring member. Locate edge joints of base layer over furring members.
4. Fastening Methods: Fasten base layers and face layers separately to supports with screws.

D. Laminating to Substrate: Where gypsum panels are indicated as directly adhered to a substrate (other than studs, joists, furring members, or base layer of gypsum board), comply with gypsum board manufacturer's written instructions and temporarily brace or fasten gypsum panels until fastening adhesive has set.

E. Curved Surfaces:

1. Install panels horizontally (perpendicular to supports) and unbroken, to extent possible, across curved surface plus 12-inch-long straight sections at ends of curves and tangent to them.
2. For double-layer construction, fasten base layer to studs with screws 16 inches o.c. Center gypsum board face layer over joints in base layer, and fasten to studs with screws spaced 12 inches o.c.

3.4 APPLYING TILE BACKING PANELS

A. Glass-Mat, Water-Resistant Backing Panels: Comply with manufacturer's written installation instructions and install at locations indicated to receive tile. Install with 1/4-inch gap where panels abut other construction or penetrations.

B. Where tile backing panels abut other types of panels in same plane, shim surfaces to produce a uniform plane across panel surfaces.
3.5 INSTALLING TRIM ACCESSORIES

A. General: For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.

B. Control Joints: Install control joints according to ASTM C840 and in specific locations approved by Architect for visual effect.

C. Interior Trim: Install in the following locations:
 1. Cornerbead: Use at outside corners unless otherwise indicated.
 2. Bullnose Bead: Use where indicated.
 3. LC-Bead: Use at exposed panel edges.
 4. L-Bead: Use where indicated.
 5. U-Bead: Use at exposed panel edges.
 6. Curved-Edge Cornerbead: Use at curved openings.

3.6 FINISHING GYPSUM BOARD

A. General: Treat gypsum board joints, interior angles, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.

B. Prefill open joints, rounded or beveled edges, and damaged surface areas.

C. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.

D. Gypsum Board Finish Levels: Finish panels to levels indicated below and according to ASTM C840:
 1. Level 1: Ceiling plenum areas, concealed areas, and where indicated.
 2. Level 2: Panels that are substrate for tile.
 3. Level 4: At panel surfaces that will be exposed to view unless otherwise indicated.
 a. Primer and its application to surfaces are specified in Section 09 91 23 "Interior Painting."

E. Glass-Mat Faced Panels: Finish according to manufacturer's written instructions.

3.7 PROTECTION

A. Protect adjacent surfaces from drywall compound and promptly remove from floors and other non-drywall surfaces. Repair surfaces stained, marred, or otherwise damaged during drywall application.

B. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.
C. Remove and replace panels that are wet, moisture damaged, and mold damaged.

1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

END OF SECTION 09 29 00
SECTION 09 30 13 - CERAMIC TILING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Porcelain tile.
 2. Glazed wall tile.
 4. Waterproof membrane for thinset applications.
 5. Metal edge strips.

B. Related Sections include the following:
 1. Section 07 92 00 "Joint Sealants" for sealing of expansion, contraction, control, and isolation joints in tile surfaces.
 2. Section 09 29 00 "Gypsum Board" for glass-mat, water-resistant backer board.

1.3 DEFINITIONS

A. General: Definitions in the ANSI A108 series of tile installation standards and in ANSI A137.1 apply to Work of this Section unless otherwise specified.

C. Module Size: Actual tile size plus joint width indicated.

D. Face Size: Actual tile size, excluding spacer lugs.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:
 1. Product Data: For adhesives, indicating VOC content.
2. **Laboratory Test Reports**: For adhesives, indicating compliance with requirements for low-emitting materials.
3. **Laboratory Test Reports**: For sealers, indicating compliance with requirements for low-emitting materials.

C. **Samples**:

1. Each type and composition of tile and for each color and finish required. For ceramic mosaic tile in color blend patterns, provide samples of each color blend.
2. Assembled samples mounted on a rigid panel, with grouted joints, for each type and composition of tile and for each color and finish required. Make samples at least 12 inches square, but not fewer than four tiles. Use grout of type and in color or colors approved for completed Work.
3. Full-size units of each type of trim and accessory for each color and finish required.
4. Stone thresholds in 6-inch lengths.
5. Metal edge strips in 6-inch lengths.

1.5 **INFORMATIONAL SUBMITTALS**

A. **Qualification Data**: For Installer.

B. **Product Certificates**: For each type of product.

C. **Product Test Reports**: For tile-setting and -grouting products and certified porcelain tile.

1.6 **MAINTENANCE MATERIAL SUBMITTALS**

A. Furnish extra materials that match and are from same production runs as products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. **Tile and Trim Units**: Furnish quantity of full-size units equal to 3 percent of amount installed for each type, composition, color, pattern, and size indicated.

2. **Grout**: Furnish quantity of grout equal to 3 percent of amount installed for each type, composition, and color indicated.

1.7 **QUALITY ASSURANCE**

A. **Installer Qualifications**:

1. Installer's supervisor for Project holds the International Masonry Institute's Foreman Certification.

2. Installer employs Ceramic Tile Education Foundation Certified Installers or installers recognized by the U.S. Department of Labor as Journeyman Tile Layers.
1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver and store packaged materials in original containers with seals unbroken and labels intact until time of use. Comply with requirements in ANSI A137.1 for labeling tile packages.

B. Store tile and cementitious materials on elevated platforms, under cover, and in a dry location.

C. Store aggregates where grading and other required characteristics can be maintained and contamination can be avoided.

D. Store liquid materials in unopened containers and protected from freezing.

1.9 FIELD CONDITIONS

A. Environmental Limitations: Do not install tile until construction in spaces is complete and ambient temperature and humidity conditions are maintained at the levels indicated in referenced standards and manufacturer's written instructions.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations for Tile: Obtain tile of each type and color or finish from single source or producer.

1. Obtain tile of each type and color or finish from same production run and of consistent quality in appearance and physical properties for each contiguous area.

B. Source Limitations for Setting and Grouting Materials: Obtain ingredients of a uniform quality for each mortar, adhesive, and grout component from single manufacturer and each aggregate from single source or producer.

1. Obtain setting and grouting materials, except for unmodified Portland cement and aggregate, from single manufacturer.
2. Obtain waterproof membrane, except for sheet products, from manufacturer of setting and grouting materials.

C. Source Limitations for Other Products: Obtain each of the following products specified in this Section from a single manufacturer:

1. Stone thresholds.
2. Waterproof membrane.
3. Cementitious backer units.

2.2 PRODUCTS, GENERAL

A. ANSI Ceramic Tile Standard: Provide Standard-grade tile that complies with ANSI A137.1 for types, compositions, and other characteristics indicated.
1. Provide tile complying with Standard grade requirements.

B. ANSI Standards for Tile Installation Materials: Provide materials complying with ANSI A108.02, ANSI standards referenced in other Part 2 articles, ANSI standards referenced by TCNA installation methods specified in tile installation schedules, and other requirements specified.

C. Factory Blending: For tile exhibiting color variations within ranges, blend tile in factory and package so tile units taken from one package show same range in colors as those taken from other packages and match approved Samples.

D. Mounting: For factory-mounted tile, provide back- or edge-mounted tile assemblies as standard with manufacturer unless otherwise indicated.

1. Where tile is indicated for installation in wet areas, do not use back- or edge-mounted tile assemblies unless tile manufacturer specifies in writing that this type of mounting is suitable for installation indicated and has a record of successful in-service performance.

2.3 TILE PRODUCTS

A. Ceramic Tile Type CT-1A & CT-1B: Glazed porcelain floor tile.

1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

 b. Crossville, Inc.

2. Composition: Porcelain.
3. Certification: Tile certified by the Porcelain Tile Certification Agency.
5. Thickness: 3/8 inch.
6. Face: Plain with cushion edges.
7. Dynamic Coefficient of Friction: Not less than 0.42.
8. Tile Color, Glaze, and Pattern: As indicated by manufacturer's designations.
9. Grout Color: As indicated by manufacturer's designations.
10. Trim Units: Coordinated with sizes and coursing of adjoining flat tile where applicable and matching characteristics of adjoining flat tile. Provide shapes as follows, selected from manufacturer's standard shapes:

 a. Base: Surface bullnose, module size same as adjoining flat tile.

B. Ceramic Tile Type CT-2: Glazed ceramic wall tile.

1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

 b. Crossville, Inc.

2. Composition: Impervious natural clay or porcelain.
3. Face Size: 3-7/8 by 7-7/8 inches.
4. Face Size Variation: Rectified.
5. Thickness: 5/16 inch.
6. Face: Plain with cushion edges.
7. Dynamic Coefficient of Friction: Not less than 0.42.
8. Tile Color, Glaze, and Pattern: As indicated by manufacturer's designations.
9. Grout Color: As indicated by manufacturer's designations.
10. Trim Units: Coordinated with sizes and coursing of adjoining flat tile where applicable and matching characteristics of adjoining flat tile. Provide shapes as follows, selected from manufacturer's standard shapes:
 a. Wainscot Cap for Thinset Mortar Installations: Surface bullnose, module size same as adjoining flat tile.

2.4 THRESHOLDS

A. General: Fabricate to sizes and profiles indicated or required to provide transition between adjacent floor finishes.
 1. Bevel edges at 1:2 slope, with lower edge of bevel aligned with or up to 1/16 inch above adjacent floor surface. Finish bevel to match top surface of threshold. Limit height of threshold to 1/2 inch or less above adjacent floor surface.

B. Marble Thresholds: ASTM C 503/C 503M, with a minimum abrasion resistance of 10 according to ASTM C 1353 or ASTM C 241/C 241M and with honed finish.
 1. Description: Uniform, fine- to medium-grained white stone with gray veining.

2.5 WATERPROOF MEMBRANE

A. General: Manufacturer's standard product that complies with ANSI A118.10 and is recommended by the manufacturer for the application indicated. Include reinforcement and accessories recommended by manufacturer.

B. Waterproofing and Tile-Setting Adhesive: One-part, fluid-applied product intended for use as both waterproofing and tile-setting adhesive in a two-step process.
 1. Adhesives shall have a VOC content of 65 g/L or less.
 2. Adhesive shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

2.6 SETTING MATERIALS

A. Modified Dry-Set Mortar (Thinset): ANSI A118.4.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
CERAMIC TILING

THE CITY OF PHILADELPHIA
Office of Emergency Management

2. Provide prepackaged, dry-mortar mix to which only water must be added at Project site.

3. For wall applications, provide nonsagging mortar.

B. Medium-Bed, Modified Dry-Set Mortar: Comply with requirements in ANSI A118.4. Provide product that is approved by manufacturer for application thickness of 5/8 inch.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Bostik, Inc.
 b. Custom Building Products.
 c. H.B. Fuller Construction Products Inc. / TEC.
 d. LATICRETE SUPERCAP, LLC.
 e. MAPEI Corporation.

2. Provide prepackaged, dry-mortar mix containing dry, redispersible, vinyl acetate or acrylic additive to which only water must be added at Project site.

2.7 GROUT MATERIALS

A. High-Performance Tile Grout: ANSI A118.7.

1. Basis-of-Design Product: Subject to compliance with requirements, provide LATICRETE SUPERCAP, LLC; Laticrete 1500 Sanded Grout or a comparable product by one of the following:
 a. Bostik, Inc.
 b. Custom Building Products.
 c. H.B. Fuller Construction Products Inc. / TEC.
 d. MAPEI Corporation.

2. Polymer Type: Dry, redispersible form, prepackaged with other dry ingredients.

2.8 MISCELLANEOUS MATERIALS

A. Trowelable Underlayments and Patching Compounds: Latex-modified, portland cement-based formulation provided or approved by manufacturer of tile-setting materials for installations indicated.

B. Tile Cleaner: A neutral cleaner capable of removing soil and residue without harming tile and grout surfaces, specifically approved for materials and installations indicated by tile and grout manufacturers.
C. Floor Sealer: Manufacturer's standard product for sealing grout joints and that does not change color or appearance of grout.

1. Products shall comply with the requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions where tile will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

1. Verify that substrates for setting tile are firm; dry; clean; free of coatings that are incompatible with tile-setting materials, including curing compounds and other substances that contain soap, wax, oil, or silicone; and comply with flatness tolerances required by ANSI A108.01 for installations indicated.

2. Verify that concrete substrates for tile floors installed with adhesives, bonded mortar bed or thinset mortar comply with surface finish requirements in ANSI A108.01 for installations indicated.

 a. Verify that surfaces that received a steel trowel finish have been mechanically scarified.

 b. Verify that protrusions, bumps, and ridges have been removed by sanding or grinding.

3. Verify that installation of grounds, anchors, recessed frames, electrical and mechanical units of work, and similar items located in or behind tile has been completed.

4. Verify that joints and cracks in tile substrates are coordinated with tile joint locations; if not coordinated, adjust joint locations in consultation with Architect.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Fill cracks, holes, and depressions in concrete substrates for tile floors installed with adhesives or thinset mortar with trowelable leveling and patching compound specifically recommended by tile-setting material manufacturer.

B. Where indicated, prepare substrates to receive waterproofing by applying a reinforced mortar bed that complies with ANSI A108.1A and is sloped 1/4 inch per foot toward drains.

C. Blending: For tile exhibiting color variations, verify that tile has been factory blended and packaged so tile units taken from one package show same range of colors as those taken from other packages and match approved Samples. If not factory blended, either return to manufacturer or blend tiles at Project site before installing.
3.3 CERAMIC TILE INSTALLATION

A. Comply with TCNA's "Handbook for Ceramic, Glass, and Stone Tile Installation" for TCNA installation methods specified in tile installation schedules. Comply with parts of the ANSI A108 series "Specifications for Installation of Ceramic Tile" that are referenced in TCNA installation methods, specified in tile installation schedules, and apply to types of setting and grouting materials used.

1. For the following installations, follow procedures in the ANSI A108 series of tile installation standards for providing 95 percent mortar coverage:
 a. Tile floors in wet areas.
 b. Tile floors consisting of tiles 8 by 8 inches or larger.
 c. Tile floors consisting of rib-backed tiles.

B. Extend tile work into recesses and under or behind equipment and fixtures to form complete covering without interruptions unless otherwise indicated. Terminate work neatly at obstructions, edges, and corners without disrupting pattern or joint alignments.

C. Accurately form intersections and returns. Perform cutting and drilling of tile without marring visible surfaces. Carefully grind cut edges of tile abutting trim, finish, or built-in items for straight aligned joints. Fit tile closely to electrical outlets, piping, fixtures, and other penetrations so plates, collars, or covers overlap tile.

D. Provide manufacturer's standard trim shapes where necessary to eliminate exposed tile edges.

E. Where accent tile differs in thickness from field tile, vary setting bed thickness so that tiles are flush.

F. Jointing Pattern: Lay tile in grid pattern unless otherwise indicated. Lay out tile work and center tile fields in both directions in each space or on each wall area. Lay out tile work to minimize the use of pieces that are less than half of a tile. Provide uniform joint widths unless otherwise indicated.

1. For tile mounted in sheets, make joints between tile sheets same width as joints within tile sheets so joints between sheets are not apparent in finished work.
2. Where adjoining tiles on floor, base, walls, or trim are specified or indicated to be same size, align joints.
3. Where tiles are specified or indicated to be whole integer multiples of adjoining tiles on floor, base, walls, or trim, align joints unless otherwise indicated.

G. Joint Widths: Unless otherwise indicated, install tile with the following joint widths:

H. Lay out tile wainscots to dimensions indicated or to next full tile beyond dimensions indicated.

I. Expansion Joints: Provide expansion joints and other sealant-filled joints, including control, contraction, and isolation joints, where indicated. Form joints during installation of setting materials, mortar beds, and tile. Do not saw-cut joints after installing tiles.
1. Where joints occur in concrete substrates, locate joints in tile surfaces directly above them.

J. Stone Thresholds: Install stone thresholds in same type of setting bed as adjacent floor unless otherwise indicated.
1. At locations where mortar bed (thickset) would otherwise be exposed above adjacent floor finishes, set thresholds in modified dry-set mortar (thinset).
2. Do not extend waterproofing or crack isolation membrane under thresholds set in modified dry-set mortar. Fill joints between such thresholds and adjoining tile set on waterproofing with elastomeric sealant.

K. Floor Sealer: Apply floor sealer to grout joints in tile floors according to floor-sealer manufacturer's written instructions. As soon as floor sealer has penetrated grout joints, remove excess sealer and sealer from tile faces by wiping with soft cloth.

3.4 TILE BACKING PANEL INSTALLATION
A. Install panels and treat joints according to ANSI A108.11 and manufacturer's written instructions for type of application indicated. Use modified dry-set mortar for bonding material unless otherwise directed in manufacturer's written instructions.

3.5 WATERPROOFING INSTALLATION
A. Install waterproofing to comply with ANSI A108.13 and manufacturer's written instructions to produce waterproof membrane of uniform thickness that is bonded securely to substrate.
B. Allow waterproofing to cure and verify by testing that it is watertight before installing tile or setting materials over it.

3.6 ADJUSTING AND CLEANING
A. Remove and replace tile that is damaged or that does not match adjoining tile. Provide new matching units, installed as specified and in a manner to eliminate evidence of replacement.
B. Cleaning: On completion of placement and grouting, clean all ceramic tile surfaces so they are free of foreign matter.
1. Remove grout residue from tile as soon as possible.
2. Clean grout smears and haze from tile according to tile and grout manufacturer's written instructions but no sooner than 10 days after installation. Use only cleaners recommended by tile and grout manufacturers and only after determining that cleaners are safe to use by testing on samples of tile and other surfaces to be cleaned. Protect metal surfaces and plumbing fixtures from effects of cleaning. Flush surfaces with clean water before and after cleaning.
3.7 PROTECTION

A. Protect installed tile work with kraft paper or other heavy covering during construction period to prevent staining, damage, and wear. If recommended by tile manufacturer, apply coat of neutral protective cleaner to completed tile walls and floors.

B. Prohibit foot and wheel traffic from tiled floors for at least seven days after grouting is completed.

C. Before final inspection, remove protective coverings and rinse neutral protective cleaner from tile surfaces.

3.8 INTERIOR CERAMIC TILE INSTALLATION SCHEDULE

A. Interior Floor Installations, Concrete Subfloor:

 a. Location: Toilet Room Floors Above Basement Level.
 b. Ceramic Tile Type: CT-1A & 1B.
 c. Thinset Mortar: Medium-bed, modified dry-set mortar.

B. Interior Wall Installations, Wood or Metal Studs or Furring:

1. Ceramic Tile Installation: TCNA W245 or TCNA W248; thinset mortar on glass-mat, water-resistant gypsum backer board.
 a. Location: Toilet Room Walls.
 b. Ceramic Tile Type: CT-2.
 c. Thinset Mortar: Modified dry-set mortar.

END OF SECTION 09 30 13
SECTION 09 51 13 - ACOUSTICAL PANEL CEILINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes acoustical panels and exposed suspension systems for interior ceilings.

1.3 PREINSTALLATION MEETINGS
 A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Sustainable Design Submittals:
 1. Product Data: For recycled content, indicating postconsumer and preconsumer recycled
 content and cost.
 2. Laboratory Test Reports: For ceiling products, indicating compliance with requirements
 for low-emitting materials.
 C. Samples: For each exposed product and for each color and texture specified.

1.5 INFORMATIONAL SUBMITTALS
 A. Coordination Drawings: Reflected ceiling plans, drawn to scale, and coordinated with each
 other, using input from installers of the items involved.
 B. Product test reports.
 C. Research reports.
 D. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For finishes to include in maintenance manuals.
1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Acoustical Ceiling Units: Full-size panels equal to 2 percent of quantity installed.
2. Suspension-System Components: Quantity of each exposed component equal to 2 percent of quantity installed.
3. Hold-Down Clips: Equal to 2 percent of quantity installed.
4. Impact Clips: Equal to 2 percent of quantity installed.

1.8 QUALITY ASSURANCE

A. Source Limitations: Obtain each type of acoustical ceiling panel and supporting suspension system through one source from a single manufacturer.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Deliver acoustical panels, suspension-system components, and accessories to Project site and store them in a fully enclosed, conditioned space where they will be protected against damage from moisture, humidity, temperature extremes, direct sunlight, surface contamination, and other causes.

B. Before installing acoustical panels, permit them to reach room temperature and a stabilized moisture content.

1.10 FIELD CONDITIONS

A. Environmental Limitations: Do not install acoustical panel ceilings until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, work above ceilings is complete, and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.

1. Pressurized Plenums: Operate ventilation system for not less than 48 hours before beginning acoustical panel ceiling installation.

1.11 COORDINATION

A. Coordinate layout and installation of acoustical panels and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. **Ceiling products shall comply with** the requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

B. Seismic Performance: Suspended ceilings shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

C. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: Class A according to ASTM E 1264.
 2. Smoke-Developed Index: 50 or less.

2.2 ACOUSTICAL PANELS – **APC-1**

A. Basis-of-Design Product: Subject to compliance with requirements, provide USG Corporation; Mars High-NRC 87200 or a comparable product by one of the following:
 1. Armstrong World Industries, Inc.
 2. CertainTeed Corporation.

B. Acoustical Panel Standard: Manufacturer's standard panels according to ASTM E 1264.

C. **Recycled Content**: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 75 percent.

D. Classification: Type IV, Form 2, Pattern E.

E. Color: White.

F. Light Reflectance (LR): 0.88.

G. Ceiling Attenuation Class (CAC): 35.

H. Noise Reduction Coefficient (NRC): 80.

I. Edge/Joint Detail: Beveled, tegular reveal sized to fit flange of exposed suspension-system members.

J. Thickness: 7/8 inch.

K. Modular Size: 24 by 24 inches.

L. Suspension System: Type MSS-2.
METAL SUSPENSION SYSTEM – **MSS-1** (Not Used)

2.5 METAL SUSPENSION SYSTEM – **MSS-2**

A. Products: Subject to compliance with requirements, provide the following or comparable product from another manufacturer:

1. Armstrong World Industries, Inc; Prelude.

B. Metal Suspension-System Standard: Manufacturer's standard, direct-hung, metal suspension system and accessories according to ASTM C 635/C 635M.

C. **Recycled Content**: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.

D. Wide-Face, Capped, Double-Web, Steel Suspension System: Main and cross runners roll formed from cold-rolled steel sheet; prepainted, electrolytically zinc coated, or hot-dip galvanized, G30 coating designation; with prefinished 15/16-inch-wide metal caps on flanges.

 2. End Condition of Cross Runners: Override (stepped) type.
 3. Face Design: Flat, flush.

2.6 ACCESSORIES

A. Attachment Devices: Size for five times the design load indicated in ASTM C 635/C 635M, Table 1, "Direct Hung," unless otherwise indicated. Comply with seismic design requirements.

B. Wire Hangers, Braces, and Ties: Provide wires as follows:

 2. Size: Wire diameter sufficient for its stress at three times hanger design load (ASTM C635/C635M, Table 1, "Direct Hung") will be less than yield stress of wire, but not less than 0.106-inch-diameter wire.

C. Hold-Down Clips: Manufacturer's standard hold-down.

D. Impact Clips: Manufacturer's standard impact-clip system designed to absorb impact forces against acoustical panels.

E. Seismic Clips: Manufacturer's standard seismic clips designed to secure acoustical panels in place during a seismic event.

2.7 METAL EDGE MOLDINGS AND TRIM

A. Manufacturers: Subject to compliance with requirements, provide products by same manufacturer as for suspension system and acoustical panels.
B. Roll-Formed, Sheet-Metal Edge Moldings and Trim: Type and profile indicated or, if not indicated, manufacturer's standard moldings for edges and penetrations that comply with seismic design requirements; formed from sheet metal of same material, finish, and color as that used for exposed flanges of suspension-system runners.

1. Provide manufacturer's standard edge moldings that fit acoustical panel edge details and suspension systems indicated and that match width and configuration of exposed runners, unless otherwise indicated.
2. For lay-in panels with reveal edge details, provide stepped edge molding that forms reveal of same depth and width as that formed between edge of panel and flange at exposed suspension member.
3. For circular penetrations of ceiling, provide edge moldings fabricated to diameter required to fit penetration exactly.

C. Extruded-Aluminum Edge Moldings and Trim: Where indicated, provide manufacturer's extruded-aluminum edge moldings and trim of profile indicated or referenced by manufacturer's designations, including splice plates, corner pieces, and attachment and other clips, complying with seismic design requirements.

2.8 ACOUSTICAL SEALANT

A. Acoustical Sealant: As specified in Section 07 92 19 "Acoustical Joint Sealants."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, including structural framing to which acoustical panel ceilings attach or abut, with Installer present, for compliance with requirements specified in this and other Sections that affect ceiling installation and anchorage and with requirements for installation tolerances and other conditions affecting performance of acoustical panel ceilings.

B. Examine acoustical panels before installation. Reject acoustical panels that are wet, moisture damaged, or mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Measure each ceiling area and establish layout of acoustical panels to balance border widths at opposite edges of each ceiling. Avoid using less-than-half-width panels at borders unless otherwise indicated, and comply with layout shown on reflected ceiling plans.
B. Layout openings for penetrations centered on the penetrating items.

3.3 INSTALLATION

A. Install acoustical panel ceilings according to ASTM C 636/C 636M, seismic design requirements, and manufacturer's written instructions.

B. Suspend ceiling hangers from building's structural members and as follows:

1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structure or of ceiling suspension system.
2. Splay hangers only where required to miss obstructions; offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
3. Splay hangers only where required to miss obstructions; offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.
4. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with location of hangers at spacings required to support standard suspension system members, install supplemental suspension members and hangers in form of trapezes or equivalent devices.
5. Secure wire hangers to ceiling suspension members and to supports above with a minimum of three tight turns. Connect hangers directly either to structures or to inserts, eye screws, or other devices that are secure and appropriate for substrate and that will not deteriorate or otherwise fail due to age, corrosion, or elevated temperatures.
6. Do not support ceilings directly from permanent metal forms or floor deck. Fasten hangers to cast-in-place hanger inserts, postinstalled mechanical or adhesive anchors, or power-actuated fasteners that extend through forms into concrete.
7. When steel framing does not permit installation of hanger wires at spacing required, install carrying channels or other supplemental support for attachment of hanger wires.
8. Do not attach hangers to steel deck tabs.
9. Do not attach hangers to steel roof deck. Attach hangers to structural members.
10. Space hangers not more than 48 inches o.c. along each member supported directly from hangers, unless otherwise indicated; provide hangers not more than 8 inches from ends of each member.
11. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced standards and publications.

C. Install edge moldings and trim of type indicated at perimeter of acoustical ceiling area and where necessary to conceal edges of acoustical panels.

1. Apply acoustical sealant in a continuous ribbon concealed on back of vertical legs of moldings before they are installed.
2. Screw attach moldings to substrate at intervals not more than 16 inches o.c. and not more than 3 inches from ends, leveling with ceiling suspension system to a tolerance of 1/8 inch in 12 feet. Miter corners accurately and connect securely.
3. Do not use exposed fasteners, including pop rivets, on moldings and trim.

D. Install suspension system runners so they are square and securely interlocked with one another. Remove and replace dented, bent, or kinked members.
E. Install acoustical panels with undamaged edges and fit accurately into suspension system runners and edge moldings. Scribe and cut panels at borders and penetrations to provide a neat, precise fit.

1. For square-edged panels, install panels with edges fully hidden from view by flanges of suspension system runners and moldings.
2. For reveal-edged panels on suspension system runners, install panels with bottom of reveal in firm contact with top surface of runner flanges.
3. Paint cut edges of panel remaining exposed after installation; match color of exposed panel surfaces using coating recommended in writing for this purpose by acoustical panel manufacturer.
4. Install hold-down, impact, and seismic clips in areas indicated and in areas required by authorities having jurisdiction; space according to panel manufacturer's written instructions unless otherwise indicated.

3.4 ERECTION TOLERANCES

A. Suspended Ceilings: Install main and cross runners level to a tolerance of 1/8 inch in 12 feet, non-cumulative.

B. Moldings and Trim: Install moldings and trim to substrate and level with ceiling suspension system to a tolerance of 1/8 inch in 12 feet, non-cumulative.

3.5 CLEANING

A. Clean exposed surfaces of acoustical panel ceilings, including trim, edge moldings, and suspension system members. Comply with manufacturer's written instructions for cleaning and touchup of minor finish damage.

B. Remove and replace ceiling components that cannot be successfully cleaned and repaired to permanently eliminate evidence of damage.

END OF SECTION 09 51 13
SECTION 09 54 00 INTEGRATED CEILING ASSEMBLIES

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes

1. Acoustical ceiling panel
2. Wire hangers, fasteners, main runners, cross tees, and wall angle moldings
3. Perimeter Trim

B. Related Sections

1. Section 09 22 16 - Non-Structural Metal Framing
2. Section 09 29 00 - Gypsum Board

1.3 REFERENCES

A. American Society for Testing and Materials (ASTM):

1. ASTM A 1008 Standard Specification for Steel, Sheet, Cold Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability
2. ASTM A 641 Standard Specification for Zinc-Coated (Galvanized) Carbon Steel Wire
3. ASTM A 653 Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) by the Hot-Dip Process
4. ASTM C 645 Standard Specification for Metal Suspension Systems
5. ASTM C 636 Recommended Practice for Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels
6. ASTM C754 AND C1858 All installations should be in compliance with these tests.
9. ASTM E 580 Installation of Metal Suspension Systems in Areas Requiring Moderate Seismic Restraint
10. ASTM C 423 Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method
11. ASTM E 1414 Standard Test Method for Airborne Sound Attenuation between Rooms Sharing a Common Ceiling Plenum
12. ASTM E 1264 Classification for Acoustical Ceiling Products
13. ASTM E3090 All references to suspension component property testing per this test method.

B. International Building Code
D. NFPA 70 National Electrical Code
E. ASCE 7 American Society of Civil Engineers, Minimum Design Loads for Buildings and Other Structures
 1. ESR 1289 - Armstrong Suspension Systems
H. California Department of Public Health CDPH/EHLB Emission Standard Method Version 1.1 2010
I. LEED - Leadership in Energy and Environmental Design is a set of rating systems for the design, construction, operation, and maintenance of green buildings
J. International Well Building Standard
K. Mindful Materials
L. Living Building Challenge

1.4 SYSTEM DESCRIPTION

A. Cloud installation.

1.5 SUBMITTALS

A. Shop Drawings: Layout and details of ceilings. Show locations of items that are to be coordinated with, or supported by the ceilings.

B. Installation Instructions: Submit manufacturer’s installation instructions as referenced in Part three, Installation.

C. Product Data: Submit manufacturer’s technical data for each type of ceiling unit and suspension system required.
D. Sustainable Design Submittals:

1. **Product Data:** For recycled content, indicating postconsumer and preconsumer recycled content and cost.
2. **Laboratory Test Reports:** For ceiling products, indicating compliance with requirements for low-emitting materials.
3. **Health Product Declarations:** For ceiling products.

E. Samples: Minimum 6 x 6 inch samples of specified panel; 8 inch long samples of exposed wall molding and suspension system, including main runner and 4 foot cross tees.

F. Certifications: Manufacturer’s certifications that products comply with specified requirements, including laboratory reports showing compliance with specified tests and standards.

1.6 QUALITY ASSURANCE

A. Single-Source Responsibility: Provide acoustical panel units and grid components by a single manufacturer.

B. Fire Performance Characteristics: Identify acoustical ceiling components with appropriate markings of applicable testing and inspecting organization.

C. Surface Burning Characteristics: As follows, tested per ASTM E 84 and complying with ASTM E 1264 Classification.

D. Acoustical Panels: As with other architectural features located at the ceiling that may obstruct or skew the planned fire sprinkler pattern through possibly delay or accelerate the activation of the sprinkler or fire detection systems by channeling heat from a fire either toward or away from the device. Designers and installers are advised to consult a fire protection engineer, NFPA 13, or their local codes for guidance where automatic fire detection and suppression systems are present.

E. Coordination of Work: Coordinate acoustical ceiling work with installers of related work including, but not limited to building insulation, gypsum board, light fixtures, mechanical systems, electrical systems, and sprinklers. ACOUSTIBuilt Panels are 7/8” thick.

F. Installer Qualification: Subcontractor is an experienced Installer that has reviewed and understands the system installation instructions thoroughly. Subcontractor will follow written installation instructions and utilize approved equipment and procedures for finishing installation.

1.7 DELIVERY, STORAGE AND HANDLING

A. Deliver acoustical ceiling units to project site in original, unopened packages and store them in a fully enclosed space where they will be protected against damage from moisture, direct sunlight, surface contamination, and other causes.

B. Before installing acoustical ceiling units, permit them to reach room temperature and a stabilized moisture content. Store all material within temperature limits required by manufacturer.
C. Handle acoustical ceiling units carefully to avoid chipping edges or damaged units in any way.

1.8 PROJECT CONDITIONS

A. Space Enclosure:

1. Building areas to receive ceilings shall be free of construction dust and debris. ACOUSTIBuilt panels should be installed in areas where the building is enclosed and the HVAC is continuously functioning. This product is not recommended for exterior applications, where standing water is present, or where moisture will come into direct contact with the ceiling.
 a. HVAC should be designed, installed, and operated in accordance with ASHRAE Standard 62.1. It is also necessary for the area to be enclosed, for the HVAC systems to be functioning, and in continuous operations for the life of the product. Product is not intended for use where natural ventilation is part of the ventilation strategy and not recommended in areas where a differential plenum pressure exists.

1.9 WARRANTY

A. Acoustical Panel: Submit a written warranty executed by the manufacturer, agreeing to repair or replace panels that fail within the warranty period. Failures include, but are not limited to the following:

1. Acoustical Panels: Manufacturer’s defects in material
2. Grid System: Rusting and manufacturer's defects

B. Warranty Period:

1. Acoustical panels: Ten (10) years from date of substantial completion
2. Suspension: Ten (10) years from date of substantial completion

C. The Warranty shall not deprive the Owner of other rights the Owner may have under other provisions of the Contract Documents and will be in addition to and run concurrent with other warranties made by the Contractor under the requirements of the Contract Documents.

1.10 MAINTENANCE

A. Extra Materials: Deliver extra materials to Owner. Furnish extra materials described below that match products installed. Packaged with protective covering for storage and identified with appropriate labels.

1. Acoustical Ceiling Units: Furnish quality of full-size units equal to 5.0 percent of amount installed.
2. Exposed Suspension System Components: Furnish quantity of each exposed suspension component equal to 2.0 percent of amount installed.
PART 2 – PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain each type of acoustical ceiling panel and its supporting suspension system from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Verify ceiling products comply with the requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

B. Seismic Performance: Suspended ceilings shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

2.3 ACOUSTICAL CEILING UNITS – APC-2

A. Basis-of-Design Product: Subject to compliance with requirements, provide Armstrong World Industries, Inc.; ACOUSTIBuilt or a comparable product by another manufacturer.

B. Finish: Joint compound, spray applied.

C. Suspension System and Washers: Manufacturer’s standard.

D. Perimeter Systems: Manufacturer’s standard.

E. Acoustical Panels

1. Recycled Content: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 50 percent.
2. Surface Texture: Fine
3. Composition: Mineral Fiber
4. Color: White (Fine Texture Finish for ACOUSTIBuilt panels)
5. Size: 48 in x 72 in x 7/8 in - Item #2604
6. Edge Profile: Tapered edges four sides
7. Noise Reduction Coefficient (NRC): ASTM C 423; Panel 0.80 (UL)
8. Ceiling Attenuation Class (CAC): ASTM C 1414; Panel 46 (UL), System up to 48
9. Sabin: Cloud Applications: 0.80 Sabins/SF & 1.33 Sabins/SF with infill item 8200T10
10. Articulation Class (AC): ASTM E 1111
11. Flame Spread: ASTM E 1264; Class A
12. Light Reflectance (LR) White Panel: ASTM E 1477; 0.87
13. Dimensional Stability: HumiGuard Plus
14. Material Ingredient Transparency: Health Product Declaration (HPD); Declare Label
15. Life Cycle Assessment: Third Party Certified Environment Product Declaration (EPD)
16. Acceptable Product: ACOUSTIBuilt panels #2604. No added formaldehyde as manufactured by Armstrong World Industries

17. Contact your local Armstrong Representative for required installation training at least 4-6 weeks before ordering materials and scheduling installation.

F. Acoustical Panels

1. Joint Compound
 a. Setting Compound: Lightweight setting-type drywall joint compound, Ultra lightweight drying-type drywall joint compound
 b. Joint Tape: Self-Adhesive mesh drywall joint tape

G. Suspension Systems and Washers

1. Recycled Content: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.

2. Armstrong Drywall Suspension Systems: all main beams and cross tees shall be commercial quality hot-dipped galvanized steel.
 a. Main beam: manufactured main beam- 1-1/2” knurled face with ScrewStop™ reverse hem by 1-11/16 inches high. Drywall Main Beams are factory punched with cross tee routs, hanger wire holes, and SuperLock™ main beam clip for a strong secure connection and fast accurate alignment. Both ShortSpan and Drywall Main Beams are Heavy-duty performance per ASTM C635.
 b. HD8906 - 12ft HD Drywall Main Beam 1-1/2 in.

3. Cross Tees: manufactured cross tee- 1-1/2” knurled face with ScrewStop™ reverse hem by 1-1/2 inches high with factory punched cross tee routs and hanger wire holes and XL stake on clip for a strong secure connection.
 a. XL8945P - 4ft Drywall Cross Tee
 b. XL8965 – 6ft Drywall Cross Tee

4. Wall Molding:
 a. KAM12 - 12ft Knurled Angle Molding 1-1/4” Face

5. Hanger wire: a Class 1 zinc coating, soft temper, pre-stretched, with a yield stress load of at least time three times the design load, but not less than 12-gauge.

6. Fasteners (for Panel attachment)
 a. #6 x 1-5/8” Fine thread or sharp point self-drilling drywall screws
 b. Grip-Plate Washer for ACOUSTIBuilt panels (1-1/4”diameter) - #2119

7. Perimeter Systems
a. Commercial quality extruded aluminum alloy 6063 trim channel, factory finished in baked polyester paint. Commercial quality galvanized steel unfinished T-bar connection clips; galvanized steel splice plates.
 i. Color: White
 ii. Size: 120 in X 4 in (also available in 6”)
 iii. Recycle Content: Post-Consumer - 50% Pre-Consumer - 0%
 iv. Acceptable Product: AXIOM One Piece for Drywall, 4in Straight – AX1PC4STR or Curved AX1PC4CUR as manufactured by Armstrong World Industries
b. Axiom Trim Channel:
 i. AX4STR 4in Axiom Classic Straight
 ii. AX1PC4STR 4IN One –Piece Drywall Trim
c. Axiom Bottom Trim with taping flange
 i. AXBTASTR – Bottom Trim for ACOUSTIBuilt (also available in curved)
d. Axiom Accessories:
 i. AXSPLICE - Splice Plate

H. Material Ingredient Transparency: Health Product Declaration (HPD); Declare Label

I. Life Cycle Assessment: Third Party Certified Environmental Product Declaration (EPD)

PART 3 – EXECUTION

3.1 EXAMINATION

A. Prior to installation, inspect previous work of all other trades. Verify that all work is complete and accurate to the point where this installation may properly proceed in strict accordance with framing shop drawings.

B. If framing preparation is the responsibility of another installer, notify Architect of unsatisfactory preparation before proceeding.

C. Examine acoustical panels before installation. Reject acoustical panels that are wet, moisture damaged, or mold damaged.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

E. The system installation is similar to a conventional drywall installation. However, there are key differences in both material substrate and methods of finishing and installation that make this system unique. Installers should review and follow all written directions of the installation instructions and view the installation video.

F. Installation: In accordance with all approved plans, details, and manufacturer's installation guidelines located in the Armstrong ACOUSTIBuilt Assembly and Installation Instructions
1. Install seismic components if required by the building code. Seismic components to be specified on the architectural plans by the project engineer or design team.

2. Suspend main beam from overhead construction with hanger wires spaced 4-0 ft. or 6-0 ft. on center along the length of the main runner. Install hanger wires plumb and straight.

3. Cross tees shall be installed 16” on center

4. Install wall moldings/perimeter trim at intersection of suspended ceiling and vertical surfaces

5. Main runners and cross tees shall be attached at perimeter conditions

6. When determining the grid layout, consider the long edges of the boards must run parallel with the cross tees.

7. This system relies on a square grid system to ensure panel edges align at centers of cross tees. If the installation does not meet these squareness requirements, the panel edges may run off the grid system.
 a. The system shall be square to within 1/8” over a 48” x 48” module.
 b. The suspension system must be leveled to within 1/4” in 10’.

8. Floating perimeters shall be trimmed with either Axiom® One-Piece Drywall Trim or Axiom® Classic with Bottom Trim for ACOUSTIBuilt™. Refer to the installation instructions for integration with ACOUSTIBuilt installations.

3.2 PREPARATION

A. Do not proceed with installation until all wet work such as concrete, terrazzo, plastering and painting has been completed and thoroughly dried out, unless expressly permitted by manufacturer's printed recommendations.

B. Coordination: Furnish layouts for preset inserts, clips, and other ceiling anchors whose installation is specified in other sections.

C. Furnish concrete inserts and similar devices to other trades for installation well in advance of time needed for coordination of other work.

3.3 INSTALLATION

A. Follow manufacturer installation instructions.

B. Controls joints are required following the standards used for gypsum board listed in ASTM C840, Section 20.
 1. Ceilings with perimeter relief cannot exceed 50 LF and 2500 SF between control joints.
 2. Ceilings without perimeter relief cannot exceed 30 LF and 900 SF between control joints.
C. Panel joints and fasteners are finished with tape and compound to create a flat surface. While the materials used to finish ACOUSTIBuilt panels are also used to finish drywall, the procedure has unique requirements.

D. Joint compound coverage shall be limited to preserve the acoustical performance of the panels. Compound at panel joints shall not exceed 8 inch widths. Compound applied to field fasteners shall not exceed 4 inch by 4-inch areas. All compound shall be smooth and free of tool marks and ridges. Panels are to be finished with taping knives. Production tools, including boxes, are not permitted.

E. Sanding and inspection: Throughout the sanding process, inspect the surface frequently for flatness. Direct a light across the ceiling to highlight unevenness that requires attention.

F. Fine Texture Finish shall be applied in 4 coat process (additional coat may be used to achieve the desired finish) as called out in the installation instructions. Fine Texture Finish for ACOUSTIBuilt is applied in multiple coats, layered to achieve a uniform appearance and acoustical performance. It is strongly encouraged to practice spraying to ensure proper calibration and technique are achieved. Refer to the installation video.

1. Must be applied with an air assist spray system (refer to manufacturers installation instructions for required equipment). The Fine texture finish is not intended for use with airless spray or to be manually applied by rolling.

2. See Manufactures installation instructions for correct pressure settings for spray system, finish preparation, spray calibration and spray procedure and technique.

3.4 ADJUSTING AND CLEANING

A. To remove soot, dirt, and dust use a vacuum operating at low power with a soft brush or use a dry soot cleaning sponge.

B. Clean exposed surfaces of acoustical ceilings, including trim, edge moldings, and suspension members. Comply with manufacturer's instructions for cleaning and touch up of minor finish damage. Remove any ceiling products that cannot be successfully cleaned and or repaired. Replace with attic stock or new product to eliminate evidence of damage.

C. Before disposing of ceilings, contact the Armstrong Recycling Center at 877-276-7876, select option #1 then #8 to review with a consultant the condition and location of building where the ceilings will be removed. The consultant will verify the condition of the material and that it meets the Armstrong requirements for recycling. The Armstrong consultant with provide assistance to facilitate the recycle of the ceiling.

END OF SECTION 09 54 00
SECTION 09 65 13 - RESILIENT BASE AND ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Thermoplastic-rubber base.
 2. Vinyl base.
 3. Rubber molding accessories.
 4. Vinyl molding accessories.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:
 1. **Product Data**: For adhesives, indicating VOC content.
 2. **Laboratory Test Reports**: For adhesives, indicating compliance with requirements for low-emitting materials.
 3. **Product Data**: For sealants, indicating VOC content.
 4. **Laboratory Test Reports**: For sealants, indicating compliance with requirements for low-emitting materials.
 5. **Laboratory Test Reports**: For resilient base and stair products and accessories, indicating compliance with requirements for low-emitting materials.
 6. **Environmental Product Declaration**: For each product.
 7. **Health Product Declaration**: For each product.
 8. Sourcing of Raw Materials: Corporate sustainability report for each manufacturer.

C. Samples: For each exposed product and for each color and texture specified.

1.4 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Furnish not less than 10 linear feet for every 500 linear feet or fraction thereof, of each type, color, pattern, and size of resilient product installed.
1.5 DELIVERY, STORAGE, AND HANDLING

A. Store resilient products and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F or more than 90 deg F.

1.6 FIELD CONDITIONS

A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 70 deg F or more than 95 deg F, in spaces to receive resilient products during the following periods:

1. 48 hours before installation.
2. During installation.
3. 48 hours after installation.

B. After installation and until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 55 deg F or more than 95 deg F.

C. Install resilient products after other finishing operations, including painting, have been completed.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Products shall comply with the requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

2.2 THERMOPLASTIC-RUBBER BASE

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1. Burke Mercer Flooring Products; a division of Burke Industries Inc.
2. Flexco.
3. Johnsonite; a Tarkett company.
4. Roppe Corporation, USA.

B. Product Standard: ASTM F 1861, Type TP (rubber, thermoplastic).

2. Style and Location:
 a. **B-1**: Style B, Cove: Provide in areas with resilient athletic flooring.
 b. **B-2**: Style A, Straight: Provide in areas with carpet. Thickness: 0.125 inch.
D. Height: 4 inches.

E. Lengths: Coils in manufacturer's standard length.

F. Outside Corners: Job formed or preformed.

G. Inside Corners: Job formed or preformed.

H. Colors: As indicated on drawings.

2.3 RUBBER MOLDING ACCESSORIES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Armstrong World Industries, Inc.
2. Burke Mercer Flooring Products; a division of Burke Industries Inc.
3. Flexco.
4. Johnsonite; a Tarkett company.
5. Roppe Corporation, USA.

B. Description: Rubber carpet edge for glue-down applications, nosing for carpet, joiner for tile and carpet transition strips.

C. Profile and Dimensions: As indicated.

D. Locations: Provide rubber molding accessories in areas indicated to receive rubber base.

E. Colors: As indicated on drawings.

2.4 VINYL MOLDING ACCESSORIES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Armstrong World Industries, Inc.
2. Burke Mercer Flooring Products; a division of Burke Industries Inc.
3. Flexco.
4. Johnsonite; a Tarkett company.
5. Roppe Corporation, USA.

B. Description: Vinyl nosing for resilient floor covering, reducer strip for resilient floor covering, and transition strips.

C. Profile and Dimensions: As indicated.

D. Locations: Provide vinyl molding accessories in areas indicated to receive vinyl base.

E. Colors: As indicated on drawings.
2.5 INSTALLATION MATERIALS

A. Trowelable Leveling and Patching Compounds: Latex-modified, portland-cement-based or blended hydraulic-cement-based formulation provided or approved by resilient-product manufacturer for applications indicated.

B. Adhesives: Water-resistant type recommended by resilient-product manufacturer for resilient products and substrate conditions indicated.

1. Adhesives shall have a VOC content of 50 g/L or less.

C. Floor Polish: Provide protective, liquid floor-polish products recommended by resilient stair-tread manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of resilient products.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

1. Installation of resilient products indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Prepare substrates according to manufacturer's written instructions to ensure adhesion of resilient products.

B. Do not install resilient products until materials are the same temperature as space where they are to be installed.

C. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient products.

3.3 RESILIENT BASE INSTALLATION

A. Comply with manufacturer's written instructions for installing resilient base.

B. Apply resilient base to walls, columns, pilasters, casework and cabinets in toe spaces, and other permanent fixtures in rooms and areas where base is required.

C. Install resilient base in lengths as long as practical without gaps at seams and with tops of adjacent pieces aligned.
D. Tightly adhere resilient base to substrate throughout length of each piece, with base in continuous contact with horizontal and vertical substrates.

E. Do not stretch resilient base during installation.

F. On masonry surfaces or other similar irregular substrates, fill voids along top edge of resilient base with manufacturer's recommended adhesive filler material.

G. Preformed Corners: Install preformed corners before installing straight pieces.

H. Job-Formed Corners:
 1. Outside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 3 inches in length.
 a. Form without producing discoloration (whitening) at bends.
 2. Inside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 3 inches in length.
 a. Miter or cope corners to minimize open joints.

3.4 RESILIENT ACCESSORY INSTALLATION

A. Comply with manufacturer's written instructions for installing resilient accessories.

B. Resilient Molding Accessories: Butt to adjacent materials and tightly adhere to substrates throughout length of each piece. Install reducer strips at edges of floor covering that would otherwise be exposed.

3.5 CLEANING AND PROTECTION

A. Comply with manufacturer's written instructions for cleaning and protecting resilient products.

B. Perform the following operations immediately after completing resilient-product installation:
 1. Remove adhesive and other blemishes from surfaces.
 2. Sweep and vacuum horizontal surfaces thoroughly.
 3. Damp-mop horizontal surfaces to remove marks and soil.

C. Protect resilient products from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.

D. Cover resilient products subject to wear and foot traffic until Substantial Completion.

END OF SECTION 09 65 13
SECTION 09 65 19 - RESILIENT TILE FLOORING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Vinyl composition floor tile.

B. Related Sections include the following:
 1. Division 09 Section “Resilient Base and Accessories” for accessories associated with resilient tile flooring.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:
 1. Product Data: For adhesives, indicating VOC content.
 2. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials.
 3. Product Data: For chemical-bonding compounds, indicating VOC content.
 4. Laboratory Test Reports: For chemical-bonding compounds, indicating compliance with requirements for low-emitting materials.
 5. Product Data: For sealants, indicating VOC content.
 6. Laboratory Test Reports: For sealants, indicating compliance with requirements for low-emitting materials.
 7. Laboratory Test Reports: For flooring products, indicating compliance with requirements for low-emitting materials.
 8. Environmental Product Declaration: For each product.
 9. Health Product Declaration: For each product.
 10. Sourcing of Raw Materials: Corporate sustainability report for each manufacturer.

C. Samples: For each exposed product and for each color and pattern specified.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.
1.5 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For each type of floor tile to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Floor Tile: Furnish one box for every 50 boxes or fraction thereof, of each type, color, and pattern of floor tile installed.

1.7 QUALITY ASSURANCE
 A. Installer Qualifications: An entity that employs installers and supervisors who are competent in techniques required by manufacturer for floor tile installation.

1.8 DELIVERY, STORAGE, AND HANDLING
 A. Store floor tile and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F or more than 90 deg F. Store floor tiles on flat surfaces.

1.9 FIELD CONDITIONS
 A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 70 deg F or more than 95 deg F, in spaces to receive floor tile during the following periods:
 1. 48 hours before installation.
 2. During installation.
 3. 48 hours after installation.

 B. After installation and until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 55 deg F or more than 95 deg F.

 C. Close spaces to traffic during floor tile installation.

 D. Close spaces to traffic for 48 hours after floor tile installation.

 E. Install floor tile after other finishing operations, including painting, have been completed.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics: For resilient floor tile, as determined by testing identical products according to ASTM E 648 or NFPA 253 by a qualified testing agency.
 1. Critical Radiant Flux Classification: Class I, not less than 0.45 W/sq. cm.

B. Flooring products shall comply with the requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

VINYL COMPOSITION FLOOR TILE VCT-1

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1. Armstrong World Industries, Inc.
 2. Congoleum Corporation.
 3. Johnsonite; a Tarkett company.
 4. Mannington Mills, Inc.

B. Tile Standard: ASTM F 1066, Class 2, through pattern.

C. Wearing Surface: Smooth.

D. Thickness: 0.125 inch.

E. Size: 12 by 12 inches.

F. Colors and Patterns: As indicated on drawings.

2.3 VINYL COMPOSITION FLOOR TILE LVT-1

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1. Armstrong World Industries, Inc.
 2. AVA, Novalis Innovative Flooring
 3. Shaw Contract Group; a Berkshire Hathaway company.

B. Tile Standard: ASTM F 1066, Class 2, through pattern.

C. Wearing Surface: Smooth.

D. Thickness: 0.125 inch.

E. Size: 12 by 24 inches.
F. Colors and Patterns: As indicated on drawings.

2.4 INSTALLATION MATERIALS

A. Trowelable Leveling and Patching Compounds: Latex-modified, portland-cement-based or blended hydraulic-cement-based formulation provided or approved by floor tile manufacturer for applications indicated.

B. Adhesives: Water-resistant type recommended by floor tile and adhesive manufacturers to suit floor tile and substrate conditions indicated.
 1. Adhesives shall have a VOC content of 50 g/L or less.
 2. Adhesive shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

C. Floor Polish: Provide protective, liquid floor-polish products recommended by floor tile manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, with Installer present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
 1. Verify that finishes of substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of cracks, ridges, depressions, scale, and foreign deposits that might interfere with adhesion of floor tile.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Prepare substrates according to floor tile manufacturer's written instructions to ensure adhesion of resilient products.

B. Concrete Substrates: Prepare according to ASTM F 710.
 1. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.
 2. Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by floor tile manufacturer. Do not use solvents.
 3. Alkalinity and Adhesion Testing: Perform tests recommended by floor tile manufacturer. Proceed with installation only after substrate alkalinity falls within range on pH scale recommended by manufacturer in writing, but not less than 5 or more than 9 pH.
4. Moisture Testing: Perform tests so that each test area does not exceed 1000 sq. ft., and perform no fewer than three tests in each installation area and with test areas evenly spaced in installation areas.
 a. Anhydrous Calcium Chloride Test: ASTM F 1869. Proceed with installation only after substrates have maximum moisture-vapor-emission rate of 3 lb of water/1000 sq. ft. in 24 hours.
 b. Relative Humidity Test: Using in-situ probes, ASTM F 2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level measurement.

C. Access Flooring Panels: Remove protective film of oil or other coating using method recommended by access flooring manufacturer.

D. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.

E. Do not install floor tiles until materials are the same temperature as space where they are to be installed.
 1. At least 48 hours in advance of installation, move resilient floor tile and installation materials into spaces where they will be installed.

F. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient floor tile.

3.3 FLOOR TILE INSTALLATION

A. Comply with manufacturer's written instructions for installing floor tile.

B. Lay out floor tiles from center marks established with principal walls, discounting minor offsets, so tiles at opposite edges of room are of equal width. Adjust as necessary to avoid using cut widths that equal less than one-half tile at perimeter.
 1. Lay tiles square with room axis, or in pattern if indicated.

C. Match floor tiles for color and pattern by selecting tiles from cartons in the same sequence as manufactured and packaged, if so numbered. Discard broken, cracked, chipped, or deformed tiles.
 1. Lay tiles with grain direction alternating in adjacent tiles (basket-weave pattern), or in pattern of colors and sizes if indicated.

D. Scribe, cut, and fit floor tiles to butt neatly and tightly to vertical surfaces and permanent fixtures including built-in furniture, cabinets, pipes, outlets, and door frames.

E. Extend floor tiles into toe spaces, door reveals, closets, and similar openings. Extend floor tiles to center of door openings.
F. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on floor tiles as marked on substrates. Use chalk or other nonpermanent marking device.

G. Install floor tiles on covers for telephone and electrical ducts, building expansion-joint covers, and similar items in installation areas. Maintain overall continuity of color and pattern between pieces of tile installed on covers and adjoining tiles. Tightly adhere tile edges to substrates that abut covers and to cover perimeters.

H. Adhere floor tiles to substrates using a full spread of adhesive applied to substrate to produce a completed installation without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, and other surface imperfections.

3.4 CLEANING AND PROTECTION

A. Comply with manufacturer's written instructions for cleaning and protecting floor tile.

B. Perform the following operations immediately after completing floor tile installation:
 1. Remove adhesive and other blemishes from surfaces.
 2. Sweep and vacuum surfaces thoroughly.
 3. Damp-mop surfaces to remove marks and soil.

C. Protect floor tile from mars, marks, indentations, and other damage from construction operations and placement of equipment and fixtures during remainder of construction period.

D. Floor Polish: Remove soil, adhesive, and blemishes from floor tile surfaces before applying liquid floor polish.
 1. Apply two coat(s).

E. Cover floor tile until Substantial Completion.

END OF SECTION 09 65 19
SECTION 09 68 13 - TILE CARPETING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes modular carpet tile and static dissipative modular carpet tile.

B. Related Sections include the following:
 1. Division 09 Section "Resilient Base and Accessories" for resilient wall base and accessories installed with carpet tile.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.
 1. Review methods and procedures related to carpet tile installation including, but not limited to, the following:
 a. Review ambient conditions and ventilation procedures.
 b. Review subfloor preparation procedures.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:
 1. Product Data: For adhesives, indicating VOC content.
 2. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials.
 3. Laboratory Test Reports: For flooring products, indicating compliance with requirements for low-emitting materials.

C. Shop Drawings: For carpet tile installation, plans showing the following:
 1. Columns, doorways, enclosing walls or partitions, built-in cabinets, and locations where cutouts are required in carpet tiles.
 2. Carpet tile type, color, and dye lot.
 3. Type of subfloor.
 4. Type of installation.
5. Pattern of installation.
6. Pattern type, location, and direction.
7. Pile direction.
8. Type, color, and location of insets and borders.
9. Type, color, and location of edge, transition, and other accessory strips.
10. Transition details to other flooring materials.

D. Samples: For each exposed product and for each color and texture required.
E. Product Schedule: For carpet tile. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.
B. Product Test Reports: For carpet tile, for tests performed by a qualified testing agency.
C. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For carpet tiles to include in maintenance manuals. Include the following:
 1. Methods for maintaining carpet tile, including cleaning and stain-removal products and procedures and manufacturer's recommended maintenance schedule.
 2. Precautions for cleaning materials and methods that could be detrimental to carpet tile.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Carpet Tile: Full-size units equal to 5 percent of amount installed for each type indicated, but not less than 10 sq. yd..

1.8 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer who is certified by the International Certified Floorcovering Installers Association at the Commercial II certification level.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Comply with CRI's "CRI Carpet Installation Standard."
1.10 FIELD CONDITIONS

A. Comply with CRI's "CRI Carpet Installation Standard" for temperature, humidity, and ventilation limitations.

B. Environmental Limitations: Do not deliver or install carpet tiles until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, and ambient temperature and humidity conditions are maintained at levels planned for building occupants during the remainder of the construction period.

C. Do not install carpet tiles over concrete slabs until slabs have cured and are sufficiently dry to bond with adhesive and concrete slabs have pH range recommended by carpet tile manufacturer.

D. Where demountable partitions or other items are indicated for installation on top of carpet tiles, install carpet tiles before installing these items.

1.11 WARRANTY

A. Special Warranty for Carpet Tiles: Manufacturer agrees to repair or replace components of carpet tile installation that fail in materials or workmanship within specified warranty period.

1. Warranty does not include deterioration or failure of carpet tile due to unusual traffic, failure of substrate, vandalism, or abuse.
2. Failures include, but are not limited to, the following:
 a. More than 10 percent edge raveling, snags, and runs.
 b. Dimensional instability.
 c. Excess static discharge.
 d. Loss of tuft-bind strength.
 e. Loss of face fiber.
 f. Delamination.
3. Warranty Period:
 a. CPT-1 and CPT-3: Lifetime from date of Substantial Completion.
 b. CPT-2: Lifetime years from date of Substantial Completion.
 1) Static Properties: Lifetime.

PART 2 - PRODUCTS

2.1 CARPET TILE – CPT-1, CPT-3

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by another manufacturer.

B. Size, Color and Pattern: As indicated on drawings.
C. Fiber Content: 100 percent Universal Fibers Type 6 nylon.

D. Fiber Type: Type 6 nylon with Permanent Stain Resistance.

E. Pile Characteristic: Patterned Textured Loop.

F. Density: 3,887 oz./cu. yd.

G. Pile Thickness: for finished carpet tile.
 1. **CPT-1**: 0.125 inches
 2. **CPT-3**: 0.250 inches

H. Stitches: 11.3 stitches per inch.

I. Gauge: 1/12 inch.

J. Tufted Weight: 16 oz./sq. yd.

K. Primary Backing/Backcoating: Manufacturer's standard material – Synthetic.

L. Secondary Backing: Manufacturer's standard material – Earthwise (non-phthalate, contains recycled content).

M. Size: 24 by 24 inches.

N. Dye Method: 100% solution dyed.

O. Applied Treatments:
 2. Antimicrobial Treatment: Manufacturer's standard treatment that protects carpet tiles as follows:
 a. Antimicrobial Activity: Not less than 2-mm halo of inhibition for gram-positive bacteria, not less than 1-mm halo of inhibition for gram-negative bacteria, and no fungal growth, according to AATCC 174.

P. Sustainable Design Requirements:
 1. **Recycled Content**: 45 percent Postindustrial recycled content.
 a. Product shall be 100 percent recyclable.
 2. **Flooring products shall comply with** the requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

Q. Performance Characteristics:
 1. Appearance Retention Rating: Heavy traffic, 3.0 minimum according to ASTM D7330.
 2. Flooring Radiant Panel: Class 1 according to ASTM E-648.
3. Smoke Density: Less than 450 according to ASTM E-662.
4. Dimensional Tolerance: Within 1/32 inch of specified size dimensions, as determined by physical measurement.
5. Dimensional Stability: 0.2 percent or less according to ISO 2551 (Aachen Test).
6. Colorfastness to Crocking: Not less than 4, wet and dry, according to AATCC 165.
7. Colorfastness to Light: Not less than 4 after 40 AFU (AATCC fading units) according to AATCC 16, Option E.
8. Electrostatic Propensity: Less than 3.5 kV according to AATCC 134.

2.2 STATIC DISSIPATIVE CARPET TILE – CPT-2

A. Basis-of-Design Product: Subject to compliance with requirements, provide Staticworx, ShadowFX Static Dissipative Carpet Tile or comparable product by another manufacturer.

B. Style Name: Chenile.

C. Size, Color and Pattern: As indicated on drawings.

D. Construction: Tufted tip-sheared.

E. Conductive Fiber Technology: Staticworx Helix 44 denier conductive fiber.

F. Fiber Type: Type 6,6 nylon.

G. Density: 6,182 oz./cu. yd.

H. Pile Thickness: 0.099 inches.

I. Average Pile Height: 0.138 inches.

J. Stitches: 9 stitches per inch.

K. Gauge: 1/12 inch.

L. Tufted Yarn Weight: 17 oz./sq. yd.

M. Backing System: Permanent static-dissipative backing.

N. Size: 24 by 24 inches.

O. Dye Method: 100% solution dyed.

P. Applied Treatments:

Q. Sustainable Design Requirements:

1. Recycled Content: Total recycled content by weight not less than 50 percent.
 a. Postconsumer recycled content 2 percent.
b. Preconsumer recycled content not less than 42 percent.

2. **Flooring products shall comply with** the requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

3. **Flooring products shall comply with** the testing and product requirements of CRI’s “Green Label Plus” program.

R. Performance Characteristics:

1. Flooring Radiant Panel: Class 1 according to ASTM E-648.
2. Smoke Density: Less than 450 according to ASTM E-662.
3. Dimensional Stability: AACHEN Din 54318 <.10%.
4. Electrostatic Propensity:
 a. AATCC 134-06 (w/o Conductive Footwear); less than 0.4kV (400 Volts).

5. Electrical Resistance:
 a. ESD S7.1/NFPA 99 Resistive/Resistance Characterization of Materials. Tested with applied voltage of 100V. Measured in Ohms, 1.0 x 10^6 minimum, 1.0 x 10^8 maximum.

 1) RTT: Nine or more readings between points placed 1 feet apart.
 b. Static Dissipative: 1.0 x 10^6 minimum, 1.0 x 10^8 maximum Ohms.

 1) Results within required limits: <35 x 10^6 Ohms or <100 Volts.
 f. Roller Caster Electrical Test (CET) Assessment: After 125,000 chair caster cycles, no appreciable change in conductivity or electrical performance.

6. Groundable Path: Copper ground strip.
7. Grounding Frequency: 1 per 1,000 square feet.
8. Adhesive Requirement: Manufacturer’s approved Conductive Releasable adhesive for carpet tile.

2.3 INSTALLATION ACCESSORIES

A. Trowelable Leveling and Patching Compounds: Latex-modified, hydraulic-cement-based formulation provided or recommended by carpet tile manufacturer.

B. Adhesives: Water-resistant, mildew-resistant, nonstaining, pressure-sensitive type to suit products and subfloor conditions indicated, that comply with flammability requirements for installed carpet tile, and are recommended by carpet tile manufacturer for releasable installation.
1. **Adhesives shall have a VOC** content of 50 g/L or less.
2. **Adhesive shall comply with the** testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for maximum moisture content, alkalinity range, installation tolerances, and other conditions affecting carpet tile performance.

B. Examine carpet tile for type, color, pattern, and potential defects.

C. Concrete Slabs: Verify that surfaces are free of cracks, ridges, depressions, scale, and foreign deposits.

 1. Moisture Testing: Perform tests so that each test area does not exceed 1000 sq. ft., and perform no fewer than three tests in each installation area and with test areas evenly spaced in installation areas.

 a. Relative Humidity Test: Using in situ probes, ASTM F 2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level measurement.

 b. Perform additional moisture tests recommended in writing by adhesive and carpet tile manufacturers. Proceed with installation only after substrates pass testing.

D. Wood Subfloors: Verify that underlayment surface is free of irregularities and substances that may interfere with adhesive bond or show through surface.

E. Metal Subfloors: Verify that underlayment surface is free of irregularities and substances that may interfere with adhesive bond or show through surface.

F. Painted Subfloors: Perform bond test recommended in writing by adhesive manufacturer.

 1. Access Flooring Systems: Verify access floor substrate is compatible with carpet tile and adhesive, if any, and underlayment surface is gaps greater than 1/8 inch and protrusions more than 1/32 inch.

3.2 PREPARATION

A. General: Comply with CRI's "CRI Carpet Installation Standards" and with carpet tile manufacturer's written installation instructions for preparing substrates indicated to receive carpet tile.

B. Use trowelable leveling and patching compounds, according to manufacturer's written instructions, to fill cracks, holes, depressions, and protrusions in substrates. Fill or level cracks,
holes and depressions 1/8 inch wide or wider, and protrusions more than 1/32 inch unless more stringent requirements are required by manufacturer's written instructions.

C. Concrete Substrates: Remove coatings, including curing compounds, and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, without using solvents. Use mechanical methods recommended in writing by adhesive and carpet tile manufacturers.

D. Metal Substrates: Clean grease, oil, soil and rust, and prime if recommended in writing by adhesive manufacturer. Rough sand painted metal surfaces and remove loose paint. Sand aluminum surfaces, to remove metal oxides, immediately before applying adhesive.

E. Broom and vacuum clean substrates to be covered immediately before installing carpet tile.

3.3 INSTALLATION

A. General: Comply with CRI's "CRI Carpet Installation Standard," Section 18, "Modular Carpet" and with carpet tile manufacturer's written installation instructions.

B. Installation Method:

1. CPT-1 and CPT-3: Install carpet tiles without adhesive, using manufacturer’s standard Lok Dots carpet tile corner connectors, as recommended in writing by carpet manufacturer. Install connectors with adhesive side facing up, lay carpet tile corners down on adhesive side of connectors, allowing carpet floor to float above substrate.

2. CPT-2: Glue down; install every tile with full-spread, releasable, pressure-sensitive adhesive, as recommended in writing by carpet tile manufacturer.

C. Maintain dye-lot integrity. Do not mix dye lots in same area.

D. Maintain pile-direction patterns indicated on Drawings.

E. Cut and fit carpet tile to butt tightly to vertical surfaces, permanent fixtures, and built-in furniture including cabinets, pipes, outlets, edgings, thresholds, and nosings. Bind or seal cut edges as recommended by carpet tile manufacturer.

F. Extend carpet tile into toe spaces, door reveals, closets, open-bottomed obstructions, removable flanges, alcoves, and similar openings.

G. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on carpet tile as marked on subfloor. Use nonpermanent, nonstaining marking device.

H. Install pattern parallel to walls and borders.

3.4 CLEANING AND PROTECTION

A. Perform the following operations immediately after installing carpet tile:
1. Remove excess adhesive and other surface blemishes using cleaner recommended by carpet tile manufacturer.
2. Remove yarns that protrude from carpet tile surface.

B. Protect installed carpet tile to comply with CRI's "Carpet Installation Standard," Section 20, "Protecting Indoor Installations."

C. Protect carpet tile against damage from construction operations and placement of equipment and fixtures during the remainder of construction period. Use protection methods indicated or recommended in writing by carpet tile manufacturer.

END OF SECTION 09 68 13
SECTION 09 69 00 - ACCESS FLOORING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Cementitious-core steel panel access flooring.

1.3 COORDINATION
 A. Coordinate location of mechanical and electrical work in underfloor cavity to prevent interference with access flooring.
 B. Mark pedestal locations on subfloor to enable mechanical and electrical work to proceed without interfering with access-flooring pedestals installed after mechanical and electrical work.

1.4 PREINSTALLATION MEETINGS
 A. Preinstallation Conference: Conduct conference at Project site.
 1. Review connections between access flooring and mechanical and electrical systems.

1.5 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for access flooring.
 2. Include loading capacities.
 B. Sustainable Design Submittals:
 1. Product Data: For recycled content, indicating postconsumer and preconsumer recycled content and cost.
 2. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials.
 C. Shop Drawings: For access flooring:
1. Include layout of access flooring and relationship to adjoining Work based on field-verified dimensions.
2. Details and sections with descriptive notes indicating materials, finishes, fasteners, typical and special edge conditions, accessories, and understructures.

D. Samples: For the following products:
 1. Floor Coverings: Full-size units for each color and texture specified.
 2. Exposed Metal Accessories: Approximately 10 inches in length.
 3. One full-size floor panel, pedestal, and understructure unit for each type of access flooring required.

E. Samples for Initial Selection: For each type of exposed finish.

F. Samples for Verification: For the following products:
 1. Floor Coverings: Full-size units.
 2. Exposed Metal Accessories: Approximately 10 inches in length.
 3. One full-size floor panel, pedestal, and understructure unit for each type of access flooring required.

G. Delegated-Design Submittal: For seismic design of access flooring.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Product Test Reports: For each type of access-flooring material and floor covering, performed by a qualified testing agency.

C. Seismic Design Calculations: For seismic design of access flooring, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Furnish quantity of standard field panels and understructure components to support them equal to 3 percent of the amount installed and 5 percent of floor accessories.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

B. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for materials and execution.
1. Build mockup of typical access flooring, as shown on Drawings. Size to be an area no fewer than five floor panels in length by five floor panels in width.
2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 FIELD CONDITIONS
A. Environmental Limitations: Do not install access flooring until spaces are enclosed, ambient temperature is between 50 and 90 deg F, and relative humidity is not less than 20 and not more than 70 percent.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design access flooring for seismic performance, including loads imposed on the access flooring by items and equipment installed on the access flooring.
B. Seismic Performance: Access flooring shall withstand the effects of earthquake motions determined according to ASCE/SEI 7, including loads imposed on the access flooring by items and equipment installed on the access flooring.
C. Structural Performance: Provide access flooring capable of complying with the following performance requirements according to testing procedures in CISCA's "Recommended Test Procedures for Access Floors":
 1. Concentrated Loads: 1250 lbf with the following deflection and permanent set:
 a. Top-Surface Deflection: 0.10 inch.
 b. Permanent Set: 0.010 inch.
 3. Rolling Loads: With local or overall deformation not to exceed 0.040 inch.
 a. CISCA Wheel 1: 10 passes at 1125 lbf.
 b. CISCA Wheel 2: 10,000 passes at 875 lbf.
 4. Pedestal Axial Load Test: 5000 lbf.
 5. Pedestal-Overtwisting-Moment Test: 1000 lbf x inches.
 6. Uniform Load Test: 400 lbf/sq. ft. with a maximum top-surface deflection not to exceed 0.040 inch and a permanent set not to exceed 0.010 inch.
D. **Fire Performance:**

1. **Surface-Burning Characteristics:** Comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 a. Flame-Spread Index: 25 or less.
 b. Smoke-Developed Index: 50 or less.

E. **Verify flooring products comply with** the requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

F. **Recycled Content of Steel Products:** Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.

2.2 CEMENTITIOUS-CORE STEEL PANEL ACCESS FLOORING

A. Fabricate panels from cold-rolled steel sheet, with die-cut flat top sheet and die-formed and stiffened bottom pan welded together. Protect metal surfaces against corrosion using manufacturer's standard factory-applied finish. Fully grout internal spaces of completed units with manufacturer's standard cementitious fill.

1. **Basis-of-Design Product:** Subject to compliance with requirements, provide Tate Access Floors, Inc; ConCore 1250 Posilock System or a comparable product by one of the following:
 a. ASM Modular Systems, Inc.
 b. Camino Modular Systems, Inc.
 c. Computer Environments, Inc.
 d. Haworth, Inc.

2. **Configuration:** Provide modular panels with nominal size of 24 by 24 inches, interchangeable with other field panels without disturbing adjacent panels or understructure.

3. **Tile Carpeting System:** Fabricate panels with alignment pins to accept field-installed carpet tile with receptors designed to engage pins.

4. **Attachment to Understructure:** By gravity.

B. **Pedestal System Understructure:** System consisting of base, column with provisions for height adjustment, and head (cap); made of steel.

1. **Base:** Square or circular base with not less than 16 sq. in. of bearing area.
2. **Column:** Of height required to bring finished floor to elevations indicated. Weld column to base plate.
3. **Provide vibration-proof leveling mechanism** for making and holding fine adjustments in height over a range of not less than 2 inches and for locking at a selected height, so deliberate action is required to change height setting and prevent vibratory displacement.
4. **Head:** Designed to support the floor panel indicated.
a. Provide sound-deadening pads or gaskets at contact points between heads and panels.

2.3 FLOOR PANEL COVERINGS

A. Static Dissipative Carpet Tile: Refer to Section 096813 “Tile Carpeting”.

2.4 FABRICATION

A. Fabrication Tolerances:
 1. Size: Plus or minus 0.020 inch of required size.
 2. Squareness: Plus or minus 0.015 inch between diagonal measurements across top of panel.
 3. Flatness: Plus or minus 0.035 inch, measured on a diagonal on top of panel.

B. Panel Markings: Clearly and permanently mark floor panels on their underside with panel type and concentrated-load rating.

C. Bolted Panels: Provide panels with holes drilled in corners to align precisely with threaded holes in pedestal heads and to accept countersunk screws with heads flush with top of panel.
 1. Captive Fasteners: Provide fasteners held captive to panels.

D. Cutouts: Fabricate cutouts in floor panels for cable penetrations and service outlets. Provide reinforcement or additional support, if needed, to make panels with cutouts comply with structural performance requirements.
 1. Number, Size, Shape, and Location: As indicated.
 2. Grommets: Where indicated, fit cutouts with manufacturer's standard grommets; or, if size of cutouts exceeds maximum grommet size available, trim edge of cutouts with manufacturer's standard plastic molding with tapered top flange. Furnish removable covers for grommets.

2.5 ACCESSORIES

A. Adhesives: Manufacturer's standard adhesive for bonding pedestal bases to subfloor.
 1. Verify adhesive complies with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

B. Service Outlets: Standard UL-listed and -labeled assemblies, for recessed mounting flush with top of floor panels; for power, communication, and signal services; and complying with the following requirements:
 1. Structural Performance: Cover capable of supporting a 800-lbf concentrated load.
2. **Cover and Box Type:**
 a. Hinged polycarbonate cover with opening for passage of cables when cover is closed and including frame and steel box or formed-steel plate for mounting electrical receptacles.
 b. Grommet with twist-close cover and including steel junction box for electrical receptacle with provision for telephone connectors and signal cables.

3. **Location:** In center of panel quadrant unless otherwise indicated.

4. **Receptacles and Wiring:** Electrical receptacles and wiring for service outlets are specified elsewhere.

5. **Gusseted Grommets:** Provide at any cable penetration (power, telecom, or A/V) that does not have a box, to protect cable and prevent dirt and debris from entering the space below the floor.
 a. Product: Koldlok Wave raised floor grommet and cover, or equivalent product from another manufacturer.

C. **Fascia Closures:** Where underfloor cavity is not enclosed by abutting walls or other construction, provide metal closure plates with manufacturer's standard finish.

D. **Ramps:** Manufacturer's standard ramp construction of width and slope indicated, but not steeper than 1:12, with raised-disc or textured rubber or vinyl-tile floor coverings, and of same materials, performance, and construction requirements as access flooring.

E. **Panel Lifting Device:** Panel manufacturer's standard portable lifting device for each type of panel required.

F. **Perimeter Support:** Provide manufacturer's standard method for supporting panel edge and forming transition between access flooring and adjoining floor coverings at same level as access flooring.

PART 3 - EXECUTION

3.1 **EXAMINATION**

A. Examine substrates, with Installer and manufacturer's authorized representative present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

 1. Verify that substrates comply with tolerances and other requirements specified in other Sections and that substrates are free of conditions and deleterious substances that might interfere with attachment of pedestals.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. Lay out floor panel installation to keep the number of cut panels at floor perimeter to a minimum. Avoid using panels cut to less than 6 inches.

B. Locate each pedestal, complete any necessary subfloor preparation, and vacuum subfloor to remove dust, dirt, and construction debris before beginning installation.

3.3 INSTALLATION

A. Install access flooring and accessories under supervision of access-flooring manufacturer's authorized representative to produce a rigid, firm installation that complies with performance requirements and is free of instability, rocking, rattle, and squeaks.

B. Adhesive Attachment of Pedestals: Set pedestals in adhesive, according to access-flooring manufacturer's written instructions, to provide full bearing of pedestal base on subfloor; and as required to meet seismic design requirements.

C. Adjust pedestals so installed panels are flat, level, and at the proper height.

D. Install flooring panels securely in place, leaving them properly seated with panel edges flush. Do not force panels into place.

E. Scribe perimeter panels to provide a close fit, with adjoining construction having no voids greater than 1/8 inch where panels abut vertical surfaces.

F. Cut and trim access flooring and perform other dirt-or-debris-producing activities at a remote location or as required to prevent contamination of subfloor under installed access flooring.

G. Grounded Access Flooring: Ground access flooring as recommended by manufacturer and as needed to comply with performance requirements for electrical resistance of floor coverings.
 1. Panel-to-Understructure Resistance: Not more than 10 ohms as measured without floor coverings.
 2. Grounding methods shall comply with the requirements of Motorola R56, ANSI/TIA-607-C, and ANSI/TIA-942-B.

H. Underfloor Dividers: Scribe and install underfloor-cavity dividers to closely fit against subfloor surfaces, and seal with mastic.

I. Closures: Scribe closures to closely fit against subfloor and adjacent finished-floor surfaces. Set in mastic and seal to maintain plenum effect within underfloor cavity.

J. Clean dust, dirt, and construction debris caused by floor installation, and vacuum subfloor area as installation of floor panels proceeds.

K. Install access flooring without change in elevation between adjacent panels and within the following tolerances:
 1. Plus or minus 1/16 inch in any 10-foot distance.
2. Plus or minus 1/8 inch from a level plane over entire access flooring area.

3.4 PROTECTION

A. Prohibit traffic on access flooring for 24 hours and removal of floor panels for 72 hours after installation, to allow pedestal adhesive to set.

B. Replace access-flooring panels that are stained, scratched, or otherwise damaged or that do not comply with specified requirements.

END OF SECTION 09 69 00
SECTION 09 84 36 - SOUND-ABSORBING CEILING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes shop-fabricated, sound-absorbing acoustical baffle panel units tested for acoustical performance.

1.3 PREINSTALLATION MEETINGS
 A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Sustainable Design Submittals:
 1. Product Data: For recycled content, indicating postconsumer and preconsumer recycled content and cost.
 2. Environmental Product Declaration (EPD): For each product.
 3. Laboratory Test Reports: For ceiling products, indicating compliance with requirements for low-emitting materials.
 C. Shop Drawings: For unit assembly and installation.
 D. Samples: For each exposed product and for each color and texture specified.

1.5 INFORMATIONAL SUBMITTALS
 A. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale and coordinated with each other, using input from installers of the items involved.
 B. Product certificates.

1.6 CLOSEOUT SUBMITTALS
 A. Maintenance data.
1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fabric: For each fabric, color, and pattern installed, furnish length equal to 10 percent of amount installed, but no fewer than 10 sq. yd., full width of bolt.
2. Mounting Devices: Full-size units equal to 5 percent of amount installed, but no fewer than five devices.

1.8 QUALITY ASSURANCE

A. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for materials, fabrication, and installation.

1. Build mockup of typical ceiling area 96 inches wide by full width of ceiling. Include intersection of wall and ceiling, corners, and perimeters.
2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Comply with fabric and unit manufacturers' written instructions for minimum and maximum temperature and humidity requirements for shipment, storage, and handling.

B. Deliver materials and units in unopened bundles and store in a temperature-controlled dry place with adequate air circulation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain ceiling units specified in this Section and wall units specified in Section 098433 "Sound-Absorbing Wall Units" from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Verify ceiling products comply with the requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

B. Fire-Test-Response Characteristics: Units shall comply with "Surface-Burning Characteristics" or "Fire Growth Contribution" Subparagraph below, or both, as determined by testing identical
products by UL or another testing and inspecting agency acceptable to authorities having jurisdiction:

1. Surface-Burning Characteristics: Comply with ASTM E84 or UL 723; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 a. Flame-Spread Index: 25 or less.
 b. Smoke-Developed Index: 450 or less.

2. Fire Growth Contribution: Comply with acceptance criteria of local code and authorities having jurisdiction when tested according to NFPA 286.

2.3 SOUND-ABSORBING CEILING UNITS

A. Sound-Absorbing Baffle Panel SBP-1: Manufacturer's standard panel construction.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 1. Decoustics Limited; a Saint Gobain company.

 2. Panel Shape: As indicated on Drawings.
 3. Mounting: Top-edge mounted with manufacturer's standard suspension system, secured to substrate.
 4. Core: Manufacturer's standard.
 5. Edge Construction: Manufacturer's standard.
 6. Edge Profile: Custom profile as indicated on Drawings.
 7. Corner Detail in Elevation: Custom as indicated on Drawings with continuous edge profile indicated.
 8. Facing Material: As indicated on Drawings.
 9. Acoustical Performance: Sound absorption NRC of 0.50 according to ASTM C423.
 10. Nominal Overall Panel Thickness: As indicated on Drawings.
 11. Panel Width: As indicated on Drawings.
 12. Panel Height: As indicated on Drawings.

2.4 MATERIALS

A. Sustainable Design Requirements:

 1. Recycled Content: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 50 percent.

Core Materials: Manufacturer's standard.

C. Facing Material: Fabric from same dye lot; color and pattern as indicated on Drawings.

D. Mounting Devices: Adjustable cable system concealed on top edge of unit, recommended by manufacturer to support weight of unit.
2.5 FABRICATION

A. Standard Construction: Use manufacturer's standard construction unless otherwise indicated, with facing material applied to face, edges, and back border of dimensionally stable core and with rigid edges to reinforce panel perimeter against warpage and damage.

B. Measure each area and establish layout of panels and joints of sizes indicated on Drawings within a given area.

C. Facing Material: Apply fabric facing fully covering visible surfaces of unit; with material stretched straight, on the grain, tight, square, and free from puckers, ripples, wrinkles, sags, blisters, seams, adhesive, or other visible distortions or foreign matter.

1. Fabrics with Directional or Repeating Patterns or Directional Weave: Mark fabric top and attach fabric in same direction so pattern or weave matches adjacent units.

D. Dimensional Tolerances of Finished Units: Plus or minus 1/16 inch.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine fabric, fabricated units, substrates, areas, and conditions for compliance with requirements, installation tolerances, and other conditions affecting unit performance.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install units in locations indicated. Unless otherwise indicated, install units with edges in alignment with walls and other units, faces flush, and scribed to fit adjoining work accurately at borders and at penetrations.

B. Comply with manufacturer's written instructions for installation of units using type of mounting devices indicated. Mount units securely to supporting substrate.

C. Align fabric pattern and grain with adjacent units.

3.3 INSTALLATION TOLERANCES

A. Variation from Alignment with Surfaces: Plus or minus 1/16 inch in 48 inches, noncumulative.

B. Variation from Level or Slope: Plus or minus 1/16 inch.

C. Variation of Joint Width: Not more than 1/16 inch wide from hairline or reveal line in 48 inches, noncumulative.
3.4 CLEANING

A. Clip loose threads; remove pills and extraneous materials.

B. Clean panels on completion of installation to remove dust and other foreign materials according to manufacturer’s written instructions.

END OF SECTION 09 84 36
SECTION 09 91 23 - INTERIOR PAINTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes surface preparation and the application of paint systems on interior substrates.

B. Related Requirements:
 1. Section 051200 "Structural Steel Framing" for shop priming structural steel.

1.3 DEFINITIONS

A. MPI Gloss Level 1: Not more than five units at 60 degrees and 10 units at 85 degrees, according to ASTM D523.

B. MPI Gloss Level 2: Not more than 10 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D523.

C. MPI Gloss Level 3: 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D523.

D. MPI Gloss Level 4: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D523.

E. MPI Gloss Level 5: 35 to 70 units at 60 degrees, according to ASTM D523.

F. MPI Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D523.

G. MPI Gloss Level 7: More than 85 units at 60 degrees, according to ASTM D523.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product. Include preparation requirements and application instructions.

 1. Manufacturer's Information: Provide manufacturer's technical information, including label analysis and instructions for handling, storing, and applying each coating material proposed for use.
 2. Indicate VOC content.
B. Sustainable Design Submittals:
 1. **Product Data:** For paints and coatings, indicating VOC content.
 2. **Laboratory Test Reports:** For paints and coatings, indicating compliance with requirements for low-emitting materials.

C. Samples for Initial Selection: For each type of topcoat product.

D. Samples for Verification: For each type of paint system and in each color and gloss of topcoat.
 1. Submit Samples on rigid backing, 8 inches square.
 2. Apply coats on Samples in steps to show each coat required for system.
 3. Label each coat of each Sample.
 4. Label each Sample for location and application area.

E. Product List: Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules. Include color designations.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Paint: 5 percent, but not less than 1 gal. of each material and color applied.

1.6 QUALITY ASSURANCE

A. Mockups: Apply mockups of each paint system indicated and each color and finish selected to verify preliminary selections made under Sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 1. Architect will select one surface to represent surfaces and conditions for application of each paint system.
 a. Vertical and Horizontal Surfaces: Provide samples of at least 100 sq. ft.
 b. Other Items: Architect will designate items or areas required.
 2. Final approval of color selections will be based on mockups.
 a. If preliminary color selections are not approved, apply additional mockups of additional colors selected by Architect at no added cost to Owner.
 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.
1.7 DELIVERY, STORAGE, AND HANDLING

A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.

1. Maintain containers in clean condition, free of foreign materials and residue.
2. Remove rags and waste from storage areas daily.

1.8 FIELD CONDITIONS

A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F.

B. Do not apply paints when relative humidity exceeds 85 percent; at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide products manufactured by Sherwin-Williams Company (The), or comparable products by one of the following:

1. Benjamin Moore & Co.
2. PPG Paints.

2.2 PAINT, GENERAL

A. MPI Standards: Products shall comply with MPI standards indicated and shall be listed in its "MPI Approved Products Lists."

B. Material Compatibility:

1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.

C. VOC Content: For field applications that are inside the weatherproofing system, paints and coatings shall comply with VOC content limits of authorities having jurisdiction and the following VOC content limits:

1. Flat Paints and Coatings: 50 g/L.
2. Nonflat Paints and Coatings: 50 g/L.
3. Dry-Fog Coatings: 150 g/L.
4. Primers, Sealers, and Undercoaters: 100 g/L.
5. Rust-Preventive Coatings: 100 g/L.
6. Zinc-Rich Industrial Maintenance Primers: 100 g/L.
7. Pretreatment Wash Primers: 420 g/L.
8. Shellacs, Clear: 730 g/L.
9. Shellacs, Pigmented: 550 g/L.

D. Low-Emitting Materials: For field applications that are inside the weatherproofing system, 90 percent of paints and coatings shall comply with the requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

E. Colors: As indicated in the color schedule on the drawings, which includes deep tones at designated locations.

2.3 SOURCE QUALITY CONTROL

A. Testing of Paint Materials: Owner reserves the right to invoke the following procedure:

1. Owner will engage the services of a qualified testing agency to sample paint materials. Contractor will be notified in advance and may be present when samples are taken. If paint materials have already been delivered to Project site, samples may be taken at Project site. Samples will be identified, sealed, and certified by testing agency.
2. Testing agency will perform tests for compliance with product requirements.
3. Owner may direct Contractor to stop applying paints if test results show materials being used do not comply with product requirements. Contractor shall remove noncomplying paint materials from Project site, pay for testing, and repaint surfaces painted with rejected materials. Contractor will be required to remove rejected materials from previously painted surfaces if, on repainting with complying materials, the two paints are incompatible.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:

1. Concrete: 12 percent.
2. Fiber-Cement Board: 12 percent.
3. Masonry (Clay and CMUs): 12 percent.
5. Gypsum Board: 12 percent.
6. Plaster: 12 percent.

C. Gypsum Board Substrates: Verify that finishing compound is sanded smooth.
D. Plaster Substrates: Verify that plaster is fully cured.

E. Verify suitability of substrates, including surface conditions and compatibility, with existing finishes and primers.

F. Proceed with coating application only after unsatisfactory conditions have been corrected.
 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and paint systems indicated.

B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.

C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.

D. Concrete Substrates: Remove release agents, curing compounds, efflorescence, and chalk. Do not paint surfaces if moisture content or alkalinity of surfaces to be painted exceeds that permitted in manufacturer's written instructions.

E. Masonry Substrates: Remove efflorescence and chalk. Do not paint surfaces if moisture content or alkalinity of surfaces or mortar joints exceeds that permitted in manufacturer's written instructions.

F. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and areas where shop paint is abraded. Paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.

G. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints.

H. Aluminum Substrates: Remove loose surface oxidation.

I. Wood Substrates:
 1. Scrape and clean knots, and apply coat of knot sealer before applying primer.
 2. Sand surfaces that will be exposed to view, and dust off.
 3. Prime edges, ends, faces, undersides, and backsides of wood.
4. After priming, fill holes and imperfections in the finish surfaces with putty or plastic wood filler. Sand smooth when dried.

J. Cotton or Canvas Insulation Covering Substrates: Remove dust, dirt, and other foreign material that might impair bond of paints to substrates.

3.3 APPLICATION

A. Apply paints according to manufacturer's written instructions and to recommendations in "MPI Manual."
 1. Use applicators and techniques suited for paint and substrate indicated.
 2. Paint surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed equipment or furniture with prime coat only.
 3. Paint front and backsides of access panels, removable or hinged covers, and similar hinged items to match exposed surfaces.
 4. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
 5. Primers specified in painting schedules may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.

B. Tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of same material are to be applied. Tint undercoats to match color of topcoat, but provide sufficient difference in shade of undercoats to distinguish each separate coat.

C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.

D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

E. Painting Fire Suppression, Plumbing, HVAC, Electrical, Communication, and Electronic Safety and Security Work:
 1. Paint the following work where exposed in equipment rooms:
 a. Equipment that does not have factory-applied final finishes.
 b. Uninsulated metal piping.
 c. Uninsulated plastic piping.
 d. Pipe hangers and supports.
 e. Metal conduit.
 f. Plastic conduit.
 g. Tanks that do not have factory-applied final finishes.
 h. Duct, equipment, and pipe insulation having cotton or canvas insulation covering or other paintable jacket material.
 2. Paint the following work where exposed in occupied spaces:
a. Equipment, including panelboards.
b. Uninsulated metal piping.
c. Uninsulated plastic piping.
d. Pipe hangers and supports.
e. Metal conduit.
f. Plastic conduit.
g. Duct, equipment, and pipe insulation having cotton or canvas insulation covering or other paintable jacket material.
h. Other items as directed by Architect.

3. Paint portions of internal surfaces of metal ducts, without liner, behind air inlets and outlets that are visible from occupied spaces.

F. Paint exposed structure and floor or roof deck above in occupied spaces where these items are exposed to view.

3.4 FIELD QUALITY CONTROL

A. Dry Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test paint for dry film thickness.

1. Contractor shall touch up and restore painted surfaces damaged by testing.
2. If test results show that dry film thickness of applied paint does not comply with paint manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with paint manufacturer's written recommendations.

3.5 CLEANING AND PROTECTION

A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.6 INTERIOR PAINTING SCHEDULE

A. Concrete Substrates, Nontraffic Surfaces:

1. Institutional Low-Odor/VOC Latex System:
a. Prime Coat: Loxon Concrete and Masonry Primer.
b. Prime Coat for any Bare Metal: ProIndustrial Pro-Cryl Universal Primer.
d. Topcoat (surfaces higher than 9'-0" AFF): ProMar 200 Zero VOC, flat finish.
e. Topcoat (surfaces below 9'-0" AFF): ProMar 200 Zero VOC, eggshell finish.

B. Concrete Substrates, Traffic Surfaces:

1. Water-Based Concrete Floor Sealer System:
 a. First Coat: Sealer, water based, for concrete floors, matching topcoat.

C. CMU Substrates:

1. Epoxy System:
 a. Block Filler: ProIndustrial Heavy Duty Block Filler.
 c. Topcoat: ProIndustrial Pre-Catalyzed Water-Based Epoxy, eggshell finish.

 2. Institutional Low-Odor/VOC Latex System:
 a. Block Filler (new work only): ProIndustrial Heavy Duty Block Filler.
 b. Prime Coat (existing work only): Loxon Concrete and Masonry Primer.

D. Steel Substrates:

1. Institutional Low-Odor/VOC Latex System:
 a. Prime Coat: ProIndustrial Pro-Cryl Universal Primer.

E. Steel Substrates: Exposed Ceilings with Steel Structure.

1. Water-Based Dry-Fall System:
 a. Prime Coat: ProIndustrial Pro-Cryl Universal Primer.
 c. Topcoat: Low VOC Waterborne Acrylic Dryfall, Flat B42-W00081.

F. Steel Substrates: Exposed Ceilings with Steel Structure covered by spray applied fireproofing.

1. Water-Based Dry-Fall System:
 a. Prime Coat: ProIndustrial Pro-Cryl Universal Primer.
c. Topcoat: Low VOC Waterborne Acrylic Dryfall, Flat B42-W00081.

G. Galvanized-Metal Substrates:

1. Institutional Low-Odor/VOC Latex System:
 a. Prime Coat: ProIndustrial Pro-Cryl Universal Primer.

1. Institutional Low-Odor/VOC Latex System:
 c. Topcoat: Solo Latex, satin finish.

I. Gypsum Board and Plaster Substrates:

1. Institutional Low-Odor/VOC Latex System:

2. Epoxy System:
 c. Topcoat: ProIndustrial Pre-Catalyzed Water-Based Epoxy, eggshell finish.

END OF SECTION 09 91 23
SECTION 10 11 00 - VISUAL DISPLAY UNITS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Visual display board assemblies.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, finishes, and accessories for visual display units.
 2. Include electrical characteristics for motorized units.

B. Sustainable Design Submittals:
 1. Product Data: For installation adhesives, indicating VOC content.
 2. Laboratory Test Reports: For installation adhesives, indicating compliance with requirements for low-emitting materials.
 3. Laboratory Test Reports: For composite wood products, indicating compliance with requirements for low-emitting materials.

C. Shop Drawings: For visual display units.
 1. Include plans, elevations, sections, details, and attachment to other work.
 2. Show locations of panel joints
 3. Show locations and layout of special-purpose graphics.
 4. Include sections of typical trim members.

D. Samples: For each type of visual display unit indicated.
 1. Visual Display Panel: Not less than 8-1/2 by 11 inches, with facing, core, and backing indicated for final Work. Include one panel for each type, color, and texture required.
 2. Trim: 6-inch-long sections of each trim profile.
 3. Display Rail: 6-inch-long section of each type.
 4. Accessories: Full-size Sample of each type of accessory.

E. Product Schedule: For visual display units. Use same designations indicated on Drawings.

1.3 INFORMATIONAL SUBMITTALS

A. Sample warranties.
1.4 CLOSEOUT SUBMITTALS
 A. Maintenance data.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Deliver factory-fabricated visual display units completely assembled in one piece. If dimensions exceed maximum manufactured unit size, or if unit size is impracticable to ship in one piece, provide two or more pieces with joints in locations indicated on approved Shop Drawings.

1.6 FIELD CONDITIONS
 A. Environmental Limitations: Do not deliver or install visual display units until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, work above ceilings is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.7 WARRANTY
 A. Special Warranty for Porcelain-Enamel Face Sheets: Manufacturer agrees to repair or replace porcelain-enamel face sheets that fail in materials or workmanship within specified warranty period.

 1. Failures include, but are not limited to, the following:
 a. Surfaces lose original writing and erasing qualities.
 b. Surfaces exhibit crazing, cracking, or flaking.

 2. Warranty Period: 50 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 VISUAL DISPLAY BOARD ASSEMBLY MB-1
 A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 1. Claridge Products and Equipment, Inc.
 2. Egan Visual Inc.

 B. Visual Display Board Assembly: Factory fabricated.

 1. Assembly: Markerboard.
 2. Corners: Square.
 3. Width: 72 inches.
 4. Height: 48 inches.
5. Mounting Method: Direct to wall.

C. Markerboard Panel: Porcelain-enamel-faced markerboard panel on core indicated.

D. Aluminum Frames and Trim: Fabricated from not less than 0.062-inch-thick, extruded aluminum; standard size and shape.
 1. Aluminum Finish: Clear anodic finish.

E. Chalktray: Manufacturer's standard; continuous.
 1. Solid Type: Extruded aluminum with ribbed section and smoothly curved exposed ends.

2.2 MARKERBOARD PANELS

A. Porcelain-Enamel Markerboard Panels: Balanced, high-pressure, factory-laminated markerboard assembly of three-ply construction, consisting of moisture-barrier backing, core material, and porcelain-enamel face sheet with low-gloss finish. Laminate panels under heat and pressure with manufacturer's standard, flexible waterproof adhesive.
 1. Manufacturer's Standard Core: Minimum 1/4 inch thick, with manufacturer's standard moisture-barrier backing.
 2. Laminating Adhesive: Manufacturer's standard moisture-resistant thermoplastic type.

2.3 MATERIALS

A. Porcelain-Enamel Face Sheet: PEI-1002, with face sheet manufacturer's standard two- or three-coat process.

B. Composite Wood Products: Products shall be made using ultra-low-emitting formaldehyde resins as defined in the California Air Resources Board's "Airborne Toxic Control Measure to Reduce Formaldehyde Emissions from Composite Wood Products" or shall be made with no added formaldehyde.

C. Hardboard: ANSI A135.4, tempered.

D. Particleboard: ANSI A208.1, Grade M-1.

E. MDF: ANSI A208.2, Grade 130.

F. Fiberboard: ASTM C 208 cellulosic fiber insulating board.

G. Extruded Aluminum: ASTM B 221, Alloy 6063.

H. Adhesives for Field Application: Mildew-resistant, nonstaining adhesive for use with specific type of panels, sheets, or assemblies; and for substrate application; as recommended in writing by visual display unit manufacturer.
2.4 GENERAL FINISH REQUIREMENTS

A. Comply with NAAMM/NOMMA 500 for recommendations for applying and designating finishes.

B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

C. Appearance of Finished Work: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.5 ALUMINUM FINISHES

A. Clear Anodic Finish: AAMA 611, AA-M12C22A31, Class II, 0.010 mm or thicker.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances, surface conditions of wall, and other conditions affecting performance of the Work.

B. Examine roughing-in for electrical power systems to verify actual locations of connections before installation of motorized, sliding visual display units.

C. Examine walls and partitions for proper preparation and backing for visual display units.

D. Examine walls and partitions for suitable framing depth where sliding visual display units will be installed.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Comply with manufacturer's written instructions for surface preparation.

B. Clean substrates of substances, such as dirt, mold, and mildew, that could impair the performance of and affect the smooth, finished surfaces of visual display boards.
3.3 INSTALLATION

A. General: Install visual display surfaces in locations and at mounting heights indicated on Drawings, or if not indicated, at heights indicated below. Keep perimeter lines straight, level, and plumb. Provide grounds, clips, backing materials, adhesives, brackets, anchors, trim, and accessories necessary for complete installation.

B. Field-Assembled Visual Display Board Assemblies: Coordinate field-assembled units with grounds, trim, and accessories indicated. Join parts with a neat, precision fit.
 1. Make joints only where total length exceeds maximum manufactured length. Fabricate with minimum number of joints, balanced around center of board, as acceptable to Architect and as indicated on approved Shop Drawings.
 2. Where size of visual display board assemblies or other conditions require support in addition to normal trim, provide structural supports or modify trim as indicated or as selected by Architect from manufacturer's standard structural support accessories to suit conditions indicated.

C. Factory-Fabricated Visual Display Board Assemblies: Attach concealed clips, hangers, and grounds to wall surfaces and to visual display board assemblies with fasteners at not more than 16 inches o.c. Secure tops and bottoms of boards to walls.

3.4 CLEANING AND PROTECTION

A. Clean visual display units in accordance with manufacturer's written instructions. Attach one removable cleaning instructions label to visual display unit in each room.

B. Touch up factory-applied finishes to restore damaged or soiled areas.

C. Cover and protect visual display units after installation and cleaning.

END OF SECTION 10 11 00
SECTION 10 14 25 - ROOM-IDENTIFICATION PANEL SIGNAGE

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes room-identification signs that are directly attached to the building.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Sustainable Design Submittals:
 1. Product Data: For adhesives, indicating VOC content.
 2. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials.
C. Shop Drawings: For room-identification signs.
 1. Include fabrication and installation details and attachments to other work.
 2. Show sign mounting heights, locations of supplementary supports to be provided by other installers, and accessories.
 3. Show message list, typestyles, graphic elements, including raised characters and Braille, and layout for each sign at least half size.
D. Samples: For each exposed product and for each color and texture specified.

1.3 INFORMATIONAL SUBMITTALS
A. Sample warranty.

1.4 CLOSEOUT SUBMITTALS
A. Maintenance data.

1.5 WARRANTY
A. Special Warranty: Manufacturer agrees to repair or replace components of signs that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Five years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Accessibility Standard: Comply with applicable provisions in the USDOJ's "2010 ADA Standards for Accessible Design" the ABA standards of the Federal agency having jurisdiction and ICC A117.1.

2.2 ROOM-IDENTIFICATION SIGNS

A. Room-Identification Sign: Sign system with smooth, uniform surfaces; with message and characters having uniform faces, sharp corners, and precisely formed lines and profiles; and as follows:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. ACE Sign Systems, Inc.
 b. APCO Graphics, Inc.
 c. ASI Sign Systems, Inc.
 d. Inpro Corporation.

2. Laminated-Sheet Sign: Photopolymer face sheet with raised graphics laminated over subsurface graphics to acrylic backing sheet to produce composite sheet.
 a. Composite-Sheet Thickness: Manufacturer's standard for size of sign.
 c. Color(s): As selected by Architect from manufacturer's full range.

 a. Edge Condition at Vertical Edges at Horizontal Edges: Square cut.
 b. Corner Condition in Elevation: As indicated on Drawings.

4. Mounting: Manufacturer's standard method for substrates indicated with concealed anchors or countersunk flathead through fasteners.

2.3 SIGN MATERIALS

A. Acrylic Sheet: ASTM D4802, category as standard with manufacturer for each sign, Type UVF (UV filtering).

B. Vinyl Film: UV-resistant vinyl film with pressure-sensitive, permanent adhesive; die cut to form characters or images as indicated on Drawings and suitable for exterior applications.
2.4 ACCESSORIES

A. Fasteners and Anchors: Manufacturer's standard as required for secure anchorage of signs, noncorrosive and compatible with each material joined, and complying with the following:

1. Use concealed fasteners and anchors unless indicated to be exposed.
2. For exterior exposure, furnish stainless-steel devices unless otherwise indicated.
3. Exposed Metal-Fastener Components, General:
 a. Fabricated from same basic metal and finish of fastened sign unless otherwise indicated.

4. Sign Mounting Fasteners:
 a. Concealed Studs: Concealed (blind), threaded studs welded or brazed to back of sign material or screwed into back of sign assembly unless otherwise indicated.
 b. Through Fasteners: Exposed metal fasteners matching sign finish, with type of head indicated, and installed in predrilled holes.

B. Adhesive: As recommended by sign manufacturer.

1. Verify adhesives have a VOC content of 70 g/L or less.
2. Verify adhesive complies with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

C. Two-Face Tape: Manufacturer's standard high-bond, foam-core tape, 0.045 inch thick, with adhesive on both sides.

2.5 FABRICATION

A. General: Provide manufacturer's standard sign assemblies according to requirements indicated.

1. Mill joints to a tight, hairline fit. Form assemblies and joints exposed to weather to resist water penetration and retention.
2. Conceal connections if possible; otherwise, locate connections where they are inconspicuous.
3. Provide rabbets, lugs, and tabs necessary to assemble components and to attach to existing work. Drill and tap for required fasteners. Use concealed fasteners where possible; use exposed fasteners that match sign finish.

B. Subsurface-Applied Graphics: Apply graphics to back face of clear face-sheet material to produce precisely formed image. Image shall be free of rough edges.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General: Install signs using mounting methods indicated and according to manufacturer's written instructions.

1. Install signs level, plumb, true to line, and at locations and heights indicated, with sign surfaces free of distortion and other defects in appearance.
2. Install signs so they do not protrude or obstruct according to the accessibility standard.
3. Before installation, verify that sign surfaces are clean and free of materials or debris that would impair installation.

B. Mounting Methods:

1. Concealed Studs: Using a template, drill holes in substrate aligning with studs on back of sign. Remove loose debris from hole and substrate surface.
 a. Masonry Substrates: Fill holes with adhesive. Leave recess space in hole for displaced adhesive. Place sign in position and push until flush to surface, embedding studs in holes. Temporarily support sign in position until adhesive fully sets.
 b. Thin or Hollow Surfaces: Place sign in position and flush to surface, install washers and nuts on studs projecting through opposite side of surface, and tighten.

2. Through Fasteners: Drill holes in substrate using predrilled holes in sign as template. Countersink holes in sign if required. Place sign in position and flush to surface. Install through fasteners and tighten.

3. Adhesive: Clean bond-breaking materials from substrate surface and remove loose debris. Apply linear beads or spots of adhesive symmetrically to back of sign and of suitable quantity to support weight of sign after cure without slippage. Keep adhesive away from edges to prevent adhesive extrusion as sign is applied and to prevent visibility of cured adhesive at sign edges. Place sign in position, and push to engage adhesive. Temporarily support sign in position until adhesive fully sets.

4. Two-Face Tape: Clean bond-breaking materials from substrate surface and remove loose debris. Apply tape strips symmetrically to back of sign and of suitable quantity to support weight of sign without slippage. Keep strips away from edges to prevent visibility at sign edges. Place sign in position, and push to engage tape adhesive.

END OF SECTION 10 14 25
SECTION 10 22 39 - FOLDING PANEL PARTITIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Manually operated, acoustical panel partitions.
 B. Related Requirements:
 1. Division 05 Section "Structural Steel Framing" for overhead structural system supporting the folding panel partitions.

1.3 DEFINITIONS
 A. NIC: Noise Isolation Class.
 B. NRC: Noise Reduction Coefficient.
 C. STC: Sound Transmission Class.

1.4 PREINSTALLATION MEETINGS
 A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Sustainable Design Submittals:
 1. Product Data: For recycled content, indicating postconsumer and preconsumer recycled content and cost.
 C. Shop Drawings: For operable panel partitions.
 1. Include plans, elevations, sections, attachment details.
2. Indicate stacking and operating clearances. Indicate location and installation requirements for hardware and track, blocking, and direction of travel.

D. Samples for Initial Selection: For each type of exposed material, finish, covering, or facing.
 1. Include Samples of accessories involving color selection.

E. Samples for Verification: For each type of exposed material, finish, covering, or facing, prepared on Samples of size indicated below:
 1. Textile Facing Material: Full width by not less than 36-inch-long section of fabric from dye lot to be used for the Work, with specified treatments applied. Show complete pattern repeat.
 2. Panel Edge Material: Not less than 3 inches long.
 3. Hardware: One of each exposed door-operating device.

F. Delegated-Design Submittal: For operable panel partitions.
 1. Include design calculations for seismic restraints that brace tracks to structure above.

1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Partition track, track supports and bracing, switches, turning space, and storage layout.
 2. Suspended ceiling components.
 3. Structural members to which suspension systems will be attached.
 4. Size and location of initial access modules for acoustical tile.
 5. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. HVAC ductwork, outlets, and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Smoke detectors.
 f. Access panels.
 6. Plenum acoustical barriers.

B. Setting Drawings: For embedded items and cutouts required in other work, including support-beam, mounting-hole template.

C. Qualification Data: For Installer and testing agency.

D. Seismic Qualification Certificates: For operable panel partitions, tracks, accessories, and components, from manufacturer. Include seismic capacity of partition assemblies to remain in vertical position during a seismic event and the following:
1. Basis for Certification: Indicate whether certification is based on analysis, testing, or experience data, according to ASCE/SEI 7.

2. Detailed description of partition anchorage devices on which the certification is based and their installation requirements.

E. Product Certificates: For each type of operable panel partition.
 1. Include approval letter signed by manufacturer acknowledging Owner-furnished panel facing material complies with requirements.

F. Product Test Reports: For each operable panel partition, for tests performed by a qualified testing agency.

G. Field quality-control reports.

H. Sample Warranty: For manufacturer's special warranty.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For operable panel partitions to include in maintenance manuals.
 1. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 a. Panel finish facings and finishes for exposed trim and accessories. Include precautions for cleaning materials and methods that could be detrimental to finishes and performance.
 b. Seals, hardware, track, track switches, carriers, and other operating components.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same production run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Panel Finish-Facing Material: Furnish full width in quantity to cover both sides of two panels when installed.

1.9 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

1.10 DELIVERY, STORAGE, AND HANDLING

A. Protectively package and sequence panels in order for installation. Clearly mark packages and panels with numbering system used on Shop Drawings. Do not use permanent markings on panels.
1.11 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of operable panel partitions that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Faulty operation of operable panel partitions.
 b. Deterioration of metals, metal finishes, and other materials beyond normal use.

2. Warranty Period: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Division 01 Section "Quality Requirements," to design seismic bracing of tracks to structure above.

B. Seismic Performance: Operable panel partitions shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the partition panels will remain in place without separation of any parts when subjected to the seismic forces specified."

C. Acoustical Performance: Provide operable panel partitions tested by a qualified testing agency for the following acoustical properties according to test methods indicated:

1. Sound-Transmission Requirements: Operable panel partition assembly tested for laboratory sound-transmission loss performance according to ASTM E90, determined by ASTM E413, and rated for not less than the STC indicated.

D. Fire-Test-Response Characteristics: Provide panels with finishes complying with one of the following as determined by testing identical products by a testing and inspecting agency acceptable to authorities having jurisdiction:

1. Surface-Burning Characteristics: Comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 a. Flame-Spread Index: 25 or less.
 b. Smoke-Developed Index: 450 or less.

2. Fire Growth Contribution: Complying with acceptance criteria of local code and authorities having jurisdiction when tested according to NFPA 265 Method B Protocol or NFPA 286.
2.2 OPERABLE ACOUSTICAL PANELS OPP-1

A. Operable Acoustical Panels: Partition system, including panels, seals, finish facing, suspension system, operators, and accessories.

 1. Basis-of-Design Product: Subject to compliance with requirements, provide Modernfold, Inc; Acousti-Seal Encore or a comparable product by one of the following:

 a. Hufcor, Inc.
 b. KWIK-WALL Company.

B. Panel Operation: Manually operated, paired panels.

C. Panel Construction: As required to support panel from suspension components and with reinforcement for hardware attachment. Fabricate panels with tight hairline joints and concealed fasteners. Fabricate panels so finished in-place partition is rigid; level; plumb; aligned, with tight joints and uniform appearance; and free of bow, warp, twist, deformation, and surface and finish irregularities.

D. Dimensions: Fabricate operable acoustical panel partitions to form an assembled system of dimensions indicated and verified by field measurements.

E. STC: Not less than 56.

F. Panel Weight: 12 lb/sq. ft. maximum.

G. Panel Thickness: Nominal dimension of 4 1/4 inches.

 1. Steel Frame: Steel sheet, manufacturer's standard nominal minimum thickness for uncoated steel.
 2. Steel Face/Liner Sheets: Tension-leveled steel sheet, manufacturer's standard minimum nominal thickness for uncoated steel.
 3. Gypsum Board: ASTM C1396/C1396M.

H. Panel Materials:

 1. Recycled Content: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.

I. Panel Closure: Manufacturer's standard unless otherwise indicated.

J. Hardware: Manufacturer's standard as required to operate operable panel partition and accessories; with decorative, protective finish.

 1. Hinges: Manufacturer's standard.
K. Finish Facing: Fabric wall covering.

2.3 SEALS

A. Description: Seals that produce operable panel partitions complying with performance requirements and the following:

1. Manufacturer's standard seals unless otherwise indicated.
2. Seals made from materials and in profiles that minimize sound leakage.
3. Seals fitting tight at contact surfaces and sealing continuously between adjacent panels and between operable panel partition perimeter and adjacent surfaces, when operable panel partition is extended and closed.

B. Vertical Seals: Deep-nesting, interlocking astragals mounted on each edge of panel, with continuous, resilient acoustical seal.

C. Horizontal Top Seals: Resilient, mechanical, retractable, constant-force-contact seal exerting uniform constant pressure on track when extended.

1. Automatically Operated for Acoustical Panels: Extension and retraction of top seal automatically operated by movement of partition.

D. Horizontal Bottom Seals: Resilient, mechanical, retractable, constant-force-contact seal exerting uniform constant pressure on floor when extended, ensuring horizontal and vertical sealing and resisting panel movement.

1. Automatically Operated for Acoustical Panels: Extension and retraction of bottom seal automatically operated by movement of partition, with operating range not less than 2 inches between retracted seal and floor finish.

2.4 PANEL FINISH FACINGS

A. Description: Finish facings for panels that comply with indicated fire-test-response characteristics and that are factory applied to operable panel partitions with appropriate backing, using mildew-resistant nonstaining adhesive as recommended by facing manufacturer's written instructions.

1. Apply facings free of air bubbles, wrinkles, blisters, and other defects, with edges tightly butted, and with invisible seams complying with Shop Drawings for location, and with no gaps or overlaps. Horizontal butted edges or seams are not permitted. Tightly secure and conceal raw and selvage edges of facing for finished appearance.
2. Where facings with directional or repeating patterns or directional weave are indicated, mark facing top and attach facing in same direction.
3. Match facing pattern 72 inches above finished floor.

B. Fabric Wall Covering: Manufacturer's standard fabric, from same dye lot, treated to resist stains.

1. Color/Pattern: As selected by Architect from manufacturer's full range.
2. Surface Treatment: Stain resistant.
C. Trimless Edges: Fabricate exposed panel edges so finish facing wraps uninterrupted around panel, covering edge and resulting in an installed partition with facing visible on vertical panel edges, without trim, for minimal sightlines at panel-to-panel joints.

2.5 SUSPENSION SYSTEMS

A. Tracks: Manufacturer’s standard #17 steel suspension system, with adjustable steel hanger rods for overhead support, designed for operation, size, and weight of operable panel partition indicated. Size track to support partition operation and storage without damage to suspension system, operable panel partitions, or adjacent construction. Limit track deflection to no more than 0.10 inch between bracket supports. Provide a continuous system of track sections and accessories to accommodate configuration and layout indicated for partition operation and storage.

1. Panel Guide: Aluminum guide on both sides of the track to facilitate straightening of the panels; finished with factory-applied, decorative, protective finish.
2. Head Closure Trim: As required for acoustical performance; with factory-applied, decorative, protective finish.

B. Carriers: Trolley system as required for configuration type, size, and weight of partition and for easy operation; with ball-bearing wheels.

C. Aluminum Finish: Mill finish or manufacturer's standard, factory-applied, decorative finish unless otherwise indicated.

D. Steel Finish: Manufacturer's standard, factory-applied, corrosion-resistant, protective coating unless otherwise indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine flooring, floor levelness, structural support, and opening, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of operable panel partitions.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install operable panel partitions and accessories after other finishing operations, including painting, have been completed in area of partition installation.

B. Install panels in numbered sequence indicated on Shop Drawings.

C. Broken, cracked, chipped, deformed, or unmatched panels are not acceptable.
D. Broken, cracked, deformed, or unmatched gasketing or gasketing with gaps at butted ends is not acceptable.

E. Light-Leakage Test: Illuminate one side of partition installation and observe vertical joints and top and bottom seals for voids. Adjust partitions for alignment and full closure of vertical joints and full closure along top and bottom seals. Perform test and make adjustments before NIC testing.

3.3 FIELD QUALITY CONTROL

A. NIC Testing: Engage a qualified testing agency to perform tests and inspections.

1. Testing Methodology: Perform testing of installed operable panel partition for noise isolation according to ASTM E336, determined by ASTM E413, and rated for not less than NIC indicated. Adjust and fit partitions to comply with NIC test method requirements.

B. An operable panel partition installation will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.4 ADJUSTING

A. Adjust operable panel partitions, hardware, and other moving parts to function smoothly, and lubricate as recommended by manufacturer.

B. Verify that safety devices are properly functioning.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain operable panel partitions.

END OF SECTION 10 22 39
SECTION 10 26 00 - WALL AND DOOR PROTECTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Corner guards.
2. Abuse-resistant wall coverings.

B. Related Sections include the following:

1. Division 08 Section "Door Hardware" for metal and plastic protective trim units, according to BHMA A156.6, used for armor, kick, mop, and push plates.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, impact strength, dimensions of individual components and profiles, and finishes.
2. Include fire ratings of units recessed in fire-rated walls and listings for door-protection items attached to fire-rated doors.

B. Sustainable Design Submittals:

1. Product Data: For adhesives, indicating VOC content.
2. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials.

C. Shop Drawings: For each type of wall and door protection showing locations and extent.

1. Include plans, elevations, sections, and attachment details. Show crashrail design and support spacing required to withstand structural loads.

D. Samples: For each exposed product and for each color and texture specified, 12 inches long.

1. Abuse-Resistant Wall Covering: 6 by 6 inches square.
1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of handrail.
B. Material Certificates: For each type of exposed plastic material.
C. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For each type of wall and door protection product to include in maintenance manuals.
 1. Include recommended methods and frequency of maintenance for maintaining best condition of plastic covers under anticipated traffic and use conditions. Include precautions against using cleaning materials and methods that may be detrimental to finishes and performance.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Corner-Guard Covers: Full-size plastic covers of maximum length equal to 2 percent of each type, color, and texture of cover installed, but no fewer than two, 48-inch-long units.
 2. Mounting and Accessory Components: Amounts proportional to the quantities of extra materials. Package mounting and accessory components with each extra material.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Store wall and door protection in original undamaged packages and containers inside well-ventilated area protected from weather, moisture, soiling, extreme temperatures, and humidity.
 1. Maintain room temperature within storage area at not less than 70 deg F during the period plastic materials are stored.
 2. Keep plastic materials out of direct sunlight.
 3. Store plastic wall- and door-protection components for a minimum of 72 hours, or until plastic material attains a minimum room temperature of 70 deg F.
 a. Store corner-guard covers in a vertical position.
 b. Store wall-guards in a horizontal position.

1.8 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of wall- and door-protection units that fail in materials or workmanship within specified warranty period.
1. Failures include, but are not limited to, the following:
 a. Structural failures including detachment of components from each other or from the substrates, delamination, and permanent deformation beyond normal use.
 b. Deterioration of metals, metal finishes, plastics, and other materials beyond normal use.

2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Source Limitations: Obtain wall- and door-protection products of each type from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS
 A. Surface Burning Characteristics: Comply with ASTM E84 or UL 723; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: 25 or less.
 2. Smoke-Developed Index: 450 or less.

2.3 CORNER GUARDS
 A. Not Used CG-1.
 B. Surface-Mounted, Plastic-Cover Corner Guards CG-2: Manufacturer's standard assembly consisting of snap-on, resilient plastic cover installed over retainer; including mounting hardware; fabricated with 90- or 135-degree turn to match wall condition.
 1. Basis-of-Design Product: Subject to compliance with requirements, provide Construction Specialties, Inc.; Acrovyn SSM-20N or a comparable product by another manufacturer, including, but not limited to one of the following:
 a. Inpro Corporation.
 b. Korogard Wall Protection Systems; a division of RJF International Corporation.
 2. Cover: Extruded rigid plastic, minimum 0.078-inch wall thickness; as follows:
 a. Profile: Nominal 2-inch-long leg and 1/4-inch corner radius.
 b. Height: 4 feet.
 c. Color and Texture: As selected by Architect from manufacturer's full range.
4. Top and Bottom Caps: Prefabricated, injection-molded plastic; color matching cover; field adjustable for close alignment with snap-on cover.

2.4 ABUSE-RESISTANT WALL COVERINGS

A. Abuse-Resistant Sheet Wall Covering WC-1: Fabricated from semirigid, plastic sheet wall-covering material.

1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by another manufacturer, including, but not limited to one of the following:
 a. Inpro Corporation.
 b. Korogard Wall Protection Systems; a division of RJF International Corporation.
 c. Nystrom, Inc.

2. Size: 48 by 96 inches for sheet.
3. Sheet Thickness: 0.090 inch.
4. Color and Texture: Manufacturer's standard texture; color as indicated.
5. Height: Wainscot as indicated.
6. Trim and Joint Moldings: Extruded rigid plastic that matches wall-covering color.

2.5 MATERIALS

A. Plastic Materials: Chemical- and stain-resistant, high-impact-resistant plastic with integral color throughout; extruded and sheet material as required, thickness as indicated.

B. Polycarbonate Plastic Sheet: ASTM D6098, S-PC01, Class 1 or Class 2, abrasion resistant; with a minimum impact-resistance rating of 15 ft.-lbf/in. of notch when tested according to ASTM D256, Test Method A.

C. Fasteners: Aluminum, nonmagnetic stainless-steel, or other noncorrosive metal screws, bolts, and other fasteners compatible with items being fastened. Use security-type fasteners where exposed to view.

D. Adhesive: As recommended by protection product manufacturer.

1. Adhesives shall have a VOC content of 70 g/L or less.
2. Adhesive shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
2.6 FABRICATION

A. Fabricate wall and door protection according to requirements indicated for design, performance, dimensions, and member sizes, including thicknesses of components.

B. Factory Assembly: Assemble components in factory to greatest extent possible to minimize field assembly. Disassemble only as necessary for shipping and handling.

C. Quality: Fabricate components with uniformly tight seams and joints and with exposed edges rolled. Provide surfaces free of wrinkles, chips, dents, uneven coloration, and other imperfections. Fabricate members and fittings to produce flush, smooth, and rigid hairline joints.

2.7 FINISHES

A. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and wall areas, with Installer present, for compliance with requirements for installation tolerances, fire rating, and other conditions affecting performance of the Work.

B. Examine walls to which wall and door protection will be attached for blocking, grounds, and other solid backing that have been installed in the locations required for secure attachment of support fasteners.

1. For wall and door protection attached with adhesive, verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Complete finishing operations, including painting, before installing wall and door protection.

B. Before installation, clean substrate to remove dust, debris, and loose particles.
3.3 INSTALLATION

A. Installation Quality: Install wall and door protection according to manufacturer's written instructions, level, plumb, and true to line without distortions. Do not use materials with chips, cracks, voids, stains, or other defects that might be visible in the finished Work.

B. Mounting Heights: Install wall and door protection in locations and at mounting heights indicated on Drawings.

C. Accessories: Provide splices, mounting hardware, anchors, trim, joint moldings, and other accessories required for a complete installation.
 1. Provide anchoring devices and suitable locations to withstand imposed loads.
 2. Where splices occur in horizontal runs of more than 20 feet, splice aluminum retainers and plastic covers at different locations along the run, but no closer than 12 inches apart.
 3. Adjust end and top caps as required to ensure tight seams.

D. Abuse-Resistant Wall Covering: Install top and edge moldings, corners, and divider bars as required for a complete installation.

3.4 CLEANING

A. Immediately after completion of installation, clean plastic covers and accessories using a standard ammonia-based household cleaning agent.

B. Remove excess adhesive using methods and materials recommended in writing by manufacturer.

END OF SECTION 10 26 00
SECTION 10 28 00 - TOILET, BATH, AND LAUNDRY ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Public-use washroom accessories.
 2. See Specification Section 224223 - Commercial Showers for accessories specified with shower.
 3. Private-use bathroom accessories.
 4. Underlavatory guards.

1.3 COORDINATION

A. Coordinate accessory locations with other work to prevent interference with clearances required for access by people with disabilities, and for proper installation, adjustment, operation, cleaning, and servicing of accessories.

B. Deliver inserts and anchoring devices set into concrete or masonry as required to prevent delaying the Work.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 2. Include anchoring and mounting requirements, including requirements for cutouts in other work and substrate preparation.
 3. Include electrical characteristics.

B. Samples: Full size, for each exposed product and for each finish specified.
 1. Approved full-size Samples will be returned and may be used in the Work.

C. Product Schedule: Indicating types, quantities, sizes, and installation locations by room of each accessory required.
 1. Identify locations using room designations indicated.
2. Identify accessories using designations indicated.

1.5 INFORMATIONAL SUBMITTALS

A. Sample Warranty: For manufacturer's special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For accessories to include in maintenance manuals.

1.7 WARRANTY

A. Manufacturer's Special Warranty for Mirrors: Manufacturer agrees to repair or replace mirrors that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, visible silver spoilage defects.
2. Warranty Period: 15 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 PUBLIC-USE WASHROOM ACCESSORIES

A. Source Limitations: Obtain public-use washroom accessories from single source from single manufacturer.

Toilet Tissue (Jumbo-Roll) Dispenser TA-1A:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-2890 or a comparable product by one of the following:
 a. AJW Architectural Products.
 b. American Specialties, Inc.
 c. Bradley Corporation.

2. Description: One-roll unit.
5. Material and Finish: Stainless steel, No. 4 finish (satin).
7. Refill Indicator: Pierced slots at front.
Combination Towel (Folded) Dispenser/Waste Receptacle TA-2A:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-3944 or a comparable product by one of the following:
 a. AJW Architectural Products.
 b. American Specialties, Inc.
 c. Bradley Corporation.

2. Description: Combination unit for dispensing C-fold or multifold towels, with removable waste receptacle.

 a. Designed for nominal 4-inch wall depth.

4. Minimum Towel-Dispenser Capacity: 600 C-fold or 800 multifold paper towels.
7. Lockset: Tumbler type for towel-dispenser compartment and waste receptacle.

D. Liquid-Soap Dispenser TA-3:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-40 or a comparable product by one of the following:
 a. AJW Architectural Products.
 b. American Specialties, Inc.
 c. Bradley Corporation.

2. Description: Designed for dispensing soap in liquid or lotion form.
5. Materials: Grey, high-impact-resistant ABS valve, wall bracket and lid; black, translucent ABS container.

Grab Bar TA-4A, TA-4B, TA-4C, TA-4D, TA-4E:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-6806 or a comparable product by one of the following:
 a. AJW Architectural Products.
 b. American Specialties, Inc.
 c. Bradley Corporation.

3. Material: Stainless steel, 0.05 inch thick.
 a. Finish: Smooth, No. 4 finish (satin) on ends and slip-resistant texture in grip area.
5. Configuration: Straight
6. Length as follows:
 a. TA-04A: 42 inches long.
 b. TA-04B: 36 inches long.
 c. TA-04C: 18 inches long, mounted vertically.
 d. TA-04D: 30 inches long.
 e. TA-04E: 48 inches long.

F. Vendor TA-5:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-370634 or a comparable product by one of the following:
 a. AJW Architectural Products.
 b. American Specialties, Inc.
 c. Bradley Corporation.

2. Type: Sanitary napkin and tampon.
5. Operation: Two coin (50 cents).
7. Lockset: Tumbler type with separate lock and key for coin box.

G. Sanitary-Napkin Disposal Unit TA-6:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-270 or a comparable product by one of the following:
 a. AJW Architectural Products.
 b. American Specialties, Inc.
 c. Bradley Corporation.

3. Door or Cover: Self-closing, disposal-opening cover.
5. Material and Finish: Stainless steel, No. 4 finish (satin).

H. Seat-Cover Dispenser TA-7:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-3013 or a comparable product by one of the following:
 a. AJW Architectural Products.
 b. American Specialties, Inc.
 c. Bradley Corporation.

5. Lockset: Tumbler type.
I. Shelf TA-8:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-295 or a comparable product by one of the following:
 a. AJW Architectural Products.
 b. American Specialties, Inc.
 c. Bradley Corporation.

2. Description: With exposed edges turned down not less than 1/2 inch and supported by two triangular brackets welded to shelf underside.
3. Size: 18 inches long by 5 inches deep.
4. Material and Finish: Not less than nominal 0.05-inch-thick stainless steel, No. 4 finish (satin).

J. Mirror Unit TA-9:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-166 or a comparable product by one of the following:
 a. AJW Architectural Products.
 b. American Specialties, Inc.
 c. Bradley Corporation.

2. Frame: Stainless-steel channel.
 a. Corners: Mitered and mechanically interlocked.

3. Integral Shelf: 5 inches deep.
 a. One-piece, galvanized-steel, wall-hanger device with spring-action locking mechanism to hold mirror unit in position with no exposed screws or bolts.
 b. Wall bracket of galvanized steel, equipped with concealed locking devices requiring a special tool to remove.

5. Size: 24 by 36 inches.

K. Coat Hook TA-10:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Bobrick Washroom Equipment, Inc; B-6727 or a comparable product by one of the following:
 a. AJW Architectural Products.
 b. American Specialties, Inc.
 c. Bradley Corporation.

2. Description: Double-prong unit.
4. Install (2) coat hooks per TA-10: (1) at 46”AFF, (1) at 60”AFF.
2.3 UNDERLAVATORY GUARDS

A. Underlavatory Guard **TA-16**:

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to the following:

a. Plumberex Specialty Products, Inc.; **PRO-EXTREME**.

2. **Description:** Insulating pipe covering for supply and drain piping assemblies that prevents direct contact with and burns from piping; allow service access without removing coverings.

3. **Material and Finish:** Antimicrobial, molded plastic, white.

2.4 MATERIALS

A. Stainless Steel: ASTM A666, Type 304, 0.031-inch minimum nominal thickness unless otherwise indicated.

B. Steel Sheet: ASTM A1008/A1008M, Designation CS (cold rolled, commercial steel), 0.036-inch minimum nominal thickness.

C. Galvanized-Steel Sheet: ASTM A653/A653M, with G60 hot-dip zinc coating.

E. Fasteners: Screws, bolts, and other devices of same material as accessory unit and tamper-and-theft resistant where exposed, and of galvanized steel where concealed.

F. Chrome Plating: ASTM B456, Service Condition Number SC 2 (moderate service).

G. Mirrors: ASTM C1503, Mirror Glazing Quality, clear-glass mirrors, nominal 6.0 mm thick.

2.5 FABRICATION

A. **General:** Fabricate units with tight seams and joints, and exposed edges rolled. Hang doors and access panels with full-length, continuous hinges. Equip units for concealed anchorage and with corrosion-resistant backing plates.

B. **Keys:** Provide universal keys for internal access to accessories for servicing and resupplying. Provide minimum of ten keys to Owner's representative.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install accessories according to manufacturers' written instructions, using fasteners appropriate to substrate indicated and recommended by unit manufacturer. Install units level, plumb, and firmly anchored in locations and at heights indicated.

B. Grab Bars: Install to withstand a downward load of at least 250 lbf, when tested according to ASTM F446.

3.2 ADJUSTING AND CLEANING

A. Adjust accessories for unencumbered, smooth operation. Replace damaged or defective items.

B. Remove temporary labels and protective coatings.

C. Clean and polish exposed surfaces according to manufacturer's written instructions.

END OF SECTION 10 28 00
SECTION 10 44 13 - FIRE PROTECTION CABINETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Fire-protection cabinets for the following:
 a. Portable fire extinguisher.
 B. Related Sections include the following:
 1. Section 10 44 16 "Fire Extinguishers" for portable, hand-carried fire extinguishers accommodated by fire-protection cabinets

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Show door hardware, cabinet type, trim style, and panel style. Include roughing-in dimensions and details showing recessed-, semirecessed-, or surface-mounting method and relationships of box and trim to surrounding construction.
 C. Shop Drawings: For fire-protection cabinets.
 D. Samples: For each type of exposed finish required.
 E. Product Schedule: For fire-protection cabinets. Indicate whether recessed, semirecessed, or surface mounted. Coordinate final fire-protection cabinet schedule with fire-extinguisher schedule to ensure proper fit and function. Use same designations indicated on Drawings.

1.4 CLOSEOUT SUBMITTALS
 A. Maintenance data.

1.5 COORDINATION
 A. Coordinate size of fire-protection cabinets to ensure that type and capacity of fire extinguishers indicated are accommodated.
B. Coordinate sizes and locations of fire-protection cabinets with wall depths.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain fire-protection cabinets, accessories, and fire extinguishers from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Fire-Rated Fire-Protection Cabinets: Listed and labeled to comply with requirements in ASTM E 814 for fire-resistance rating of walls where they are installed.

2.3 FIRE-PROTECTION CABINET FEC-1

A. Cabinet Type: Suitable for fire extinguisher.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Babcock-Davis.
 b. Larsens Manufacturing Company.
 c. Potter Roemer LLC.

B. Cabinet Construction: Nonrated.

C. Cabinet Material: Cold-rolled steel sheet.

D. Semirecessed Cabinet: One-piece combination trim and perimeter door frame overlapping surrounding wall surface, with exposed trim face and wall return at outer edge (backbend).

 1. Rolled-Edge Trim: 3-1/2-inch backbend depth.

E. Cabinet Trim Material: Same material and finish as door.

F. Door Material: Steel sheet.

G. Door Style: Vertical duo panel with frame.

H. Door Glazing: Acrylic sheet.

 1. Acrylic Sheet Color: Clear transparent acrylic sheet.

I. Door Hardware: Manufacturer's standard door-operating hardware of proper type for cabinet type, trim style, and door material and style indicated.

J. Accessories:
1. Mounting Bracket: Manufacturer's standard steel, designed to secure fire extinguisher to fire-protection cabinet, of sizes required for types and capacities of fire extinguishers indicated, with plated or baked-enamel finish.

2. Lettered Door Handle: One-piece, cast-iron door handle with the word "FIRE" embossed into face.

3. Door Lock: Cam lock that allows door to be opened during emergency by pulling sharply on door handle.

4. Identification: Lettering complying with authorities having jurisdiction for letter style, size, spacing, and location. Locate as indicated.
 a. Identify fire extinguisher in fire-protection cabinet with the words "FIRE EXTINGUISHER."
 1) Location: Applied to cabinet door.
 3) Lettering Color: Red.
 4) Orientation: Vertical.

K. Materials:
 1. Cold-Rolled Steel: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B.
 a. Finish: Baked enamel, TGIC polyester powder coat, HAA polyester powder coat, epoxy powder coat, or polyester/epoxy hybrid powder coat, complying with AAMA 2603.
 b. Color: As selected by Architect from manufacturer's full range.

2.4 FABRICATION

A. Fire-Protection Cabinets: Provide manufacturer's standard box (tub) with trim, frame, door, and hardware to suit cabinet type, trim style, and door style indicated.
 1. Weld joints and grind smooth.
 2. Miter corners and grind smooth.
 3. Provide factory-drilled mounting holes.
 4. Prepare doors and frames to receive locks.

B. Cabinet Doors: Fabricate doors according to manufacturer's standards, from materials indicated and coordinated with cabinet types and trim styles.
 1. Fabricate door frames with tubular stiles and rails and hollow-metal design, minimum 1/2 inch thick.
 2. Fabricate door frames of one-piece construction with edges flanged.
 3. Miter and weld perimeter door frames and grind smooth.

C. Cabinet Trim: Fabricate cabinet trim in one piece with corners mitered, welded, and ground smooth.
2.5 GENERAL FINISH REQUIREMENTS

B. Protect mechanical finishes on exposed surfaces of fire-protection cabinets from damage by applying a strippable, temporary protective covering before shipping.

C. Finish fire-protection cabinets after assembly.

D. Appearance of Finished Work: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine walls and partitions for suitable framing depth and blocking where recessed and semirecessed cabinets will be installed.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Prepare recesses for recessed and semirecessed fire-protection cabinets as required by type and size of cabinet and trim style.

3.3 INSTALLATION

A. General: Install fire-protection cabinets in locations and at mounting heights indicated or, if not indicated, at height indicated below:

1. Fire-Protection Cabinets: 48 inches above finished floor to top of fire extinguisher.

B. Fire-Protection Cabinets: Fasten cabinets to structure, square and plumb.

1. Unless otherwise indicated, provide recessed fire-protection cabinets. If wall thickness is inadequate for recessed cabinets, provide semirecessed fire-protection cabinets.

2. Provide inside latch and lock for break-glass panels.

3. Fasten mounting brackets to inside surface of fire-protection cabinets, square and plumb.

3.4 ADJUSTING AND CLEANING

A. Remove temporary protective coverings and strippable films, if any, as fire-protection cabinets are installed unless otherwise indicated in manufacturer's written installation instructions.
B. Adjust fire-protection cabinet doors to operate easily without binding. Verify that integral locking devices operate properly.

C. On completion of fire-protection cabinet installation, clean interior and exterior surfaces as recommended by manufacturer.

D. Touch up marred finishes, or replace fire-protection cabinets that cannot be restored to factory-finished appearance. Use only materials and procedures recommended or furnished by fire-protection cabinet and mounting bracket manufacturers.

E. Replace fire-protection cabinets that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 10 44 13
SECTION 10 44 16 - FIRE EXTINGUISHERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes portable, hand-carried fire extinguishers and mounting brackets for fire extinguishers.

B. Related Sections include the following:

1. Section 10 44 13 "Fire Protection Cabinets."

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include rating and classification, material descriptions, dimensions of individual components and profiles, and finishes for fire extinguisher and mounting brackets.

B. Product Schedule: For fire extinguishers. Coordinate final fire-extinguisher schedule with fire-protection cabinet schedule to ensure proper fit and function. Use same designations indicated on Drawings.

1.4 INFORMATIONAL SUBMITTALS

A. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 COORDINATION

A. Coordinate type and capacity of fire extinguishers with fire-protection cabinets to ensure fit and function.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. NFPA Compliance: Fabricate and label fire extinguishers to comply with NFPA 10, "Portable Fire Extinguishers."

B. Fire Extinguishers: Listed and labeled for type, rating, and classification by an independent testing agency acceptable to authorities having jurisdiction.

2.2 PORTABLE, HAND-CARRIED FIRE EXTINGUISHERS

A. Fire Extinguishers: Type, size, and capacity for each fire-protection cabinet and mounting bracket indicated.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Babcock-Davis.
 b. Larsens Manufacturing Company.
 c. Potter Roemer LLC.

2. Source Limitations: Obtain fire extinguishers, fire-protection cabinets, and accessories, from single source from single manufacturer.

3. Instruction Labels: Include pictorial marking system complying with NFPA 10, Appendix B, and bar coding for documenting fire-extinguisher location, inspections, maintenance, and recharging.

B. Multipurpose Dry-Chemical Type in Steel Container FE-1: UL-rated 4-A:80-B:C, 10-lb nominal capacity, with monoammonium phosphate-based dry chemical in enameled-steel container.

2.3 MOUNTING BRACKETS

A. Mounting Brackets: Manufacturer's standard steel, designed to secure fire extinguisher to wall or structure, of sizes required for types and capacities of fire extinguishers indicated, with plated or red baked-enamel finish.

B. Identification: Lettering complying with authorities having jurisdiction for letter style, size, spacing, and location. Locate as indicated by Architect.

1. Identify bracket-mounted fire extinguishers with the words "FIRE EXTINGUISHER" in red letter decals applied to mounting surface.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine fire extinguishers for proper charging and tagging.
 1. Remove and replace damaged, defective, or undercharged fire extinguishers.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. General: Install fire extinguishers and mounting brackets in locations indicated and in compliance with requirements of authorities having jurisdiction.
 1. Mounting Brackets: Top of fire extinguisher to be at 48 inches above finished floor.
B. Mounting Brackets: Fasten mounting brackets to surfaces, square and plumb, at locations indicated.

END OF SECTION 10 44 16
SECTION 10 51 13 - METAL FIREARMS LOCKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Welded firearms lockers.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type of metal locker and bench.

B. Sustainable Design Submittals:
 1. Product Data: For recycled content, indicating postconsumer and preconsumer recycled content and cost.
 2. Environmental Product Declaration: For each product.
 3. Health Product Declaration: For each product.
 4. Sourcing of Raw Materials: Corporate sustainability report for each manufacturer.

C. Shop Drawings: For metal lockers.
 1. Include plans, elevations, sections, and attachment details.
 2. Show locker trim and accessories.
 3. Include locker identification system and numbering sequence.

D. Samples: For each color specified.

E. Product Schedule: For lockers. Use same designations indicated on Drawings.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Installer.
B. Sample Warranty: For special warranty.
1.5 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For adjusting, repairing, and replacing locker doors and latching mechanisms to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. The following metal locker hardware items equal to 10 percent of amount installed for each type and finish installed, but no fewer than five units:
 a. Locks.
 b. Blank identification plates.
 c. Hooks.

1.7 DELIVERY, STORAGE, AND HANDLING
 A. Do not deliver metal lockers until spaces to receive them are clean, dry, and ready for their installation.
 B. Deliver master and control keys, and combination control charts to Owner by registered mail or overnight package service.

1.8 FIELD CONDITIONS
 A. Field Measurements: Verify actual dimensions of recessed openings by field measurements before fabrication.

1.9 COORDINATION
 A. Coordinate sizes and locations of framing, blocking, furring, reinforcements, and other related units of work specified in other Sections to ensure that metal lockers can be supported and installed as indicated.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Source Limitations: Obtain metal lockers, locker benches, and accessories from single source from single locker manufacturer.
 1. Obtain locks from single lock manufacturer.
 B. Basis-of-Design Product: Subject to compliance with requirements, provide products manufactured by Tiffin Metal Products Co., or comparable products by one of the following:
2.2 PERFORMANCE REQUIREMENTS

A. Accessibility Standard: For lockers indicated to be accessible, comply with applicable provisions in the USDOJ’s "2010 ADA Standards for Accessible Design" and ICC A117.1.

2.3 WELDED FIREARM LOCKERS LF-1

B. Configuration: As indicated on drawings.

C. Doors: One piece; fabricated from 0.18-inch nominal-thickness steel sheet; formed into channel shape with double bend at vertical edges and with right-angle single bend at horizontal edges.

1. Reinforcement: Manufacturer's standard reinforcing angles, channels, or stiffeners for doors more than 15 inches wide; welded to inner face of doors.
2. Door Style: Fold down, unperforated panel.

D. Body: Assembled by welding body components together. Fabricate from unperforated steel sheet with thicknesses as follows:

1. Tops, Bottoms, and Sides: 0.075-inch nominal thickness.
 a. Felt-lined bottom.
2. Backs: 0.075-inch nominal thickness.

E. Frames: Channel formed; fabricated from 0.075-inch nominal-thickness steel sheet; lapped and factory welded at corners; with top and bottom main frames factory welded into vertical main frames. Form continuous, integral, full-height door strikes on vertical main frames.

F. Hinges:

1. Hinges: Manufacturer's standard, steel, continuous type.

G. Locks/Latch: Key operated.

H. Identification Plates: Manufacturer's standard, etched, embossed, or stamped aluminum plates, with numbers and letters at least 3/8 inch high.

I. Materials:

1. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B, suitable for exposed applications.
2. Recycled Content: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.

J. Finish: Baked enamel or powder coat.

1. Color: As selected by Architect from manufacturer's full range.

2.4 LOCKS

A. Cylinder Lock: Built-in, flush, cam lock with five-pin tumbler keyway, keyed separately and master keyed. Furnish two change keys for each lock and two master keys.

1. Key Type: Manufacturer’s standard flat or grooved, with minimum 2- by 2.68-inch key head for accessible lockers.

2.5 FABRICATION

A. Fabricate metal lockers square, rigid, without warp, and with metal faces flat and free of dents or distortion. Make exposed metal edges safe to touch and free of sharp edges and burrs.

1. Form body panels, doors, shelves, and accessories from one-piece steel sheet unless otherwise indicated.
2. Provide fasteners, filler plates, supports, clips, and closures as required for complete installation.

B. Fabricate each metal locker with an individual door and frame; individual top, bottom, and back; and common intermediate uprights separating compartments.

C. Equipment: Provide each locker with an identification plate, shelves, hooks, lockable compartments as indicated.

D. Welded Construction: Factory preassemble metal lockers by welding all joints, seams, and connections; with no bolts, nuts, screws, or rivets used in assembly of main locker groups. Factory weld main locker groups into one-piece structures. Grind exposed welds smooth and flush.

E. Accessible Lockers: Fabricate as follows:

1. Locate bottom shelf no lower than 15 inches above the floor.
2. Where hooks, coat rods, or additional shelves are provided, locate no higher than 48 inches above the floor.

F. Recess Trim: Fabricated with minimum 2-1/2-inch face width and in lengths as long as practical; finished to match lockers.
2.6 ACCESSORIES

A. Fasteners: Zinc- or nickel-plated steel, slotless-type, exposed bolt heads; with self-locking nuts or lock washers for nuts on moving parts.

B. Anchors: Material, type, and size required for secure anchorage to each substrate.
 1. Provide nonferrous-metal or hot-dip galvanized anchors and inserts on inside face of exterior walls for corrosion resistance.
 2. Provide toothed-steel or lead expansion sleeves for drilled-in-place anchors.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine walls and floors or support bases, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install lockers level, plumb, and true; shim as required, using concealed shims.

B. Welded Lockers: Connect groups together with manufacturer's standard fasteners, with no exposed fasteners on face frames.

C. Equipment:
 1. Attach hooks with at least two fasteners.
 2. Attach door locks on doors using security-type fasteners.
 3. Identification Plates: Identify metal lockers with identification indicated on Drawings.
 a. Attach plates to each locker door, near top, centered, with at least two aluminum rivets.

D. Trim: Fit exposed connections of trim, fillers, and closures accurately together to form tight, hairline joints, with concealed fasteners and splice plates.
 1. Attach recess trim to recessed metal lockers with concealed clips.
 2. Attach filler panels with concealed fasteners.
3.3 ADJUSTING
 A. Clean, lubricate, and adjust hardware. Adjust doors and latches to operate easily without binding. Verify that integral locking devices operate properly.

3.4 PROTECTION
 A. Protect metal lockers from damage, abuse, dust, dirt, stain, or paint. Do not permit use during construction.
 B. Touch up marred finishes, or replace metal lockers that cannot be restored to factory-finished appearance. Use only materials and procedures recommended or furnished by locker manufacturer.

END OF SECTION 10 51 13
SECTION 10 51 23 - PLASTIC-LAMINATE-CLAD LOCKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Plastic-laminate-clad wood lockers.
 2. Locker benches.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type of locker and bench.

B. Sustainable Design Submittals:
 1. Product Data: For recycled content, indicating postconsumer and preconsumer recycled content and cost.
 2. Environmental Product Declaration (EPD): For each product.
 4. Chain-of-Custody Qualification Data: For manufacturer and vendor.
 5. Laboratory Test Reports: For composite wood products, indicating compliance with requirements for low-emitting materials.
 6. Product Data: For adhesives, indicating VOC content.
 7. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials.

C. Shop Drawings: For plastic-laminate-clad wood lockers.
 1. Include plans, elevations, sections, and attachment details.
 2. Show locations and sizes of furring, blocking, and hanging strips, including concealed blocking and reinforcement specified in other Sections.
 3. Show locations and sizes of cutouts and holes for items installed in lockers.
 4. Show locker fillers, trim, base, sloping tops, and accessories.
 5. Show locker identification system and numbering sequence.

D. Samples for Initial Selection: For each type of the following:
1. High-pressure decorative laminates.
2. Thermoset decorative overlay panels.
3. Carpet.

E. Samples for Verification: For the following products:

1. Plastic-laminate-clad panels, not less than 8 by 10 inches, for each type, color, pattern, and surface finish.
2. Thermoset decorative-overlay-surfaced panels, not less than 8 by 10 inches, for each type, color, pattern, and surface finish.
3. Corner pieces of locker front frame joints between stiles and rail, as well as exposed end pieces, not less than 18 inches wide by 18 inches high by 6 inches deep.
4. Exposed cabinet hardware and accessories, one unit for each type and finish.
5. Carpet, not less than 8 by 10 inches, for each type, color, and pattern.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For adjusting, repairing, and replacing locker doors and latching mechanisms to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Locker doors, complete with specified door hardware. Furnish no fewer than five doors of each type and color installed.
2. Units of the following locker hardware items equal to 10 percent of amount installed for each type and finish installed, but no fewer than five units:
 a. Hinges.
 b. Pulls.
 c. Shelf rests.
 d. Cylinder locks.
 e. Blank identification plates and holders.
 f. Hooks.

1.7 QUALITY ASSURANCE

A. Certified Wood: Provide an invoice including vendor's chain-of-custody number, product cost, and entity being invoiced.
B. **Vendor Qualifications:** A vendor that is certified for chain of custody by an FSC-accredited certification body.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Do not deliver lockers until painting and similar operations that could damage lockers have been completed in installation areas. If lockers must be stored in other-than-installation areas, store only in areas where environmental conditions are the same as those in final installation location, and comply with requirements specified in "Field Conditions" Article.

B. Deliver master and control keys to Owner by registered mail or overnight package service.

1.9 FIELD CONDITIONS

A. Environmental Limitations: Do not deliver or install lockers until building is enclosed, wet-work is complete, and HVAC system is operating and maintaining temperature between 60 and 90 deg F and relative humidity between 25 and 55 percent during the remainder of the construction period.

B. Field Measurements: Where lockers are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication, and indicate measurements on Shop Drawings.

1. Locate concealed framing, blocking, and reinforcements that support lockers by field measurements before being enclosed, and indicate measurements on Shop Drawings.

C. Established Dimensions: Where lockers are indicated to fit to other construction, establish dimensions for areas where lockers are to fit. Provide allowance for trimming at site, and coordinate construction to ensure that actual dimensions correspond to established dimensions.

1.10 COORDINATION

A. Coordinate sizes and locations of concealed wood support bases.

1. Requirements are specified in Section 061053 "Miscellaneous Rough Carpentry."

B. Coordinate sizes and locations of framing, blocking, furring, reinforcements, and other related units of work specified in other Sections to ensure that lockers can be supported and installed as indicated.

1.11 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of lockers that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:

 a. Structural failures.
b. Faulty operation of locks or hardware.

2. Warranty Period: Three years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Accessibility Standard: For lockers and locker benches indicated to be accessible, comply with applicable provisions in the USDOJ's "2010 ADA Standards for Accessible Design" and ICC A117.1.

2.2 PLASTIC-LAMINATE-CLAD WOOD LOCKERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Hollman, Inc.
2. Ideal Products, Inc.
3. List Industries Inc.

B. Certified Wood: Certify wood products as "FSC Pure" or "FSC Mixed Credit" in accordance with FSC STD-01-001 and FSC STD-40-004.

C. Construction Style: Manufacturer's standard.

D. Final Assembly: Manufacturer's standard factory assembly.

E. Locker Body: Fabricated from fire-retardant-particleboard-core panels covered on both sides with thermoset decorative overlay.

1. Side Panels: Manufacturer's standard 3/4 or 5/8 inch thick.
2. Back Panel: Manufacturer's standard 1/2 or 3/8 inch thick.
3. Top Panel: Manufacturer's standard 3/4 or 5/8 inch thick.
5. Exposed Panel Edges: 3-mm-thick PVC.

F. Plastic-Laminate-Clad Wood Doors: High-pressure decorative laminate, Grade VGS, over both sides of fire-retardant-particleboard core.

1. Thickness: Manufacturer's standard 3/4 or 5/8 inch thick.
2. Panel Edges: 3-mm-thick PVC.

G. End Panels: Match style, material, construction, and finish of plastic-laminate-clad wood doors.

H. Shelves: Fabricated from fire-retardant-particleboard-core panels covered on both sides with thermoset decorative overlay; fixed unless otherwise indicated.
1. Thickness: Manufacturer's standard 3/4 or 5/8 inch.
2. Exposed Edges: Thermoset decorative overlay to match panels.

I. Corners and Filler Panels: 3/4-inch-thick panels. Match style, material, construction, and finish of plastic-laminate-clad wood doors.

J. Continuous Finish Base: Plastic-laminate-clad, 3/4-inch-thick panel that matches door faces; fabricated in lengths as long as practical to enclose base and base ends of lockers.

K. Plastic-Laminate Colors, Patterns, and Finishes:
 1. As indicated on drawings by manufacturer's designations.

2.3 MATERIALS

A. Composite Wood: Provide materials that comply with requirements of referenced quality standard for each type of woodwork and quality grade specified unless otherwise indicated.
 1. **Recycled Content of MDF and Particleboard:** Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.
 2. **Composite Wood Products:** Verify products are made using ultra-low-emitting formaldehyde resins, as defined in the California Air Resources Board's "Airborne Toxic Control Measure to Reduce Formaldehyde Emissions from Composite Wood Products," or are made with no added formaldehyde.
 3. **Thermoset Decorative Panels:** Particleboard or medium-density fiberboard finished with thermally fused, melamine-impregnated decorative paper and complying with requirements of NEMA LD 3, Grade VGL, for Test Methods 3.3, 3.4, 3.6, 3.8, and 3.10.
 4. **Particleboard:** ANSI A208.1, Grade M-2.

B. High-Pressure Decorative Laminate: NEMA LD 3, grades as follows:
 1. **Horizontal Surfaces:** Grade HGL.
 2. **Postformed Surfaces:** Grade HGP.
 3. **Vertical Surfaces:** Grade VGS.

C. Fire-Retardant-Treated Materials: Where fire-retardant-treated materials are indicated, use materials impregnated with fire-retardant chemical formulations indicated by a pressure process or other means acceptable to authorities having jurisdiction to produce products with fire-test-response characteristics specified.
 1. Do not use material that is warped, discolored, or otherwise defective.
 2. Use fire-retardant-treatment formulations that do not bleed through or otherwise adversely affect finishes. Do not use colorants in solution to distinguish treated material from untreated material.
 3. **Fire-Retardant Particleboard:** Panels made from softwood particles and fire-retardant chemicals mixed together at time of panel manufacture to achieve flame-spread index of 25 or less and smoke-developed index of 25 or less according to ASTM E84:
 a. **Panels 3/4 Inch Thick and Less:** ANSI A208.1, Grade M-2, except for the following minimum properties: density, 45 lb/cu. ft.; modulus of rupture, 1600 psi;
modulus of elasticity, 300,000 psi; internal bond, 80 psi; and screw-holding capacity on face and edge, 250 and 225 lbf, respectively.

b. Panels 13/16 to 1-1/4 Inches Thick: ANSI A208.1, Grade M-1, except for the following minimum properties: density, 44 lb/cu. ft.; modulus of rupture, 1300 psi; modulus of elasticity, 250,000 psi; linear expansion, 0.50 percent; and screw-holding capacity on face and edge, 250 and 175 lbf, respectively.

D. **Adhesives:** Use adhesives that meet the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

E. Furring, Blocking, Shims, and Hanging Strips: Fire-retardant-treated softwood lumber, kiln dried to less than 15 percent moisture content.

F. Anchors: Material, type, size, and finish as required for each substrate for secure anchorage. Provide metal expansion sleeves or expansion bolts for post-installed anchors. Use nonferrous-metal or hot-dip galvanized anchors and inserts at inside face of exterior walls and at floors.

G. Wood Support Base: 2-by-4-inch nominal-size lumber treated with manufacturer's standard preservative-treatment process.

2.4 HARDWARE

A. Cylinder Lock: Built-in, flush cam locks with five-pin tumbler keyway, keyed separately and master keyed. Furnish two change keys for each lock and two master keys.

1. Key Type: Grooved, with minimum 2-by-2.68-inch key head for accessible lockers.

C. Butt Hinges: 2-3/4-inch, five-knuckle steel hinges; back mounted.

1. Provide two hinges for doors 36 inches high and less.
2. Provide three hinges for doors more than 36 inches high.

D. Wire Pulls: Back mounted; 4 inches long, 5/16 inch in diameter.

E. Accessible Handle: Metal, fixed, graspable lever handle and rose trim; surface mounted.

F. Shelf Rests: BHMA A156.9, B04013.

G. Hooks: Manufacturer's standard, ball-pointed aluminum or steel; chrome finished. Attach hooks with at least two fasteners.

1. Provide one double-prong ceiling hook and two single-prong wall hooks for each compartment of single-tier and double-tier lockers.

H. Exposed Hardware Finish:

1. Satin chrome unless otherwise indicated.
2. Unless otherwise indicated, provide finish that complies with BHMA A156.18 for BHMA finish number indicated.
 a. Satin Chromium Plated: BHMA 626 for brass or bronze base; BHMA 652 for steel base.

2.5 ACCESSORIES

A. Number Identification Plates: 1-1/2-inch-diameter, etched, embossed, or stamped, aluminum plates with black numbers and letters at least 1/2 inch high. Identify lockers in sequence indicated on Drawings. Finish plates to match other locker hardware.

2.6 LOCKER BENCHES

A. Pedestal-Leg Locker Benches: Bench top supported by pedestal legs, minimum of two pedestals for each bench, with overall height of 18 inches measured from top of bench to floor, as follows:
 2. Bench Tops: 1-1/4 inches deep; fabricated as follows:
 a. Butcher Block Top: Solid laminated hardwood.
 b. Width: 17 inches except provide minimum 20-inch width where accessible benches are indicated.
 c. Length: as indicated on drawings.
 3. Bench Backs: Back support for full width of bench, secured to bench.
 a. Construction: Match style, material, and finish of bench top:
 b. Height: Beginning at a point no more than 2 inches above the seat surface to a height no less than 18 inches above the seat surface.

2.7 FABRICATION

A. Fabricate each locker with shelves, an individual door and frame, an individual top, a bottom, and a back, and with common intermediate uprights separating compartments.
 1. Fabricate lockers to dimensions, profiles, and details indicated.
 2. Ease edges of corners of solid-wood members to 1/16-inch radius.

B. Fabricate lockers square, rigid, without warp, and with finished faces flat and free of dents, scratches, and chips. Accurately factory machine components for attachments. Make joints tight and true.
 1. Fabricate lockers using manufacturer's standard construction, with joints made with dowels, dados, or rabbets. Dado side panels to receive shelving except where indicated to be adjustable.
C. Accessible Lockers: Fabricate as follows:
 1. Locate bottom shelf no lower than 15 inches above the floor.
 2. Where hooks, coat rods, or additional shelves are provided, locate no higher than 48 inches above the floor.

D. Number Identification Plates: Inlay number plates flush in each locker door, near top, centered.

E. Complete fabrication, including assembly, finishing, and hardware application, to maximum extent possible, before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.
 1. Trial fit assemblies at fabrication shop that cannot be shipped completely assembled. Install dowels, screws, bolted connectors, and other fastening devices that can be removed after trial fitting. Verify that the parts fit as intended, and check measurements of assemblies against field measurements indicated on Shop Drawings before disassembling for shipment.
 2. Use only manufacturer's nuts, bolts, screws, and other devices for assembly.

F. Shop cut openings, to maximum extent possible, to receive hardware, electrical work, and similar items. Locate openings accurately and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Sand edges of cutouts to remove splinters and burrs.

G. Attach PVC edging to panels by thermally fusing edging to panels after panel fabrication.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine walls and floors or support bases, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 B. Verify that furring is attached to concrete and masonry walls that are to receive lockers.
 C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
 A. Condition lockers to average prevailing humidity conditions in installation areas before installation.
 B. Before installing lockers, examine factory-fabricated work for completeness and complete work as required, including removal of packing.

3.3 INSTALLATION
 A. Install wood support base with 1/2-inch-thick, plywood top.
B. Install lockers level, plumb, and true; use concealed shims.

C. Connect groups of lockers together with manufacturer's standard fasteners, through predrilled holes, with no exposed fasteners on face frames. Fit lockers accurately together to form flush, tight, hairline joints.

D. Install lockers without distortion so doors and drawers fit openings properly and are accurately aligned. Adjust hardware to center doors and drawers in openings, providing unencumbered operation. Complete installation of hardware and accessory items as indicated.

1. Installation Tolerance: No more than 1/8 inch in 96-inch sag, bow, or other variation from a straight line. Shim as required with concealed shims.

E. Locker Anchorage:

1. Fasten lockers through wood locker base, at ends, and not more than 36 inches o.c. with No. 8 brass-finished, flush-head wood screws sized for 1-inch penetration into wood base.

F. Scribe and cut corner and filler panels to fit adjoining work using fasteners concealed where practical. Repair damaged finish at cuts.

H. Install number identification plates after lockers are in place.

1. Attach number identification plate on each locker door, near top, centered, with at least two screws with finish matching the plate.

I. Provide protective mat at each shoe shelf.

J. Fixed Locker Benches: Provide no fewer than two pedestals for each bench, uniformly spaced not more than 72 inches apart. Securely fasten tops of pedestals to undersides of bench tops, and anchor bases to floor.

3.4 ADJUSTING

A. Clean, lubricate, and adjust hardware. Adjust doors to operate easily without binding. Verify that integral locking devices operate properly.

3.5 PROTECTION

A. Protect lockers from damage, abuse, dust, dirt, stain, or paint. Do not permit use during construction.

B. Touch up marred finishes, or replace lockers that cannot be restored to factory-finished appearance. Use only materials and procedures recommended or furnished by locker manufacturer.

END OF SECTION 10 51 23
SECTION 113013 - RESIDENTIAL APPLIANCES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Microwave ovens.
2. Refrigeration appliances.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:

1. ENERGY STAR: Product Data for indicated products, showing compliance with requirements for ENERGY STAR product labeling.

1.4 INFORMATIONAL SUBMITTALS

A. Product certificates.

B. Field quality-control reports.

C. Sample warranties.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 WARRANTY

A. Special Warranties: Manufacturer agrees to repair or replace residential appliances or components that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Two years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Appliances: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 MICROWAVE OVENS

A. Microwave Oven MO-1:

1. Basis of Design: GE Model PES7227SLSS or a comparable product by other manufacturers.
2. Size: 14”H x 24”W x 19”D.
4. Capacity: 2.2 cu. ft.
5. Microwave Power Rating: 1000 W.
6. ENERGY STAR: Provide appliances that qualify for the EPA/DOE ENERGY STAR product-labeling program.

2.3 REFRIGERATOR/FREEZERS

A. Refrigerator/Freezer RF-1: Two-door refrigerator/freezer with freezer on top and complying with AHAM HRF-1.

1. Basis of Design: GE Model GTE22JSNRSS or a comparable product by other manufacturers.
2. Size: 66”H x 33”W x 34 1/2”D.
3. Type: Freestanding.
4. Storage Capacity:
5. General Features:
 a. Interior light in refrigeration compartment.
 b. Automatic defrost.
 c. Interior light in freezer compartment.
6. ENERGY STAR: Provide appliances that qualify for the EPA/DOE ENERGY STAR product-labeling program.
7. Front Panel(s): Stainless steel.
8. ADA compliant.
B. Refrigerator **RF-2**: Undercounter refrigerator complying with AHAM HRF-1.

1. **Basis of Design**: Summit Model AL55 or a comparable product by other manufacturers.
2. **Size**: 31.63" H x 23.5" W x 23.38" D
3. **Type**: Undercounter.
4. **Storage Capacity**:
5. **General Features**:
 a. Interior light in refrigeration compartment.
 b. Automatic defrost.
6. **Front Panel(s)**: Stainless steel.
7. **ADA complaint**.

PART 3 - EXECUTION

3.1 **INSTALLATION**

A. **Built-in Equipment**: Securely anchor units to supporting cabinets or countertops with concealed fasteners. Verify that clearances are adequate for proper functioning and that rough openings are completely concealed.

B. **Freestanding Equipment**: Place units in final locations after finishes have been completed in each area. Verify that clearances are adequate to properly operate equipment.

C. **Range Anti-Tip Device**: Install at each range according to manufacturer's written instructions.

3.2 **FIELD QUALITY CONTROL**

A. Perform the following tests and inspections:

1. Perform visual, mechanical, and electrical inspection and testing for each appliance according to manufacturers' written recommendations. Certify compliance with each manufacturer's appliance-performance parameters.
2. Leak Test: After installation, test for leaks. Repair leaks and retest until no leaks exist.
3. Operational Test: After installation, start units to confirm proper operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and components.

B. An appliance will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

END OF SECTION 11 30 13
SECTION 12 24 13 - ROLLER WINDOW SHADES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Motor-operated roller shades with double rollers.
 B. Related Sections include the following:
 1. Section 06 10 53 "Miscellaneous Rough Carpentry" for wood blocking and grounds for mounting roller shades and accessories.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, features, finishes, and operating instructions for roller shades.
 B. Shop Drawings: Show fabrication and installation details for roller shades, including shadeband materials, their orientation to rollers, and their seam and batten locations.
 1. Motor-Operated Shades: Include details of installation and diagrams for power, signal, and control wiring.
 C. Samples: For each exposed product and for each color and texture specified.
 D. Product Schedule: For roller shades. Use same designations indicated on Drawings.

1.4 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For Installer.
 B. Product Certificates: For each type of shadeband material.
 C. Product test reports.
1.5 CLOSEOUT SUBMITTALS
 A. Operation and maintenance data.

1.6 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Roller Shades: Full-size units equal to 5 percent of quantity installed for each size, color, and shadeband material indicated, but no fewer than two units.

1.7 QUALITY ASSURANCE
 A. Installer Qualifications: Fabricator of products.

1.8 DELIVERY, STORAGE, AND HANDLING
 A. Deliver roller shades in factory packages, marked with manufacturer, product name, and location of installation using same designations indicated on Drawings.

1.9 FIELD CONDITIONS
 A. Environmental Limitations: Do not install roller shades until construction and finish work in spaces, including painting, is complete and dry and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.
 B. Field Measurements: Where roller shades are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication and indicate measurements on Shop Drawings. Allow clearances for operating hardware of operable glazed units through entire operating range. Notify Architect of installation conditions that vary from Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

1.10 WARRANTY
 A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace shade hardware components that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: 25 years from date of Substantial Completion.
 2. Shade band Material: Provide manufacturer’s standard 10 year warranty from date of Substantial Completion.
 B. Special Motorized Shade Operator Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of motorized shade operators that fail in materials or workmanship within specified warranty period.
1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Source Limitations: Obtain roller shades from single source from single manufacturer.

2.2 MANUALLY OPERATED SHADES WITH SINGLE ROLLERS – RWS-1 (Not Used)
 A. Not Used.

2.3 MOTOR-OPERATED, DOUBLE-ROLLER SHADES – RWS-2
 A. Basis-of-Design Product: Subject to compliance with requirements, provide WT Shade (formerly WindowTex); Motorise or comparable product by one of the following:
 1. Draper Inc.
 2. MechoShade Systems, Inc.
 3. Silent Gliss Inc.
 B. Motorized Operating System: Provide factory-assembled, shade-operator system of size and capacity and with features, characteristics, and accessories suitable for conditions indicated. Coordinate operator wiring requirements and electrical characteristics with building electrical system.
 1. Electrical Components: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Electric Motor: Manufacturer’s standard tubular, enclosed in roller.
 b. Maximum Total Shade Width: As required to operate roller shades indicated.
 c. Maximum Shade Drop: As required to operate roller shades indicated.
 d. Maximum Weight Capacity: As required to operate roller shades indicated.
 4. Crank-Operator Override: Crank and gearbox operate shades in event of power outage or motor failure.
 5. Limit Switches: Adjustable switches interlocked with motor controls and set to stop shades automatically at fully raised and fully lowered positions.
 C. Rollers: Corrosion-resistant steel or extruded-aluminum tubes of diameters and wall thicknesses required to accommodate operating mechanisms and weights and widths of shadebands indicated without deflection. Provide with permanently lubricated drive-end assemblies and idle-end assemblies designed to facilitate removal of shadebands for service.
 1. Roller Drive-End Location: Right side of interior face of shade unless indicated otherwise on Drawings.
2. Direction of Shadeband Rolls: Regular, from back (exterior face) of roller.

D. Mounting Hardware: Brackets or endcaps, corrosion resistant and compatible with roller assembly, operating mechanism, installation accessories, and mounting location and conditions indicated.

E. Roller-Coupling Assemblies: Coordinated with operating mechanism and designed to join up to three inline rollers that are operated by one roller drive-end assembly.

F. Shadebands:

2. Shadeband Bottom (Hem) Bar: Steel or extruded aluminum.
 a. Type:
 1) At light filtering fabric: Enclosed in sealed pocket of shadeband material.
 2) At light blocking fabric: Exposed with endcaps and integral light seal at bottom where it meets the sill.

G. Installation Accessories:

1. Front Fascia: Aluminum extrusion that conceals front and underside of roller and operating mechanism and attaches to roller endcaps without exposed fasteners.
2. Exposed Headbox: Rectangular, extruded-aluminum enclosure including front fascia, top and back covers, endcaps, and removable bottom closure.
3. Endcap Covers: To cover exposed endcaps.
4. Side Channels: With light seals and designed to eliminate light gaps at sides of shades as shades are drawn down. Provide side channels with shadeband guides or other means of aligning shadebands with channels at tops.
5. Bottom (Sill) Channel or Angle: With light seals and designed to eliminate light gaps at bottoms of shades when shades are closed.
6. Installation Accessories Color and Finish: As selected from manufacturer's full range.

2.4 SHADEBAND MATERIALS

A. Shadeband Material Flame-Resistance Rating: Comply with NFPA 701. Testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

B. Light-Filtering Fabric: Woven fabric, stain and fade resistant.

1. Source: Roller shade manufacturer; Ecofabrix 35X Series.
2. Type: PVC-coated polyester.
4. Thickness: 0.026 inches minimum.
5. Weight: 12.1 oz./sq. yd. minimum.
6. Roll Width: As required to provide shadebands with no vertical seams.
7. Orientation on Shadeband: Up the bolt.
8. Openness Factor: As indicated on drawings.
9. Color: As indicated on Drawings.

 1. Source: Roller shade manufacturer; Ecofabrix 700 Series.
 2. Type: PVC-coated fiberglass laminated with PVC film.
 3. Thickness: 0.013 inches.
 4. Weight: 12.5 oz./sq. yd.
 5. Roll Width: As required to provide shadebands with no vertical seams.
 6. Orientation on Shadeband: Up the bolt.
 7. Features: Fungal resistant.
 8. Color: As indicated on Drawings.

2.5 ROLLER SHADE FABRICATION

A. Product Safety Standard: Fabricate roller shades to comply with WCMA A 100.1, including requirements for flexible, chain-loop devices; lead content of components; and warning labels.

B. Unit Sizes: Fabricate units in sizes to fill window and other openings as follows, measured at 74 deg F:
 1. Between (Inside) Jamb Installation: Width equal to jamb-to-jamb dimension of opening in which shade is installed less 1/4 inch per side or 1/2-inch total, plus or minus 1/8 inch. Length equal to head-to-sill or -floor dimension of opening in which shade is installed less 1/4 inch, plus or minus 1/8 inch.
 2. Outside of Jamb Installation: Width and length as indicated, with terminations between shades of end-to-end installations at centerlines of mullion or other defined vertical separations between openings.

C. Shadeband Fabrication: Fabricate shadebands without battens or seams to extent possible, except as follows:
 1. Vertical Shades: Where width-to-length ratio of shadeband is equal to or greater than 1:4, provide battens and seams at uniform spacings along shadeband length to ensure shadeband tracking and alignment through its full range of movement without distortion of the material.
 2. Railroaded Materials: Railroad material where material roll width is less than the required width of shadeband and where indicated. Provide battens and seams as required by railroaded material to produce shadebands with full roll-width panel(s) plus, if required, one partial roll-width panel located at top of shadeband.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, operational clearances, locations of connections to building electrical system, and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 ROLLER SHADE INSTALLATION

A. Install roller shades level, plumb, and aligned with adjacent units according to manufacturer's written instructions.
 1. Opaque Shadebands: Located so shadeband is not closer than 2 inches to interior face of glass. Allow clearances for window operation hardware.

B. Electrical Connections: Connect motor-operated roller shades to building electrical system.

C. Roller Shade Locations: As indicated on Drawings.

3.3 ADJUSTING

A. Adjust and balance roller shades to operate smoothly, easily, safely, and free from binding or malfunction throughout entire operational range.

3.4 CLEANING AND PROTECTION

A. Clean roller shade surfaces, after installation, according to manufacturer's written instructions.

B. Provide final protection and maintain conditions, in a manner acceptable to manufacturer and Installer, that ensure that roller shades are without damage or deterioration at time of Substantial Completion.

C. Replace damaged roller shades that cannot be repaired, in a manner approved by Architect, before time of Substantial Completion.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain motor-operated roller shades.

END OF SECTION 12 24 13
SECTION 12 36 61 - SOLID SURFACING COUNTERTOPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Solid surface material countertops.
2. Solid surface material backsplashes.
3. Solid surface material end splashes.

B. Related Requirements:

1. Section 06 41 16 "Plastic-Laminate-Clad Architectural Cabinets" for cabinets that receive solid surface countertops.

1.3 ACTION SUBMITTALS

A. Product Data: For countertop materials.

B. LEED Submittals: Provide submittals for the products named herein as delineated in Division 01 Section, "Sustainable Design Requirements - LEED V4 BD+C" Article 1.6, Action Submittals.

C. Sustainable Design Submittals:

1. Product Data: For adhesives, indicating VOC content.
2. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials.

D. Shop Drawings: For countertops. Show materials, finishes, edge and backsplash profiles, methods of joining, and cutouts for plumbing fixtures.

1. Show locations and details of joints.
2. Show direction of directional pattern, if any.

E. Samples for Initial Selection: For each type of material exposed to view.

F. Samples for Verification: For the following products:

1. Countertop material, 6 inches square.
1.4 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For Installer and fabricator.

1.5 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For solid surface material countertops to include in maintenance manuals. Include Product Data for care products used or recommended by Installer and names, addresses, and telephone numbers of local sources for products.

1.6 QUALITY ASSURANCE
 A. Fabricator Qualifications: Shop that employs skilled workers who custom-fabricate countertops similar to that required for this Project, and whose products have a record of successful in-service performance.
 B. Installer Qualifications: Fabricator of countertops.

1.7 FIELD CONDITIONS
 A. Field Measurements: Verify dimensions of countertops by field measurements after base cabinets are installed but before countertop fabrication is complete.

1.8 COORDINATION
 A. Coordinate locations of utilities that will penetrate countertops or backsplashes.

PART 2 - PRODUCTS

2.1 SOLID SURFACE COUNTERTOP MATERIALS
 A. Solid Surface Material: Homogeneous-filled plastic resin complying with ICPA SS-1.
 1. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 a. LG Chemical, Ltd.
 b. Meganite Inc.
 c. Wilsonart LLC.
 2. Type: Provide Standard type unless Special Purpose type is indicated.
 3. Colors and Patterns: As selected by Architect from manufacturer's full range, Price Group C.
2.2 COUNTERTOP FABRICATION

A. Fabricate countertops according to solid surface material manufacturer's written instructions and to the AWI/AWMAC/WI's "Architectural Woodwork Standards."
 1. Grade: Custom.

B. Configuration:
 1. Front: Straight, slightly eased at top.
 2. Backsplash: Straight, slightly eased at corner.

C. Countertops: 1/2-inch- thick, solid surface material with front edge built up with same material.

D. Backsplashes: 1/2-inch- thick, solid surface material.

E. Fabricate tops with shop-applied edges unless otherwise indicated. Comply with solid surface material manufacturer's written instructions for adhesives, sealers, fabrication, and finishing.
 1. Fabricate with loose backsplashes for field assembly.

F. Joints: Fabricate countertops in sections for joining in field.
 1. Joint Locations: Not within 18 inches of a sink or cooktop and not where a countertop section less than 36 inches long would result, unless unavoidable.

G. Cutouts and Holes:
 1. Undercounter Plumbing Fixtures: Make cutouts for fixtures in shop using template or pattern furnished by fixture manufacturer. Form cutouts to smooth, even curves.
 a. Provide vertical edges, slightly eased at juncture of cutout edges with top and bottom surfaces of countertop and projecting 3/16 inch into fixture opening.
 2. Fittings: Drill countertops in shop for plumbing fittings, undercounter soap dispensers, and similar items.

2.3 INSTALLATION MATERIALS

A. Adhesive: Product recommended by solid surface material manufacturer.
 1. Adhesives shall have a VOC content of 70 g/L or less.
 2. Adhesive shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

B. Sealant for Countertops: Comply with applicable requirements in Section 07 92 00 "Joint Sealants."
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates to receive solid surface material countertops and conditions under which countertops will be installed, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of countertops.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install countertops level to a tolerance of 1/8 inch in 8 feet, 1/4 inch maximum. Do not exceed 1/64-inch difference between planes of adjacent units.

B. Fasten countertops by screwing through corner blocks of base units into underside of countertop. Predrill holes for screws as recommended by manufacturer. Align adjacent surfaces and, using adhesive in color to match countertop, form seams to comply with manufacturer's written instructions. Carefully dress joints smooth, remove surface scratches, and clean entire surface.

C. Bond joints with adhesive and draw tight as countertops are set. Mask areas of countertops adjacent to joints to prevent adhesive smears.

1. Install metal splines in kerfs in countertop edges at joints. Fill kerfs with adhesive before inserting splines and remove excess immediately after adjoining units are drawn into position.

2. Clamp units to temporary bracing, supports, or each other to ensure that countertops are properly aligned and joints are of specified width.

D. Install backsplashes and end splashes by adhering to wall and countertops with adhesive. Mask areas of countertops and splashes adjacent to joints to prevent adhesive smears.

E. Install aprons to backing and countertops with adhesive. Mask areas of countertops and splashes adjacent to joints to prevent adhesive smears. Fasten by screwing through backing. Predrill holes for screws as recommended by manufacturer.

F. Complete cutouts not finished in shop. Mask areas of countertops adjacent to cutouts to prevent damage while cutting. Make cutouts to accurately fit items to be installed, and at right angles to finished surfaces unless beveling is required for clearance. Ease edges slightly to prevent snipping.

G. Apply sealant to gaps at walls; comply with Section 07 92 00 "Joint Sealants."

END OF SECTION 12 36 61
SECTION 21 05 17 - SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Sleeves.
 2. Stack-sleeve fittings.
 3. Sleeve-seal systems.
 4. Sleeve-seal fittings.
 5. Grout.

 B. Related Sections include the following:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.

 B. Sustainable Design Submittals:

1.4 INFORMATIONAL SUBMITTALS
 A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 SLEEVES
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. CALPICO, Inc.
3. GPT; an EnPro Industries company.

B. Cast-Iron Pipe Sleeves: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral water stop.

C. Steel Pipe Sleeves: ASTM A53/A53M, Type E, Grade B, Schedule 40, anticorrosion coated, with plain ends and integral welded water stop collar.

D. Galvanized-Steel Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 STACK-SLEEVE FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Zurn Industries, LLC.

B. Description: Manufactured, Dura-coated or Duco-coated cast-iron sleeve with integral clamping flange for use in waterproof floors and roofs. Include clamping ring, bolts, and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. GPT; an EnPro Industries company.

B. Description:

1. Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
2. Designed to form a hydrostatic seal of 20 psig minimum.
3. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size.
4. Pressure Plates: Stainless steel.
5. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. GPT; an EnPro Industries company.

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall.

C. Plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

A. Description: Nonshrink, for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.6 SILICONE SEALANTS

A. Silicone, S, NS, 25, NT: Single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant, ASTM C920, Type S, Grade NS, Class 25, Use NT.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. GE Construction Sealants; Momentive Performance Materials Inc.
 b. Polymeric Systems, Inc.
 c. The Dow Chemical Company.

B. Silicone, S, P, 25, T, NT: Single-component, pourable, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, neutral-curing silicone joint sealant; ASTM C920, Type S, Grade P, Class 25, Uses T and NT. Grade P Pourable (self-leveling) formulation is for opening in floors and other horizontal surfaces that are not fire rated.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:

C. Silicone Foam: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
2. Cut sleeves to length for mounting flush with both surfaces.

a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.

3. Using grout or silicone sealant, seal space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.

1. Cut sleeves to length for mounting flush with both surfaces.
2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe.
3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint.

E. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke Barrier Penetrations: Maintain indicated fire or smoke rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with fire- and smoke-stop materials. Comply with requirements for firestopping and fill materials specified in Section 078413 "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.

1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe.
2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 076200 "Sheet Metal Flashing and Trim."
3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
5. Use silicone sealant to seal around the outside of stack-sleeve fittings.

B. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke Barrier Penetrations: Maintain indicated fire or smoke rating of floors at pipe penetrations. Seal pipe penetrations with fire- or smoke-stop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION
A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION
A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
C. Secure nailing flanges to concrete forms.
D. Use grout or silicone sealant, to seal the space around outside of sleeve-seal fittings.

3.5 FIELD QUALITY CONTROL
A. Perform the following tests and inspections:
 1. Leak Test: After allowing for a full cure, test sleeves and sleeve seals for leaks. Repair leaks and retest until no leaks exist.
B. Sleeves and sleeve seals will be considered defective if they do not pass tests and inspections.
C. Prepare test and inspection reports.

3.6 SLEEVE AND SLEEVE-SEAL SCHEDULE
A. Use sleeves and sleeve seals for the following piping-penetration applications:
1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Steel pipe sleeves.
 b. Piping NPS 6 and Larger: Steel pipe sleeves.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Cast-iron pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Steel pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Cast-iron pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:
 a. Piping Smaller Than NPS 6: Sleeve-seal fittings.
 b. Piping NPS 6 and Larger: Steel pipe sleeves.

5. Interior Partitions:
 a. Piping Smaller Than NPS 6: Steel pipe sleeves.
 b. Piping NPS 6 and Larger: Galvanized-steel sheet sleeves.

3.7 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 21 05 17
SECTION 21 05 18 - ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

B. Related Sections include the following:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 DEFINITIONS

A. Existing Piping to Remain: Existing piping that is not to be removed and that is not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. BrassCraft Manufacturing Co.; a Masco company.
 2. Dearborn Brass.

2.2 ESCUTCHEONS

A. One-Piece, Stainless-Steel Type: With polished stainless-steel finish.
B. Split-Plate, Stamped-Steel Type: With polished, chrome-plated finish; concealed and exposed-rivet hinge; and spring-clip fasteners.

2.3 FLOOR PLATES
A. Split Floor Plates: Steel with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION
A. Install escutcheons for exposed piping penetrations of walls, ceilings, and finished floors.
B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. Escutcheons for New Piping and Relocated Existing Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep pattern.
 b. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece stainless steel with polished stainless-steel finish.
 c. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece stainless steel with polished stainless-steel finish.
 d. Bare Piping in Unfinished Service Spaces: One-piece stamped steel or split-plate, stamped steel with concealed hinge with polished, chrome-plated finish.
 e. Bare Piping in Equipment Rooms: One-piece steel with polished, chrome-plated finish.

2. Escutcheons for Existing Piping to Remain:
 a. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped steel with concealed hinge with polished, chrome-plated finish.
 b. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped steel with concealed hinge with polished, chrome-plated finish.
 c. Bare Piping in Unfinished Service Spaces: Split-plate, stamped steel with concealed hinge with polished, chrome-plated finish.
 d. Bare Piping in Equipment Rooms: Split-plate, stamped steel with concealed hinge with polished, chrome-plated finish.

C. Install floor plates for piping penetrations of equipment-room floors.
D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

3.2 FIELD QUALITY CONTROL
A. Using new materials, replace broken and damaged escutcheons and floor plates.
3.3 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 21 05 18
SECTION 21 05 23 - GENERAL-DUTY VALVES FOR FIRE PROTECTION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Two-piece ball valves with indicators.
 2. Bronze butterfly valves with indicators.
 3. Iron butterfly valves with indicators.
 4. Check valves.
 5. Bronze OS&Y gate valves.
 7. NRS gate valves.
 8. Trim and drain valves.

B. Related Sections include the following:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 DEFINITIONS

A. NRS: Nonrising stem.

B. OS&Y: Outside screw and yoke.

C. SBR: Styrene-butadiene rubber.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, and weld ends.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.

D. Protect flanges and specialties from moisture and dirt.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. UL Listed: Valves shall be listed in UL's "Online Certifications Directory" under the headings listed below and shall bear UL mark:
 1. Fire Main Equipment: HAMV - Main Level
 a. Ball Valves, System Control: HLUG - Level 3
 b. Butterfly Valves: HLXS - Level 3
 c. Check Valves: HMER - Level 3
 d. Gate Valves: HMRZ - Level 3
 2. Sprinkler System & Water Spray System Devices: VDGT - Main Level
 a. Valves, Trim and Drain: VQGU - Level 1

B. FM Global Approved: Valves shall be listed in its "Approval Guide," under the headings listed below:
 1. Automated Sprinkler Systems:
 a. Valves.
 1) Gate valves.
 2) Check valves.
 a) Single check valves.
 3) Miscellaneous valves.

C. Source Limitations for Valves: Obtain valves for each valve type from single manufacturer.

D. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded-end valves.
2. ASME B16.1 for flanges on iron valves.
3. ASME B31.9 for building services piping valves.

E. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

G. Valve Pressure Ratings: Not less than the minimum pressure rating indicated or higher, as required by system pressures.

H. Valve Sizes: Same as upstream piping unless otherwise indicated.

I. Valve Actuator Types:
 1. Worm-gear actuator with handwheel for quarter-turn valves, except for trim and drain valves.
 2. Handwheel: For other than quarter-turn trim and drain valves.
 3. Handlever: For quarter-turn trim and drain valves NPS 2 and smaller.

2.2 TWO-PIECE BALL VALVES WITH INDICATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ames Fire & Waterworks; A WATTS Brand.
 2. NIBCO INC.
 3. Victaulic Company.

B. Description:
 1. UL 1091, except with ball instead of disc and FM Global approved for indicating valves (butterfly or ball type), Class Number 1112.
 4. Body Material: Forged brass or bronze.
 5. Port Size: Full or standard.
 6. Seats: PTFE.
 7. Stem: Bronze or stainless steel.
 8. Ball: Chrome-plated brass.
 9. Actuator: Worm gear
 10. Supervisory Switch: Internal or external.
 11. End Connections for Valves NPS 1 through NPS 2: Threaded ends.

2.3 BRONZE BUTTERFLY VALVES WITH INDICATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Fivalco Inc.

B. Description:

1. Standard: UL 1091 and FM Global standard for indicating valves, (butterfly or ball type), Class Number 1112.
4. Seat Material: EPDM.
5. Stem Material: Bronze or stainless steel.
8. Supervisory Switch: Internal or external.

2.4 IRON BUTTERFLY VALVES WITH INDICATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Anvil International.
2. Fivalco Inc.

B. Description:

1. Standard: UL 1091 and FM Global standard for indicating valves, (butterfly or ball type), Class Number 112.
3. Body Material: Cast or ductile iron with nylon, EPDM, epoxy, or polyamide coating.
4. Seat Material: EPDM.
5. Stem: Stainless steel.
6. Disc: Ductile iron, nickel plated and EPDM or SBR coated.
8. Supervisory Switch: Internal or external.

2.5 CHECK VALVES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ames Fire & Waterworks; A WATTS Brand.
3. Shurjoint-Apollo Piping Products USA Inc.

B. Description:
3. Type: Single swing check.
4. Body Material: Cast iron, ductile iron, or bronze.
5. Clapper: Bronze, ductile iron, or stainless steel with elastomeric seal.
6. Clapper Seat: Brass, bronze, or stainless steel.
7. Hinge Shaft: Bronze or stainless steel.

2.6 BRONZE OS&Y GATE VALVES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Milwaukee Valve Company.
2. NIBCO INC.
3. United Brass Works, Inc.

B. Description:

3. Body and Bonnet Material: Bronze or brass.
4. Wedge: One-piece bronze or brass.
5. Wedge Seat: Bronze.
6. Stem: Bronze or brass.
7. Packing: Non-asbestos PTFE.
8. Supervisory Switch: External.

2.7 IRON OS&Y GATE VALVES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Clow Valve Company; a subsidiary of McWane, Inc.
3. Hammond Valve.

B. Description:

3. Body and Bonnet Material: Cast or ductile iron.
4. Wedge: Cast or ductile iron, or bronze with elastomeric coating.
5. Wedge Seat: Cast or ductile iron, or bronze with elastomeric coating.
6. Stem: Brass or bronze.
7. Packing: Non-asbestos PTFE.
8. Supervisory Switch: External.

2.8 NRS GATE VALVES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Clow Valve Company; a subsidiary of McWane, Inc.
3. Kennedy Valve Company; a division of McWane, Inc.

B. Description:

3. Body and Bonnet Material: Cast or ductile iron.
4. Wedge: Cast or ductile iron with elastomeric coating.
5. Wedge Seat: Cast or ductile iron, or bronze with elastomeric coating.
6. Stem: Brass or bronze.
7. Packing: Non-asbestos PTFE.
8. Supervisory Switch: External.

2.9 TRIM AND DRAIN VALVES

A. Ball Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 b. Fire Protection Products, Inc.
 c. Fire-End & Croker Corporation.

2. Description:

 b. Body Design: Two piece.
 c. Body Material: Forged brass or bronze.
 d. Port size: Full or standard.
 e. Seats: PTFE.
 f. Stem: Bronze or stainless steel.
 g. Ball: Chrome-plated brass.
 h. Actuator: Handlever.
 i. End Connections for Valves NPS 1 through NPS 2-1/2: Threaded ends.
j. End Connections for Valves NPS 1-1/4 and NPS 2-1/2: Grooved ends.

B. Angle Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire Protection Products, Inc.
 b. NIBCO INC.
 c. United Brass Works, Inc.

2. Description:

 b. Body Material: Brass or bronze.
 c. Ends: Threaded.
 d. Stem: Bronze.
 e. Disc: Bronze.
 f. Packing: Asbestos free.
 g. Handwheel: Malleable iron, bronze, or aluminum.

C. Globe Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. NIBCO INC.
 b. United Brass Works, Inc.

2. Description:

 c. Ends: Threaded.
 d. Stem: Bronze.
 e. Disc Holder and Nut: Bronze.
 f. Disc Seat: Nitrile.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 INSTALLATION, GENERAL

A. Comply with requirements in the following Sections for specific valve-installation requirements and applications:

1. Section 211313 "Wet-Pipe Sprinkler Systems" for application of valves in wet-pipe, fire-suppression sprinkler systems.

B. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply, except from fire-department connections. Install permanent identification signs, indicating portion of system controlled by each valve.

C. Install valves having threaded connections with unions at each piece of equipment arranged to allow easy access, service, maintenance, and equipment removal without system shutdown. Provide separate support where necessary.

D. Install valves in horizontal piping with stem at or above the pipe center.

E. Install valves in position to allow full stem movement.

F. Install valve tags. Comply with requirements in Section 210553 "Identification for Fire-Suppression Piping and Equipment" for valve tags and schedules and signs on surfaces concealing valves; and the NFPA standard applying to the piping system in which valves are installed. Install permanent identification signs indicating the portion of system controlled by each valve.

G. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections.

3.3 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 21 05 23
SECTION 21 05 29 - HANGERS AND SUPPORTS FOR FIRE SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Metal framing systems.
 4. Fastener systems.
 5. Equipment supports.

B. Related Requirements:
 1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 2. Section 210516 "Expansion Fittings and Loops for Fire-Suppression Piping" for pipe guides and anchors.
 3. Section 210548 "Vibration and Seismic Controls for Fire-Suppression Piping and Equipment" for vibration isolation devices and seismic restraints.
 4. Division 01 Section “Construction Waste Management.”
 5. Division 01 Section “Sustainable Design Requirements – LEEDv4 BD+C ID+C.”

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following:
 1. Trapeze pipe hangers.
 2. Metal framing systems.
 3. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Detail fabrication and assembly of trapeze hangers.
2. Include design calculations for designing trapeze hangers.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.5 QUALITY ASSURANCE

A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.

B. Pipe Welding Qualifications: Qualify procedures and operators according to 2015 ASME Boiler and Pressure Vessel Code, Section IX.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design trapeze pipe hangers and equipment supports.

B. Structural Performance: Hangers and supports for fire-suppression piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

D. UL Compliance: Comply with UL 203.

2.2 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:

1. Description: Factory-fabricated components, NFPA approved, UL listed, or FM approved for fire-suppression piping support.
2. Galvanized Metallic Coatings: PR galvanized, or hot-dip galvanized.
2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-58, Type 59, shop- or field-fabricated pipe-support assembly, made from structural-carbon-steel shapes, with NFPA-approved, UL-listed, or FM-approved carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. B-line; Eaton, Electrical Sector.
 b. Flex-Strut Inc.
 c. G-Strut.

2. Description: Shop- or field-fabricated pipe-support assembly, made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.

4. Channels: Continuous slotted carbon-steel channel with inturned lips.

5. Channel Width: Selected for applicable load criteria.

6. Channel Nuts: Formed or stamped nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

8. Metallic Coating: No coating.

B. Non-MFMA Manufacturer Metal Framing Systems:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International.
 b. Carpenter & Paterson, Inc.
 c. Empire Industries, Inc.

2. Description: Shop- or field-fabricated pipe-support assembly, made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.

4. Channels: Continuous slotted carbon-steel channel with inturned lips.

5. Channel Width: Select for applicable load criteria.

6. Channel Nuts: Formed or stamped nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

8. Metallic Coating: No coating.
2.5 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: NFPA-approved, UL-listed, or FM-approved threaded-steel stud, for use in hardened portland cement concrete, with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hilti, Inc.
 b. ITW Ramset/Red Head; Illinois Tool Works, Inc.
 c. MKT Fastening, LLC.

B. Mechanical-Expansion Anchors: NFPA-approved, UL-listed, or FM-approved, insert-wedge-type anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. B-line; Eaton, Electrical Sector.
 b. Empire Tool and Manufacturing Co., Inc.
 c. Hilti, Inc.

2. Indoor Applications: Zinc-coated steel.

2.6 EQUIPMENT SUPPORTS

A. Description: NFPA-approved, UL-listed, or FM-approved, welded, shop- or field-fabricated equipment support, made from structural-carbon-steel shapes.

2.7 MATERIALS

A. Aluminum: ASTM B221.
B. Carbon Steel: ASTM A1011/A1011M.
C. Structural Steel: ASTM A36/A36M, carbon-steel plates, shapes, and bars; black and galvanized.
D. Stainless Steel: ASTM A240/A240M.
E. Grout: ASTM C1107/C1107M, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout, suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.
PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation, for penetrations through fire-rated walls, ceilings, and assemblies.

B. Strength of Support Assemblies: Where not indicated, select sizes of components, so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

3.2 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with installation requirements of approvals and listings. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-58. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size, or install intermediate supports for smaller-diameter pipes as specified for individual pipe hangers.

2. Field fabricate from ASTM A36/A36M carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal strut systems.

D. Thermal Hanger-Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:

1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete, after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual. Install in accordance with approvals and listings.

2. Install mechanical-expansion anchors in concrete, after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions. Install in accordance with approvals and listings.

F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

I. Install lateral bracing with pipe hangers and supports to prevent swaying.

J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms, and install reinforcing bars through openings at top of inserts.

K. Load Distribution: Install hangers and supports, so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

M. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating Above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating Below Ambient Air Temperature: Use thermal hanger-shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 39 protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal hanger-shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 3. Install MSS SP-58, Type 40 protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal hanger-shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
 6. Thermal Hanger Shields: Install with insulation of same thickness as piping insulation.
3.3 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment, and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections, so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with NFPA requirements for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finishes.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
E. Use carbon-steel pipe hangers and supports metal trapeze pipe hangers and metal framing systems and attachments for general service applications.

F. Use thermal hanger-shield inserts for insulated piping and tubing.

G. Horizontal-Piping Hangers and Supports: Comply with NFPA requirements. Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Steel Pipe Clamps (MSS Type 4): For suspension of NPS 1/2 to NPS 24 if little or no insulation is required.
3. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
4. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
5. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
6. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
7. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
8. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
9. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.

H. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

I. Hanger-Rod Attachments: Comply with NFPA requirements.

J. Building Attachments: Comply with NFPA requirements. Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable-Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. C-Clamps (MSS Type 23): For structural shapes.
3. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.

K. Saddles and Shields: Comply with NFPA requirements. Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal Hanger-Shield Inserts: For supporting insulated pipe.

L. Comply with NFPA requirements for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

M. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

N. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 21 05 29
SECTION 21 05 48 - VIBRATION AND SEISMIC CONTROLS FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Elastomeric isolation pads.
2. Elastomeric isolation mounts.
3. Restrained elastomeric isolation mounts.
4. Pipe-riser resilient supports.
5. Resilient pipe guides.
6. Elastomeric hangers.
7. Snubbers.
8. Restraint channel bracings.
11. Concrete inserts.

B. Related Requirements:

1. Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for devices for plumbing equipment and systems.
2. Section 230548 "Vibration and Seismic Controls for HVAC" for devices for HVAC equipment and systems.
3. Division 01 Section “Construction Waste Management.”
4. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 DEFINITIONS

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device and seismic-restraint component.
3. Annotate types and sizes of seismic restraints and accessories, complete with listing markings or report numbers and load rating in tension and compression as evaluated by an agency acceptable to authorities having jurisdiction.
4. Annotate to indicate application of each product submitted and compliance with requirements.
5. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.

B. Shop Drawings:

1. Detail fabrication and assembly of equipment bases.
2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal: For each vibration isolation and seismic-restraint device.

1. Include design calculations and details for selecting vibration isolators and seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
2. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, due to seismic forces required to select vibration isolators, and due to seismic restraints.
3. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification that riser system was examined for excessive stress and that none exists.
4. Seismic-Restraint Details:
 a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 c. Coordinate seismic-restraint and vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
 d. Preapproval and Evaluation Documentation: By an evaluation service member of ICC-ES, OSHPD, an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations).
1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show coordination of seismic bracing for fire-suppression piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.

B. Qualification Data: For professional engineer.

C. Welding certificates.

D. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7 and that is acceptable to authorities having jurisdiction.

B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are unavailable, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 ELASTOMERIC ISOLATION PADS

A. Elastomeric Isolation Pads:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation.
 c. Isolation Technology, Inc.

2. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
3. Size: Factory or field cut to match requirements of supported equipment.
4. Pad Material: Oil and water resistant with elastomeric properties. Neoprene rubber, silicone rubber, or other elastomeric material.
5. Surface Pattern: Smooth, ribbed, or waffle pattern.
6. Infused nonwoven cotton or synthetic fibers.
7. Load-bearing metal plates adhered to pads.
8. Sandwich-Core Material: Resilient and elastomeric.
 a. Surface Pattern: Smooth, ribbed, or waffle pattern.
 b. Infused nonwoven cotton or synthetic fibers.

2.2 ELASTOMERIC ISOLATION MOUNTS

A. Double-Deflection, Elastomeric Isolation Mounts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation.
 c. Isolation Technology, Inc.

2. Mounting Plates:
 a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded with threaded studs or bolts.
 b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.

3. Elastomeric Material: Molded, oil- and water-resistant neoprene rubber, silicone rubber, or other elastomeric material.

2.3 RESTRAINED ELASTOMERIC ISOLATION MOUNTS

A. Restained Elastomeric Isolation Mounts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation.
 c. Isolation Technology, Inc.

2. Description: All-directional isolator with seismic restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 a. Housing: Cast-ductile iron or welded steel.
b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.4 PIPE-RISER RESILIENT SUPPORT

A. Description: All-directional, acoustical pipe anchor consisting of two steel tubes separated by a minimum 1/2-inch-thick neoprene.

1. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.
2. Maximum Load Per Support: 500 psig on isolation material providing equal isolation in all directions.

2.5 RESILIENT PIPE GUIDES

A. Description: Telescopic arrangement of two steel tubes or post-and-sleeve arrangement separated by a minimum 1/2-inch-thick neoprene.

1. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.6 ELASTOMERIC HANGERS

A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation.
 c. Isolation Technology, Inc.

2. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.

3. Damping Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel-to-steel contact.

2.7 SNUBBERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Kinetics Noise Control, Inc.
2. Mason Industries, Inc.
3. Novia; A Division of C&P.

B. Description: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.

1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and stud-wedge or female-wedge type.
2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
3. Maximum 1/4-inch air gap, and minimum 1/4-inch-thick resilient cushion.

2.8 RESTRAINT CHANNEL BRACINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. B-line, an Eaton business.
2. Hilti, Inc.
3. Mason Industries, Inc.

B. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.9 RESTRAINT ACCESSORIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. B-line; Eaton, Electrical Sector.
2. Kinetics Noise Control, Inc.
3. Mason Industries, Inc.

B. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod. Non-metallic stiffeners are unacceptable.

C. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings.

D. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.

E. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.
F. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

2.10 POST-INSTALLED CONCRETE ANCHORS

A. Mechanical Anchor Bolts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Atkore International (Unistrut).
 b. B-line; Eaton, Electrical Sector.
 c. Hilti, Inc.

2. Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength for anchor and as tested according to ASTM E488/E488M.

B. Adhesive Anchor Bolts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Atkore International (Unistrut).
 b. B-line; Eaton, Electrical Sector.
 c. Hilti, Inc.

2. Drilled-in and capsule anchor system containing PVC or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E488/E488M.

C. Provide post-installed concrete anchors that have been prequalified for use in seismic applications. Post-installed concrete anchors must comply with all requirements of ASCE/SEI 7-05, Ch. 13.

 1. Prequalify post-installed anchors in concrete in accordance with ACI 355.2 or other approved qualification testing procedures.
 2. Prequalify post-installed anchors in masonry in accordance with approved qualification procedures.

D. Expansion-type anchor bolts are not permitted for equipment in excess of 10 hp that is not vibration isolated.

 1. Undercut expansion anchors are permitted.
2.11 **CONCRETE INSERTS**

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Atkore International (Unistrut).
2. B-line; Eaton, Electrical Sector.
3. Hilti, Inc.

B. Provide preset concrete inserts that are seismically prequalified in accordance with ICC-ES AC466 testing.

C. Comply with ANSI/MSS SP-58.

PART 3 - EXECUTION

3.1 **EXAMINATION**

A. Examine areas and equipment to receive vibration isolation and seismic control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 **APPLICATIONS**

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.

B. Hanger-Rod Stiffeners: Install where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength is adequate to carry calculated static and seismic loads within specified loading limits.

3.3 **INSTALLATION OF VIBRATION CONTROL AND SEISMIC-RESTRAINT DEVICES**

A. Coordinate location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete."

B. Installation of vibration isolators and seismic restraints must not cause any stresses, misalignment, or change of position of equipment or piping.
C. Comply with requirements in Section 077200 "Roof Accessories" for installation of equipment supports and roof penetrations.

D. Equipment Restraints:
 1. Install snubbers on fire-suppression equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
 2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 3. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.

E. Piping Restraints:
 1. Comply with requirements in MSS SP-127.
 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 3. Brace a change of direction longer than 12 feet.

F. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.

G. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

H. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

I. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

J. Post-Installed Concrete Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Mechanical-Type Anchor Bolts: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Adhesive-Type Anchor Bolts: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross structural seismic joints and other points where differential movement may occur, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Section 211313 "Wet-Pipe Sprinkler Systems," for piping flexible connections.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:

1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.

2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless post connection testing has been approved), and with at least seven days' advance notice.

4. Test at no fewer than four of each type and size of installed anchors and fasteners selected by Architect.

5. Test to 90 percent of rated proof load of device.

7. Measure isolator deflection.

8. Verify snubber minimum clearances.

D. Remove and replace malfunctioning units and retest as specified above.

E. Prepare test and inspection reports.

3.6 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 20 15 48
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Warning signs and labels.
3. Pipe labels.
4. Stencils.
5. Valve tags.
6. Warning tags.

B. Related Sections include the following:

1. Division 01 Section “Construction Waste Management.”
2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples: For color, letter style, and graphic representation required for each identification material and device.

C. Equipment-Label Schedule: Include a listing of all equipment to be labeled and the proposed content for each label.

D. Valve Schedules: Valve numbering scheme.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Brady Corporation.
b. Brimar Industries, Inc.
c. Carlton Industries, LP.

2. Material and Thickness: Anodized aluminum, 0.032 inch thick, with predrilled holes for attachment hardware.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

2.2 WARNING SIGNS AND LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Brady Corporation.
 2. Brimar Industries, Inc.
 3. Carlton Industries, LP.

B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, with predrilled holes for attachment hardware.

C. Letter Color: Black.

D. Background Color: White.

E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

H. Fasteners: Self-tapping screws.

I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

J. Label Content: Include caution and warning information, plus emergency notification instructions.
2.3 PIPE LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Actioncraft Products, Inc.; a division of Industrial Test Equipment Co., Inc.
2. Brady Corporation.

B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service and showing flow direction according to ASME A13.1.

C. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.

D. Self-adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

E. Pipe-Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
2. Lettering Size: Size letters according to ASME A13.1 for piping at least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.

F. Pipe-Label Colors:

1. Background Color: Safety Red.

2.4 STENCILS

A. Stencils for Piping:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Brimar Industries, Inc.
 b. Carlton Industries, LP.
 c. Champion America.

2. Lettering Size: Size letters according to ASME A13.1 for piping at least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.
4. Stencil Paint: Safety Red, exterior, gloss, alkyd enamel. Paint may be in pressurized spray-can form.
5. Identification Paint: White, exterior, alkyd enamel. Paint may be in pressurized spray-can form.
2.5 VALVE TAGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Actioncraft Products, Inc.; a division of Industrial Test Equipment Co., Inc.
2. Brady Corporation.

B. Description: Stamped or engraved with 1/4-inch letters for piping-system abbreviation and 1/2-inch numbers.

1. Tag Material: Anodized aluminum, 0.032 inch thick, with predrilled holes for attachment hardware.
2. Fasteners: Brass or S-hook.

C. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.6 WARNING TAGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Brady Corporation.
2. Brimar Industries, Inc.
3. Carlton Industries, LP.

B. Description: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

1. Size: 3 by 5-1/4 inches minimum.
2. Fasteners: Reinforced grommet and wire or string.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
PART 3 - EXECUTION

3.1 PREPARATION
A. Clean piping and equipment surfaces of incompatible primers, paints, and encapsulants, as well as dirt, oil, grease, release agents, and other substances that could impair bond of identification devices.

3.2 GENERAL INSTALLATION REQUIREMENTS
A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be installed.
B. Coordinate installation of identifying devices with locations of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION
A. Install or permanently fasten labels on each major item of mechanical equipment.
B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION
A. Piping: Painting of piping is specified in Section 099123 "Interior Painting." Section 099600 "High-Performance Coatings."
B. Stenciled Pipe-Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, with painted, color-coded bands or rectangles on each piping system.
 1. Identification Paint: Use for contrasting background.
C. Pipe-Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection excluding short takeoffs. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
 4. At access doors, manholes, and similar access points that permit a view of concealed piping.
 5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

D. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes including pipes where flow is allowed in both directions.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in fire-suppression piping systems. List tagged valves in a valve-tag schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and with captions similar to those indicated in "Valve-Tag Size and Shape" Subparagraph below:

1. Valve-Tag Size and Shape:

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

3.7 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 21 05 53
SECTION 21 13 13 - WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Pipes, fittings, and specialties.
 2. Specialty valves.
 5. Pressure gauges.

B. Related Requirements:
 1. Section 230523 "General-Duty Valves for Water-Based Fire-Suppression Piping" for ball, butterfly, check, gate, post-indicator, and trim and drain valves.
 2. Division 01 Section “Construction Waste Management.”
 3. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 DEFINITIONS

A. High-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure higher than standard 175 psig, but not higher than 250 psig.

B. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175-psig maximum.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Sustainable Design Submittals:
 1. Product Data: For adhesives, indicating VOC content.
 2. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials.

C. Shop Drawings: For wet-pipe sprinkler systems.
THE CITY OF PHILADELPHIA
Office of Emergency Management

1. Include plans, elevations, sections, and attachment details.
2. Include diagrams for power, signal, and control wiring.

D. Delegated-Design Submittal: For wet-pipe sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Sprinkler systems, or BIM model, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved.
 1. Domestic water piping.
 2. Hydronic piping.
 3. Items penetrating finished ceiling include the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.

B. Qualification Data: For qualified Installer and professional engineer.

C. Design Data:
 1. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.

D. Welding certificates.

E. Field Test Reports:
 1. Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."
 2. Fire-hydrant flow test report.

F. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wet-pipe sprinkler systems and specialties to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of
sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.

1.8 QUALITY ASSURANCE

A. Installer Qualifications:

1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.

a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.

B. Welding Qualifications: Qualify procedures and operators according to 2010 ASME Boiler and Pressure Vessel Code.

1.9 FIELD CONDITIONS

A. Interruption of Existing Sprinkler Service: Do not interrupt sprinkler service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary sprinkler service according to requirements indicated:

1. Notify Construction Manager no fewer than two days in advance of proposed interruption of sprinkler service.

2. Do not proceed with interruption of sprinkler service without Construction Manager's written permission.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with NFPA 13.

B. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.

C. High-Pressure Piping System Component: Listed for 250-psig minimum working pressure.

D. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design wet-pipe sprinkler systems.

1. Perform fire-hydrant flow test and record to indicate the following conditions:

a. Date.
b. Time.
c. Performed by.
d. Location of Residual Fire Hydrant R.
e. Location of Flow Fire Hydrant F.
f. Static Pressure at Residual Fire Hydrant R.
g. Measured Flow at Flow Fire Hydrant F.
h. Residual Pressure at Residual Fire Hydrant R.

2. Sprinkler system design shall be approved by authorities having jurisdiction.

a. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
b. Sprinkler Occupancy Hazard Classifications:
 1) Building Service Areas: Ordinary Hazard, Group 1.
 2) Electrical Equipment Rooms: Ordinary Hazard, Group 1.
 3) Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
 4) Office and Public Areas: Light Hazard.

3. Minimum Density for Automatic-Sprinkler Piping Design:

a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
c. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area.

4. Maximum protection area per sprinkler according to UL listing.
5. Maximum Protection Area per Sprinkler:

a. Office Spaces: 225 sq. ft.
b. Storage Areas: 130 sq. ft.
c. Mechanical Equipment Rooms: 130 sq. ft.
d. Electrical Equipment Rooms: 130 sq. ft.
e. Other Areas: According to NFPA 13 recommendations unless otherwise indicated.

E. Seismic Performance: Sprinkler piping shall withstand the effects of earthquake motions determined according to NFPA 13 and ASCE/SEI 7.

2.2 STEEL PIPE AND FITTINGS

A. Standard-Weight, Galvanized- and Black-Steel Pipe: ASTM A53/A53M. Pipe ends may be factory or field formed to match joining method.

B. Schedule 30, Galvanized- and Black-Steel Pipe: ASTM A135/A135M; ASTM A795/A795M, Type E; or ASME B36.10M wrought steel, with wall thickness not less than Schedule 30 and not more than Schedule 40. Pipe ends may be factory or field formed to match joining method.

C. Thin wall Galvanized- and Black-Steel Pipe: ASTM A135/A135M or ASTM A795/A795M, threadable, with wall thickness less than Schedule 30 and equal to or greater than Schedule 10. Pipe ends may be factory or field formed to match joining method.
D. Schedule 10, Black-Steel Pipe: ASTM A135/A135M or ASTM A795/A795M, Schedule 10 in NPS 5 and smaller; and NFPA 13-specified wall thickness in NPS 6 to NPS 10, plain end.

F. Galvanized- and Uncoated-Steel Couplings: ASTM A865/A865M, threaded.

H. Malleable- or Ductile-Iron Unions: UL 860.

J. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.
 1. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick EPDM rubber gasket.
 2. Metal, Pipe-Flange Bolts and Nuts: Carbon steel unless otherwise indicated.

L. Grooved-Joint, Steel-Pipe Appurtenances:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International.
 b. McElroy Manufacturing Inc.
 c. Victaulic Company.
 2. Painted Grooved-End Fittings for Steel Piping: ASTM A47/A47M, malleable-iron casting or ASTM A536, ductile-iron casting, with dimensions matching steel pipe.
 3. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213 rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

M. Steel Pressure-Seal Fittings: UL 213, FM Global-approved, 175-psig pressure rating with steel housing, rubber O-rings, and pipe stop; for use with fitting manufacturers' pressure-seal tools.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Victaulic Company.
2.3 SPECIALTY VALVES

A. Listed in UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."

B. Pressure Rating:
 2. High-Pressure Piping Specialty Valves: 250-psig minimum.

C. Body Material: Cast or ductile iron.

D. Size: Same as connected piping.

E. End Connections: Flanged or grooved.

F. Alarm Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Reliable Automatic Sprinkler Co., Inc. (The).
 c. Tyco by Johnson Controls Company.
 3. Design: For horizontal or vertical installation.
 4. Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gauges, retarding chamber, and fill-line attachment with strainer.
 5. Drip cup assembly pipe drain with check valve to main drain piping.
 6. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

G. Automatic (Ball Drip) Drain Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Reliable Automatic Sprinkler Co., Inc. (The).
 b. Tyco by Johnson Controls Company.
 4. Type: Automatic draining, ball check.

2.4 AIR VENT

A. Manual Air Vent/Valve:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AGF Manufacturing, Inc.
 b. National Fittings, Inc.
 c. Shurjoint-Apollo Piping Products USA Inc.

2. Description: Ball valve that requires human intervention to vent air.
4. Ends: Threaded.
5. Minimize Size: 1/2 inch.

2.5 SPRINKLER PIPING SPECIALTIES

A. Branch Outlet Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AGF Manufacturing, Inc.
 b. Anvil International.
 c. Shurjoint-Apollo Piping Products USA Inc.
 d. Victaulic Company.
 5. Type: Mechanical-tee and -cross fittings.
 6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
 7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
 8. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Flow Detection and Test Assemblies:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AGF Manufacturing, Inc.
 b. Reliable Automatic Sprinkler Co., Inc. (The).
 c. Victaulic Company.
 4. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
 5. Size: Same as connected piping.
 6. Inlet and Outlet: Threaded or grooved.
C. Branch Line Testers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AGF Manufacturing, Inc.
 c. Fire-End & Croker Corporation.

2. Standard: UL 199.
5. Size: Same as connected piping.
6. Inlet: Threaded.
7. Drain Outlet: Threaded and capped.
8. Branch Outlet: Threaded, for sprinkler.

D. Sprinkler Inspector's Test Fittings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AGF Manufacturing, Inc.
 b. Triple R Specialty.
 c. Tyco by Johnson Controls Company.
 d. Victaulic Company.

4. Body Material: Cast- or ductile-iron housing with sight glass.
5. Size: Same as connected piping.
6. Inlet and Outlet: Threaded.

E. Adjustable Drop Nipples:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aegis Technologies, Inc.
 b. CECA, LLC.
 c. CPS Products, Inc.

5. Size: Same as connected piping.
7. Inlet and Outlet: Threaded.

F. Flexible Sprinkler Hose Fittings:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. FlexHead Industries, Inc.
 b. Gateway Tubing, Inc.
 c. Victaulic Company.
3. Type: Flexible hose for connection to sprinkler, and with bracket for connection to ceiling grid.
5. Size: Same as connected piping, for sprinkler.

2.6 SPRINKLERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Reliable Automatic Sprinkler Co., Inc. (The).
 3. Tyco by Johnson Controls Company.
B. Listed in UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."
C. Pressure Rating for Residential Sprinklers: 175-psig maximum.
D. Pressure Rating for Automatic Sprinklers: 175-psig minimum.
E. Pressure Rating for High-Pressure Automatic Sprinklers: 250-psig minimum.
F. Automatic Sprinklers with Heat-Responsive Element:
 1. Nonresidential Applications: UL 199.
 2. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.
G. Sprinkler Finishes: Noted in schedule.
H. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
 1. Ceiling Mounting: Chrome-plated steel, one piece, flat Chrome-plated steel, two piece, with 1-inch vertical adjustment.
 2. Sidewall Mounting: Chrome-plated steel, one piece, flat.
I. Sprinkler Guards:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Reliable Automatic Sprinkler Co., Inc. (The).
b. Tyco by Johnson Controls Company.
c. Victaulic Company.

2. Standard: UL 199.
3. Type: Wire cage with fastening device for attaching to sprinkler.

2.7 Alarm Devices

A. Alarm-device types shall match piping and equipment connections.

B. Electrically Operated Alarm Bell:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Fire-Lite Alarms, Inc.; a Honeywell International company.
 b. Notifier.
 c. Potter Electric Signal Company, LLC.

3. Type: Vibrating, metal alarm bell.
4. Size: 10-inch diameter.
5. Finish: Red-enamel or polyester powder-coat factory finish, suitable for outdoor use with approved and listed weatherproof backbox.
6. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Water-Flow Indicators:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. ADT Security Services, Inc.
 b. McDonnell & Miller.
 c. Potter Electric Signal Company, LLC.

4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
5. Type: Paddle operated.
7. Design Installation: Horizontal or vertical.

D. Pressure Switches:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Barksdale, Inc.
 b. Detroit Switch, Inc.
 c. Potter Electric Signal Company, LLC.

3. Type: Electrically supervised water-flow switch with retard feature.
5. Design Operation: Rising pressure signals water flow.

E. Valve Supervisory Switches:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell International company.
 b. Kennedy Valve Company; a division of McWane, Inc.
 c. Potter Electric Signal Company, LLC.

3. Type: Electrically supervised.
5. Design: Signals that controlled valve is in other than fully open position.
6. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.8 PRESSURE GAUGES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AGF Manufacturing, Inc.
2. AMETEK, Inc.
3. Ashcroft Inc.

B. Standard: UL 393.

C. Dial Size: 3-1/2- to 4-1/2-inch diameter.

D. Pressure Gauge Range: 0- to 250-psig minimum.

E. Label: Include "WATER" label on dial face.
PART 3 - EXECUTION

3.1 PREPARATION

A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.

B. Report test results promptly and in writing.

3.2 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated on approved working plans.
 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
 2. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

B. Piping Standard: Comply with NFPA 13 requirements for installation of sprinkler piping.

C. Install seismic restraints on piping. Comply with NFPA 13 requirements for seismic-restraint device materials and installation.

D. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

E. Install unions adjacent to each valve in pipes NPS 2 and smaller.

F. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

G. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

H. Install sprinkler piping with drains for complete system drainage.

I. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.

J. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.

K. Install alarm devices in piping systems.

L. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13. In seismic-rated areas, refer to Section 210548 "Vibration and Seismic Controls for Fire-Suppression Piping and Equipment."
M. Install pressure gauges on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gauges with connection not less than NPS 1/4 and with soft-metal seated globe valve, arranged for draining pipe between gauge and valve. Install gauges to permit removal, and install where they are not subject to freezing.

N. Fill sprinkler system piping with water.

O. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

P. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

Q. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 210518 "Escutcheons for Fire-Suppression Piping."

3.3 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Steel-Piping, Pressure-Sealed Joints: Join lightwall steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

I. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.

J. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.

K. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

L. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.4 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Specialty Valves:

1. Install valves in vertical position for proper direction of flow, in main supply to system.
2. Install alarm valves with bypass check valve and retarding chamber drain-line connection.
3. Install deluge valves in vertical position, in proper direction of flow, and in main supply to deluge system. Install trim sets for drain, priming level, alarm connections, ball drip valves, pressure gauges, priming chamber attachment, and fill-line attachment.

E. Air Vent:

1. Provide at least one air vent at high point in each wet-pipe sprinkler system in accordance with NFPA 13 requirements. Connect vent into top of fire sprinkler piping.
2. Provide dielectric union for dissimilar metals, ball valve, and strainer upstream of automatic air vent.

3.5 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of narrow dimension of acoustical ceiling panels.

B. Install dry-type sprinklers with water supply from heated space. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing.
C. Install sprinklers into flexible, sprinkler hose fittings, and install hose into bracket on ceiling grid.

3.6 IDENTIFICATION
A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

3.7 FIELD QUALITY CONTROL
A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 4. Energize circuits to electrical equipment and devices.
 5. Coordinate with fire-alarm tests. Operate as required.
 6. Coordinate with fire-pump tests. Operate as required.
 7. Verify that equipment hose threads are same as local fire department equipment.
B. Sprinkler piping system will be considered defective if it does not pass tests and inspections.
C. Prepare test and inspection reports.

3.8 CLEANING
A. Clean dirt and debris from sprinklers.
B. Only sprinklers with their original factory finish are acceptable. Remove and replace any sprinklers that are painted or have any other finish than their original factory finish.

3.9 DEMONSTRATION
A. Train Owner's maintenance personnel to adjust, operate, and maintain specialty valves.

3.10 PIPING SCHEDULE
A. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.
B. Standard-pressure, wet-pipe sprinkler system, NPS 2 and smaller, shall be one of the following:
1. Standard-weight or Schedule 30, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
2. Standard-weight or Schedule 30, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
3. Standard-weight or Schedule 30, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
4. Standard-weight or Schedule 30, galvanized-steel pipe with cut-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
5. Thin wall Schedule 10 nonstandard OD, thin wall or hybrid black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

C. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 to NPS 4, shall be one of the following:

1. Standard-weight or Schedule 30, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
2. Standard-weight or Schedule 30, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
3. Standard-weight or Schedule 30, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
4. Standard-weight or Schedule 30, galvanized-steel pipe with cut-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
5. Thin wall Schedule 10 nonstandard OD, thin wall or hybrid black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

D. Standard-pressure, wet-pipe sprinkler system, NPS 5 and larger, shall be one of the following:

1. Standard-weight or Schedule 30, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
2. Standard-weight or Schedule 30, galvanized-steel pipe with threaded ends; galvanized, gray-iron threaded fittings; and threaded joints.
3. Standard-weight or Schedule 30, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
4. Standard-weight or Schedule 30, galvanized-steel pipe with cut-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
5. Thin wall Schedule 10 or hybrid black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

3.11 SPRINKLER SCHEDULE

A. Use sprinkler types in subparagraphs below for the following applications:
1. Rooms without Ceilings: Upright sprinklers.
2. Rooms with Suspended Ceilings: Pendent, recessed, flush, and concealed sprinklers as indicated.
4. Institutional ceiling heads in security areas.

B. Provide sprinkler types in subparagraphs below with finishes indicated.

1. Concealed Sprinklers: Rough brass, with factory-painted white cover plate.
2. Flush Sprinklers: Bright chrome, with painted white escutcheon.
3. Recessed Sprinklers: Bright chrome, with bright chrome escutcheon.
4. Upright, Pendent and Sidewall Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.

3.12 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 21 13 13
SECTION 220513 - COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on alternating-current power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

B. Related Sections Include the following:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEED v4 ID+C.”

1.3 COORDINATION
A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
A. Comply with NEMA MG 1 unless otherwise indicated.

B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS
A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Premium efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. Multispeed Motors: Separate winding for each speed.

F. Rotor: Random-wound, squirrel cage.

G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

H. Temperature Rise: Match insulation rating.

I. Insulation: Class F.

J. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller Than 15 HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 ADDITIONAL REQUIREMENTS FOR POLYPHASE MOTORS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable-Frequency Controllers:
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width-modulated inverters.
 2. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 3. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:

1. Permanent-split capacitor.
2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 220513
SECTION 220517 - SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Sleeves.
 2. Stack-sleeve fittings.
 3. Sleeve-seal systems.
 4. Sleeve-seal fittings.
 5. Grout.

B. Related Sections Include the following:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEED v4 ID+C.”

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.

B. Sustainable Design:
 1. Sealant Submittals

PART 2 - PRODUCTS

2.1 SLEEVES
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Advance Products & Systems, Inc.
 2. CALPICO, Inc.
 3. GPT; an EnPro Industries company.

B. Cast-Iron Pipe Sleeves: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop collar.
C. Steel Pipe Sleeves: ASTM A53/A53M, Type E, Grade B, Schedule 40, anticorrosion coated or galvanized, with plain ends and integral welded waterstop collar.

D. Galvanized-Steel Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

E. PVC Pipe Sleeves: ASTM D1785, Schedule 40.

F. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

G. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

2.2 STACK-SLEEVE FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Zurn Industries, LLC.

B. Description: Manufactured, Dura-coated or Duco-coated galvanized cast-iron sleeve with integral clamping flange for use in waterproof floors and roofs. Include clamping ring, bolts, and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with setscrews.

2.3 GROUT

A. Description: Nonshrink, for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.4 SILICONE SEALANTS

A. Silicone, S, NS, 25, NT: Single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant, ASTM C920, Type S, Grade NS, Class 25, Use NT.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. GE Construction Sealants; Momentive Performance Materials Inc.
b. Polymeric Systems, Inc.
c. Sherwin-Williams Company (The).
d. The Dow Chemical Company.

2. Provide sustainable design for sealants.
3. Provide sustainable design VOC for sealants.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
2. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches minimum above finished floor level.
3. Using grout or silicone sealant, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.

1. Cut sleeves to length for mounting flush with both surfaces.
2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint.

E. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke Barrier Penetrations: Maintain indicated fire or smoke rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with fire- and smoke-stop materials. Comply with requirements for firestopping and fill materials specified in Section 078413 "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.
1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 076200 "Sheet Metal Flashing and Trim."
3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
5. Use silicone sealant to seal the space around outside of stack-sleeve fittings.

B. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke Barrier Penetrations: Maintain indicated fire or smoke rating of floors at pipe penetrations. Seal pipe penetrations with fire- and smoke-stop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.3 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Leak Test: After allowing for a full cure, test sleeves and sleeve seals for leaks. Repair leaks and retest until no leaks exist.

B. Sleeves and sleeve seals will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.4 SLEEVE SCHEDULE

A. Use sleeves for the following piping-penetration applications:

1. Concrete Slabs above Grade:
 a. Piping Smaller Than NPS 6: Steel pipe sleeves Stack-sleeve fittings.
 b. Piping NPS 6 and Larger: Steel pipe sleeves Stack-sleeve fittings.

2. Interior Partitions:
 a. Piping Smaller Than NPS 6: Steel pipe sleeves.
 b. Piping NPS 6 and Larger: Galvanized-steel sheet sleeves.

3.5 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 220517
SECTION 220518 - ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Escutcheons.
 2. Floor plates.
 B. Related Sections Include the following:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEED v4 ID+C.”

1.3 DEFINITIONS
 A. Existing Piping to Remain: Existing piping that is not to be removed and that is not otherwise indicated to be removed and salvaged, or removed and reinstalled.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. BrassCraft Manufacturing Co.; a Masco company.
 2. Jones Stephens Corp.
 4. Mid-America Fittings, Inc.
 5. ProFlo; a Ferguson Enterprises, Inc. brand.
2.2 ESCUTCHEONS

A. One-Piece, Steel Type: With polished, chrome-plated finish and setscrew fastener.
B. One-Piece, Stainless-Steel Type: With polished stainless-steel finish.
C. One-Piece, Cast-Brass Type: With rough brass and setscrew fastener.
D. Split-Plate, Stamped-Steel Type: With polished, chrome-plated finish; concealed and exposed-rivet hinge; and spring-clip fasteners.

2.3 FLOOR PLATES

A. Split Floor Plates: Cast brass with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.

1. Escutcheons for New Piping and Relocated Existing Piping:
 a. Chrome-Plated Piping: One-piece steel with polished, chrome-plated finish.
 b. Insulated Piping: One-piece steel with polished, chrome-plated finish.
 c. Insulated Piping: One-piece stainless steel with polished stainless-steel finish.
 d. Insulated Piping: One-piece stamped steel or split-plate, stamped steel with exposed-rivet hinge with polished, chrome-plated finish.
 e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece steel with polished, chrome-plated finish.
 f. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece stainless steel with polished stainless-steel finish.
 g. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece stamped steel or split-plate, stamped steel with exposed-rivet hinge with polished, chrome-plated finish.
 h. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece steel with polished, chrome-plated finish.
 i. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece stainless steel with polished stainless-steel finish.
 j. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece stamped steel or split-plate, stamped steel with exposed-rivet hinge with polished, chrome-plated finish.
 k. Bare Piping in Unfinished Service Spaces: One-piece cast brass with rough-brass finish.
 l. Bare Piping in Unfinished Service Spaces: One-piece stamped steel or split-plate, stamped steel with exposed-rivet hinge with polished, chrome-plated finish.
m. Bare Piping in Equipment Rooms: One-piece cast brass with rough-brass finish.
n. Bare Piping in Equipment Rooms: One-piece stamped steel or split-plate, stamped steel with exposed-rivet hinge with polished, chrome-plated finish.

2. Escutcheons for Existing Piping to Remain:
 a. Chrome-Plated Piping: Split-casting, stamped steel with exposed-rivet hinge with polished, chrome-plated finish.
 b. Insulated Piping: Split-plate, stamped steel with exposed-rivet hinge with polished, chrome-plated finish.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-plate, stamped steel with exposed-rivet hinge with polished, chrome-plated finish.
 d. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped steel with exposed-rivet hinge with polished, chrome-plated finish.
 e. Bare Piping in Unfinished Service Spaces: Split-plate, stamped steel with exposed-rivet hinge with polished, chrome-plated finish.
 f. Bare Piping in Equipment Rooms: Split-plate, stamped steel with exposed-rivet hinge with polished, chrome-plated finish.

C. Install floor plates for piping penetrations of equipment room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 1. New Piping and Relocated Existing Piping: One-piece, floor plate.
 2. Existing Piping: Split floor plate.

3.2 FIELD QUALITY CONTROL

A. Using new materials, replace broken and damaged escutcheons and floor plates.

END OF SECTION 220518
SECTION 220519 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Liquid-in-glass thermometers.

B. Related Requirements:
 1. Section 221119 "Domestic Water Piping Specialties" for water meters.
 2. Division 01 Section “Construction Waste Management.”
 3. Division 01 Section “Sustainable Design Requirements – LEED v4 ID+C.”

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: Include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 LIQUID-IN-GLASS THERMOMETERS

A. Plastic-Case, Compact-Style, Liquid-in-Glass Thermometers:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Miljoco Corporation.
 b. WATTS.
 c. Weiss Instruments, Inc.
 d. Weksler Glass Thermometer Corp.
 e. WIKA Instrument Corporation.

4. Case Form: Back angle unless otherwise indicated.
5. Tube: Glass with magnifying lens and blue or red organic liquid.
6. Tube Background: Nonreflective with permanently etched scale markings graduated in deg F.
7. Window: Glass.
8. Stem: Aluminum or brass and of length to suit installation.
10. Accuracy: Plus, or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

B. Plastic-Case, Industrial-Style, Liquid-in-Glass Thermometers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Miljoco Corporation.
 b. WATTS.
 c. Weiss Instruments, Inc.
 d. Weksler Glass Thermometer Corp.
 e. WIKA Instrument Corporation.
3. Case: Plastic; 7-inch nominal size unless otherwise indicated.
4. Case Form: Adjustable angle unless otherwise indicated.
5. Tube: Glass with magnifying lens and blue or red organic liquid.
6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
7. Window: Glass.
8. Stem: Aluminum, brass, or stainless steel and of length to suit installation.
10. Accuracy: Plus, or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermometers in the following locations:

1. Inlet and outlet of each tank type water heater.

3.2 CONNECTIONS

A. Install thermometers for equipment to allow service and maintenance of equipment.

3.3 ADJUSTING

A. Adjust faces of thermometers to proper angle for best visibility.
3.4 THERMOMETER SCHEDULE

A. Thermometers at inlet and outlet of each domestic water heater shall be the following:

3.5 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range for Domestic Hot-Water Piping: 0 to 200 deg F.

3.6 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for
 waste separation, collection, and transport as defined in the contractor’s “Waste Management
 Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 220519
SECTION 220523.12 - BALL VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Brass ball valves.
2. Steel ball valves

B. Related Sections include the following:

1. Division 01 Section “Construction Waste Management.”
2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 DEFINITIONS

A. CWP: Cold working pressure.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1. Certification that products comply with NSF 61 and NSF 372.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:

1. Protect internal parts against rust and corrosion.
2. Protect threads, flange faces, and soldered ends.

B. Use the following precautions during storage:

1. Maintain valve end protection.
2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.5 for flanges on steel valves.

C. NSF Compliance: NSF 61 and NSF 372 for valve materials for potable-water service.

D. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

E. Valve Sizes: Same as upstream piping unless otherwise indicated.

F. Valve Actuator Types:
 1. Gear Actuator: For quarter-turn valves NPS 4 and larger.
 2. Handlever: For quarter-turn valves smaller than NPS 4.

G. Valves in Insulated Piping:
 1. Include 2-inch stem extensions.
 2. Extended operating handles of nonthermal-conductive material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
 3. Memory stops that are fully adjustable after insulation is applied.

2.2 BRASS BALL VALVES

A. Brass Ball Valves, Two-Piece with Full Port and Stainless-Steel Trim, Threaded or Soldered Ends:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 b. FNW; Ferguson Enterprises, Inc.
 c. Hammond Valve.
 d. Jomar Valve.
 e. Milwaukee Valve Company.
 f. Stockham; a Crane Co. brand.
2. Description:

 a. Standard: MSS SP-110 or MSS SP-145.
 b. CWP Rating: 600 psig.
 c. Body Design: Two piece.
 d. Body Material: Forged brass.
 e. Ends: Threaded and soldered.
 f. Seats: PTFE.
 g. Stem: Stainless steel.
 h. Ball: Stainless steel, vented.
 i. Port: Full.

B. Brass Ball Valves, Two-Piece with Full Port and Stainless-Steel Trim, Press Ends:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 b. FNW; Ferguson Enterprises, Inc.
 c. Hammond Valve.
 d. Jomar Valve.
 e. Milwaukee Valve Company.
 f. Stockham; a Crane Co. brand.
 g. Viega LLC.

2. Description:

 a. Standard: MSS SP-110 or MSS SP-145.
 b. CWP Rating: Minimum 200 psig.
 c. Body Design: Two piece.
 d. Body Material: Forged brass.
 e. Ends: Press.
 g. Seats: PTFE or RPTFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Full.
 k. O-Ring Seal: Buna-N or EPDM.

C. Brass Ball Valves, Two-Piece with Regular Port and Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 b. FNW; Ferguson Enterprises, Inc.
 c. Hammond Valve.
 d. Jomar Valve.
 e. Milwaukee Valve Company.
2. Description:

b. CWP Rating: 600 psig.
c. Body Design: Two piece.
d. Body Material: Brass or bronze.
e. Ends: Threaded and soldered.
f. Seats: PTFE.
g. Stem: Stainless steel.
h. Ball: Stainless steel, vented.
i. Port: Regular.

2.3 STEEL BALL VALVES

A. Steel Ball Valves with Full Port, Class 150:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 b. FNW; Ferguson Enterprises, Inc.
 c. Hammond Valve.
 d. Jomar Valve.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Stockham; a Crane Co. brand.
 h. Viega LLC.

2. Description:

 d. Body Material: Carbon steel, ASTM A216, Type WCB.
 e. Ends: Flanged or threaded.
 f. Seats: PTFE.
 g. Stem: Stainless steel.
 h. Ball: Stainless steel, vented.
 i. Port: Full.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION
A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS
A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

B. Select valves with the following end connections:
 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option or press-end option is indicated in valve schedules below.
 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.

3.4 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE
A. Pipe NPS 2 and Smaller:
1. Brass ball valves, two-piece with full port and stainless steel trim. Provide with threaded solder or press connection-joint ends.

B. Pipe NPS 2-1/2 and Larger:

1. Steel Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.

3.5 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 220523.12
SECTION 220523.14 - CHECK VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Bronze swing check valves.
 2. Bronze swing check valves, press ends.

B. Related Requirements:
 1. Division 01 Section “Construction Waste Management”
 2. Division 01 Section “Sustainable Design Requirements – LEED v4 ID+C

1.3 DEFINITIONS

A. CWP: Cold working pressure.

B. EPDM: Ethylene propylene-diene terpolymer rubber.

C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve.
 1. Certification that products comply with NSF 61 and NSF 372.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set check valves in either closed or open position.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 3. ASME B16.18 for solder joint.

C. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

E. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

F. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

G. Valve Sizes: Same as upstream piping unless otherwise indicated.

H. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE SWING CHECK VALVES

A. Bronze Swing Check Valves with Bronze Disc, Class 125:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 b. Milwaukee Valve Company.
 c. NIBCO INC.
 2. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded or soldered. See valve schedule articles.
f. Disc: Bronze.

B. Bronze Swing Check Valves, Press Ends:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 b. Milwaukee Valve Company.
 c. NIBCO INC.

2. Description:
 a. Standard: MSS SP-80 and MSS SP-139.
 b. CWP Rating: Minimum 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Press.
 f. Press Ends Connection Rating: Minimum 200 psig
 g. Disc: Brass or bronze.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.
D. Install valves in position to allow full stem movement.

E. Check Valves: Install check valves for proper direction of flow.
 1. Swing Check Valves: In horizontal position with hinge pin level.
 2. Center-Guided and Plate-Type Check Valves: In horizontal or vertical position, between flanges.

F. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 ADJUSTING
A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS
A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

B. End Connections:
 1. For Copper Tubing, NPS 2 and Smaller: Threaded or soldered or press-ends.

3.5 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE
A. Pipe NPS 2 and Smaller:
 1. Bronze swing check valves with bronze disc, Class 125, with soldered or threaded end connections.
 2. Bronze swing check valves with press-end connections.

3.6 CONSTRUCTION WASTE MANAGEMENT (LEED)
A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 220523.14
SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Thermal hanger-shield inserts.
 3. Fastener systems.
 4. Pipe-positioning systems.

B. Related Requirements:
 1. Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for vibration isolation devices.
 2. Division 01 Section “Construction Waste Management.”
 3. Division 01 Section “Sustainable Design Requirements – LEED v4 ID+C.”

1.3 SUBMITTALS

A. Product Data: For each type of product.
 1. Sustainable design submittal for recycled content.
 2. Sustainable design submittal for regional materials.

1.4 QUALITY ASSURANCE

A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.

B. Pipe Welding Qualifications: Qualify procedures and operators according to 2015 ASME Boiler and Pressure Vessel Code, Section IX.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.
2. Design seismic-restraint hangers and supports for piping.

2.2 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:

1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
2. Galvanized Metallic Coatings: Pregalvanized, hot-dip galvanized, or electro-galvanized.
3. Nonmetallic Coatings: Plastic coated or epoxy powder coated.
4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Copper Pipe and Tube Hangers:

1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.3 THERMAL HANGER-SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Buckaroos, Inc.
2. Carpenter & Paterson, Inc.
4. nVent (CADDY).
5. Pipe Shields Inc.

B. Insulation-Insert Material for Cold Piping: ASTM C552, Type II cellular glass with 100-psig minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: Water-repellent-treated, ASTM C533, Type I calcium silicate with 100-psig minimum compressive strength.

D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.4 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hilti, Inc.
 b. ITW Ramset/Red Head; Illinois Tool Works, Inc.
 c. MKT Fastening, LLC.

B. Mechanical-Expansion Anchors: Insert-wedge-type anchors, for use in hardened portland cement concrete, with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. B-line; Eaton, Electrical Sector.
 b. Hilti, Inc.
 c. ITW Ramset/Red Head; Illinois Tool Works, Inc.
 d. MKT Fastening, LLC.

2. Indoor Applications: Zinc-coated steel.

2.5 PIPE-POSITIONING SYSTEMS

A. Description: IAPMO PS 42 positioning system composed of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.6 MATERIALS

A. Carbon Steel: ASTM A1011/A1011M.

B. Structural Steel: ASTM A36/A36M carbon-steel plates, shapes, and bars; black and galvanized.

C. Grout: ASTM C1107/C1107M, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.
PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation, for penetrations through fire-rated walls, ceilings, and assemblies.

B. Strength of Support Assemblies: Where not indicated, select sizes of components, so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

3.2 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-58. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

B. Thermal Hanger-Shield Installation: Install in pipe hanger or shield for insulated piping.

C. Fastener System Installation:

1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete, after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.

2. Install mechanical-expansion anchors in concrete, after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

D. Pipe-Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.

E. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

F. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

G. Install lateral bracing with pipe hangers and supports to prevent swaying.

H. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms, and install reinforcing bars through openings at top of inserts.

I. Load Distribution: Install hangers and supports, so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

J. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
K. Insulated Piping:

1. Attach clamps and spacers to piping.
 a. Piping Operating Above Ambient Air Temperature: Clamp may project through insulation.

2. Install MSS SP-58, Type 39 protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.

3. Install MSS SP-58, Type 40 protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.

5. Thermal Hanger Shields: Install with insulation of same thickness as piping insulation.

3.3 METAL FABRICATIONS

A. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

B. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections, so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded, shop-painted areas. Paint exposed areas immediately after erecting hangers and supports. Use same materials as those used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded, shop-painted areas on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas, and apply galvanizing-repair paint to comply with ASTM A780/A780M.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-58 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finishes.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and attachments for general service applications.

F. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

G. Use padded hangers for piping that is subject to scratching.

H. Use thermal hanger-shield inserts for insulated piping and tubing.

I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 8.
2. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 8 if little or no insulation is required.
3. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
4. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
5. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
6. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
7. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
8. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
9. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.

J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 8.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 8 if longer ends are required for riser clamps.

K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment of up to 6 inches for heavy loads.
2. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11 split pipe rings.

L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable-Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. C-Clamps (MSS Type 23): For structural shapes.
6. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
7. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
8. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.

M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal Hanger-Shield Inserts: For supporting insulated pipe.

N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.

3. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.

O. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

P. Use pipe-positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

3.7 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 220529
SECTION 220548 - VIBRATION AND SEISMIC CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Pipe-riser resilient supports.
 2. Resilient pipe guides.
 3. Elastomeric hangers.
 4. Spring hangers.

B. Related Requirements:
 1. Section 210548 "Vibration and Seismic Controls for Fire-Suppression Piping and Equipment" for devices for fire-suppression equipment and systems.
 2. Section 230548 "Vibration and Seismic Controls for HVAC" for devices for HVAC equipment and systems.
 3. Division 01 Section “Construction Waste Management.”
 4. Division 01 Section “Sustainable Design Requirements – LEED v4 ID+C.”

1.3 DEFINITIONS

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.

B. Shop Drawings:
 1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic-Restraint Loading:
 1. Site Class as Defined in the IBC: D.
 2. Assigned Seismic Use Group or Building Category as Defined in the IBC: III.

2.2 PIPE-RISER RESILIENT SUPPORT

A. Description: All-directional, acoustical pipe anchor consisting of two steel tubes separated by a minimum 1/2-inch-thick neoprene.
 1. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.
 2. Maximum Load Per Support: 500 psig on isolation material providing equal isolation in all directions.

2.3 RESILIENT PIPE GUIDES

A. Description: Telescopic arrangement of two steel tubes or post and sleeve arrangement separated by a minimum 1/2-inch-thick neoprene.
 1. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.4 ELASTOMERIC HANGERS

A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation.
 c. Kinetics Noise Control, Inc.
 d. nVent (CADDY).
 2. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
 3. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.
2.5 SPRING HANGERS

A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation.
 c. Kinetics Noise Control, Inc.
 d. nVent (CADDY).

2. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.

3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.

4. Minimum Additional Travel: 50 percent of the required deflection at rated load.

5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.

6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

7. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.

8. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.

9. Self-centering hanger-rod cap to ensure concentricity between hanger rod and support spring coil.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an agency acceptable to authorities having jurisdiction.
B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

3.3 VIBRATION CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete."

B. Piping Restraints:

1. Comply with requirements in MSS SP-127.
2. Space lateral supports a maximum of 40 feet o.c. and longitudinal supports a maximum of 80 feet o.c.
3. Brace a change of direction longer than 12 feet.

C. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction that provides required submittals for component.

D. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Section 221116 "Domestic Water Piping" for piping flexible connections.

3.5 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 220548
SECTION 220553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Warning signs and labels.
3. Pipe labels.
4. Valve tags.

B. Related Sections include the following:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEED v4 ID+C.”

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Valve numbering scheme to match base building standards.

C. Valve Schedules: For each piping system to be included in project close out maintenance manuals.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Brady Corporation.
 b. Brimar Industries, Inc.
 c. Carlton Industries, LP.
 d. Craftmark Pipe Markers.
 e. Seton Identification Products; a Brady Corporation company.
2. Material and Thickness: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
4. Background Color: Yellow.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
7. Fasteners: Stainless-steel rivets or self-tapping screws.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's equipment number.

2.2 WARNING SIGNS AND LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Brady Corporation.
 2. Brimar Industries, Inc.
 3. Carlton Industries, LP.
 5. Seton Identification Products; a Brady Corporation company.

B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

C. Letter Color: Black.

D. Background Color: Yellow.

E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

J. Label Content: Include caution and warning information.
2.3 PIPE LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Brady Corporation.
2. Brimar Industries, Inc.
3. Carlton Industries, LP.
5. Seton Identification Products; a Brady Corporation company.

B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

C. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

D. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

E. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.

 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.

2.4 VALVE TAGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Brady Corporation.
2. Brimar Industries, Inc.
3. Carlton Industries, LP.
5. Seton Identification Products; a Brady Corporation company.

B. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.

 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Fasteners: Brass wire-link chain.

C. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

A. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 25 feet along each run. Reduce intervals to 15 feet in areas of congested piping and equipment.

B. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

C. Pipe Label Color Schedule:
1. Domestic Water Piping
 a. Background: Safety green.

2. Sanitary Waste and Storm Drainage Piping:
 a. Background Color: Safety white.
 b. Letter Color: Black.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:
 b. Hot Water and hot water return: 1-1/2 inches, square.

2. Valve-Tag Colors:
 b. Hot Water and hot water return: Safety green.

3. Letter Colors:
 b. Hot Water and hot water return: White

3.6 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 220553
THIS PAGE LEFT BLANK INTENTIONALLY
SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes insulating the following plumbing piping services:
 1. Domestic cold-water piping.
 2. Domestic hot-water piping.
 3. Domestic recirculating hot-water piping.
 4. Domestic chilled-water piping for drinking fountains.
 5. Supplies and drains for handicap-accessible lavatories and sinks.

B. Related Sections:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEED v4 ID+C.”

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).
B. Sustainable Design Submittals:
 1. Sustainable design submittal for adhesives and sealants

1.4 QUALITY ASSURANCE
A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products in accordance with ASTM E84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive and tapes with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less and smoke-developed index of 50 or less.
C. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in "Piping Insulation Schedule, General" and "Indoor Piping Insulation Schedule" articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come into contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested in accordance with ASTM C871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable in accordance with ASTM C795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:

 a. Pittsburgh Corning Corporation.

2. Preformed Pipe Insulation: Type II, Class 1, without jacket.
3. Preformed Pipe Insulation: Type II, Class 2, with factory-applied ASJ jacket.
4. Factory fabricate shapes in accordance with ASTM C450 and ASTM C585.
5. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
F. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C534/C534M, Type I for tubular materials.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aeroflex USA.
 b. Armacell LLC.
 c. K-Flex USA.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville; a Berkshire Hathaway company.
 b. Knauf Insulation.
 c. Owens Corning.

2. Preformed Pipe Insulation: Type I, Grade A with factory-applied ASJ.
3. Factory fabricate shapes in accordance with ASTM C450 and ASTM C585.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Flexible Elastomeric Adhesive: Solvent-based adhesive.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aeroflex USA.
 b. Armacell LLC.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. K-Flex USA.

2. Provide sustainable design submittal for adhesives.
3. Flame-spread index shall be 25 or less and smoke-developed index shall be 50 or less as tested in accordance with ASTM E84.
4. Service Temperature Range: 40 to 200 deg F.
5. Color: Black.

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
b. Foster Brand; H. B. Fuller Construction Products.

2. Provide sustainable design qualification for mineral fiber adhesive VOC content.
3. Provide sustainable design submittal for adhesives.

D. ASJ Adhesive: Comply with MIL-A-3316C, Class 2, Grade A, for bonding insulation jacket lap seams and joints.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Foster Brand; H. B. Fuller Construction Products.
 c. Mon-Eco Industries, Inc.
 2. Provide sustainable design qualification for adhesive for ASJ jackets VOC content.
 3. Provide sustainable design submittal for low-emitting adhesives and sealants.

2.3 SEALANTS

A. Materials shall be as recommended by the insulation manufacturer and shall be compatible with insulation materials, jackets, and substrates.

B. Joint Sealants:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Foster Brand; H. B. Fuller Construction Products.
 c. Mon-Eco Industries, Inc.
 d. Pittsburgh Corning Corporation.
 2. Permanently flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 58 to plus 176 deg F.
 5. Provide sustainable design qualification for sealant.
 6. Provide sustainable design submittal for sealant.

C. FSK Jacket Flashing Sealants:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Foster Brand; H. B. Fuller Construction Products.
 c. Mon-Eco Industries, Inc.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Provide sustainable design qualification for FSK jacket flashing VOC content.
6. Provide sustainable design submittal for sealant.

D. ASJ Flashing Sealants:
 1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 5. Provide sustainable design qualification for ASJ flashing products VOC content.
 6. Provide sustainable design submittal for sealant.

2.4 FACTORY-APPLIED JACKETS
 A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C1136, Type I.
 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C1136, Type I.
 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C1136, Type II.

2.5 FIELD-APPLIED JACKETS
 A. Field-applied jackets shall comply with ASTM C1136, Type I, unless otherwise indicated.
 B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.

2.6 TAPES
 A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C1136.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. 3M Industrial Adhesives and Tapes Division.
 b. Avery Dennison Corporation, Specialty Tapes Division.
 c. Ideal Tape Co., Inc., an American Biltrite Company.
 d. Knauf Insulation.
 2. Width: 3 inches.
 3. Thickness: 11.5 mils.
 5. Elongation: 2 percent.
 6. Tensile Strength: 40 lbf/inch in width.
 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C1136.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. 3M Industrial Adhesives and Tapes Division.
 b. Avery Dennison Corporation, Specialty Tapes Division.
 c. Ideal Tape Co., Inc., an American Biltrite Company.
 d. Knauf Insulation.

2. Width: 3 inches.
3. Thickness: 6.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor applications.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. 3M Industrial Adhesives and Tapes Division.

2. Width: 2 inches.
3. Thickness: 6 mils.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch in width.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. 3M Industrial Adhesives and Tapes Division.
 b. Avery Dennison Corporation, Specialty Tapes Division.
 c. Ideal Tape Co., Inc., an American Biltrite Company.
 d. Knauf Insulation.

2. Width: 2 inches.
3. Thickness: 3.7 mils.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lbf/inch in width.
2.7 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers,

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Just Manufacturing.
 b. Plumberex Specialty Products, Inc.
 c. Truebro.
 d. Zurn Industries, LLC.

2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:

 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range of between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

 2. Carbon Steel: Coat carbon steel operating at a service temperature of between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless steel surfaces, use demineralized water.
3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping, including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and of thicknesses required for each item of pipe system, as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during storage, application, and finishing. Replace insulation materials that get wet.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward-clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward-clinching staples along edge at 4 inches o.c.
 4. Cover joints and seams with tape, in accordance with insulation material manufacturer's written instructions, to maintain vapor seal.

K. Cut insulation in a manner to avoid compressing insulation more than 25 percent of its nominal thickness.

L. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

M. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches in similar fashion to butt joints.
3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant.
 3. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

E. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials, except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, Mechanical Couplings, and Unions:
 1. Install insulation over fittings, valves, strainers, flanges, mechanical couplings, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as that of adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as that used for adjacent pipe. Cut sectional pipe insulation to fit.
Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as that used for adjacent pipe. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers, so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover.

6. Insulate flanges, mechanical couplings, and unions, using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Stencil or label the outside insulation jacket of each union with the word "union" matching size and color of pipe labels.

C. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as that of adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union at least 2 times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.

2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as that of pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as that of pipe insulation when available.
 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties, and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of preformed pipe insulation to pipe with wire or bands, and tighten bands without deforming insulation materials.
 2. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.

B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed sections of same material as that of straight segments of pipe insulation when available.
 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
D. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed sections of same material as that of straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.8 FIELD-APPLIED JACKET INSTALLATION
A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
3. Completely encapsulate insulation with coating, leaving no exposed insulation.

3.9 FINISHES
A. Paint to match base building standard.
B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
D. Do not field paint aluminum or stainless steel jackets.

3.10 FIELD QUALITY CONTROL
A. Owner will engage a qualified testing agency to perform tests and inspections.
B. Engage a qualified testing agency to perform tests and inspections.
C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
D. Tests and Inspections: Inspect pipe, fittings, strainers, and valves, randomly selected by Architect.
E. All insulation applications will be considered defective if they do not pass tests and inspections.
3.11 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.12 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:
 1. NPS 1 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.
 2. NPS 1-1/4 and Larger: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

B. Domestic Hot and Recirculated Hot Water:
 1. NPS 1-1/4 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
 2. NPS 1-1/2 and Larger: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

C. Domestic Chilled Water (Potable):
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

D. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1/2 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.

E. Floor Drains, Traps, and Sanitary Drain Piping within 10 Feet of Drain Receiving Condensate and Equipment Drain Water below 60 Deg F:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 3/4 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.
3.13 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 220719
SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Copper tube and fittings.
2. Piping joining materials.
3. Transition fittings.
4. Dielectric fittings.

B. Related Requirements:

1. Division 01 Section “Construction Waste Management.”
2. Division 01 Section “Sustainable Design Requirements – LEED v4 ID+C.”

1.3 ACTION SUBMITTALS

A. Product Data.

1.4 INFORMATIONAL SUBMITTALS TO BE PROVIDED FOR PROJECT CLOSE OUT

A. System purging and disinfecting activities report.

B. Field quality-control reports.

1.5 FIELD CONDITIONS

A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:

1. Notify Construction Manager no fewer than five (5) days in advance of proposed interruption of water service.
2. Do not interrupt water service without Construction Manager's written permission.
PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

B. Potable-water piping and components shall comply with NSF 14, NSF 61, and NSF 372. Include marking "NSF-pw" on piping.

2.2 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L and ASTM B 88, Type M water tube, drawn temper.

B. Soft Copper Tube: ASTM B 88, Type K and ASTM B 88, Type L water tube, annealed temper.

C. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.

E. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.

F. Copper Unions:
 1. MSS SP-123.
 4. Solder-joint or threaded ends.

G. Copper, Brass, or Bronze Pressure-Seal-Joint Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 b. Elkhart Products Corporation.
 c. Mueller Industries, Inc.
 d. NIBCO INC.
 e. Viega LLC.
 2. Fittings: Cast-brass, cast-bronze or wrought-copper with EPDM O-ring seal in each end. Sizes NPS 2-1/2 and larger with stainless steel grip ring and EPDM O-ring seal.
 3. Minimum 200-psig working-pressure rating at 250 deg F.

H. Copper Push-on-Joint Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; a part of Aalberts Integrated Piping Systems.
b. Elkhart Products Corporation.
c. NIBCO INC.
d. Victaulic Company.

2. Description:
 a. Cast-copper fitting complying with ASME B16.18 or wrought-copper fitting complying with ASME B 16.22.
 b. Stainless-steel teeth and EPDM-rubber, O-ring seal in each end instead of solder-joint ends.

I. Appurtenances for Grooved-End Copper Tubing:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International.
 b. Grinnell G-Fire by Johnson Controls Company.
 c. Victaulic Company.
 2. Bronze Fittings for Grooved-End, Copper Tubing: ASTM B 75/B 75M copper tube or ASTM B 584 bronze castings.
 3. Mechanical Couplings for Grooved-End Copper Tubing:
 a. Copper-tube dimensions and design similar to AWWA C606.
 b. Ferrous housing sections.
 c. EPDM-rubber gaskets suitable for hot and cold water.
 d. Bolts and nuts.
 e. Minimum Pressure Rating: 300 psig.

2.3 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials:
 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 2. Full-face or ring type unless otherwise indicated.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys.

D. Flux: ASTM B 813, water flushable.

2.4 TRANSITION FITTINGS

A. General Requirements:
 1. Same size as pipes to be joined.
 2. Pressure rating at least equal to pipes to be joined.
3. End connections compatible with pipes to be joined.

B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

C. Sleeve-Type Transition Coupling: AWWA C219.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Dresser, Inc.
 c. Ford Meter Box Company, Inc. (The).
 d. Jay R. Smith Mfg Co; a division of Morris Group International.

2.5 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 c. Matco-Norca.
 d. WATTS.
 e. Zurn Industries, LLC.

3. Pressure Rating: 125 psig minimum at 180 deg F.

C. Dielectric Flanges:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 c. Matco-Norca.
 d. WATTS.
 e. Zurn Industries, LLC.

3. Factory-fabricated, bolted, companion-flange assembly.
4. Pressure Rating: 125 psig minimum at 180 deg F.
5. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint
 copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the
 following:
 a. Calpico, Inc.
 b. Central Plastics Company.
 c. Pipeline Seal and Insulator, Inc.

 2. Nonconducting materials for field assembly of companion flanges.
 4. Gasket: Neoprene or phenolic.
 5. Bolt Sleeves: Phenolic or polyethylene.

E. Dielectric Nipples:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the
 following:
 a. Grinnell G-Fire by Johnson Controls Company.
 b. Matco-Norca.
 c. Sioux Chief Manufacturing Company, Inc.
 d. Victaulic Company.

 3. Electroplated steel nipple complying with ASTM F 1545.
 4. Pressure Rating and Temperature: 300 psig at 225 deg F.
 5. End Connections: Male threaded or grooved.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

 A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic
 water piping. Indicated locations and arrangements are used to size pipe and calculate friction
 loss, expansion, and other design considerations. Install piping as indicated unless deviations to
 layout are approved on coordination drawings.

 B. Install shutoff valve immediately upstream of each dielectric fitting.

 C. Install water-pressure-reducing valves downstream from shutoff valves. Comply with
 requirements for pressure-reducing valves in Section 221119 "Domestic Water Piping
 Specialties."

 D. Install domestic water piping level with 0.25 percent slope downward toward drain and plumb.
E. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

F. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

G. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

H. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

I. Install piping to permit valve servicing.

J. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.

K. Install piping free of sags and bends.

L. Install fittings for changes in direction and branch connections.

M. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

N. Install thermostats in hot-water circulation piping. Comply with requirements for thermostats in Section 221123 "Domestic Water Pumps."

O. Install thermometers on outlet piping from each water heater. Comply with requirements for thermometers in Section 220519 "Meters and Gages for Plumbing Piping."

P. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

Q. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

R. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.2 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
1. Apply appropriate tape or thread compound to external pipe threads.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

E. Pressure-Sealed Joints for Copper Tubing: Join copper tube and pressure-seal fittings with tools and procedure recommended by pressure-seal-fitting manufacturer. Leave insertion marks on pipe after assembly.

F. Push-on Joints for Copper Tubing: Clean end of tube. Measure insertion depth with manufacturer's depth gage. Join copper tube and push-on-joint fittings by inserting tube to measured depth.

G. Joint Construction for Grooved-End Copper Tubing: Make joints according to AWWA C606. Roll groove ends of tubes. Lubricate and install gasket over ends of tubes or tube and fitting. Install coupling housing sections over gasket with keys seated in tubing grooves. Install and tighten housing bolts.

H. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

I. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.3 TRANSITION FITTING INSTALLATION
A. Install transition couplings at joints of dissimilar piping.

3.4 DIELECTRIC FITTING INSTALLATION
A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings or nipples.
C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flange kits.

3.5 INSTALLATION OF HANGERS AND SUPPORTS
A. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
B. Comply with requirements for hangers, supports, and anchor devices in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

1. Vertical Piping: MSS Type 8 or 42, clamps.
2. Individual, Straight, Horizontal Piping Runs:
a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
3. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Install hangers for copper tubing and piping, with maximum horizontal spacing and minimum rod diameters, to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

D. Support horizontal piping within 12 inches of each fitting.

E. Support vertical runs of copper tubing and piping to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.

C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 1. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 2. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.

3.7 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Piping Inspections:
 a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.

2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.

c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.

d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:

a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.

b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.

C. Prepare test and inspection reports.

3.9 ADJUSTING

A. Perform the following adjustments before operation:

1. Close drain valves.
2. Open shutoff valves to fully open position.
3. Open throttling valves to proper setting.
4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.

 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 b. Adjust calibrated balancing valves to flows indicated.

5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.10 CLEANING

A. Clean and disinfect potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Repeat procedures if biological examination shows contamination.
 e. Submit water samples in sterile bottles to authorities having jurisdiction.

B. Clean non-potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging procedures prescribed by authorities having jurisdiction or; if methods are not prescribed, follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

C. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.

D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.11 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Aboveground domestic water piping, NPS 2 and smaller, shall be one of the following:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper, solder-joint fittings; and soldered joints.
 2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.
 3. Hard copper tube, ASTM B 88, Type L; copper push-on-joint fittings; and push-on joints.

D. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be one of the following:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper, solder-joint fittings; and soldered joints.
 2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.
 3. Hard copper tube, ASTM B 88, Type L; grooved-joint, copper-tube appurtenances; and grooved joints.

3.12 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
 2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use ball valves with flanged ends for piping NPS 2-1/2 and larger.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

3.13 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 221116
SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Vacuum breakers.
 2. Balancing valves.
 3. Temperature-actuated, water mixing valves.
 4. Outlet boxes.
 5. Drain valves.
 7. Air vents.
 8. Barrier type trap-seal.

 B. Related Requirements:
 1. Section 220519 "Meters and Gauges for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
 2. Division 01 Section “Construction Waste Management.”
 3. Division 01 Section “Sustainable Design Requirements – LEED v4 ID+C.”

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.4 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES
 A. Potable-water piping and components shall comply with NSF 61 and NSF 14.
B. Comply with NSF 372 for low lead.

2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 VACUUM BREAKERS

A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 b. Cash Acme, A Division of Reliance Worldwide Corporation.
 c. WATTS.
 d. Zurn Industries, LLC.

3. Size: NPS 1/4 to NPS 3, as required to match connected piping.
5. Inlet and Outlet Connections: Threaded.

B. Pressure Vacuum Breakers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 b. WATTS.
 c. Zurn Industries, LLC.

3. Operation: Continuous-pressure applications.
4. Pressure Loss: 5 psig maximum, through middle third of flow range.
5. Size: 2” NPS maximum.

2.4 BALANCING VALVES

A. Memory-Stop Balancing Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 b. Crane; a Crane brand.
 c. Hammond Valve.
2. Standard: MSS SP-110 for two-piece, copper-alloy ball valves.
3. Pressure Rating: 400-psig minimum CWP.
4. Size: NPS 2 or smaller.
5. Body: Copper alloy.
6. Port: Standard or full port.
7. Ball: Chrome-plated brass.
8. Seats and Seals: Replaceable.
9. End Connections: Solder joint or threaded.

2.5 TEMPERATURE-ACTUATED, WATER MIXING VALVES

A. Water-Temperature Limiting Devices:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 b. Cash Acme, A Division of Reliance Worldwide Corporation.
 c. Leonard Valve Company.
 d. POWERS; A WATTS Brand.
 e. TACO Comfort Solutions, Inc.
 f. WATTS.
 g. Zurn Industries, LLC.

4. Type: Thermostatically controlled, water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
6. Connections: Threaded union inlets and outlet.
7. Accessories: Check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Tempered-Water Setting: 110 deg F.

B. Primary, Thermostatic, Water Mixing Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Valves; a part of Aalberts Integrated Piping Systems.
 b. Cash Acme, A Division of Reliance Worldwide Corporation.
 c. Lawler Manufacturing Company, Inc.
 d. Leonard Valve Company.
 e. POWERS; A WATTS Brand.
 f. WATTS.
 g. Zurn Industries, LLC.
3. Pressure Rating: 125 psig minimum unless otherwise indicated.
4. Type: Exposed-mounted, thermostatically controlled, water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
6. Connections: Threaded union inlets and outlet.
7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Tempered-Water Setting: 120 deg F.
10. Valve Finish: Rough bronze.
11. Piping Finish: Copper.

C. Individual-Fixture, Water Tempering Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Lawler Manufacturing Company, Inc.
 b. Leonard Valve Company.
 c. POWERS; A WATTS Brand.
 d. Zurn Industries, LLC.

2. Standard: ASSE 1016, thermostatically controlled, water tempering valve.
3. Pressure Rating: 125 psig minimum unless otherwise indicated.
5. Temperature Control: Adjustable.
6. Inlets and Outlet: Threaded.
7. Finish: Rough or chrome-plated bronze.
8. Tempered-Water Setting: 110 deg F.

2.6 OUTLET BOXES

A. Icemaker Outlet Boxes:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Guy Gray, IPS Corporation.
 b. Oatey.
 c. Sioux Chief Manufacturing Company, Inc.

4. Faucet: Valved fitting complying with ASME A112.18.1. Include NPS 1/2 or smaller copper tube outlet.
5. Supply Shutoff Fitting: NPS 1/2 gate, globe, or ball valve and NPS 1/2 copper, water tubing.
2.7 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:

2. Pressure Rating: 400-psig minimum CWP.
4. Body: Copper alloy.
5. Ball: Chrome-plated brass.
8. Inlet: Threaded or solder joint.

2.8 WATER-HAMMER ARRESTERS

A. Water-Hammer Arresters:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. Precision Plumbing Products.
 d. Sioux Chief Manufacturing Company, Inc.
 e. WATTS.
 f. Zurn Industries, LLC.

3. Type: Copper tube with piston.
4. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.

2.9 AIR VENTS

A. Bolted-Construction Automatic Air Vents:

1. Body: Bronze.
2. Pressure Rating and Temperature: 125-psig minimum pressure rating at 140 deg F.
3. Float: Replaceable, corrosion-resistant metal.

B. Welded-Construction Automatic Air Vents:

2. Pressure Rating: 150-psig minimum pressure rating.
3. Float: Replaceable, corrosion-resistant metal.

2.10 BARRIER TYPE TRAP-SEAL DEVICE

A. Barrier Type, Trap-Seal Device:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. WATTS.
 c. Zurn Industries, LLC.
 3. Inlet and Outlet Connections: Per drain served.

2.11 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Flex-Hose Co., Inc.
 2. Mason Industries, Inc.
 3. Metraflex Company (The).

B. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
 3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.

C. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
 3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Water Regulators: Install with inlet and outlet shutoff valves and bypass with memory-stop balancing valve. Install pressure gages on inlet and outlet.
B. Water Control Valves: Install with inlet and outlet shutoff valves and bypass with globe valve. Install pressure gages on inlet and outlet.

C. Balancing Valves: Install in locations where they can easily be adjusted.

D. Temperature-Actuated, Water Mixing Valves: Install with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 1. Install cabinet-type units recessed in or surface mounted on wall as specified.

E. Outlet Boxes: Install boxes recessed in wall or surface mounted on wall. Install 2-by-4-inch fire-retardant-treated-wood blocking, wall reinforcement between studs. Comply with requirements for fire-retardant-treated-wood blocking in Section 061000 "Rough Carpentry."

F. Water-Hammer Arresters: Install in water piping according to PDI-WH 201.

G. Air Vents: Install vents at high points of water piping. Install drain piping and discharge onto floor drain.

H. Supply-Type, Trap-Seal Primer Device: Install with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.

3.2 CONNECTIONS
A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. When installing piping specialties adjacent to equipment and machines, allow space for service and maintenance.

C. Comply with requirements for grounding equipment in Section 260526 "Grounding and Bonding for Electrical Systems."

3.3 IDENTIFICATION
A. Plastic Labels for Equipment: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 1. Pressure vacuum breakers.
 2. Water pressure-reducing valves.
 3. Calibrated balancing valves.
 4. Primary, thermostatic, water mixing valves.
 5. Primary water tempering valves.
 6. Outlet boxes.
 7. Supply-type, trap-seal primer valves.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."
3.4 FIELD QUALITY CONTROL

A. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.

B. Prepare test and inspection reports.

3.5 ADJUSTING

A. Set field-adjustable pressure set points of water pressure-reducing valves.

B. Set field-adjustable flow set points of balancing valves.

C. Set field-adjustable temperature set points of temperature-actuated, water mixing valves.

END OF SECTION 221119
SECTION 221123.21 - INLINE, DOMESTIC-WATER PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. In-line, close-coupled centrifugal pumps for hot water recirculation.
 B. Related Requirements:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Sustainable Design Submittals:
 1. Provide sustainable design qualification for pump controls.

1.4 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For inline, domestic-water pumps to include in operation and maintenance manuals.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Retain shipping flange protective covers and protective coatings during storage.
 B. Protect bearings and couplings against damage.
 C. Comply with pump manufacturer's written instructions for handling.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. UL Compliance: UL 778 for motor-operated water pumps.

2.2 IN-LINE, CLOSE-COUPLED CENTRIFUGAL PUMPS

A. Description: Factory-assembled and -tested, in-line, single-stage, close-coupled, overhung-impeller centrifugal pumps designed for installation with pump and motor shaft mounted horizontal.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Alyan Pump Company.
2. Bell & Gossett; a Xylem brand.
4. TACO Comfort Solutions, Inc.

C. Capacities and Characteristics:

1. Capacity: 5 GPM maximum.
2. Total Dynamic Head: 10 feet.
3. Inlet and Outlet Size: 1”.
4. Pump Control: Thermostat.
5. Pump Speed: 3250 rpm.
7. Electrical Characteristics:

 a. Volts: 120 V.
 c. Hertz: 60 Hz.

D. Pump Construction:

1. Casing:

 a. Radially split bronze with threaded companion-flange connections for pumps with NPS 2 pipe connections and flanged connections for pumps with NPS 2-1/2 pipe connections.
 b. Built to permit servicing of pump internals without disturbing the casing or the suction and discharge piping.
 c. Gauge port tappings at suction and discharge nozzles.
2. Impeller: Bronze, statically and dynamically balanced, closed, and keyed to shaft.
3. Shaft and Shaft Sleeve: Steel shaft with deflector, with copper-alloy shaft sleeve. Include water slinger on shaft between motor and seal.
4. Shaft Coupling: Flexible, capable of absorbing torsional vibration and shaft misalignment.
5. Seal: Mechanical.

E. Motor: Single speed, with grease-lubricated ball bearings; mounted to pump casing.

2.3 MOTORS
A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 220513 "Common Motor Requirements for Plumbing Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.4 CONTROLS
A. Thermostats: Electric; adjustable for control of hot-water circulation pump.

1. Type: Water-immersion temperature sensor, for installation in piping.
2. Range: 50 to 125 deg F.
3. Enclosure: NEMA 250, Type 4X.
4. Operation of Pump: On or off.
5. Transformer: Provide if required.
6. Settings: Start pump at 100 °F and stop pump at 125 °F.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine roughing-in for domestic-water-piping system to verify actual locations of piping connections before pump installation.

3.2 PUMP INSTALLATION
A. Comply with HI 1.4.
B. Mount pumps in orientation complying with manufacturer's written instructions.
C. Pump Mounting:
 1. Install vertically mounted, in-line, close-coupled centrifugal pumps with cast-iron base mounted on concrete base using vibration isolation type and deflection as specified in
Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment." Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete."

2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.

3. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.

4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

5. Install anchor bolts to elevations required for proper attachment to supported equipment.

D. Install continuous-thread hanger rods and vibration isolation of size required to support pump weight.

1. Comply with requirements for vibration isolation devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment." Fabricate brackets or supports as required.

2. Comply with requirements for hangers and supports specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

E. Install thermostats in hot-water return piping.

3.3 PIPING CONNECTIONS

A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to inline, domestic-water pumps, allow space for service and maintenance.

C. Connect domestic-water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles.

1. Install flexible connectors adjacent to pumps in suction and discharge piping of the following pumps:

 a. Horizontally mounted, in-line, separately coupled centrifugal pumps.
 b. Horizontally mounted, in-line, close-coupled centrifugal pumps.
 c. Vertically mounted, in-line, close-coupled centrifugal pumps.
 d. Comply with requirements for flexible connectors specified in Section 221116 "Domestic Water Piping."

D. Install shutoff valve and strainer on suction side of each pump, and check, shutoff, and throttling valves on discharge side of each pump. Install valves same size as connected piping. Comply with requirements for strainers specified in Section 221119 "Domestic Water Piping Specialties." Comply with requirements for valves specified in the following:

1. Section 220523.12 "Ball Valves for Plumbing Piping."

2. Section 220523.14 "Check Valves for Plumbing Piping."
3.4 CONTROL CONNECTIONS
A. Install control and electrical power wiring to field-mounted control devices.
B. Connect control wiring between temperature controllers and devices.

3.5 IDENTIFICATION
A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment" for identification of pumps.

3.6 FIELD QUALITY CONTROL
A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
D. Perform tests and inspections.
E. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
F. Inline, domestic-water pump will be considered defective if it does not pass tests and inspections.
G. Prepare test and inspection reports.

3.7 STARTUP SERVICE
A. Perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.
 2. Check piping connections for tightness.
 3. Clean strainers on suction piping.
 4. Set thermostats, for automatic starting and stopping operation of pumps.
 5. Perform the following startup checks for each pump before starting:
 a. Verify bearing lubrication.
b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
c. Verify that pump is rotating in the correct direction.

6. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
7. Start motor.
8. Open discharge valve slowly.
9. Adjust temperature settings on thermostats.
10. Adjust timer settings.

3.8 ADJUSTING

A. Adjust inline, domestic-water pumps to function smoothly, and lubricate as recommended by manufacturer.

B. Adjust initial temperature set points.

C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

3.9 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 221123.21
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 2. Hubless, cast-iron soil pipe and fittings.
 3. Copper tube and fittings.
 4. Specialty pipe fittings.
 B. Related Requirements:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEED v4 ID+C.”

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.4 FIELD CONDITIONS
 A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 1. Notify Construction Manager no fewer than five days in advance of proposed interruption of sanitary waste service.
 2. Do not proceed with interruption of sanitary waste service without Construction Manager’s written permission.

1.5 WARRANTY
 A. Listed manufacturers to provide labeling and warranty of their respective products.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:

2.2 PIPING MATERIALS

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

B. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.3 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AB & I Foundry; a part of the McWane family of companies.
2. Charlotte Pipe and Foundry Company.
3. NewAge Casting.
4. Tyler Pipe; a part of McWane family of companies.

B. Pipe and Fittings: ASTM A 74, Service class(es).

C. Caulking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.4 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AB & I Foundry; a part of the McWane family of companies.
2. Charlotte Pipe and Foundry Company.
3. NewAge Casting.
4. Tyler Pipe; a part of McWane family of companies.

B. Pipe and Fittings: ASTM A 888 or CISPI 301.

D. CISPI, Hubless-Piping Couplings:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ANACO-Husky.
 b. Charlotte Pipe and Foundry Company.
 d. Matco-Norca.
 e. Mission Rubber Company, LLC; a division of MCP Industries.
 f. Tyler Pipe; a subsidiary of McWane Inc.

3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

E. Heavy-Duty, Hubless-Piping Couplings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ANACO-Husky.
 b. Charlotte Pipe and Foundry Company.
 d. Mission Rubber Company, LLC; a division of MCP Industries.
 e. NewAge Casting.
 f. Tyler Pipe; a subsidiary of McWane Inc.

3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.5 COPPER TUBE AND FITTINGS

A. Copper Type DWV Tube: ASTM B 306, drainage tube, drawn temper.

B. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought copper, solder-joint fittings.

C. Hard Copper Tube: ASTM B 88, Type L and Type M, water tube, drawn temper.

D. Soft Copper Tube: ASTM B 88, Type L, water tube, annealed temper.

E. Copper Pressure Fittings:

2. Copper Unions: MSS SP-123, copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

F. Copper Flanges: ASME B16.24, Class 150, cast copper with solder-joint end.
1. Flange Gasket Materials: ASME B16.21, full-face, flat, nonmetallic, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

G. Solder: ASTM B 32, lead free with ASTM B 813, water-flushable flux.

2.6 SPECIALTY PIPE FITTINGS

A. Transition Couplings:

1. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
2. Unshielded, Nonpressure Transition Couplings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2) Froet Industries LLC.
 3) Mission Rubber Company, LLC; a division of MCP Industries.
 c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 d. End Connections: Same size as and compatible with pipes to be joined.
 e. Sleeve Materials:

B. Dielectric Fittings:

1. Dielectric Unions:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Capitol Manufacturing Company.
 2) Central Plastics Company.
 3) Matco-Norca.
 4) Zurn Industries, LLC.
 b. Description:
 1) Standard: ASSE 1079.
 2) Pressure Rating: 125 psig minimum at 180 deg F.
 3) End Connections: Solder-joint copper alloy and threaded ferrous.

2. Dielectric Flanges:
a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1) Capitol Manufacturing Company.
2) Central Plastics Company.
3) Matco-Norca.
4) Zurn Industries, LLC.

b. Description:

1) Standard: ASSE 1079.
2) Factory-fabricated, bolted, companion-flange assembly.
3) Pressure Rating: 125 psig minimum at 180 deg F.
4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

3. Dielectric-Flange Insulating Kits:

a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1) Calpico, Inc.
2) Central Plastics Company.
3) Pipeline Seal and Insulator, Inc.

b. Description:

1) Nonconducting materials for field assembly of companion flanges.
2) Pressure Rating: 150 psig.
3) Gasket: Neoprene or phenolic.
4) Bolt Sleeves: Phenolic or polyethylene.
5) Washers: Phenolic with steel backing washers.

4. Dielectric Nipples:

a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1) Josam Company.
2) Matco-Norca.
3) Precision Plumbing Products.
4) Victaulic Company.

b. Description:

1) Standard: IAPMO PS 66.
2) Electroplated steel nipple.
3) Pressure Rating: 300 psig at 225 deg F.
4) End Connections: Male threaded or grooved.
5) Lining: Inert and noncorrosive, propylene.
PART 3 - EXECUTION

3.1 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems.
 1. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

K. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends.
 1. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical.
 2. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drainpipe.
 a. Straight tees, elbows, and crosses may be used on vent lines.
 3. Do not change direction of flow more than 90 degrees.
 4. Use proper size of standard increasers and reducers if pipes of different sizes are connected.
 a. Reducing size of waste piping in direction of flow is prohibited.

L. Lay buried building waste piping beginning at low point of each system.
1. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream.
2. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
3. Maintain swab in piping and pull past each joint as completed.

M. Install soil and waste and vent piping at the following minimum slopes unless otherwise indicated:
 2. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

N. Install aboveground copper tubing according to CDA's "Copper Tube Handbook."

O. Install engineered soil and waste and vent piping systems as follows:
 3. Reduced-Size Venting: Comply with standards of authorities having jurisdiction.

P. Plumbing Specialties:
 1. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary waste gravity-flow piping.
 a. Comply with requirements for cleanouts specified in Section 221319 "Sanitary Waste Piping Specialties."
 2. Install drains in sanitary waste gravity-flow piping.
 a. Comply with requirements for drains specified in Section 221319 "Sanitary Waste Piping Specialties."

Q. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

R. Install sleeves for piping penetrations of walls, ceilings, and floors.
 1. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

S. Install sleeve seals for piping penetrations of concrete walls and slabs.
 1. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

T. Install escutcheons for piping penetrations of walls, ceilings, and floors.
 1. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."
3.2 JOINT CONSTRUCTION

C. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1.
 1. Cut threads full and clean using sharp dies.
 2. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 a. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 b. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
 c. Do not use pipe sections that have cracked or open welds.

E. Join copper tube and fittings with soldered joints according to ASTM B 828. Use ASTM B 813, water-flushable, lead-free flux and ASTM B 32, lead-free-alloy solder.

3.3 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:
 1. Install transition couplings at joints of piping with small differences in ODs.

B. Dielectric Fittings:
 1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 2. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.
 3. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flange kits.

3.4 VALVE INSTALLATION

A. Comply with requirements in Section 220523.12 "Ball Valves for Plumbing Piping."

3.5 INSTALLATION OF HANGERS AND SUPPORTS

A. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
B. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
3. Vertical Piping: MSS Type 8 or Type 42, clamps.
4. Install individual, straight, horizontal piping runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.

C. Install hangers for cast-iron and copper soil piping, with maximum horizontal spacing and minimum rod diameters, to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

D. Support horizontal piping and tubing within 12 inches of each fitting and coupling.

E. Support vertical runs of cast iron and copper soil piping to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect waste and vent piping to the following:

1. Plumbing Fixtures: Connect waste piping in sizes indicated, but not smaller than required by plumbing code.
2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
3. Plumbing Specialties: Connect waste and vent piping in sizes indicated, but not smaller than required by plumbing code.
4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
5. Equipment: Connect waste piping as indicated.
 a. Provide shutoff valve if indicated and union for each connection.
 b. Use flanges instead of unions for connections NPS 2-1/2 and larger.

D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

E. Make connections according to the following unless otherwise indicated:

1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.7 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping.

B. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.8 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.

2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary waste and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired.

 a. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.

2. Leave uncovered and unconcealed new, altered, extended, or replaced waste and vent piping until it has been tested and approved.

 a. Expose work that was covered or concealed before it was tested.

3. Roughing-in Plumbing Test Procedure: Test waste and vent piping except outside leaders on completion of roughing-in.

 a. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water.

 b. From 15 minutes before inspection starts to completion of inspection, water level must not drop.

 c. Inspect joints for leaks.

4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight.
a. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg.
b. Use U-tube or manometer inserted in trap of water closet to measure this pressure.
c. Air pressure must remain constant without introducing additional air throughout period of inspection.
d. Inspect plumbing fixture connections for gas and water leaks.

5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
6. Prepare reports for tests and required corrective action.

3.9 CLEANING AND PROTECTION
A. Clean interior of piping. Remove dirt and debris as work progresses.
B. Protect sanitary waste and vent piping during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
C. Place plugs in ends of uncompleted piping at end of day and when work stops.
D. Repair damage to adjacent materials caused by waste and vent piping installation.

3.10 PIPING SCHEDULE
A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.
B. Aboveground, soil and waste piping NPS 4 and smaller shall be the following:
 1. Hubless, cast-iron soil pipe and fittings and hubless, single-stack aerator fittings; heavy duty hubless-piping couplings; and coupled joints.
 2. Copper Type DWV tube, copper drainage fittings, and soldered joints.
C. Aboveground, soil and waste piping NPS 5 and larger shall be the following:
 1. Hubless, cast-iron soil pipe and fittings and hubless, single-stack aerator fittings; heavy duty hubless-piping couplings; and coupled joints.
D. Aboveground, vent piping NPS 4 and smaller shall be the following:
 1. Hubless, cast-iron soil pipe and fittings and hubless, single-stack aerator fittings; heavy duty hubless-piping couplings; and coupled joints.
 2. Copper Type DWV tube, copper drainage fittings, and soldered joints.
 a. Option for Vent Piping, NPS 2-1/2 and NPS 3-1/2: Hard copper tube, Type M; copper pressure fittings; and soldered joints.
E. Aboveground, vent piping NPS 5 and larger shall be the following:
 1. Hubless, cast-iron soil pipe and fittings and hubless, single-stack aerator fittings; heavy duty hubless-piping couplings; and coupled joints.

3.11 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 221316
SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Cleanouts.
 B. Related Requirements:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 CLEANOUTS
 A. Cast-Iron Exposed Cleanouts:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. WATTS.
 d. Zurn Industries, LLC.
 2. Standard: ASME A112.36.2M.
 3. Size: Same as connected drainage piping
 4. Body Material: Hubless, cast-iron soil pipe test tee as required to match connected piping.
 5. Closure: Countersunk or raised-head, brass plug.
 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
 B. Cast-Iron Exposed Floor Cleanouts:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. WATTS.
 d. Zurn Industries, LLC.

2. Standard: ASME A112.36.2M for adjustable housing cleanout.

3. Size: Same as connected branch.

4. Type: Adjustable housing.

5. Body or Ferrule: Cast iron.

7. Outlet Connection: Inside calk.

8. Closure: Brass plug with straight threads and gasket.

9. Adjustable Housing Material: Cast iron with threads.

11. Frame and Cover Shape: Round.

13. Riser: ASTM A74, Service Class, cast-iron drainage pipe fitting and riser to clean out.

C. Cast-Iron Wall Cleanouts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. WATTS.
 d. Zurn Industries, LLC.

2. Standard: ASME A112.36.2M. Include wall access.

3. Size: Same as connected drainage piping.

4. Body: Hubless, cast-iron soil pipe test tee as required to match connected piping.

5. Closure Plug:
 a. Brass.
 b. Countersunk or raised head.
 c. Drilled and threaded for cover attachment screw.
 d. Size: Same as or not more than one size smaller than cleanout size.

7. Wall Access, Frame and Cover: Round, nickel-bronze, copper-alloy, or stainless steel wall-installation frame and cover.

2.2 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Open Drains:
1. Description: Shop or field fabricate from ASTM A74, Service Class, hub-and-spigot, cast-iron soil-pipe fittings. Include P-trap, hub-and-spigot riser section; and where required, increaser fitting joined with ASTM C564 rubber gaskets.
2. Size: Same as connected waste piping with increaser fitting of size indicated.

B. Floor-Drain, Barrier Type Trap-Seal:
 1. Description: Elastomeric, meets ASSE 1072.
 2. Size: Same as floor drain outlet.

C. Air-Gap Fittings:
 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
 2. Body: Bronze or cast iron.
 3. Inlet: Opening in top of body.
 4. Outlet: Larger than inlet.
 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 2. Locate at each change in direction of piping greater than 45 degrees.
 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 4. Locate at base of each vertical soil and waste stack.

B. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

C. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

D. Assemble open drain fittings and install with top of hub 2 inches above floor.

E. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 2. Size: Same as floor drain inlet.

F. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.
G. Install sleeve and sleeve seals with each riser and stack passing through floors with waterproof membrane.

H. Install vent caps on each vent pipe passing through roof.

I. Install frost-resistant vent terminals on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.

J. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.

K. Install frost-proof vent caps on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.

L. Install wood-blocking reinforcement for wall-mounting-type specialties.

M. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 PIPING CONNECTIONS

A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment, to allow service and maintenance.

3.3 LABELING AND IDENTIFYING

A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit.

1. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

3.5 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”
END OF SECTION 221319
SECTION 221319.13 - SANITARY DRAINS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Floor drains.
 2. Trench drains.
 B. Related Sections include the following:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 DRAIN ASSEMBLIES
 A. Sanitary drains shall bear label, stamp, or other markings of specified testing agency.
 B. Comply with NSF 14 for plastic sanitary piping specialty components.

2.2 FLOOR DRAINS
 A. Cast-Iron Floor Drains:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the
 following:
 b. Josam Company.
 c. Sioux Chief Manufacturing Company, Inc.
 d. WATTS.
 e. Zurn Industries, LLC.
2. Standard: ASME A112.6.3.
5. Seepage Flange: Not required.
6. Anchor Flange: Not required.
7. Clamping Device: Not required.
8. Outlet: Bottom.
10. Sediment Bucket: Not required.
11. Top or Strainer Material: Stainless steel.
13. Top Shape: Round.
15. Funnel: Not required.
16. Inlet Fitting: Not required.
17. Trap Material: Cast iron.

2.3 TRENCH DRAINS

A. Trench Drain for shower threshold (alternate to floor drain):
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. Sioux Chief Manufacturing Company, Inc.
 d. WATTS.
 e. Zurn Industries, LLC.
 3. Material: Ductile or gray iron.
 4. Flange: Not required.
 5. Clamping Device: Not required.
 6. Outlet: Bottom.
 10. Trap Material: Cast iron.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
1. Position floor drains for easy access and maintenance.
2. Set floor drains below elevation of surrounding finished floor to allow floor drainage.
3. Set with grates depressed according to the following drainage area radii:
 a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.
4. Install floor-drain flashing collar or flange, so no leakage occurs between drain and adjoining flooring.
 a. Maintain integrity of waterproof membranes where penetrated.
5. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

B. Install trench drains at low points of surface areas to be drained.
 1. Set grates of drains flush with finished surface, unless otherwise indicated.

3.2 CONNECTIONS
A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Comply with requirements in Section 221319 "Sanitary Waste Piping Specialties" for devices and miscellaneous sanitary drainage piping specialties.
C. Install piping adjacent to equipment to allow service and maintenance.

3.3 LABELING AND IDENTIFYING
A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 PROTECTION
A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
B. Place plugs in ends of uncompleted piping at end of each day or when work stops.
3.5 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 221319.13
SECTION 221423 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Pipes, tubes, and fittings.
2. Piping specialties.
3. Piping and tubing joining materials.
5. Motorized gas valves.
6. Pressure regulators.
7. Dielectric fittings.

B. Related Sections include the following:

1. Division 01 Section “Construction Waste Management.”
2. Division 01 Section “Sustainable Design Requirements – LEED v4 ID+C.”

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of the following:

1. Piping specialties.
2. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
3. Pressure regulators. Indicate pressure ratings and capacities.
5. Dielectric fittings.

B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.

1. Shop Drawing Scale: 1/4 inch per foot.
2. Detail mounting, supports, and valve arrangements for service meter assembly and pressure regulator assembly.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans and details, drawn to scale, on which natural-gas piping is shown and coordinated with other installations, using input from installers of the items involved.

B. Site Survey: Plans, drawn to scale, on which natural-gas piping is shown and coordinated with other services and utilities.

C. Qualification Data: For qualified professional engineer.

D. Welding certificates.

E. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For motorized gas valves and pressure regulators to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.
A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.

C. Protect stored PE pipes and valves from direct sunlight.

1.9 PROJECT CONDITIONS

A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.

B. Interruption of Existing Natural-Gas Service: Do not interrupt natural-gas service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide purging and startup of natural-gas supply according to requirements indicated:

1. Notify Construction Manager no fewer than two days in advance of proposed interruption of natural-gas service.
2. Do not proceed with interruption of natural-gas service without Construction Manager's written permission.

1.10 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces. Comply with requirements in Section 083113 "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Minimum Operating-Pressure Ratings:

1. Piping and Valves: 100 psig minimum unless otherwise indicated.
2. Service Regulators: 65 psig minimum unless otherwise indicated.
3. Minimum Operating Pressure of Service Meter provided by utility: 2 psig.

B. Natural-Gas System Pressures within Buildings: Two pressure ranges. Primary pressure is more than 0.5 psig but not more than 2 psig, and is reduced to secondary pressure of 0.5 psig or less.

2.2 PIPES, TUBES, AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 b. End Connections: Threaded or butt welding to match pipe.
 c. Lapped Face: Not permitted underground.
 e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground and stainless steel underground.
5. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.
6. Mechanical Couplings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) GE Oil & Gas.
 2) Smith-Blair, Inc.
 3) JR Smith.
 b. Steel flanges and tube with epoxy finish.
 c. Buna-nitrile seals.
 d. Steel bolts, washers, and nuts.
 e. Coupling shall be capable of joining PE pipe to PE pipe, steel pipe to PE pipe, or steel pipe to steel pipe.
 f. Steel body couplings installed underground on plastic pipe shall be factory equipped with anode.

2.3 PIPING SPECIALTIES

A. Appliance Flexible Connectors:

2. Operating-Pressure Rating: 0.5 psig.
5. Maximum Length: 72 inches.

B. Y- Pattern Strainers:
THE CITY OF PHILADELPHIA
Office of Emergency Management

1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
3. Strainer Screen: 40-mesh startup strainer and perforated stainless-steel basket with 50 percent free area.

C. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.4 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for natural gas.

C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.5 MANUAL GAS SHUTOFF VALVES

A. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.

1. CWP Rating: 125 psig.
3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
4. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
5. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.

B. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A.Y. McDonald Mfg. Co.
 b. Apollo Flow Controls; Conbraco Industries, Inc.
 c. BrassCraft Manufacturing Co.; a Masco company.

3. Ball: Chrome-plated bronze.
4. Stem: Bronze; blowout proof.
5. Seats: Reinforced TFE; blowout proof.
6. Packing: Threaded-body packnut design with adjustable-stem packing.
8. CWP Rating: 600 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.

10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

11. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

C. Valve Boxes:

1. Cast-iron, two-section box.
2. Top section with cover with "GAS" lettering.
3. Bottom section with base to fit over valve and barrel a minimum of 5 inches in diameter.
4. Adjustable cast-iron extensions of length required for depth of bury.
5. Include tee-handle, steel operating wrench with socket end fitting valve nut or flat head, and with stem of length required to operate valve.

2.6 MOTORIZED GAS VALVES

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eaton.
 b. Eclipse Innovative Thermal Technologies.
 c. Johnson Controls.

2. Body: Brass or aluminum.
5. Normally closed.
7. Electrical operator for actuation by appliance automatic shutoff device.

B. Electrically Operated Valves: Comply with UL 429.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Magnatrol Valve Corporation.
 b. Parker Hannifin Corporation.
 c. WATTS.

2. Pilot operated.
3. Body: Brass or aluminum.
5. Springs and Valve Trim: Stainless steel.
6. 120-V ac, 60 Hz, Class B, continuous-duty molded coil, and replaceable.
7. NEMA ICS 6, Type 4, coil enclosure.
2.7 PRESSURE REGULATORS

A. General Requirements:

1. Single stage and suitable for natural gas.
2. Steel jacket and corrosion-resistant components.
3. Elevation compensator.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Actaris.
 b. American Meter Company.
 c. Eclipse Innovative Thermal Technologies.

2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
6. Orifice: Aluminum; interchangeable.
8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.

C. Appliance Pressure Regulators: Comply with ANSI Z21.18.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Canadian Meter Company Inc.
 b. Eaton.
 c. Harper Wyman Co.

5. Seat Disc: Nitrile rubber.
8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.

2.8 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A.Y. McDonald Mfg. Co.
 b. Capitol Manufacturing Company.
 c. Central Plastics Company.
 2. Description:
 b. Pressure Rating: 125 psig minimum at 180 deg F.
 c. End Connections: Threaded ferrous.

C. Dielectric Flanges:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 c. Matco-Norca.
 2. Description:
 b. Factory-fabricated, bolted, companion-flange assembly.
 c. Pressure Rating: 125 psig minimum at 180 deg F.
 d. End Connections: Threaded ferrous.

D. Dielectric-Flange Insulating Kits:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 2. Description:
a. Nonconducting materials for field assembly of companion flanges.
b. Pressure Rating: 150 psig.
c. Gasket: Neoprene or phenolic.
d. Bolt Sleeves: Phenolic or polyethylene.
e. Washers: Phenolic with steel backing washers.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Close equipment shutoff valves before turning off natural gas to premises or piping section.

B. Inspect natural-gas piping according to NFPA 54, the International Fuel Gas Code and/or Philadelphia Gas Works Installation Manual to determine that natural-gas utilization devices are turned off in piping section affected.

C. Comply with NFPA 54, the International Fuel Gas Code and/or Philadelphia Gas Works Installation Manual requirements for prevention of accidental ignition.

3.3 INDOOR PIPING INSTALLATION

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.

D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

G. Locate valves for easy access.
H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.

I. Install piping free of sags and bends.

J. Install fittings for changes in direction and branch connections.

K. Verify final equipment locations for roughing-in.

L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.

1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.

P. Concealed Location Installations:

1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.

2. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.

 a. Exception: Tubing passing through partitions or walls does not require striker barriers.

3. Prohibited Locations:

 a. Do not install natural-gas piping in or through circulating air ducts, gas vents (flues), ventilating ducts, or elevator shafts.

 b. Do not install natural-gas piping in solid walls or partitions.

Q. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

R. Connect branch piping from top or side of horizontal piping.

S. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.

T. Do not use natural-gas piping as grounding electrode.
THE CITY OF PHILADELPHIA
Office of Emergency Management

U. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.

V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

W. Install escutcheons for exposed piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.4 VALVE INSTALLATION

A. Install manual gas shutoff valve for each gas appliance.

B. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

3.5 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 4. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:
 2. Bevel plain ends of steel pipe.
 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.

F. Flanged Joints: Install gasket material, size, type, and thickness appropriate for natural-gas service. Install gasket concentrically positioned.
3.6 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hangers and supports specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

B. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.

3.7 CONNECTIONS

A. Connect to utility's gas main according to utility's procedures and requirements.

B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

C. Install piping adjacent to appliances to allow service and maintenance of appliances.

D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.

E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.8 LABELING AND IDENTIFYING

A. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for piping and valve identification.

3.9 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Test, inspect, and purge natural gas according to NFPA 54, the International Fuel Gas Code and authorities having jurisdiction.

C. Natural-gas piping will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.
3.10 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG

A. Aboveground, branch piping NPS 1 and smaller shall be the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.

3.11 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES MORE THAN 0.5 PSIG AND LESS THAN 5 PSIG

A. Aboveground, branch piping NPS 1 and smaller shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with steel welding fittings and welded joints.

3.12 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Valves for pipe sizes NPS 2 and smaller at service meter shall be the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.

B. Distribution piping valves for pipe sizes NPS 2 and smaller shall be the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.

C. Valves in branch piping for single appliance shall be the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.

3.13 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 22 14 23
THE CITY OF PHILADELPHIA
Office of Emergency Management

THIS PAGE LEFT BLANK INTENTIONALLY
SECTION 223300 - ELECTRIC, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Commercial, electric, storage, domestic-water heaters.
 2. Domestic-water heater accessories.
B. Related Sections include the following:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEED v4 ID+C.”

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
B. Sustainable Design Submittals:
 1. Provide energy star rating for sustainable design for water heaters.
C. Shop Drawings:
 1. Include diagrams for power, signal, and control wiring.

1.4 ACTION SUBMITTALS
A. Product Certificates: For each type of commercial, electric, domestic-water heater.
B. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For electric, domestic-water heaters to include emergency, operation, and maintenance manuals.
B. Warranty

1.6 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of electric, domestic-water heaters that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures including storage tank and supports.
 b. Faulty operation of controls.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.

2. Warranty Periods: From date of Substantial Completion.
 a. Commercial, Electric, Storage, Domestic-Water Heaters:
 1) Storage Tank: Three years.
 2) Controls and Other Components: Three years.
 b. Expansion Tanks: Five years.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and use.

B. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1.

C. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61 and NSF 372.

2.2 COMMERCIAL, ELECTRIC, DOMESTIC-WATER HEATERS

A. Commercial, Electric, Storage, Domestic-Water Heaters:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A. O. Smith Corporation.
2. Source Limitations: Obtain domestic-water heaters from single source from single manufacturer.
 a. Tappings: Factory fabricated of materials compatible with tank and piping connections. Attach tappings to tank before testing.
 1) NPS 2 and Smaller: Threaded ends in accordance with ASME B1.20.1.
 2) NPS 2-1/2 and Larger: Flanged ends in accordance with ASME B16.5 for steel and stainless steel flanges, and in accordance with ASME B16.24 for copper and copper-alloy flanges.
 b. Pressure Rating: 150 psig.
 c. Interior Finish: Comply with NSF 61 and NSF 372 barrier materials for potable-water tank linings, including extending lining material into tappings.
5. Factory-Installed, Storage-Tank Appurtenances:
 a. Anode Rod: Replaceable magnesium.
 b. Drain Valve: Corrosion-resistant metal with hose-end connection.
 c. Insulation: Comply with ASHRAE/IES 90.1.
 d. Jacket: Steel with enameled finish or high-impact composite material.
 e. Heating Elements: Electric, screw-in or bolt-on immersion type arranged in multiples of three.
 f. Temperature Control: Adjustable thermostat.
 g. Safety Controls: High-temperature-limit and low-water cutoff devices or systems.
 h. Relief Valves: ASME rated and stamped for combination temperature-and-pressure relief valves. Include one or more relief valves with total relieving capacity at least as great as heat input, and include pressure setting less than working-pressure rating of domestic-water heater. Select one relief valve with sensing element that extends into storage tank.

B. Capacity and Characteristics:
2. Recovery: 50 gallons at 100 deg F temperature rise.
3. Temperature Setting: 140 deg F maximum.
4. Power Demand: 12 kW.
5. Heating Elements:
 a. Number of Elements: Two.
 b. Kilowatts Each Element: 6 kW.
 c. Number of Stages: One.
6. Electrical Characteristics:
 a. Volts: 480 V.
 b. Phases: Three.
 c. Hertz: 60 Hz.

2.3 DOMESTIC-WATER HEATER ACCESSORIES

A. Domestic-Water Expansion Tanks:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A. O. Smith Corporation.
 b. AMTROL, Inc.
 c. State Industries.
 d. TACO Comfort Solutions, Inc.

2. Source Limitations: Obtain domestic-water expansion tanks from single source from single manufacturer.

3. Description: Steel pressure-rated tank constructed with welded joints and factory-installed, butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.

4. Construction:
 a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
 b. Interior Finish: Comply with NSF 61 and NSF 372 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 c. Air-Charging Valve: Factory installed.

5. Capacity and Characteristics:
 c. Air Precharge Pressure: 60 psig.

B. Drain Pans: Corrosion-resistant metal with raised edge. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 with ASME B1.20.1 pipe threads.

C. Piping-Type Heat Traps: Field-fabricated piping arrangement in accordance with ASHRAE/IES 90.1.

D. Heat-Trap Fittings: ASHRAE/IES 90.1.

E. Manifold Kits: Domestic-water-heater manufacturer's factory-fabricated inlet and outlet piping for field installation, for multiple domestic-water heater installation. Include ball, or gate-type
shutoff valves to isolate each domestic-water heater and calibrated balancing valves to provide balanced flow through each domestic-water heater.

1. Comply with requirements for ball, or gate-type shutoff valves specified in Section 220523.12 "Ball Valves for Plumbing Piping."
2. Comply with requirements for balancing valves specified in Section 221119 "Domestic Water Piping Specialties."

F. Pressure-Reducing Valves: ASSE 1003 for water. Set at 25-psig-maximum outlet pressure unless otherwise indicated.

G. Combination Temperature-and-Pressure Relief Valves: ASME rated and stamped. Include relieving capacity at least as great as heat input, and include pressure setting less than working-pressure rating of domestic-water heater. Select relief valves with sensing element that extends into storage tank.

H. Pressure Relief Valves: ASME rated and stamped. Include pressure setting less than working-pressure rating of domestic-water heater.

J. Shock Absorbers: ASSE 1010 or PDI-WH 201, Size A water hammer arrester.

K. Domestic-Water Heater Mounting Brackets: Manufacturer's factory-fabricated steel bracket for wall mounting, capable of supporting domestic-water heater and water.

2.4 SOURCE QUALITY CONTROL

A. Hydrostatically test commercial domestic-water heaters to minimum of one and one-half times pressure rating before shipment.

B. Electric, domestic-water heaters will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

A. Commercial, Electric, Domestic-Water Heater Mounting: Install commercial, electric, domestic-water heaters on concrete base. Comply with requirements for concrete bases specified in Section 033000 "Cast-in-Place Concrete."

1. Exception: Omit concrete bases for commercial, electric, domestic-water heaters if installation on stand, bracket, suspended platform, or directly on floor is indicated.
2. Maintain manufacturer's recommended clearances.
3. Arrange units so controls and devices that require servicing are accessible.
4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
6. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
7. Install anchor bolts to elevations required for proper attachment to supported equipment.
8. Anchor domestic-water heaters to substrate.

B. Install electric, domestic-water heaters level and plumb, in accordance with layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.

1. Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 220523.12 "Ball Valves for Plumbing Piping" and Section 220523.15 "Gate Valves for Plumbing Piping."

C. Install commercial, electric, domestic-water heaters with seismic-restraint devices. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

D. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend domestic-water heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

E. Install combination temperature-and-pressure relief valves in water piping for electric, domestic-water heaters without storage. Extend domestic-water heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

F. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for electric, domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 221119 "Domestic Water Piping Specialties."

G. Install thermometers on outlet piping of electric, domestic-water heaters. Comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."

H. Assemble and install inlet and outlet piping manifold kits for multiple electric, domestic-water heaters. Fabricate, modify, or arrange manifolds for balanced water flow through each electric, domestic-water heater. Include shutoff valve and thermometer in each domestic-water heater inlet and outlet, and throttling valve in each electric, domestic-water heater outlet. Comply with requirements for valves specified in Section 220523.12 "Ball Valves for Plumbing Piping," and Section 220523.15 "Gate Valves for Plumbing Piping," and comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."

I. Install piping-type heat traps on inlet and outlet piping of electric, domestic-water heater storage tanks without integral or fitting-type heat traps.
J. Fill electric, domestic-water heaters with water.

K. Charge domestic-water expansion tanks with air to required system pressure.

L. Install dielectric fittings in all locations where piping of dissimilar metals is to be joined. The wetted surface of the dielectric fitting contacted by potable water shall contain less than 0.25 percent of lead by weight.

3.2 PIPING CONNECTIONS

A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to electric, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections.

E. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

F. Electric, domestic-water heaters will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports.
3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain commercial, electric, domestic-water heaters. Training shall be a minimum of one hour(s).

3.6 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 223300
SECTION 224213.13 - COMMERCIAL WATER CLOSETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Water closets.
 2. Flushometer valves.
 3. Toilet seats.
 4. Supports.

B. Related Requirements:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 DEFINITIONS

A. Effective Flush Volume: Average of two reduced flushes and one full flush per fixture.

B. Remote Water Closet: Located more than 30 feet from other drain line connections or fixture and where less than 1.5 drainage fixture units are upstream of the drain line connection.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:
 1. Provide sustainable design flowrates for fixture flush valves.

C. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flushometer valves and electronic sensors to include in operation and maintenance manuals.
PART 2 - PRODUCTS

2.1 WALL-MOUNTED WATER CLOSETS

A. Water Closets: Wall mounted, top spud, accessible, where noted by architect.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Standard
 b. Capizzi.
 c. Crane Plumbing, L.L.C.
 d. Kohler Co.

2. Bowl:
 b. Material: Vitreous china.
 c. Type: Siphon jet.
 d. Style: Flushometer valve.
 e. Height: Standard.
 f. Rim Contour: Elongated.
 g. Water Consumption: 1.28 gal. per flush.
 h. Spud Size and Location: NPS 1-1/2; top.

4. Water-Closet Mounting Height: Standard Child Handicapped/elderly according to ICC/ANSI A117.1, where noted by architect.

2.2 FLUSHOMETER VALVES

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Delany Products.
 b. Gerber Plumbing Fixtures LLC.
 c. Sloan Valve Company.

4. Features: Include integral check stop and backflow-prevention device.

5. Material: Brass body with corrosion-resistant components.

7. Panel Finish: Chrome plated or stainless steel.

9. Actuator: Solenoid complying with UL 1951, and listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

10. Trip Mechanism: Battery-powered electronic sensor complying with UL 1951, and listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

11. Consumption: 1.28 gal. per flush.

2.1 **TOILET SEATS**

A. Toilet Seats:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Church Seats; Bemis Manufacturing Company.
 c. TOTO USA, INC.

4. Type: Commercial.
5. Shape: Elongated rim, open front.
6. Hinge: Check.
8. Seat Cover: Not required.

2.2 **SUPPORTS**

A. Water Closet Carrier:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Jay R. Smith
 b. Josam
 c. Zurn

2. Standard: ASME A112.6.1M.
3. Description: Waste-fitting assembly, as required to match drainage piping material and arrangement with faceplates, couplings gaskets, and feet; bolts and hardware matching fixture.

PART 3 - EXECUTION

3.1 **EXAMINATION**

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before water-closet installation.

B. Examine walls and floors for suitable conditions where water closets will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Water-Closet Installation:
 1. Install level and plumb according to roughing-in drawings.
 2. Install accessible, wall-mounted water closets at mounting height for handicapped/elderly, according to ICC/ANSI A117.1.

B. Support Installation:
 1. Use carrier supports with waste-fitting assembly and seal.
 2. Install wall-mounted, back-outlet water-closet supports with waste-fitting assembly and waste-fitting seals; and affix to building substrate.

C. Flushometer-Valve Installation:
 1. Install flushometer-valve, water-supply fitting on each supply to each water closet.
 2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
 3. Install actuators in locations that are easy for people with disabilities to reach.
 4. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

D. Install toilet seats on water closets.

E. Wall Flange and Escutcheon Installation:
 1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations and within cabinets and millwork.
 2. Install deep-pattern escutcheons if required to conceal protruding fittings.
 3. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

F. Joint Sealing:
 1. Seal joints between water closets and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
 2. Match sealant color to water-closet color.
 3. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

A. Connect water closets with water supplies and soil, waste, and vent piping. Use size fittings required to match water closets.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

D. Where installing piping adjacent to water closets, allow space for service and maintenance.
3.4 ADJUSTING

A. Operate and adjust water closets and controls. Replace damaged and malfunctioning water closets, fittings, and controls.

B. Adjust water pressure at flushometer valves to produce proper flow.

C. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

3.5 CLEANING AND PROTECTION

A. Clean water closets and fittings with manufacturers' recommended cleaning methods and materials.

B. Install protective covering for installed water closets and fittings.

C. Do not allow use of water closets for temporary facilities unless approved in writing by Owner.

3.6 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”
SECTION 224216.13 - COMMERCIAL LAVATORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Lavatories.
 2. Faucets.
 5. Supports.
 B. Related Requirements:
 1. Division 01 Section “Construction Waste Management”
 2. Division 01 Section “Sustainable Design Requirements – LEED v4 ID+C"

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Sustainable Design Submittals:
 1. Provide sustainable design flow rate for plumbing fixtures.
 C. Shop Drawings: Include diagrams for power, signal, and control wiring of automatic faucets.

1.4 INFORMATIONAL SUBMITTALS
 A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For lavatories and faucets to include in operation and maintenance manuals.
 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
a. Servicing and adjustments of automatic faucets.

PART 2 - PRODUCTS

2.1 VITREOUS-CHINA, WALL-MOUNTED LAVATORIES

A. Lavatory: Vitreous china, wall mounted, with back.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Gerber Plumbing Fixtures LLC.
 c. Kohler Co.
 d. Sloan Valve Company.
 e. Zurn Industries, LLC.

2. Fixture:
 b. Type: For wall hanging.
 c. Nominal Size: Rectangle, 19 x 22 minimum.
 d. Faucet-Hole Punching: Match faucet selection.
 e. Faucet-Hole Location: Top.
 g. Mounting Material: Chair carrier.

 3. Faucet: See schedule.
 4. Support: Type II, concealed-arm lavatory carrier.
 5. Lavatory Mounting Height: Handicapped/elderly according to ICC A117.1, where noted by architect.

2.2 SOLID-BRASS, AUTOMATICALLY OPERATED LAVATORY FAUCETS

A. NSF Standard: Comply with NSF 372 for faucet materials that will be in contact with potable water.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Chicago Faucets; Geberit Company.
 c. Sloan Valve Company.
 d. TOTO USA, INC.
 e. Zurn Industries, LLC.
3. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
4. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and fixture receptor.
7. Maximum Flow Rate: 0.35 gpm.
8. Mounting Type: Deck, concealed.
10. Spout Outlet: Aerator.
11. Drain: Not part of faucet.

2.3 SUPPLY FITTINGS

A. NSF Standard: Comply with NSF 372 for supply-fitting materials that will be in contact with potable water.

B. Standard: ASME A112.18.1/CSA B125.1.

C. Supply Piping: Chrome-plated-brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated-brass or stainless-steel wall flange.

D. Supply Stops: Chrome-plated-brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.

E. Operation: Loose key.

F. Risers:
 2. Chrome-plated, soft-copper flexible tube riser.

2.4 WASTE FITTINGS

A. Standard: ASME A112.18.2/CSA B125.2.

B. Drain: Grid type with NPS 1-1/4 offset and straight tailpiece.

C. Trap:
 2. Material: Chrome-plated, two-piece, cast-brass trap and ground-joint swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated, brass or steel wall flange.
 3. Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch-thick stainless-steel tube to wall; and stainless-steel wall flange.
2.5 SUPPORTS

A. Type II Lavatory Carrier:
 1. Standard: ASME A112.6.1M.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before lavatory installation.
B. Examine counters and walls for suitable conditions where lavatories will be installed.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install lavatories level and plumb according to roughing-in drawings.
B. Install supports, affixed to building substrate, for wall-mounted lavatories.
C. Install accessible wall-mounted lavatories at handicapped/elderly mounting height for people with disabilities or the elderly, according to ICC/ANSI A117.1.
D. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
E. Seal joints between lavatories, counters, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."
F. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible lavatories. Comply with requirements in Section 220719 "Plumbing Piping Insulation."

3.3 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."
3.4 ADJUSTING
 A. Operate and adjust lavatories and controls. Replace damaged and malfunctioning lavatories, fittings, and controls.
 B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION
 A. After completing installation of lavatories, inspect and repair damaged finishes.
 B. Clean lavatories, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.
 C. Provide protective covering for installed lavatories and fittings.
 D. Do not allow use of lavatories for temporary facilities unless approved in writing by Owner.

3.6 CONSTRUCTION WASTE MANAGEMENT (LEED)
 A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 224216.13
SECTION 224216.16 - COMMERCIAL SINKS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Utility sinks.
 2. Sink faucets.
 3. Laminar-flow, faucet-spout outlets.
 4. Supports.
 5. Supply fittings.

B. Related Requirements:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics and furnished specialties and accessories.

B. Sustainable Design Submittals:
 1. Provide sustainable design flow rates for plumbing fixtures.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For sinks to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 UTILITY SINKS

A. Utility Sinks: Stainless steel, counter mounted.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Eagle Group.
 b. Elkay.
 c. Just Manufacturing.

2. Fixture:
 b. Type: Ledge back.
 c. Number of Compartments: One.
 d. Overall Dimensions: 22” x 19” minimum.
 e. Metal Thickness: 18 gauge.
 f. Compartment:
 1) Drain: Grid with NPS 1-1/2 tailpiece and twist drain.
 2) Drain Location: Centered in compartment.

3. Faucet: see schedule.
 a. Number Required: One.
 b. Mounting: On ledge.

4. Supply Fittings:
 b. Supplies: Chrome-plated brass compression stop with inlet connection matching water-supply piping type and size.
 1) Operation: Loose key.
 2) Risers: NPS 1/2, chrome-plated, rigid-copper pipe.

5. Waste Fittings:
 b. Trap(s):
 1) Size: NPS 1-1/2.
 2) Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated brass or steel wall flange.
 3) Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch-thick stainless-steel tube to wall; and stainless-steel wall flange.

2.2 SINK FAUCETS

A. NSF Standard: Comply with NSF 372 for faucet-spout materials that will be in contact with potable water.
B. Sink Faucets: hands free sensor faucet with manual adjustment for temperature.

1. Commercial, Solid-Brass Faucets:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) American Standard.
 2) Chicago Faucets; Geberit Company.
 3) Elkay.
 4) Kohler Faucets.
 5) T&S Brass and Bronze Works, Inc.

3. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and sink receptor.
4. Body Type: Centerset.
6. Finish: Chrome plated.
7. Maximum Flow Rate: 1.5 gpm (LEED).
8. Handle(s): Hands free with manual temperature adjustment.
10. Spout Type: Rigid gooseneck.

2.3 SUPPLY FITTINGS

A. NSF Standard: Comply with NSF 372 for supply-fitting materials that will be in contact with potable water.

B. Standard: ASME A112.18.1/CSA B125.1.

C. Supply Piping: Chrome-plated brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated brass or stainless-steel wall flange.

D. Supply Stops: Chrome-plated brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.

E. Operation: Loose key.

F. Risers:
 1. NPS 1/2.
 2. Chrome-plated, soft-copper flexible tube.

2.4 WASTE FITTINGS

A. Standard: ASME A112.18.2/CSA B125.2.

B. Drain: Grid type with NPS 1-1/2 offset and straight tailpiece.
C. Trap:

2. Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated brass or steel wall flange.
3. Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch-thick stainless-steel tube to wall; and stainless-steel wall flange.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before sink installation.

B. Examine counters for suitable conditions where sinks will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install sinks level and plumb according to roughing-in drawings.

B. Install water-supply piping with stop on each supply to each sink faucet.

1. Exception: Use ball or gate valves if supply stops are not specified with sink. Comply with valve requirements specified in Section 220523.12 "Ball Valves for Plumbing Piping."

2. Install stops in locations where they can be easily reached for operation.

C. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

D. Seal joints between sinks and counters using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

E. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible sinks. Comply with requirements in Section 220719 "Plumbing Piping Insulation."

3.3 CONNECTIONS

A. Connect sinks with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Operate and adjust sinks and controls. Replace damaged and malfunctioning sinks, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

A. After completing installation of sinks, inspect and repair damaged finishes.

B. Clean sinks, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed sinks and fittings.

D. Do not allow use of sinks for temporary facilities unless approved in writing by Owner.

3.6 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 224216.16
THIS PAGE LEFT BLANK INTENTIONALLY
SECTION 224223 - COMMERCIAL SHOWERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Shower faucets.
 2. Individual shower basin and wall material.

B. Related Requirements:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEED v4 ID+C.”

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:
 1. Provide shower valve flow rate for sustainable design.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For shower faucets to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 SHOWER FAUCETS

A. NSF Standard: Comply with NSF 61 Annex G, "Drinking Water System Components - Health Effects," for shower materials that will be in contact with potable water.

B. Shower Faucets:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Acorn Engineering Company; a Division of Morris Group International.
b. Chicago Faucets; Geberit Company.
c. Lawler Manufacturing Company, Inc.
d. Leonard Valve Company.
e. POWERS; A WATTS Brand.

2. Description: Single-handle, thermostatic mixing valve with hot- and cold-water indicators; check stops; and shower head.

3. Faucet:
 a. Standards: ASME A112.18.1/CSA B125.1 and ASSE 1016.
 c. Finish: Polished chrome plate.
 d. Shower-Arm, Flow-Control Fitting: 1.5 gpm.
 e. EPA Water Sense: Required.
 f. Mounting: Concealed.
 g. Operation: Single-handle, twist or rotate control.
 h. Antiscald Device: Integral with mixing valve.
 i. Check Stops: Check-valve type, integral with or attached to body; on hot- and cold-water supply connections.

5. Shower Head:
 b. Type: Ball joint with arm and flange.
 c. Shower Head Material: Metallic with chrome-plated finish.
 e. Integral Volume Control: Not required.
 f. Shower-Arm, Flow-Control Fitting: 1.5 gpm.
 g. Temperature Indicator: Integral with faucet.

2.2 INDIVIDUAL SHOWERS

A. Individual, Acrylic Shower without Top:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Florestone Products Co., Inc.
 b. Freedom Showers
 c. Kohler Co.
 d. LASCO Bathware.
 2. Source Limitations: Obtain showers without top from single source from single manufacturer.
 3. General: shower enclosure with valve and receptor and appurtenances.
 5. Style: Handicapped/accessible.
6. Shower Head and Shower Valve: Refer to article 2.1 for shower balance valve and shower head with guide bar.
7. Shower Nominal Size and Shape: 39 by 37.5 inches square (three walls).
10. Shower Rod and Curtain: Required. Provide with weighted curtain.
11. Grab Bar: ASTM F446, mounted on support area back wall, inside corner and straight.
12. Folding shower seat, factory installed.
14. Flange Trim Kit.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before shower installation.

B. Examine walls and floors for suitable conditions where showers will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Assemble shower components according to manufacturers' written instructions.

B. Install showers level and plumb according to roughing-in drawings.

C. Install water-supply piping with stop on each supply to each shower faucet.

1. Exception: Use ball or gate valves if supply stops are not specified with shower. Comply with valve requirements specified in Section 220523.12 "Ball Valves for Plumbing Piping."

2. Install stops in locations where they can be easily reached for operation.

D. Install shower flow-control fittings with specified maximum flow rates in shower arms.

E. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheons requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

F. Seal joints using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Comply with traps and soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Operate and adjust showers and controls. Replace damaged and malfunctioning shower fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

A. After completing installation of shower valves, inspect and repair damaged finishes.

B. Clean shower, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed fixtures and fittings.

D. Do not allow use of showers for temporary facilities unless approved in writing by Owner.

3.6 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”
SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on alternating-current power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

B. Related Sections Include the following:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.2 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with NEMA MG 1 unless otherwise indicated.

2.2 MOTOR CHARACTERISTICS

A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.

B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Premium efficient, as defined in NEMA MG 1.
C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

G. Temperature Rise: Match insulation rating.

H. Insulation: Class F.

I. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller Than 15 HP: Manufacturer's standard starting characteristic.

J. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 ADDITIONAL REQUIREMENTS FOR POLYPHASE MOTORS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable-Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width-modulated inverters.
 2. Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
 4. Capacitor start, capacitor run.
B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230513
SECTION 230517 - SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Sleeves.
2. Stack-sleeve fittings.
3. Sleeve-seal systems.

B. Related Sections Include the following:

1. Division 01 Section “Construction Waste Management.”
2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Sustainable Design Submittals.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral water stop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint
E. PVC Pipe Sleeves: ASTM D 1785, Schedule 40.
F. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.
G. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

2.2 STACK-SLEEVE FITTINGS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following or approved equal:
 2. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
 3. CALPICO, Inc.
B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following or approved equal:
 1. Advance Products & Systems, Inc.
 2. CALPICO, Inc.
 3. Metraflex Company (The).
B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Stainless steel.
 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.4 GROUT
B. Characteristics: Nonshrink; recommended for interior and exterior applications.
C. Design Mix: 5000-psi, 28-day compressive strength.
D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 076200 "Sheet Metal Flashing and Trim."
3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
5. Using grout, seal the space around outside of stack-sleeve fittings.

B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves.

2. Interior Partitions:

3.5 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 230517
SECTION 230518 - ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Escutcheons.
 2. Floor plates.
 B. Related Sections Include the following:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
 A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.
 B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
 C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
 D. Split-Casting Brass Type: With polished, chrome-plated and rough-brass finish and with concealed hinge and setscrew.
 E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed hinge, and spring-clip fasteners.
2.2 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

B. Split-Casting Floor Plates: Cast brass with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated or rough-brass finish.
 g. Bare Piping in Equipment Rooms: One-piece, cast-brass type with polished, chrome-plated or rough-brass finish.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

 1. New Piping: One-piece, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

3.3 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”
SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Metal framing systems.
 3. Trapeze Pipe Hangers
 4. Thermal-hanger shield inserts.
 5. Fastener systems.
 6. Pipe stands.
 7. Equipment supports.

B. Related Sections Include the following:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

C. Related Requirements:
 1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
 2. Section 230548.13 "Vibration Controls for HVAC" for vibration isolation devices.
 3. Section 233113 "Metal Ducts" for duct hangers and supports.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Metal framing systems.
 2. Pipe stands.
 3. Equipment supports.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.
1.5 QUALITY ASSURANCE

A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code, Section IX.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized, hot-dip galvanized, or electro-galvanized.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Copper Pipe and Tube Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-plated steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. B-line, an Eaton business.
 b. Flex-Strut Inc.
 c. G-Strut.
 d. Haydon Corporation.
 e. MIRO Industries.
 f. Thomas & Betts Corporation; A Member of the ABB Group.
 g. Unistrut; Part of Atkore International.
h. Wesanco, Inc.

2. Description: Shop- or field-fabricated, pipe-support assembly made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
4. Channels: Continuous slotted carbon-steel channel with inturned lips.
5. Channel Width: Selected for applicable load criteria.
6. Channel Nuts: Formed or stamped nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

B. Non-MFMA Manufacturer Metal Framing Systems:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International.
 b. CADDY; a brand of nVent.
 c. Carpenter & Paterson, Inc.
 d. Empire Industries, Inc.
 e. Gripple Inc.
 f. MIRO Industries.
 g. PHD Manufacturing, Inc.

2. Description: Shop- or field-fabricated, pipe-support assembly made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
4. Channels: Continuous slotted carbon-steel channel with inturned lips.
5. Channel Width: Select for applicable load criteria.
6. Channel Nuts: Formed or stamped nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

2.4 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Buckaroos, Inc.
2. CADDY; a brand of nVent.
3. Carpenter & Paterson, Inc.
4. KB Enterprise.
6. Pipe Shields Inc.
7. Piping Technology & Products, Inc.
B. Insulation-Insert Material for Cold Piping: ASTM C552, Type II cellular glass with 100-psi or ASTM C591, Type VI, Grade 1 polyisocyanurate with 125-psi minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: Water-repellent-treated, ASTM C533, Type I calcium silicate with 100-psi minimum compressive strength.

D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

A. Mechanical-Expansion Anchors: Insert-wedge-type anchors for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.6 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

C. High-Type, Single-Pipe Stand:

1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

D. High-Type, Multiple-Pipe Stand:

1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
2. Bases: One or more; stainless steel.
3. Vertical Members: Two or more protective-coated-steel channels.
4. Horizontal Member: Protective-coated-steel channel.
5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.
E. Curb-Mounted-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.7 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.8 MATERIALS

A. Aluminum: ASTM B221.
B. Carbon Steel: ASTM A1011/A1011M.
C. Structural Steel: ASTM A36/A36M, carbon-steel plates, shapes, and bars; galvanized.
D. Stainless Steel: ASTM A240/A240M.
E. Threaded Rods: Continuously threaded. Zinc-plated or galvanized steel for indoor applications and stainless steel for outdoor applications. Mating nuts and washers of similar materials as rods.
F. Grout: ASTM C1107/C1107M, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.

B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

3.2 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-58. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
B. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled strut systems.

C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

D. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

E. Pipe Stand Installation:
 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Section 077200 "Roof Accessories" for curbs.

F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

I. Install lateral bracing with pipe hangers and supports to prevent swaying.

J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

K. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

M. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.

5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS
 A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
 B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
 C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS
 A. Cut, drill, and fit miscellaneous metal fabrications for equipment supports.
 B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
 C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.5 ADJUSTING
 A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Touchup: Comply with requirements in Section 099113 "Exterior Painting" Section 099123 "Interior Painting" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A780/A780M.

3.7 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-58 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and metal framing systems and attachments for general service applications.

F. Use corrosion-resistant attachments for hostile environment applications.

G. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.

H. Use padded hangers for piping that is subject to scratching.

I. Use thermal-hanger shield inserts for insulated piping and tubing.

J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.

2. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
3. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
4. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
5. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
6. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
7. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
8. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
10. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
11. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
12. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
13. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
14. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
15. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is unnecessary.
16. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is unnecessary.
17. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

O. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

P. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.
3.8 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 230529
SECTION 230548 - VIBRATION AND SEISMIC CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Housed-spring isolators.
 2. Restrained-spring isolators.
 3. Housed-restrained-spring isolators.
 4. Pipe-riser resilient support.
 5. Resilient pipe guides.
 6. Air-spring isolators.
 7. Restrained-air-spring isolators.
 8. Elastomeric hangers.
 9. Spring hangers.
 10. Restraints - cable type.
 11. Restraint – Rigid type
 12. Restraint accessories.
 13. Vibration isolation equipment bases.

B. Related Requirements:
 1. Section 210548 "Vibration and Seismic Controls for Fire-Suppression Piping and Equipment" for devices for fire-suppression equipment and systems.
 2. Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for devices for plumbing equipment and systems.

1.3 DEFINITIONS

A. Designated Seismic System: An HVAC component that requires design in accordance with ASCE/SEI 7, Ch. 13, and for which the Component Importance Factor is greater than 1.0.

C. OSHPD: Office of Statewide Health Planning and Development (for the State of California owned and regulated medical facilities).

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.

2. Include load rating for each wind-force-restraint fitting and assembly.

3. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device and seismic- and wind-force-restraint component.

4. Annotate types and sizes of seismic restraints and accessories, complete with listing markings or report numbers and load rating in tension and compression as evaluated by ICC-ES product listing or UL product listing or an agency acceptable to authorities having jurisdiction.

5. Annotate to indicate application of each product submitted and compliance with requirements.

6. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.

B. Shop Drawings:

1. Detail fabrication and assembly of equipment bases.

2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal:

1. For each seismic-restraint and device, including seismic-restrained mounting, pipe-riser resilient support, snubber, seismic restraint, seismic-restraint accessory, and restrained isolation roof-curb rail that is required by this Section or is indicated on Drawings, submit the following:

 a. Seismic Restraint, and Vibration Isolation Base Selection: Select vibration isolators, seismic restraints, and vibration isolation bases complying with performance requirements, design criteria, and analysis data.

 b. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification by professional engineer that riser system was examined for excessive stress and that none exists.

 c. Concrete Anchors and Inserts: Include calculations showing anticipated seismic and wind loads. Include certification that device is approved by an NRTL for seismic reinforcement use.

 d. Seismic Design Calculations: Submit all input data and loading calculations prepared under "Seismic Design Calculations" Paragraph in "Performance Requirements" Article.

 e. Wind-Load Design Calculations: Submit all static and dynamic loading calculations prepared under "Wind-Load Design Calculations" Paragraph in "Performance Requirements" Article.

 f. Qualified Professional Engineer: All designated-design submittals for seismic- and wind-restraint calculations are to be signed and sealed by qualified professional engineer responsible for their preparation.

2. Seismic-Restraint Detail Drawing:
a. **Design Analysis:** To support selection and arrangement of seismic[and wind] restraints. Include calculations of combined tensile and shear loads.

b. **Details:** Indicate fabrication and arrangement. Detail attachments of restraints to restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.

c. **Coordinate seismic-restraint and vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply also with requirements in other Sections for equipment mounted outdoors.**

3. All delegated-design submittals for seismic- and wind-restraint detail Drawings are to be signed and sealed by qualified professional engineer responsible for their preparation.

4. **Product Listing, Preapproval, and Evaluation Documentation:** By an evaluation service member of ICC-ES or UL or an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and basis for approval (tests or calculations).

5. **Design Calculations for Vibration Isolation Devices:** Calculate static and dynamic loading due to equipment weight and operating forces required to select proper vibration isolators, and to design vibration isolation bases.

6. **Riser Supports:** Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, and spring deflection changes. Include certification that riser system was examined for excessive stress and that none exists.

1.5 INFORMATIONAL SUBMITTALS

A. **Coordination Drawings:** Show coordination of vibration isolation device installation and seismic bracing for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.

B. **Qualification Data:** For professional engineer and testing agency.

C. **Welding certificates.**

D. **Air-Spring Isolator Performance Certification:** Include natural frequency, load, and damping test data.

E. **Field quality-control reports.**

F. **Seismic Qualification Data:** Provide special certification for designated seismic systems as indicated in ASCE/SEI 7-05, Paragraph 13.2.2, "Special Certification Requirements for Designated Seismic Systems" for all Designated Seismic Systems identified as such on Drawings or in the Specifications.

1. Provide equipment manufacturer's written certification for each designated active mechanical seismic device and system, stating that it will remain operable following the design earthquake. Certification must be based on requirements of ASCE/SEI 7 and AHRI 1270, including shake table testing per ICC-ES AC156 or a similar nationally recognized testing standard procedure acceptable to authorities having jurisdiction [or] experience data as permitted by ASCE/SEI 7-05.
2. Provide equipment manufacturer's written certification that components with hazardous contents maintain containment following the design earthquake by methods required in ASCE/SEI 7-05.
3. Submit evidence demonstrating compliance with these requirements for approval to authorities having jurisdiction after review and acceptance by a licensed professional engineer.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air-spring isolators and restrained-air-spring isolators to include in operation and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct testing indicated, be an NRTL as defined by OSHA in 29 CFR 1910.7, and be acceptable to authorities having jurisdiction.

B. Welding Qualifications: Qualify procedures and personnel in accordance with AWS D1.1/D1.1M, "Structural Welding Code - Steel."

C. Seismic- and Wind-Load-Restraint Device Load Ratings: Devices to be tested and rated in accordance with applicable code requirements and authorities having jurisdiction. Devices to be listed by a nationally recognized third party that requires periodic follow-up inspections and has a listing directory available to the public. Provide third-party listing by one or more of the following: ICC-ES product listing or UL product listing or an agency acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design seismic and wind-load control system.
 1. Seismic Performance: Equipment shall withstand the effects of earthquake motions determined in accordance with ASCE/SEI 7-05.

B. Seismic Design Calculations:
 1. Perform calculations to obtain force information necessary to properly select seismic-restraint devices, fasteners, and anchorage. Perform calculations using methods acceptable to applicable code authorities and as presented in ASCE/SEI 7-05 or other seismic calculation method required by authorities having jurisdiction. Where "ASCE/SEI 7" is used throughout this Section, it is to be understood that the edition referred to in this subparagraph is the edition intended as reference throughout the Section Text.
a. Data indicated below to be determined by Delegated-Design Contractor must be obtained by Contractor and must be included in individual component submittal packages.

b. Coordinate seismic design calculations with wind-load calculations for equipment mounted outdoors. Comply with requirements in other Sections in addition to those in this Section for equipment mounted outdoors.

2. Calculation Factors, ASCE/SEI 7-16, Ch. 13 - Seismic Design Requirements for Nonstructural Components: All section, paragraph, equation, and table numbers refer to ASCE/SEI 7-16 unless otherwise noted.

b. Seismic Relative Displacement D_{pl}: Calculate by Delegated-Design Contractor using methods explained in ASCE/SEI 7-10, Paragraph 13.3.2. Factors below must be obtained for this calculation:

c. Component Fundamental Period T_p: Calculated by Delegated-Design Contractor using methods explained in ASCE/SEI 7-16, Paragraph 13.3.3. Factors below must be obtained for this calculation:

3. Calculation Factors, ASCE/SEI 7-10, Ch. 13 - Seismic Design Requirements for Nonstructural Components: All section, paragraph, equation, and table numbers refer to ASCE/SEI 7-10 unless otherwise noted.

4. Calculation Factors, ASCE/SEI 7-05, Ch. 3 - Seismic Design Requirements for Nonstructural Components: All section, paragraph, equation, and table numbers refer to ASCE/SEI 7-05 unless otherwise noted.

C. Consequential Damage: Provide additional seismic restraints for suspended HVAC components or anchorage of floor-, roof-, or wall-mounted HVAC components as indicated in ASCE/SEI 7-05 so that failure of a non-essential or essential HVAC component will not cause failure of any other essential architectural, mechanical, or electrical building component.

D. Fire/Smoke Resistance: Seismic- and wind-load-restraint devices that are not constructed of ferrous metals must have a maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested by an NRTL in accordance with ASTM E84 or UL 723, and be so labeled.

E. Component Supports:

1. Load ratings, features, and applications of all reinforcement components must be based on testing standards of a nationally recognized testing agency.

2. All component support attachments must comply with force and displacement resistance requirements of ASCE 7-05 Section 13.6.

2.2 RESTRAINED-SPRING ISOLATORS

1. Housing: Steel housing with vertical-limit stops to prevent spring extension due to weight being removed.
 a. Base with holes for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Top plate with threaded mounting holes.
 c. Internal leveling bolt that acts as blocking during installation.

2. Restraint: Limit stop as required for equipment and authorities having jurisdiction.

3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.

4. Minimum Additional Travel: 50 percent of the required deflection at rated load.

5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.

6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.3 HOUSED-RESTRAINED-SPRING ISOLATORS

A. Freestanding, Steel, Open-Spring Isolators with Vertical-Limit Stop Restraint in Two-Part Telescoping Housing:

1. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators. Housings are equipped with adjustable snubbers to limit vertical movement.
 a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Threaded top housing with adjustment bolt and cap screw to fasten and level equipment.

2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.

3. Minimum Additional Travel: 50 percent of the required deflection at rated load.

4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.

5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.4 PIPE-RISER RESILIENT SUPPORT

A. All-Directional, Acoustical Pipe Anchor Consisting of Two Steel Tubes Separated by a Minimum 1/2-inch-Thick Neoprene:

1. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.

2. Maximum Load Per Support: 500 psig on isolation material providing equal isolation in all directions.
2.5 RESILIENT PIPE GUIDES

A. Telescopic Arrangement of Two Steel Tubes or Post and Sleeve Arrangement Separated by a Minimum 1/2-inch-Thick Neoprene:

1. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.6 AIR-SPRING ISOLATORS

A. Freestanding, Single or Multiple, Compressed-Air Bellows:

1. Bellows Assembly: Upper and lower powder-coated steel sections connected by a replaceable, flexible, nylon-reinforced neoprene bellows or similar elastomeric material.
2. Maximum Natural Frequency: 3 Hz.
3. Operating Pressure Range: 25 to 100 psig.
4. Burst Pressure: At least three times manufacturer's published maximum operating pressure.
5. Automatic leveling valve.

2.7 RESTRAINED-AIR-SPRING ISOLATORS

A. Freestanding, Single or Multiple, Compressed-Air Bellows with Vertical-Limit Stop Restraint:

1. Housing: Steel housing with vertical-limit stops to prevent spring extension due to weight being removed.
 a. Base with holes for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Top plate with threaded mounting holes.
 c. Internal leveling bolt that acts as blocking during installation.
2. Restraint: Limit stop as required for equipment and authorities having jurisdiction.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Bellows Assembly: Upper and lower powder-coated steel sections connected by a replaceable, flexible, nylon-reinforced neoprene bellows or similar elastomeric material.
7. Maximum Natural Frequency: 3 Hz.
8. Operating Pressure Range: 25 to 100 psig.
9. Burst Pressure: At least three times manufacturer's published maximum operating pressure.
10. Automatic leveling valve.
2.8 ELASTOMERIC HANGERS

A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:

1. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
2. Damping Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

2.9 SPRING HANGERS

A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:

1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
7. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
8. Self-centering hanger-rod cap to ensure concentricity between hanger rod and support spring coil.

2.10 RESTRAINTS - RIGID TYPE

A. Description: Shop- or field-fabricated bracing assembly made of AISI S110-07-S1 slotted steel channels, ANSI/ASTM A53/A53M steel pipe as per NFPA 13, or other rigid steel brace member. Includes accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.11 RESTRAINTS - CABLE TYPE

A. Seismic-Restraint Cables: ASTM A1023/A1023M galvanized or ASTM A603 galvanized-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for seismic-restraining cable service; with fittings attached by means of poured socket, swaged socket or mechanical (Flemish eye) loop.
B. Restraint cable assembly with cable fittings must comply with ASCE/SEI 19. All cable fittings and complete cable assembly must maintain the minimum cable breaking force. U-shaped cable clips and wedge-type end fittings do not comply and are unacceptable.

2.12 RESTRAINT ACCESSORIES

A. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod. Non-metallic stiffeners are unacceptable.

B. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.

C. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.

D. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.

E. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

2.13 VIBRATION ISOLATION EQUIPMENT BASES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Amber/Booth Company, Inc.
2. California Dynamics Corporation.
3. Mason Industries.
4. Vibration Eliminator Co., Inc.
5. Vibro-Acoustics

B. Steel Rails: Factory-fabricated, welded, structural-steel rails.

1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide rails.
 a. Include supports for suction and discharge elbows for pumps.

2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A36/A36M. Rails shall have shape to accommodate supported equipment.

3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.

C. Steel Bases: Factory-fabricated, welded, structural-steel bases and rails.

1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 a. Include supports for suction and discharge elbows for pumps.
2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A36/A36M. Bases shall have shape to accommodate supported equipment.

3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.

D. Inertia Base: Factory-fabricated or field-fabricated, welded, structural-steel bases and rails ready for placement of cast-in-place concrete.

 1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 a. Include supports for suction and discharge elbows for pumps.

2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A36/A36M. Bases shall have shape to accommodate supported equipment.

3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.

4. Fabrication: Fabricate steel templates to hold equipment anchor-bolt sleeves and anchors in place during placement of concrete. Obtain anchor-bolt templates from supported equipment manufacturer.

2.14 RESTRAINED ISOLATION ROOF-CURB RAILS

A. Description: Factory-assembled, fully enclosed, insulated, air- and watertight curb rail designed to resiliently support equipment and to withstand seismic and wind forces.

B. Upper Frame: To provide continuous support for equipment and to be captive to resiliently resist seismic and wind forces.

C. Lower Support Assembly: To be formed sheet metal section containing adjustable and removable steel springs that support the upper frame. Lower support assembly to have a means for attaching to building structure and a wood nailer for attaching roof materials, and to be insulated with a minimum of 2 inches of rigid, glass-fiber insulation on inside of assembly. Mount adjustable, restrained-spring isolators on elastomeric vibration isolation pads and provide access ports, for level adjustment, with removable waterproof covers at all isolator locations. Locate isolators so they are accessible for adjustment at any time during the life of the installation without interfering with integrity of roof.

D. Snubber Bushings: All-directional, elastomeric snubber bushings at least 1/4 inch thick.

E. Water Seal: Galvanized sheet metal with EPDM seals at corners, attached to upper support frame, extending down past wood nailer of lower support assembly, and counterflashed over roof materials.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic[and wind] control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an evaluation service member of ICC-ES or an agency acceptable to authorities having jurisdiction.

B. Hanger-Rod Stiffeners: Install where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength is adequate to carry present and future static, wind load, and seismic loads within specified loading limits.

3.3 INSTALLATION OF VIBRATION-CONTROL AND SEISMIC-RESTRAINT DEVICES

A. Provide vibration-control devices for systems and equipment where indicated in Equipment Schedules or Vibration-Control Devices Schedules, where indicated on Drawings, or where Specifications indicate they are to be installed on specific equipment and systems.

B. Provide seismic-restraint devices for systems and equipment where indicated in Equipment Schedules or Seismic-Restraint Devices Schedules, where indicated on Drawings, where Specifications indicate they are to be installed on specific equipment and systems, and where required by applicable codes.

C. Coordinate location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete."

D. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

E. Comply with requirements in Section 077200 "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.

F. Equipment Restraints:
1. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.

2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.

3. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES or an agency acceptable to authorities having jurisdiction that provides required submittals for component.

G. Piping Restraints:

1. Comply with requirements in MSS SP-127.

2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.

3. Brace a change of direction longer than 12 feet.

H. Install seismic-restraint cables so they do not bend across edges of adjacent equipment or building structure.

I. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES or an agency acceptable to authorities having jurisdiction that provides required submittals for component.

J. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

K. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

L. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

M. Mechanical Anchor Bolts:

1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.

2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.

3. Wedge-Type Anchor Bolts: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.

4. Adhesive-Type Anchor Bolts: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.

5. Set anchors to manufacturer's recommended torque, using a torque wrench.

6. Install zinc-coated steel anchors for interior and stainless steel anchors for exterior applications.
3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Provide flexible connections in piping systems where they cross structural seismic joints and other point where differential movement may occur. Provide adequate flexibility to accommodate differential movement as determined in accordance with ASCE/SEI 7. Comply with requirements in Section 232113 "Hydronic Piping" and Section 232116 "Hydronic Piping Specialties" for piping flexible connections.

3.5 INSTALLATION OF AIR-SPRING ISOLATORS

A. Independent Isolator Installation:
 1. Install tank valve into each air isolator.
 2. Inflate each isolator to height and pressure specified on Drawings.

B. Pressure-Regulated Isolator Installation:
 1. Coordinate the constant pressure-regulated air supply to air springs with requirements for piping and connections specified in Section 221513 "General-Service Compressed-Air Piping."
 2. Connect all pressure regulators to a single dry, filtered facility air supply.
 3. Inflate isolators to height and or pressure specified on Drawings.

3.6 INSTALLATION OF VIBRATION ISOLATION EQUIPMENT BASES

A. Coordinate location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete."

B. Coordinate dimensions of steel equipment rails and bases, concrete inertia bases, and restrained isolation roof-curb rails with requirements of isolated equipment specified in this and other Sections. Where dimensions of these bases are indicated on Drawings, dimensions may require adjustment to accommodate actual isolated equipment.

3.7 ADJUSTING

A. Adjust isolators after system is at operating weight.

B. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

3.8 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
C. Tests and Inspections:
1. Perform tests and inspections with the assistance of a factory-authorized service representative.
2. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
3. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
5. Test no fewer than four of each type and size of installed anchors and fasteners selected by Architect.
6. Test to 90 percent of rated proof load of device.
7. Measure isolator restraint clearance.
8. Measure isolator deflection.
9. Verify snubber minimum clearances.
10. Test and adjust restrained-air-spring isolator controls and safeties.

D. Remove and replace malfunctioning units and retest as specified above.

E. Units will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports.

END OF SECTION 230548
SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe Labels
 4. Duct labels.
 5. Warning Tags

B. Related Sections Include the following:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following or approved equal:

 a. Brady Corporation.
 b. Craftmark Pipe Markers.
 c. Brimar Industries, Inc.
 d. Marking Services, Inc.
 e. Seton Identification Products; a Brady Corporation company.
2. Material and Thickness: Brass, 0.032-inch stainless steel, 0.025-inch aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
7. Fasteners: Stainless-steel rivets or self-tapping screws.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following or approved equal:
 a. Brady Corporation.
 b. Craftmark Pipe Markers.
 c. Marking Services, Inc.
 d. Seton Identification Products; a Brady Corporation company.
2. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
5. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
6. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
7. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
9. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment’s Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.
2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

C. Background Color: Red.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following or approved equal:

1. Brady Corporation.
2. Craftmark Pipe Markers.
3. Marking Services Inc.
4. Seton Identification Products; a Brady Corporation company.

B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction according to ASME A13.1.

C. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.

D. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

E. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
2. Lettering Size: Size letters according to ASME A13.1 for piping.
2.4 DUCT LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following or approved equal:

1. Brady Corporation.
2. Craftmark Pipe Markers.
3. Marking Services Inc.
4. Seton Identification Products; a Brady Corporation company.

B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

C. Letter Color: Black.

D. Background Color: White.

E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

H. Fasteners: Stainless-steel rivets or self-tapping screws.

I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

J. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings; also include duct size and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions or as separate unit on each duct label to indicate flow direction.
2. Lettering Size: At least 1-1/2 inches high.

2.5 WARNING TAGS

A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

1. Size: Approximately 4 by 7 inches.
2. Fasteners: Brass grommet and wire.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
PART 3 - EXECUTION

3.1 PREPARATION
A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS
A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with locations of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION
A. Install or permanently fasten labels on each major item of mechanical equipment.
B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION
A. Piping Color Coding: Painting of piping is specified in Section 099123 "Interior Painting."
B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, on each piping system.
 1. Identification Paint: Use for contrasting background.
C. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

D. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

E. Pipe Label Color Schedule:

3.5 DUCT LABEL INSTALLATION

A. Install self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:
 1. Blue: For air supply ducts from RTUs.
 2. Red: For exhaust air ducts to ERVs.
 3. Green: For outside-air ducts from ERV-1.
 4. Yellow: For return/exhaust air ducts to RTUs.

B. Stenciled Duct Label Option: Stenciled labels showing service and flow direction may be provided instead of plastic-laminated duct labels, at Installer's option.

C. Locate labels near points where ducts enter into and exit from concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

3.7 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 230553
SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

 B. Refer to Specification Section 230800 Mechanical System Commissioning requirements for Mechanical Systems Commissioning.

1.2 SUMMARY

 A. Section Includes:
 1. Balancing Air Systems:
 a. Constant-volume air systems.
 b. Variable-air-volume systems.
 2. Testing, Adjusting, and Balancing Equipment:
 a. Motors.
 b. Condensing units.
 c. Air moving equipment
 d. Heat-transfer coils.
 3. Sound tests.
 4. Vibration tests.
 5. Duct leakage tests.
 6. Control system verification.

 B. Related Sections Include the following:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 DEFINITIONS

 B. BAS: Building automation systems.

 D. TAB: Testing, adjusting, and balancing.

 F. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
G. TDH: Total dynamic head.

1.4 ACTION SUBMITTALS

A. LEED Submittals:

1. Air-Balance Report for Prerequisite IEQ 1: Documentation indicating that work complies with ASHRAE 62.1, Section 7.2.2 - "Air Balancing."
2. TAB Report for Prerequisite EA 2: Documentation indicating that work complies with ASHRAE/IESNA 90.1, Section 6.7.2.3 - "System Balancing."

1.5 INFORMATIONAL SUBMITTALS

A. Certified TAB reports.

B. Instrument calibration reports, to include the following:

1. Instrument type and make.
2. Serial number.
3. Application.
4. Dates of use.
5. Dates of calibration.

1.6 QUALITY ASSURANCE

A. TAB Specialists Qualifications: Certified by AABC NEBB or TABB.

1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC NEBB or TABB.
2. TAB Technician: Employee of the TAB specialist and certified by AABC NEBB or TABB as a TAB technician.

B. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."

C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."

D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 - "System Balancing."

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.
B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine ceiling plenums used for supply, return, or relief air to verify that they are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

F. Examine equipment performance data including fan and pump curves.
 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

H. Examine test reports specified in individual system and equipment Sections.

I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.

J. Examine Variable Refrigerant Flow (VRF) units and verify that they are accessible, and their controls are connected and functioning.

K. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes the following:
 1. Equipment and systems to be tested.
 3. Instrumentation to be used.
 4. Sample forms with specific identification for all equipment.

B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:
1. Airside:
 a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.
 b. Duct systems are complete with motorized zone dampers installed.
 c. Volume, smoke, and fire dampers are open and functional.
 d. Clean filters are installed.
 e. Fans are operating, free of vibration, and rotating in correct direction.
 f. Variable-frequency controllers' startup is complete, and safeties are verified.
 g. Automatic temperature-control systems are operational.
 h. Ceilings are installed.
 i. Windows and doors are installed.
 j. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" ASHRAE 111 NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" or SMACNA's "HVAC Systems - Testing, Adjusting, and Balancing" and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."
 3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," and Section 230719 "HVAC Piping Insulation."

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

1. Measure total airflow.
 a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at motorized zone dampers and calculate the total airflow.

2. Measure fan static pressures as follows:
 a. Measure static pressure directly at the fan outlet or through the flexible connection.
 b. Measure static pressure directly at the fan inlet or through the flexible connection.
 c. Measure static pressure across each component that makes up the air-handling system.
 d. Report artificial loading of filters at the time static pressures are measured.

3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

4. Obtain approval from Construction Manager for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-
heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.
 1. Measure airflow of submain and branch ducts.
 2. Adjust submain and branch duct volume dampers for specified airflow.
 3. Re-measure each submain and branch duct after all have been adjusted.

C. Adjust air inlets and outlets for each space to indicated airflows.
 1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
 2. Measure inlets and outlets airflow.
 3. Adjust each inlet and outlet for specified airflow.
 4. Re-measure each inlet and outlet after they have been adjusted.

D. Verify final system conditions.
 1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to design if necessary.
 2. Re-measure and confirm that total airflow is within design.
 3. Re-measure all final fan operating data, rpms, volts, amps, and static profile.
 4. Mark all final settings.
 5. Test system in economizer mode. Verify proper operation and adjust if necessary.
 6. Measure and record all operating data.
 7. Record final fan-performance data.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Adjust the variable-air-volume systems as follows:
 1. Verify that the system static pressure sensor is located two-thirds of the distance down the duct from the fan discharge.
 2. Verify that the system is under static pressure control.
 3. Select the motorized zone damper that is most critical to the supply-fan airflow.
 4. Calibrate and balance each motorized zone damper for maximum and minimum design airflow as follows:
 a. Adjust controls so that motorized zone damper is calling for maximum airflow.
 b. Measure airflow and adjust as required for design maximum airflow. Record airflow.
 c. When maximum airflow is correct, balance the air outlets downstream from motorized zone dampers.
 d. Adjust controls so that terminal is calling for minimum airflow.
 e. Measure airflow and adjust calibration factor as required for design minimum airflow. Record calibration factor. If no minimum calibration is available, note any deviation from design airflow.
 f. When in full cooling or full heating, ensure that there is no mixing of hot-deck and cold-deck airstreams unless so designed.
g. On constant volume motorized zone dampers, in critical areas where room pressure is to be maintained, verify that the airflow remains constant over the full range of full cooling to full heating. Note any deviation from design airflow or room pressure.

5. After motorized zone dampers have been calibrated and balanced, test and adjust system for total airflow. Adjust fans to deliver total design airflows within the maximum allowable fan speed listed by fan manufacturer.
 a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 b. Set motorized zone dampers for maximum airflow. If system design includes diversity, adjust motorized zone dampers for maximum and minimum airflow so that connected total matches fan selection and simulates actual load in the building.
 c. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 d. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 e. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at motorized zone dampers and calculate the total airflow.

6. Measure fan static pressures as follows:
 a. Measure static pressure directly at the fan outlet or through the flexible connection.
 b. Measure static pressure directly at the fan inlet or through the flexible connection.
 c. Measure static pressure across each component that makes up the air-handling system.
 d. Report any artificial loading of filters at the time static pressures are measured.

7. Set final return and outside airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 a. Balance the return-air ducts and inlets the same as described for constant-volume air systems.
 b. Verify that motorized zone dampers are meeting design airflow under system maximum flow.

8. Re-measure the inlet static pressure at the most critical motorized zone damper and adjust the system static pressure set point to the most energy-efficient set point to maintain the optimum system static pressure. Record set point and give to controls contractor.

9. Verify final system conditions as follows:
 a. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Redo adjust to match design if necessary.
 b. Re-measure and confirm that total airflow is within design.
 c. Re-measure final fan operating data, rpms, volts, amps, and static profile.
 d. Mark final settings.
 e. Test system in economizer mode. Verify proper operation and adjust if necessary. Measure and record all operating data.
 f. Verify tracking between supply and return fans.
3.7 PROCEDURES FOR MOTORS

A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:

1. Manufacturer's name, model number, and serial number.
4. Phase and hertz.
5. Nameplate and measured voltage, each phase.
6. Nameplate and measured amperage, each phase.
7. Starter size and thermal-protection-element rating.
8. Service factor and frame size.

B. Motors Driven by Variable-Frequency Controllers: Test manual bypass of controller to prove proper operation.

3.8 PROCEDURES FOR CONDENSING UNITS

A. Verify proper rotation of fans.
B. Measure entering- and leaving-air temperatures.
C. Measure and record entering and leaving refrigerant pressures.
D. Measure and record operating data of compressor(s), fan(s), and motors.

3.9 SOUND TESTS

A. After the systems are balanced and construction is Substantially Complete, measure and record sound levels at 5 locations as designated by the Architect.

B. Instrumentation:

1. The sound-testing meter shall be a portable, general-purpose testing meter consisting of a microphone, processing unit, and readout.
2. The sound-testing meter shall be capable of showing fluctuations at minimum and maximum levels and measuring the equivalent continuous sound pressure level (LEQ).
3. The sound-testing meter must be capable of using 1/3 octave band filters to measure mid-frequencies from 31.5 Hz to 8000 Hz.
4. The accuracy of the sound-testing meter shall be plus or minus one decibel.

C. Test Procedures:

1. Perform test at quietest background noise period. Note cause of unpreventable sound that affects test outcome.
2. Equipment should be operating at design values.
3. Calibrate the sound-testing meter prior to taking measurements.
4. Use a microphone suitable for the type of noise levels measured that is compatible with meter. Provide a windshield for outside or in-duct measurements.
5. Record a set of background measurements in dBA and sound pressure levels in the eight un-weighted octave bands 63 Hz to 8000 Hz (NC) with the equipment off.
6. Take sound readings in dBA and sound pressure levels in the eight un-weighted octave bands 63 Hz to 8000 Hz (NC) with the equipment operating.
7. Take readings no closer than 36 inches from a wall or from the operating equipment and approximately 60 inches from the floor, with the meter held or mounted on a tripod.
8. For outdoor measurements, move sound-testing meter slowly and scan area that has the most exposure to noise source being tested. Use A-weighted scale for this type of reading.

D. Reporting:

1. Report shall record the following:
 a. Location.
 b. System tested.
 c. dBA reading.
 d. Sound pressure level in each octave band with equipment on and off.

2. Plot sound pressure levels on NC worksheet with equipment on and off.

3.10 DUCT LEAKAGE TESTS

A. Witness the duct pressure testing performed by Installer.

B. Verify that proper test methods are used and that leakage rates are within specified tolerances.

C. Report deficiencies observed.

3.11 HVAC CONTROLS VERIFICATION

A. In conjunction with system balancing, perform the following:

1. Verify temperature control system is operating within the design limitations.
2. Confirm that the sequences of operation are in compliance with Contract Documents.
3. Verify that controllers are calibrated and function as intended.
4. Verify that controller set points are as indicated.
5. Verify the operation of lockout or interlock systems.
6. Verify the operation of valve and damper actuators.
7. Verify that controlled devices are properly installed and connected to correct controller.
8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.

B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.
3.12 TOLERANCES

A. Set HVAC system's airflow rates and water flow rates within the following tolerances:
 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 2. Air Outlets and Inlets: Plus or minus 10 percent.

B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.13 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 2. Include a list of instruments used for procedures, along with proof of calibration.
 3. Certify validity and accuracy of field data.

B. Final Report Contents: In addition to certified field-report data, include the following:
 1. Fan curves.
 2. Manufacturers' test data.
 3. Field test reports prepared by system and equipment installers.
 4. Other information relative to equipment performance; do not include Shop Drawings and Product Data.

C. General Report Data: In addition to form titles and entries, include the following data:
 1. Title page.
 2. Name and address of the TAB specialist.
 3. Project name.
 4. Project location.
 5. Architect's name and address.
 6. Engineer's name and address.
 7. Contractor's name and address.
 9. Signature of TAB supervisor who certifies the report.
 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
 12. Nomenclature sheets for each item of equipment.
 13. Data for motorized zone dampers, including manufacturer's name, type, size, and fittings.
 14. Notes to explain why certain final data in the body of reports vary from indicated values.
 15. Test conditions for fans performance forms including the following:
a. Settings for outdoor-, return-, and exhaust-air dampers.
b. Conditions of filters.
c. Cooling coil, wet- and dry-bulb conditions.
d. Fan drive settings including settings and percentage of maximum pitch diameter.
e. Settings for supply-air, static-pressure controller.
f. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:

1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Duct, outlet, and inlet sizes.
3. Motorized zone dampers.
5. Position of balancing devices.

E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches, and bore.
 i. Center-to-center dimensions of sheave and amount of adjustments in inches.
 j. Number, make, and size of belts.
 k. Number, type, and size of filters.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Cooling-coil static-pressure differential in inches wg.
 g. Heating-coil static-pressure differential in inches wg.
 h. Outdoor airflow in cfm.
 i. Return airflow in cfm.
j. Outdoor-air damper position.
k. Return-air damper position.

F. Apparatus-Coil Test Reports:

1. Coil Data:
 a. System identification.
 b. Location.
 c. Coil type.
 d. Number of rows.
 e. Fin spacing in fins per inch o.c.
 f. Make and model number.
 g. Face area in sq. ft.
 h. Tube and fin materials.
 i. Circuiting arrangement.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Average face velocity in fpm.
 c. Air pressure drop in inches wg.
 d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
 e. Return-air, wet- and dry-bulb temperatures in deg F.
 f. Entering-air, wet- and dry-bulb temperatures in deg F.
 g. Leaving-air, wet- and dry-bulb temperatures in deg F.
 h. Refrigerant expansion valve and refrigerant types.
 i. Refrigerant suction pressure in psig.
 j. Refrigerant suction temperature in deg F.

G. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches, and bore.
 h. Center-to-center dimensions of sheave and amount of adjustments in inches.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 g. Number, make, and size of belts.
3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Suction static pressure in inches wg.

H. Round, Flat-Oval and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

1. Report Data:
 a. System and air-handling-unit number.
 b. Location and zone.
 c. Traverse air temperature in deg F.
 d. Duct static pressure in inches wg.
 e. Duct size in inches.
 f. Duct area in sq. ft.
 g. Indicated airflow rate in cfm.
 h. Indicated velocity in fpm.
 i. Actual airflow rate in cfm.
 j. Actual average velocity in fpm.
 k. Barometric pressure in psig.

I. Air-Terminal-Device Reports:

1. Unit Data:
 a. System and air-handling unit identification.
 b. Location and zone.
 c. Apparatus used for test.
 d. Area served.
 e. Make.
 f. Number from system diagram.
 g. Type and model number.
 h. Size.
 i. Effective area in sq. ft.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Air velocity in fpm.
 c. Preliminary airflow rate as needed in cfm.
 d. Preliminary velocity as needed in fpm.
 e. Final airflow rate in cfm.
 f. Final velocity in fpm.
 g. Space temperature in deg F.

J. Instrument Calibration Reports:

1. Report Data:
 a. Instrument type and make.
b. Serial number.
c. Application.
d. Dates of use.
e. Dates of calibration.

3.14 VERIFICATION OF TAB REPORT

A. The TAB specialist's test and balance engineer shall conduct the inspection in the presence of commissioning authority.

B. Commissioning authority shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.

C. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

D. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

E. If TAB work fails, proceed as follows:
 1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 2. If the second final inspection also fails, Owner may contract the services of another TAB specialist to complete TAB work according to the Contract Documents and deduct the cost of the services from the original TAB specialist's final payment.
 3. If the second verification also fails, Owner may contact AABC Headquarters regarding the AABC National Performance Guaranty.

F. Prepare test and inspection reports.

3.15 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 230593
SECTION 230713 - DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes insulating the following duct services:
 1. Indoor, concealed supply and outdoor air.
 2. Indoor, exposed supply and outdoor air.
 3. Indoor, concealed return located in unconditioned space.
 4. Indoor, exposed return located in unconditioned space.
 5. Outdoor, concealed supply and return.
 6. Outdoor, exposed supply and return.

B. Related Sections:
 1. Section 230716 "HVAC Equipment Insulation."
 2. Section 230719 "HVAC Piping Insulation."
 3. Section 233113 "Metal Ducts" for duct liners.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).

B. LEED Submittals:
 1. Product Data for Credit IEQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content.
 2. Product Data for Credit IEQ 4.2: For coatings and paints, documentation including printed statement of VOC content.
 3. Laboratory Test Reports for Credit IEQ 4: For adhesives and sealants, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
3. Detail application of field-applied jackets.
4. Detail application at linkages of control devices.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.
1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type II for sheet materials.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. K-Flex USA; Insul-Sheet, K-Flex Gray Duct Liner, and K-FLEX LS.

G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type II with factory-applied vinyl jacket, Type III with factory-applied FSK jacket, or Type III with factory-applied FSP jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; SoftTouch Duct Wrap.
 b. Johns Manville; Microlite.
 c. Knauf Insulation; Friendly Feel Duct Wrap.
 d. Owens Corning; SOFTR All-Service Duct Wrap.
H. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied ASJ or with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; Commercial Board.
 b. Johns Manville; 800 Series Spin-Glas.
 c. Knauf Insulation; Insulation Board.
 d. Owens Corning; Fiberglas 700 Series.

2.2 FIRE-RATED INSULATION SYSTEMS

A. Fire-Rated Board: Structural-grade, press-molded, xonolite calcium silicate, fireproofing board suitable for operating temperatures up to 1700 deg F. Comply with ASTM C656, Type II, Grade 6. Tested and certified to provide a 2-hour fire rating by an NRTL acceptable to authorities having jurisdiction.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Johns Manville; a Berkshire Hathaway company.

B. Fire-Rated Blanket: High-temperature, flexible, blanket insulation with FSK jacket that is tested and certified to provide a 2-hour fire rating by an NRTL acceptable to authorities having jurisdiction.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. 3M.
 b. Johns Manville; a Berkshire Hathaway company.
 c. Nelson Firestop; a brand of Emerson Industrial Automation.
 d. Thermal Ceramics.
 e. Unifrax Corporation.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aeroseal.
 b. Armacell LLC; Armaflex 520 Adhesive.
2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.

2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Mon-Eco Industries, Inc.; 22-25.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

E. PVC Jacket Adhesive: Compatible with PVC jacket.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Dow Corning Corporation; 739, Dow Silicone.
d. Speedline Corporation; Polyco VP Adhesive.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 MASTICS AND COATINGS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Coatings: Water based; suitable for indoor or outdoor use on below ambient services.

1. Products: Subject to compliance with requirements, provide one of the following:

 b. Childers CP-38.
 c. Vimasco Corporation; 749.

2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.

3. Service Temperature Range: Minus 20 to plus 180 deg F.

4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Vapor-Barrier Coatings: Solvent based; suitable for outdoor use on below ambient services.

1. Products: Subject to compliance with requirements, provide one of the following:

 a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Encacel X/V.
 b. Eagle Bridges - Marathon Industries; 570.

2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.

3. Service Temperature Range: Minus 50 to plus 220 deg F.

4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.

D. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.

1. Products: Subject to compliance with requirements, provide one of the following:
b. Eagle Bridges - Marathon Industries; 550.
e. Vimasco Corporation; WC-1/WC-5.

2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: 60 percent by volume and 66 percent by weight.

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.

1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Products: Subject to compliance with requirements, provide one of the following:

 c. Vimasco Corporation; 713 and 714.

3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct insulation.
4. Service Temperature Range: 0 to plus 180 deg F.

2.6 SEALANTS

A. FSK and Metal Jacket Flashing Sealants:

1. Products: Subject to compliance with requirements, provide one of the following:

 b. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Color: Aluminum or gray.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealants shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants:
 1. Products: Subject to compliance with requirements, provide the following:
 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 3. Fire- and water-resistant, flexible, elastomeric sealant.
 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.7 FACTORY-APPLIED JACKETS
 A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.8 FIELD-APPLIED CLOTHS
 A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd.
 1. Products: Subject to compliance with requirements, provide the following:

2.9 FIELD-APPLIED JACKETS
 A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Johns Manville; Zeston.
 c. Proto Corporation; LoSmoke.
 d. Speedline Corporation; SmokeSafe.

2. Adhesive: As recommended by jacket material manufacturer.

C. Metal Jacket:

1. Products: Subject to compliance with requirements, provide one of the following:
 a. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 b. RPR Products, Inc.; Insul-Mate.

 a. Sheet and roll stock ready for shop or field sizing.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 c. Moisture Barrier for Indoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 d. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.

2.10 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 428 AWF ASJ.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 c. Compac Corporation; 104 and 105.
 d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.

2. Width: 3 inches.

3. Thickness: 11.5 mils.

5. Elongation: 2 percent.

6. Tensile Strength: 40 lb/inch in width.

7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 491 AWF FSK.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 c. Compac Corporation; 110 and 111.
 d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.

2. Width: 3 inches.
3. Thickness: 6.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 370 White PVC tape.
 b. Compac Corporation; 130.
 c. Venture Tape; 1506 CW NS.

2. Width: 2 inches.
3. Thickness: 6 mils.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch in width.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 488 AWF.
 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 c. Compac Corporation; 120.
 d. Venture Tape; 3520 CW.

2. Width: 2 inches.
3. Thickness: 3.7 mils.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lbf/inch in width.

2.11 SECUREMENTS

A. Bands:
1. Products: Subject to compliance with requirements, provide one of the following:
 a. ITW Insulation Systems; Gerrard Strapping and Seals.
 b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.

2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 3/4 inch wide with wing seal or closed seal.

3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing seal or closed seal.

B. Insulation Pins and Hangers:

1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated.
 a. Products: Subject to compliance with requirements, provide one of the following:
 1) AGM Industries, Inc.; CWP-1.
 2) GEMCO; CD.
 3) Midwest Fasteners, Inc.; CD.
 4) Nelson Stud Welding; TPA, TPC, and TPS.

2. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. Products: Subject to compliance with requirements, provide one of the following:
 1) AGM Industries, Inc.; Tactoo Perforated Base Insul-Hangers.
 2) GEMCO; Perforated Base.
 3) Midwest Fasteners, Inc.; Spindle.
 b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 c. Spindle: Copper- or zinc-coated, low-carbon steel or Stainless steel, fully annealed, 0.106-inch- diameter shank, length to suit depth of insulation indicated.
 d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

3. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick, galvanized-steel or stainless-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 a. Products: Subject to compliance with requirements, provide one of the following:
 1) AGM Industries, Inc.; RC-150.
2) GEMCO; R-150.
3) Midwest Fasteners, Inc.; WA-150.
4) Nelson Stud Welding; Speed Clips.

b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.

D. Wire: 0.062-inch soft-annealed, stainless steel.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:

2.12 CORNER ANGLES

A. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.

B. Stainless-Steel Corner Angles: 0.024 inch thick, minimum 1 by 1 inch, stainless steel according to ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 1. Comply with requirements in Section 078413 "Penetration Firestopping."

E. Insulation Installation at Floor Penetrations:
 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."
3.5 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 50 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.

1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where FSK jackets are indicated, install as follows:

1. Draw jacket material smooth and tight.
2. Install lap or joint strips with same material as jacket.
3. Secure jacket to insulation with manufacturer's recommended adhesive.
4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.8 FIRE-RATED INSULATION SYSTEM INSTALLATION

A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

B. Insulate duct access panels and doors to achieve same fire rating as duct.

C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Section 078413 "Penetration Firestopping."

3.9 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.10 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:

1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.11 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:

1. Indoor, concealed supply and outdoor air.
2. Indoor, exposed supply and outdoor air.
3. Indoor, concealed return located in unconditioned space.
4. Indoor, exposed return located in unconditioned space.
5. Outdoor, concealed supply and return.
6. Outdoor, exposed supply and return.

B. Items Not Insulated:

1. Fibrous-glass ducts.
2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
3. Factory-insulated flexible ducts.
5. Flexible connectors.
7. Factory-insulated access panels and doors.
3.12 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed, round and flat-oval, supply-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

B. Concealed, round and flat-oval, return-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

C. Concealed, round and flat-oval, outdoor-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

D. Concealed, round and flat-oval, exhaust-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

E. Concealed, rectangular, supply-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

F. Concealed, rectangular, return-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

G. Concealed, rectangular, outdoor-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

H. Exposed, round and flat-oval, supply-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

I. Exposed, round and flat-oval, return-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

J. Exposed, round and flat-oval, outdoor-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.
K. Exposed, round and flat-oval, exhaust-air duct insulation shall be [one of] the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

L. Exposed, rectangular, supply-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

M. Exposed, rectangular, return-air duct insulation shall be one of the following:
 1. Mineral-Fiber Board: 2 inches thick and 2-lb/cu. ft. nominal density.

N. Exposed, rectangular, outdoor-air duct insulation shall be one of the following:
 1. Mineral-Fiber Board: 2 inches thick and 2-lb/cu. ft. nominal density.

O. Exposed, rectangular, exhaust-air duct insulation shall be one of the following:
 1. Mineral-Fiber Board: 2 inches thick and 2-lb/cu. ft. nominal density.

P. Exposed, supply-air plenum insulation shall be one of the following:
 1. Mineral-Fiber Board: 2 inches thick and 2-lb/cu. ft. nominal density.

Q. Exposed, return-air plenum insulation shall be one of the following:
 1. Mineral-Fiber Board: 2 inches thick and 2-lb/cu. ft. nominal density.

R. Exposed, outdoor-air plenum insulation shall be one of the following:
 1. Mineral-Fiber Board: 2 inches thick and 2-lb/cu. ft. nominal density.

S. Exposed, exhaust-air plenum insulation shall be one of the following:
 1. Mineral-Fiber Board: 2 inches thick and 2-lb/cu. ft. nominal density.

3.13 ABOVEGROUND, OUTDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Insulation materials and thicknesses are identified below. If more than one material is listed for a duct system, selection from materials listed is Contractor's option.

B. Concealed, round and flat-oval, supply-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 3 inches and 3-lb/cu. ft. nominal density.
 2. Mineral-Fiber Board: 3 inches thick and 3-lb/cu. ft. nominal density.

C. Concealed, round and flat-oval, return-air duct insulation shall be one of the following:

D. Concealed, round and flat-oval, outdoor-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 3 inches and 3-lb/cu. ft. nominal density.
2. Mineral-Fiber Board: 3 inches thick and 3-lb/cu. ft. nominal density.

E. Concealed, rectangular, supply-air duct insulation shall be one of the following:
1. Mineral-Fiber Blanket: 3 inches and 3-lb/cu. ft. nominal density.
2. Mineral-Fiber Board: 3 inches thick and 3-lb/cu. ft. nominal density.

F. Concealed, rectangular, return-air duct insulation shall be one of the following:

G. Concealed, supply-air plenum insulation shall be the following:
1. Mineral-Fiber Board: 3 inches thick and 3-lb/cu. ft. nominal density.

H. Concealed, return-air plenum insulation shall be the following:
1. Mineral-Fiber Board: 2 inches thick and 3-lb/cu. ft. nominal density.

I. Exposed, round and flat-oval, supply-air duct insulation shall be one of the following:
1. Mineral-Fiber Board: 3 inches thick and 3-lb/cu. ft. nominal density.

J. Exposed, round and flat-oval, return-air duct insulation shall be one of the following:
1. Mineral-Fiber Board: 2 inches thick and 3-lb/cu. ft. nominal density.

K. Exposed, rectangular, supply-air duct insulation shall be the following:
1. Mineral-Fiber Board: 3 inches thick and 3-lb/cu. ft. nominal density.

L. Exposed, rectangular, return-air duct insulation shall be the following:
1. Mineral-Fiber Board: 2 inches thick and 3-lb/cu. ft. nominal density.

M. Exposed, supply-air plenum insulation shall be the following:
1. Mineral-Fiber Board: 3 inches thick and 3-lb/cu. ft. nominal density.

N. Exposed, return-air plenum insulation shall be the following:
1. Mineral-Fiber Board: 2 inches thick and 3-lb/cu. ft. nominal density.

3.14 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.
C. Ducts and Plenums, Concealed:
 1. None.

D. Ducts and Plenums, Exposed:
 1. None.
 2. PVC: 30 mils thick.
 3. Aluminum, Smooth: 0.016 inch thick.
 4. Stainless Steel, Type 304 or Type 316, Smooth 2B Finish: 0.010 inch thick.

3.15 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Ducts and Plenums, Concealed:
 1. Aluminum, Smooth: 0.024 inch thick.
 2. Stainless Steel, Type 304 or Type 316, Smooth 2B Finish: 0.016 inch thick.

D. Ducts and Plenums, Exposed, up to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches:
 1. Aluminum, Smooth: 0.024 inch thick.
 2. Stainless Steel, Type 304 or Type 316, Smooth 2B Finish: 0.016 inch thick.

E. Ducts and Plenums, Exposed, Larger Than 48 Inches in Diameter or with Flat Surfaces Larger Than 72 Inches:
 1. Aluminum, Smooth with: 0.032 inch thick.
 2. Stainless Steel, Type 304 or Type 316, Smooth, with: 0.024 inch thick.

END OF SECTION 230713
SECTION 230923 - DIRECT DIGITAL CONTROL (DDC) SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Refer to Specification Section 230800 Mechanical System Cx Requirements for Mechanical Systems Commissioning.

1.2 SUMMARY

A. Section Includes:

1. DDC system for monitoring and controlling of HVAC systems.
2. Delivery of selected control devices to equipment and systems manufacturers for factory installation and to HVAC systems installers for field installation.

B. Related Documents:

1. All work of this Division shall be coordinated and provided by the Building Management System (BMS) Contractor.
2. The work of this Division shall be scheduled, coordinated, and interfaced with the associated work of other trades. Reference the Division 15 Sections for details.
3. The work of this Division shall be as required by the Specifications, Point Schedules and Drawings.
4. If the BMS Contractor believes there are conflicts or missing information in the project documents, the Contractor shall promptly request clarification and instruction from the design team.

C. Related Sections Include the following:

1. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 DEFINITIONS

A. Algorithm: A logical procedure for solving a recurrent mathematical problem. A prescribed set of well-defined rules or processes for solving a problem in a finite number of steps.

B. Analog: A continuously varying signal value, such as current, flow, pressure, or temperature.

C. BACnet Specific Definitions:
1. **BACnet**: Building Automation Control Network Protocol, ASHRAE 135. A communications protocol allowing devices to communicate data over and services over a network.

2. **BACnet Interoperability Building Blocks (BIBBs)**: BIBB defines a small portion of BACnet functionality that is needed to perform a particular task. BIBBs are combined to build the BACnet functional requirements for a device.

3. **BACnet/IP**: Defines and allows using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP subnetworks that share the same BACnet network number.

4. **BACnet Testing Laboratories (BTL)**: Organization responsible for testing products for compliance with ASHRAE 135, operated under direction of BACnet International.

5. **PICS (Protocol Implementation Conformance Statement)**: Written document that identifies the particular options specified by BACnet that are implemented in a device.

D. **Binary**: Two-state signal where a high signal level represents "ON" or "OPEN" condition and a low signal level represents "OFF" or "CLOSED" condition. "Digital" is sometimes used interchangeably with "Binary" to indicate a two-state signal.

E. **Building Management System (BMS)**: The total integrated system of fully operational and functional elements, including equipment, software, programming, and associated materials, to be provided by this Division BMS Contractor and to be interfaced to the associated work of other related trades.

F. **Controller**: Generic term for any standalone, microprocessor-based, digital controller residing on a network, used for local or global control. Three types of controllers are indicated: Network Controller, Programmable Application Controller, and Application-Specific Controller.

G. **Control System Integrator**: An entity that assists in expansion of existing enterprise system and support of additional operator interfaces to I/O being added to existing enterprise system.

H. **COV**: Changes of value.

I. **DDC System Provider**: Authorized representative of, and trained by, DDC system manufacturer and responsible for execution of DDC system Work indicated.

J. **Distributed Control**: Processing of system data is decentralized, and control decisions are made at subsystem level. System operational programs and information are provided to remote subsystems and status is reported back. On loss of communication, subsystems shall be capable of operating in a standalone mode using the last best available data.

K. **DOCSIS**: Data-Over Cable Service Interface Specifications.

L. **E/P**: Voltage to pneumatic.

M. **Gateway**: Bidirectional protocol translator that connects control systems that use different communication protocols.

N. **HLC**: Heavy load conditions.
O. I/O: System through which information is received and transmitted. I/O refers to analog input (AI), binary input (BI), analog output (AO) and binary output (BO). Analog signals are continuous and represent control influences such as flow, level, moisture, pressure, and temperature. Binary signals convert electronic signals to digital pulses (values) and generally represent two-position operating and alarm status. "Digital," (DI and (DO), is sometimes used interchangeably with "Binary," (BI) and (BO), respectively.

P. I/P: Current to pneumatic.

Q. LAN: Local area network.

R. LNS: LonWorks Network Services.

S. LON Specific Definitions:

1. FTT-10: Echelon Transmitter-Free Topology Transceiver.
2. LonMark: Association comprising suppliers and installers of LonTalk products. Association provides guidelines for implementing LonTalk protocol to ensure interoperability through a standard or consistent implementation.
3. LonTalk: An open standard protocol developed by the Echelon Corporation that uses a "Neuron Chip" for communication. LonTalk is a register trademark of Echelon.
4. LonWorks: Network technology developed by Echelon.
5. Node: Device that communicates using CEA-709.1-C protocol and that is connected to a CEA-709.1-C network.
6. Node Address: The logical address of a node on the network, consisting of a Domain number, Subnet number, and Node number. "Node number" portion of an address is a number assigned to device during installation, is unique within a subnet, and is not a factory-set unique Node ID.
7. Node ID: A unique 48-bit identifier assigned at factory to each CEA-709.1-C device. Sometimes called a "Neuron ID."
8. Program ID: An identifier (number) stored in a device (usually EEPROM) that identifies node manufacturer, functionality of device (application and sequence), transceiver used, and intended device usage.
10. Standard Network Variable Type (SNVT): Pronounced "snivet." A standard format type maintained by LonMark used to define data information transmitted and received by individual nodes. "SNVT" is used in two ways. It is an acronym for "Standard Network Variable Type" and is often used to indicate a network variable itself (i.e., it can mean "a network variable of a standard network variable type").
11. Subnet: Consists of a logical grouping of up to 127 nodes, where logical grouping is defined by node addressing. Each subnet is assigned a number, which is unique within a Domain. See "Node Address."
12. TP/FT-10: Free Topology Twisted Pair network defined by CEA-709.3 and is most common media type for a CEA-709.1-C control network.
13. TP/XF-1250: High-speed, 1.25-Mbps, twisted-pair, doubly terminated bus network defined by "LonMark Interoperability Guidelines" typically used only to connect multiple TP/FT-10 networks.
14. User-Defined Configuration Property Type (UCPT): Pronounced "U-Keep-It." A Configuration Property format type that is defined by device manufacturer.
15. User-Defined Network Variable Type (UNVT): Network variable format defined by device manufacturer. UNVTs create non-standard communications that other vendors' devices may not correctly interpret and may negatively impact system operation. UNVTs are not allowed.

T. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

U. Mobile Device: A data-enabled phone or tablet computer capable of connecting to a cellular data network and running a native control application or accessing a web interface.

V. Modbus TCP/IP: An open protocol for exchange of process data. Modbus protocol is another form of open protocol communications standard. Modbus consists of a messaging structure designed to establish master-slave, client-server communications between a wide range of intelligent devices. It supports traditional serial and Ethernet protocols. It is a truly open standard and is one of the most widely used protocols in the industrial manufacturing environment. There is no charge for using the protocol nor are there licensing fees.

W. MS/TP: Master-slave/token-passing, IEE 8802-3. Datalink protocol LAN option that uses twisted-pair wire for low-speed communication.

X. MTBF: Mean time between failures.

Y. Network Controller: Digital controller, which supports a family of programmable application controllers and application-specific controllers, that communicates on peer-to-peer network for transmission of global data.

Z. Network Repeater: Device that receives data packet from one network and rebroadcasts it to another network. No routing information is added to protocol.

AA. Peer to Peer: Networking architecture that treats all network stations as equal partners.

BB. POT: Portable operator's terminal.

CC. PUE: Performance usage effectiveness.

DD. RAM: Random access memory.

EE. RF: Radio frequency.

FF. Router: Device connecting two or more networks at network layer.

GG. Server: Computer used to maintain system configuration, historical and programming database.

HH. TCP/IP: Transport control protocol/Internet protocol.

II. UPS: Uninterruptible power supply.

JJ. USB: Universal Serial Bus.
KK. User Datagram Protocol (UDP): This protocol assumes that the IP is used as the underlying protocol.

LL. VAV: Variable air volume.

MM. Niagara/Tridium prime building controller: This controller contains all of the central programming for the HVAC systems. Each prime building controller connects directly to the City’s network. Larger buildings communicate through the prime building controller to multiple sub-controllers usually via BACnet protocol. Large building systems regularly push data to Web Supervisors for long term storage of data. Each system prime controller addresses a specific IP.

NN. Niagara/Tridium sub-controller: This controller interacts directly with the equipment, the prime building controller, and other sub-controllers via the BACnet.

OO. Niagara Web Supervisor: These are networked servers that act as:
 1. Long term storage of data for large buildings. They may also provide this for smaller buildings (or alternatively a virtual server can be used).
 2. A central push location for passwords and user configurations thus allowing one building operator to access multiple buildings with the same login and different responsibilities.

PP. Niagara 4 Workbench: This is a software program that allows both regular and power users to access systems, reprogram controllers, adjust usernames and passwords on the Niagara framework and do various other administrative uses.

QQ. Systems Integrator: Contracted vendor who will assist and oversee the integration of the controls and the control system specific protocols. Vendor will often liaise with the owner and the owner’s Office of Innovation and Technology.

RR. WLED: White light emitting diode.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site or online.

1.5 ACTION SUBMITTALS

A. Multiple Submissions:
 1. If multiple submissions are required to execute work within schedule, first submit a coordinated schedule clearly defining intent of multiple submissions. Include a proposed date of each submission with a detailed description of submittal content to be included in each submission.
 2. Clearly identify each submittal requirement indicated and in which submission the information will be provided.
 3. Include an updated schedule in each subsequent submission with changes highlighted to easily track the changes made to previous submitted schedule.
B. Product Data: For each type of product include the following:

1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
2. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.
4. Installation, operation and maintenance instructions including factors effecting performance.
5. Bill of materials of indicating quantity, manufacturer, and extended model number for each unique product.
 a. Servers.
 b. Routers.
 c. Protocol analyzers.
 d. DDC controllers.
 e. Enclosures.
 f. Electrical power devices.
 g. UPS units.
 h. Accessories.
 i. Instruments.
 j. Control dampers and actuators.
 k. Control valves and actuators.

6. When manufacturer's product datasheets apply to a product series rather than a specific product model, clearly indicate and highlight only applicable information.
7. Each submitted piece of product literature shall clearly cross reference specification and drawings that submittal is to cover.

C. Software Submittal:

1. Cross-referenced listing of software to be loaded on each operator workstation, server, and DDC controller.
2. Description and technical data of all software provided and cross-referenced to products in which software will be installed.
3. Operating system software, operator interface and programming software, color graphic software, DDC controller software, maintenance management software, and third-party software.
4. Include a flow diagram and an outline of each subroutine that indicates each program variable name and units of measure.
5. Listing and description of each engineering equation used with reference source.
6. Listing and description of each constant used in engineering equations and a reference source to prove origin of each constant.
7. Description of operator interface to alphanumeric and graphic programming.
8. Description of each network communication protocol.
9. Description of system database, including all data included in database, database capacity and limitations to expand database.

10. Description of each application program and device drivers to be generated, including specific information on data acquisition and control strategies showing their relationship to system timing, speed, processing burden and system throughout.

11. Controlled Systems: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.

D. Sustainable Design Submittals:

1. Product Data: For adhesives, indicating VOC content.

2. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials.

E. Shop Drawings:

1. General Requirements:
 a. Include cover drawing with Project name, location, Owner, Architect, Contractor and issue date with each Shop Drawings submission.
 b. Include a drawing index sheet listing each drawing number and title that matches information in each title block.
 c. Prepare Drawings using AutoCAD.

2. Include plans, elevations, sections, and mounting details where applicable.

3. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

4. Detail means of vibration isolation and show attachments to rotating equipment.

5. Plan Drawings indicating the following:
 a. Screened backgrounds of walls, structural grid lines, HVAC equipment, ductwork and piping.
 b. Room names and numbers with coordinated placement to avoid interference with control products indicated.
 c. Each desktop workstation, server, gateway, router, DDC controller, control panel instrument connecting to DDC controller, and damper and valve connecting to DDC controller, if included in Project.
 d. Exact placement of products in rooms, ducts, and piping to reflect proposed installed condition.
 e. Network communication cable and raceway routing.
 f. Information, drawn to scale.
 g. Proposed routing of wiring, cabling, conduit, and tubing coordinated with building services for review before installation.

6. Schematic drawings for each controlled HVAC system indicating the following:
a. I/O points labeled with point names shown. Indicate instrument range, normal operating set points, and alarm set points. Indicate fail position of each damper and valve, if included in Project.
b. I/O listed in table format showing point name, type of device, manufacturer, model number, and cross-reference to product data sheet number.
c. A graphic showing location of control I/O in proper relationship to HVAC system.
d. Wiring diagram with each I/O point having a unique identification and indicating labels for all wiring terminals.
e. Unique identification of each I/O that shall be consistently used between different drawings showing same point.
f. Elementary wiring diagrams of controls for HVAC equipment motor circuits including interlocks, switches, relays and interface to DDC controllers.
g. Narrative sequence of operation.
h. Graphic sequence of operation, showing all inputs and output logical blocks.

7. Control panel drawings indicating the following:
 a. Panel dimensions, materials, size, and location of field cable, raceways, and tubing connections.
 b. Interior subpanel layout, drawn to scale and showing all internal components, cabling and wiring raceways, nameplates and allocated spare space.
 c. Front, rear, and side elevations and nameplate legend.
 d. Unique drawing for each panel.

8. DDC system network riser diagram indicating the following:
 a. Each device connected to network with unique identification for each.
 b. Interconnection of each different network in DDC system.
 c. For each network, indicate communication protocol, speed and physical means of interconnecting network devices, such as copper cable type, or optical fiber cable type. Indicate raceway type and size for each.
 d. Each network port for connection of an operator workstation or other type of operator interface with unique identification for each.

9. DDC system electrical power riser diagram indicating the following:
 a. Each point of connection to field power with requirements (volts/phase/hertz/amperes/connection type) listed for each.
 b. Each control power supply including, as applicable, transformers, power-line conditioners, transient voltage suppression and high filter noise units, DC power supplies, and UPS units with unique identification for each.
 c. Each product requiring power with requirements (volts/phase/hertz/amperes/connection type) listed for each.
 d. Power wiring type and size, race type, and size for each.

10. Monitoring and control signal diagrams indicating the following:
 a. Control signal cable and wiring between controllers and I/O.
 b. Point-to-point schematic wiring diagrams for each product.
11. Color graphics indicating the following:
 a. Itemized list of color graphic displays to be provided.
 b. For each display screen to be provided, a true color copy showing layout of pictures, graphics and data displayed.
 c. Intended operator access between related hierarchical display screens.

F. During the design phase of a project, be sure to provide shop drawings to individuals experienced with the installation and startup of equipment related to this type of integration.
 1. Three copies of shop drawings of the entire BAS shall be submitted and shall consist of a complete list of equipment and materials, including manufacturers catalog data sheets and installation instructions.
 2. Complete system design information including:
 a. Data entry forms for initial parameters.
 b. Valve, and damper schedules showing:
 1) Size
 2) Configuration
 3) Capacity
 4) Location
 c. Wiring and piping interconnection diagrams, including panel and device power and sources.
 d. Equipment lists (bill of materials) of all proposed devices and equipment.
 e. Software design data including:
 1) Flow chart of each DDC program showing interrelationship between inputs, PID functions, all other functions, outputs, etc.
 2) Sequence of operation relating to all flow chart functions
 f. Control sequences for each major building-level system
 g. DDC installation, block diagrams, and wiring diagrams for each piece of equipment
 h. DDC panel physical layout and schematics
 i. The BAS contractor shall submit an architecture layout that depicts devices from the JACE to NAC down to the device level

G. Sequence of Operations:
 1. A complete written Sequence of Operation shall also be included with the submittal package. The BAS Contractor shall coordinate data from other contractors supplying products and systems, as part of their package and shall provide catalog data sheets, wiring diagrams and point lists to the owner for proper coordination of work.

H. Product Data:
 1. Complete list of product data including:
 a. Data sheets of all products
 b. Valve, damper, and well and tap schedules showing size, configuration, capacity, and location of all equipment

I. Project Information:
 1. Certification of installer qualifications

J. System Graphic Displays:
1. The BAS Contractor shall include web browser graphical displays through which an operator can perform real-time access and control functions. The graphical displays shall consist of all major building-level systems (air handler units, VAV boxes, chillers, boilers etc.) graphic displays, alarm displays, scheduling displays, and trending displays.

2. BAS Contractors shall utilize the City of Philadelphia graphic templates when available. In absence of a City graphic template, owner shall provide an example of an acceptable graphic template.

3. Submittal shall include a copy of each of the graphics developed for the Graphic User Interface including a flowchart (site map) indicating how the graphics are to be linked to one another for system navigation. The graphics are to be 90% complete at this stage with the only remaining changes to be based on review comments from the A/E design team and owner. Submittal shall also include a copy of the expected main dashboard viewlets being provided for owner configuration. Viewlets should include:
 a. Global Scheduling for Site
 b. Alarms
 c. Trending and Reports

K. OIT Coordination Sheet
 1. BAS contractor shall coordinate the completion of the OIT Data Sheet (Appendix A) at the start of and throughout the delivery of the project.

L. Upon completion of the work, provide a complete set of ‘as-built’ drawings and application software on compact disk. Drawings shall be provided as AutoCAD™ or Visio™ compatible files.

M. Contract Closeout Information:
 1. Operating and maintenance manuals including recommended set points and schedules and holiday scheduling instructions.
 2. Owner instruction report.
 3. Certification that Owner Training has been provided by RBOp installer.
 4. As Built Instrumentation and Control Diagrams.
 5. Plan As Builts at 1/8 inch scale showing:
 a. Upon completion of the work, provide a complete set of ‘as-built’ drawings and application software on compact disk. Drawings shall be provided as AutoCAD™ or Visio™ compatible files.
 b. Eight copies of the ‘as-built’ drawings shall be provided in addition to the documents on compact disk.
 c. Division 23, 25 and 26 contractors shall provide as-builts for their portions of work.
 d. The RBOp Contractor shall be responsible for as-builts pertaining to overall RBOp architecture and network diagrams. All as built drawings shall also be installed into the RBOp server in a dedicated directory.
 e. Communication cable circuiting drawing with DDC panels and communication devices labeled.
 f. Power wiring circuiting drawing showing 120-volt circuit source and low voltage transformer locations, identifications, and circuit roués to each controlled device per transformer for the DDC system.

N. System Description:
1. Full description of DDC system architecture, network configuration, operator interfaces and peripherals, servers, controller types and applications, gateways, routers and other network devices, and power supplies.

2. Complete listing and description of each report, log and trend for format and timing and events which initiate generation.

3. System and product operation under each potential failure condition including, but not limited to, the following:
 a. Loss of power.
 b. Loss of network communication signal.
 c. Loss of controller signals to inputs and outpoints.
 d. Operator workstation failure.
 e. Server failure.
 f. Gateway failure.
 g. Network failure.
 h. Controller failure.
 i. Instrument failure.
 j. Control damper and valve actuator failure.

4. Complete bibliography of documentation and media to be delivered to Owner.

5. Description of testing plans and procedures.

6. Description of Owner training.

O. Delegated-Design Submittal: For DDC system products and installation indicated as being delegated.

1. Supporting documentation showing DDC system design complies with performance requirements indicated, including calculations and other documentation necessary to prove compliance.

2. Schedule and design calculations for control dampers and actuators.
 a. Flow at Project design and minimum flow conditions.
 b. Face velocity at Project design and minimum airflow conditions.
 c. Pressure drop across damper at Project design and minimum airflow conditions.
 d. AMCA 500-D damper installation arrangement used to calculate and schedule pressure drop, as applicable to installation.
 e. Maximum close-off pressure.
 f. Leakage airflow at maximum system pressure differential (fan close-off pressure).
 g. Torque required at worst case condition for sizing actuator.
 h. Actuator selection indicating torque provided.
 i. Actuator signal to control damper (on, close or modulate).
 j. Actuator position on loss of power.
 k. Actuator position on loss of control signal.

3. Schedule and design calculations for control valves and actuators.
 a. Flow at Project design and minimum flow conditions.
 b. Pressure-differential drop across valve at Project design flow condition.
 c. Maximum system pressure-differential drop (pump close-off pressure) across valve at Project minimum flow condition.
d. Design and minimum control valve coefficient with corresponding valve position.
e. Maximum close-off pressure.
f. Leakage flow at maximum system pressure differential.
g. Torque required at worst case condition for sizing actuator.
h. Actuator selection indicating torque provided.
i. Actuator signal to control damper (on, close or modulate).
j. Actuator position on loss of power.
k. Actuator position on loss of control signal.

4. Schedule and design calculations for selecting flow instruments.
 a. Instrument flow range.
 b. Project design and minimum flow conditions with corresponding accuracy, control
 signal to transmitter and output signal for remote control.
 c. Extreme points of extended flow range with corresponding accuracy, control signal
 to transmitter and output signal for remote control.
 d. Pressure-differential loss across instrument at Project design flow conditions.
 e. Where flow sensors are mated with pressure transmitters, provide information for
 each instrument separately and as an operating pair.

1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings:

1. Plan drawings and corresponding product installation details, drawn to scale, on which
 the following items are shown and coordinated with each other, using input from
 installers of the items involved:

 a. Product installation location shown in relationship to room, duct, pipe and
 equipment.
 b. Structural members to which products will be attached.
 c. Wall-mounted instruments located in finished space showing relationship to light
 switches, fire-alarm devices and other installed devices.
 d. Size and location of wall access panels for products installed behind walls and
 requiring access.

2. Reflected ceiling plans and other details, drawn to scale, on which the following items are
 shown and coordinated with each other, using input from installers of the items involved:

 a. Ceiling components.
 b. Size and location of access panels for products installed above inaccessible ceiling
 assemblies and requiring access.
 c. Items penetrating finished ceiling including the following:

 1) Lighting fixtures.
 2) Air outlets and inlets.
 3) Speakers.
 4) Sprinklers.
 5) Access panels.
6) Motion sensors.
7) Pressure sensors.
8) Temperature sensors and other DDC control system instruments.

B. Product Certificates:

1. Data Communications Protocol Certificates: Certifying that each proposed DDC system component complies with ASHRAE 135.
2. Data Communications Protocol Certificates: Certifying that each proposed DDC system component complies with LonWorks.

C. Product Test Reports: For each product that requires testing to be performed by manufacturer.

D. Source quality-control reports.

E. Field quality-control reports.

F. Sample Warranty: For manufacturer's warranty.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For DDC system to include in emergency, operation and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

a. Project Record Drawings of as-built versions of submittal Shop Drawings provided in electronic PDF format.
b. Testing and commissioning reports and checklists of completed final versions of reports, checklists, and trend logs.
c. As-built versions of submittal Product Data.
d. Names, addresses, e-mail addresses and 24-hour telephone numbers of Installer and service representatives for DDC system and products.
e. Operator's manual with procedures for operating control systems including logging on and off, handling alarms, producing point reports, trending data, overriding computer control and changing set points and variables.
f. Programming manuals with description of programming language and syntax, of statements for algorithms and calculations used, of point database creation and modification, of program creation and modification, and of editor use.
g. Engineering, installation, and maintenance manuals that explain how to:

 1) Design and install new points, panels, and other hardware.
 2) Perform preventive maintenance and calibration.
 3) Debug hardware problems.
 4) Repair or replace hardware.

h. Documentation of all programs created using custom programming language including set points, tuning parameters, and object database.
i. Backup copy of graphic files, programs, and database on electronic media such as DVDs.
j. List of recommended spare parts with part numbers and suppliers.
k. Complete original-issue documentation, installation, and maintenance information for furnished third-party hardware including computer equipment and sensors.
l. Complete original-issue copies of furnished software, including operating systems, custom programming language, operator workstation software, and graphics software.
m. Licenses, guarantees, and warranty documents.
n. Recommended preventive maintenance procedures for system components, including schedule of tasks such as inspection, cleaning, and calibration; time between tasks; and task descriptions.
o. Owner training materials.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials and parts that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

B. Include product manufacturers' recommended parts lists for proper product operation over four-year period following warranty period. Parts list shall be indicated for each year.

C. Furnish parts, as indicated by manufacturer's recommended parts list, for product operation during two-year period following warranty period.

1.9 QUALITY ASSURANCE

A. DDC System Provider Qualifications:

1. Authorized representative of, and trained by, DDC system manufacturer.
2. In-place facility located within 25 miles of Project.
3. Demonstrated past experience with installation of DDC system products being installed for period within five consecutive years before time of bid.
4. Demonstrated past experience on five projects of similar complexity, scope and value.
5. Each person assigned to Project shall have demonstrated past experience.
6. Staffing resources of competent and experienced full-time employees that are assigned to execute work according to schedule.
7. Service and maintenance staff assigned to support Project during warranty period.
8. Product parts inventory to support on-going DDC system operation for a period of not less than 5 years after Substantial Completion.
9. DDC system manufacturer's backing to take over execution of Work if necessary, to comply with requirements indicated. Include Project-specific written letter, signed by manufacturer's corporate officer, if requested.

B. Testing Agency Qualifications: Member company of NETA or an NRTL.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.
C. Welding Qualifications: Qualify procedures and personnel according to the following:

1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."
2. AWS D1.2/D1.2M, "Structural Welding Code - Aluminum."

1.10 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace products that fail in materials or workmanship within specified warranty period.

1. Failures shall be adjusted, repaired, or replaced at no additional cost or reduction in service to Owner.
2. Include updates or upgrades to software and firmware if necessary, to resolve deficiencies.
 a. Install updates only after receiving Owner's written authorization.
3. Warranty service shall occur during normal business hours and commence within 16 hours of Owner's warranty service request.
4. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 DDC SYSTEM DESCRIPTION

A. Microprocessor-based monitoring and control including analog/digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices to achieve a set of predefined conditions.

1. DDC system shall consist of a high-speed, peer-to-peer network of distributed DDC controllers, other network devices, operator interfaces, and software.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 WEB ACCESS

A. DDC system shall be Web based or Web compatible.

1. Web-Based Access to DDC System:
 a. DDC system software shall be based on server thin-client architecture, designed around open standards of Web technology. DDC system server shall be accessed
using a Web browser over DDC system network, using Owner's LAN, and remotely over Internet through Owner's LAN.

b. Intent of thin-client architecture is to provide operators complete access to DDC system via a Web browser. No special software other than a Web browser shall be required to access graphics, point displays, and trends; to configure trends, points, and controllers; and to edit programming.

c. Web access shall be password protected.

2. Web-Compatible Access to DDC System:

a. Workstation and server shall perform overall system supervision and configuration, graphical user interface, management report generation, and alarm annunciation.

b. DDC system shall support Web browser access to building data. Operator using a standard Web browser shall be able to access control graphics and change adjustable set points.

c. Web access shall be password protected.

2.3 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional to design DDC system to satisfy requirements indicated.

1. System Performance Objectives:

 a. DDC system shall manage HVAC systems.

 b. DDC system control shall operate HVAC systems to achieve optimum operating costs while using least possible energy and maintaining specified performance.

 c. DDC system shall respond to power failures, HVAC equipment failures, and adverse and emergency conditions encountered through connected I/O points.

 d. DDC system shall operate while unattended by an operator and through operator interaction.

 e. DDC system shall record trends and transaction of events and produce report information such as performance, energy, occupancies, and equipment operation.

B. Surface-Burning Characteristics: Products installed in ducts, equipment, and return-air paths shall comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

 1. Flame-Spread Index: 25 or less.

 2. Smoke-Developed Index: 50 or less.

C. DDC System Speed:

 1. Response Time of Connected I/O:

 a. AI point values connected to DDC system shall be updated at least every five seconds for use by DDC controllers. Points used globally shall also comply with this requirement.
b. BI point values connected to DDC system shall be updated at least every five seconds for use by DDC controllers. Points used globally shall also comply with this requirement.

c. AO points connected to DDC system shall begin to respond to controller output commands within two second(s). Global commands shall also comply with this requirement.

d. BO point values connected to DDC system shall respond to controller output commands within two second(s). Global commands shall also comply with this requirement.

2. Display of Connected I/O:

 a. Analog point COV connected to DDC system shall be updated and displayed at least every five seconds for use by operator.

 b. Binary point COV connected to DDC system shall be updated and displayed at least every five seconds for use by operator.

 c. Alarms of analog and digital points connected to DDC system shall be displayed within 30 seconds of activation or change of state.

 d. Graphic display refresh shall update within eight seconds.

 e. Point change of values and alarms displayed from workstation to workstation when multiple operators are viewing from multiple workstations shall not exceed graphic refresh rate indicated.

D. Network Bandwidth: Design each network of DDC system to include at least 30 percent available spare bandwidth with DDC system operating under normal and heavy load conditions indicated. Calculate bandwidth usage, and apply a safety factor to ensure that requirement is satisfied when subjected to testing under worst case conditions.

E. DDC System Data Storage:

1. Include server(s) with disk drive data storage to archive not less than 24 consecutive months of historical data for all I/O points connected to system, including alarms, event histories, transaction logs, trends and other information indicated.

2. When logged onto a server, operator shall be able to also interact with any DDC controller connected to DDC system as required for functional operation of DDC system.

3. Server(s) shall be used for application configuration; for archiving, reporting and trending of data; for operator transaction archiving and reporting; for network information management; for alarm annunciation; and for operator interface tasks and controls application management.

4. Server(s) shall use IT industry-standard database platforms such as Microsoft SQL Server and Microsoft Data Engine (MSDE).

F. Future Expandability:

1. DDC system size shall be expandable to an ultimate capacity of at least two times total I/O points indicated.

2. Additional DDC controllers, I/O and associated wiring shall be all that is needed to achieve ultimate capacity. Initial network infrastructure shall be designed and installed to support ultimate capacity.
3. Operator interfaces installed initially shall not require hardware and software additions and revisions for ultimate capacity.

G. Input Point Displayed Accuracy: Input point displayed values shall meet following end-to-end overall system accuracy, including errors associated with meter, sensor, transmitter, lead wire or cable, and analog to digital conversion.

1. Energy:
 a. Electric Power: Within 1 percent of reading.
 b. Requirements indicated on Drawings for meters not supplied by utility.

2. Flow:
 a. Air: Within 5 percent of design flow rate.
 b. Air (Terminal Units): Within 5 percent of design flow rate.

3. Gas:
 a. Carbon Dioxide: Within 50 ppm.
 b. Carbon Monoxide: Within 5 ppm
 c. Hydrogen: with 20 ppm
 d. NOx: Within 5 ppm

4. Moisture (Relative Humidity):
 a. Air: Within 5 percent RH.
 b. Space: Within 5 percent RH.
 c. Outdoor: Within 5 percent RH.

5. Pressure:
 a. Air, Ducts and Equipment: 1 percent of instrument range.

6. Speed: Within 5 percent of reading.

7. Temperature, Dew Point:
 a. Air: Within 1 deg F (0.5 deg C).
 b. Space: Within 1 deg F (0.5 deg C).
 c. Outdoor: Within 2 deg F (1 deg C).

8. Temperature, Dry Bulb:
 a. Air: Within 1 deg F (0.5 deg C).
 b. Space: Within 1 deg F (0.5 deg C).
 c. Outdoor: Within 2 deg F (1 deg C).
 d. Temperature Difference: Within 0.25 deg F (0.15 deg C).
 e. Other Temperatures Not Indicated: Within 1 deg F (0.5 deg C).

9. Temperature, Wet Bulb:
a. Air: Within 0.5 deg F (0.2 deg C).
b. Space: Within 0.5 deg F (0.2 deg C)
c. Outdoor: Within 1 deg F (0.5 deg C).

H. Precision of I/O Reported Values: Values reported in database and displayed shall have following precision:

1. Current:
 a. Milliamperes: Nearest 1/100th of a milliampere.
 b. Amperes: Nearest 1/10th of an ampere up to 100 A; nearest ampere for 100 A and more.

2. Energy:
 a. Electric Power:
 1) Rate (Watts): Nearest 1/10th of a watt through 1000 W.
 2) Rate (Kilowatts): Nearest 1/10th of a kilowatt through 1000 kW; nearest kilowatt above 1000 kW.
 3) Usage (Kilowatt-Hours): Nearest kilowatt through 10,000 kW; nearest 10 kW between 10,000 and 100,000 kW; nearest 100 kW for above 100,000 kW.

 b. Thermal, Rate:
 1) Heating: For Btu/h, nearest Btu/h up to 1000 Btu/h; nearest 10 Btu/h between 1000 and 10,000 Btu/h; nearest 100 Btu/h for above 10,000 Btu/h. For Mbh, round to nearest Mbh up to 1000 Mbh; nearest 10 Mbh between 1000 and 10,000 Mbh; nearest 100 Mbh above 10,000 Mbh (For watts, nearest watt up to 1000 W; for kilowatts, round to nearest kilowatt up to 1000 kW; nearest 10 kW between 1000 and 10,000 kW; nearest 100 kW for above 10,000 kW).
 2) Cooling: For tons, nearest ton up to 1000 tons; nearest 10 tons between 1000 and 10,000 tons; nearest 100 tons above 10,000 tons (For watts, nearest watt up to 1000 W; for kilowatts, round to nearest kilowatt up to 1000 kW; nearest 10 kW between 1000 and 10,000 kW; nearest 100 kW for above 10,000 kW).

 c. Thermal, Usage:
 1) Heating: For Btu, nearest Btu up to 1000 Btu; nearest 10 Btu between 1000 and 10,000 Btu; nearest 100 Btu for above 10,000 Btu. For Mbtu, round to nearest Mbtu up to 1000 Mbtu; nearest 10 Mbtu between 1000 and 10,000 Mbtu; nearest 100 Mbtu above 10,000 Mbtu (For watt-hours, nearest watt-hour up to 1000 Wh; for kilowatt-hours, round to nearest kilowatt-hour up to 1000 kWh; nearest 10 kWh between 1000 and 10,000 kWh; nearest 100 kWh for above 10,000 kWh).
 2) Cooling: For ton-hours, nearest ton-hours up to 1000 ton-hours; nearest 10 ton-hours between 1000 and 10,000 ton-hours; nearest 100 tons above
10,000 tons (For watt-hours, nearest watt-hour up to 1000 Wh; for kilowatt-hours, round to nearest kilowatt-hour up to 1000 kWh; nearest 10 kWh between 1000 and 10,000 kWh; nearest 100 kWh for above 10,000 kWh).

3. Flow:
 a. Air: Nearest 1/10th of a cfm through 100 cfm; nearest cfm between 100 and 1000 cfm; nearest 10 cfm between 1000 and 10,000 cfm; nearest 100 cfm above 10,000 cfm (Nearest 1/10th of a L/s through 100 L/s; nearest L/s between 100 and 1000 L/s; nearest 10 L/s between 1000 and 10,000 L/s; nearest 100 L/s above 10,000 L/s).

4. Gas:
 a. Carbon Dioxide: Within 50 ppm.
 b. Carbon Monoxide: Within 5 ppm
 c. Hydrogen: with 20 ppm
 d. NOx: Within 5 ppm

5. Moisture (Relative Humidity):
 a. Relative Humidity (Percentage): Nearest 1 percent.

6. Speed:
 a. Rotation (rpm): Nearest 1 rpm.
 b. Velocity: Nearest 1/10th fpm through 100 fpm; nearest fpm between 100 and 1000 fpm; nearest 10 fpm above 1000 fpm (Nearest 1/100th of a M/s through 10 M/s; nearest 1/10th of a M/s above 10 M/s).

8. Pressure:
 a. Air, Ducts and Equipment: Nearest 1/10th in. w.c. (Nearest Pa up to 1000 Pa; nearest 10 Pa above 1000 Pa).

9. Temperature:
 a. Air, Ducts and Equipment: Nearest 1/10th of a degree.
 b. Outdoor: Nearest degree.
 c. Space: Nearest 1/10th of a degree.

10. Voltage: Nearest 1/10 volt up to 100 V; nearest volt above 100 V.

I. Control Stability: Control variables indicated within the following limits:

1. Flow:
 a. Air, Ducts and Equipment, except Terminal Units: Within 2 percent of design flow rate.
2. Gas:
 a. Carbon Dioxide: Within 50 ppm.
 b. Carbon Monoxide: Within 5 ppm
 c. Hydrogen: with 20 ppm
 d. NOx: Within 5 ppm

3. Moisture (Relative Humidity):
 a. Air: Within 2 percent RH.
 b. Space: Within 5 percent RH.
 c. Outdoor: Within 5 percent RH.

4. Pressure:
 a. Air, Ducts and Equipment: 1 percent of instrument range.

5. Temperature, Dew Point:
 a. Air: Within 1 deg F (0.5 deg C).

6. Temperature, Dry Bulb:
 a. Air: Within 2 deg F (1 deg C).
 b. Space: Within 2 deg F (1 deg C).

7. Temperature, Wet Bulb:
 a. Air: Within 1 deg F (0.5 deg C).

J. Environmental Conditions for Controllers and Routers:

1. Products shall operate without performance degradation under ambient environmental
temperature, pressure and humidity conditions encountered for installed location.
 a. If product alone cannot comply with requirement, install product in a protective
 enclosure that is isolated and protected from conditions impacting performance.
 Enclosure shall be internally insulated, electrically heated, cooled and ventilated as
 required by product and application.

2. Products shall be protected with enclosures satisfying the following minimum
 requirements unless more stringent requirements are indicated. Products not available
 with integral enclosures complying with requirements indicated shall be housed in
 protective secondary enclosures. Installed location shall dictate the following NEMA 250
 enclosure requirements:
 a. Outdoors, Protected: Type 2.
 b. Outdoors, Unprotected: Type 4.
 c. Indoors, Heated with Filtered Ventilation: Type 1.
 d. Indoors, Heated with Non-Filtered Ventilation: Type 2.
e. Indoors, Heated and Air Conditioned: Type 1.
f. Mechanical Equipment Rooms:
 1) Air-Moving Equipment Rooms: Type 1.

g. Localized Areas Exposed to Washdown: Type 4.
h. Within Duct Systems and Air-Moving Equipment Not Exposed to Possible Condensation: Type 2.
i. Within Duct Systems and Air-Moving Equipment Exposed to Possible Condensation: Type 4.

K. Environmental Conditions for Instruments and Actuators:

1. Instruments and actuators shall operate without performance degradation under the ambient environmental temperature, pressure, humidity, and vibration conditions specified and encountered for installed location.
 a. If instruments and actuators alone cannot comply with requirement, install instruments and actuators in protective enclosures that are isolated and protected from conditions impacting performance. Enclosure shall be internally insulated, electrically heated, cooled and ventilated as required by instrument and application.

2. Instruments, actuators and accessories shall be protected with enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Instruments and actuators not available with integral enclosures complying with requirements indicated shall be housed in protective secondary enclosures. Installed location shall dictate the following NEMA 250 enclosure requirements:
 a. Outdoors, Protected: Type 2.
 b. Outdoors, Unprotected: Type 4.
 c. Indoors, Heated with Filtered Ventilation: Type 1.
 d. Indoors, Heated with Non-Filtered Ventilation: Type 2.
 e. Indoors, Heated and Air Conditioned: Type 1.
 f. Mechanical Equipment Rooms:
 1) Boiler Rooms: Type 4.
 2) Air-Moving Equipment Rooms: Type 1.
 g. Localized Areas Exposed to Washdown: Type 4.
 h. Within Duct Systems and Air-Moving Equipment Not Exposed to Possible Condensation: Type 2.
 i. Within Duct Systems and Air-Moving Equipment Exposed to Possible Condensation: Type 4.

L. DDC System Reliability:

1. Design, install and configure DDC controllers and routers to yield a MTBF of at least 40,000 hours, based on a confidence level of at least 90 percent. MTBF value shall include any failure for any reason to any part of products indicated.
2. If required to comply with MTBF indicated, include DDC system and product redundancy to maintain DCC system, and associated systems and equipment that are being controlled, operational and under automatic control.

3. Critical systems and equipment that require a higher degree of DDC system redundancy than MTBF indicated shall be indicated on Drawings.

M. Electric Power Quality:

1. Power-Line Surges:
 a. Protect susceptible DDC system products connected to ac power circuits from power-line surges to comply with requirements of IEEE C62.41.
 b. Do not use fuses for surge protection.
 c. Test protection in the normal mode and in the common mode, using the following two waveforms:
 1) 10-by-1000-mic.sec. waveform with a peak voltage of 1500 V and a peak current of 60 A.
 2) 8-by-20-mic.sec. waveform with a peak voltage of 1000 V and a peak current of 500 A.

2. Power Conditioning:
 a. Protect susceptible DDC system products connected to ac power circuits from irregularities and noise rejection. Characteristics of power-line conditioner shall be as follows:
 1) At 85 percent load, output voltage shall not deviate by more than plus or minus 1 percent of nominal when input voltage fluctuates between minus 20 percent to plus 10 percent of nominal.
 2) During load changes from zero to full load, output voltage shall not deviate by more than plus or minus 3 percent of nominal.
 3) Accomplish full correction of load switching disturbances within five cycles, and 95 percent correction within two cycles of onset of disturbance.
 4) Total harmonic distortion shall not exceed 3-1/2 percent at full load.

3. Ground Fault: Protect products from ground fault by providing suitable grounding. Products shall not fail due to ground fault condition.

N. Backup Power Source:

1. HVAC systems and equipment served by a backup power source shall have associated DDC system products that control such systems and equipment also served from a backup power source.

O. UPS:

1. DDC system products powered by UPS units shall include the following:
 a. Servers.
 b. DDC controllers, except application-specific controllers.
P. Continuity of Operation after Electric Power Interruption:

1. Equipment and associated factory-installed controls, field-installed controls, electrical equipment, and power supply connected to building normal and backup power systems shall automatically return equipment and associated controls to operating state occurring immediately before loss of normal power, without need for manual intervention by operator when power is restored either through backup power source or through normal power if restored before backup power is brought online.

2.4 SYSTEM ARCHITECTURE

A. System architecture shall consist of no more than two or three levels of LANs.

1. Level one LAN shall connect network controllers and operator workstations.
2. Level one or Level two LAN shall connect programmable application controllers to other programmable application controllers, and to network controllers.
3. Level two or Level three LAN shall connect application-specific controllers to programmable application controllers and network controllers.
4. Level two or Level three LAN shall connect application-specific controllers to application-specific controllers.

B. Minimum Data Transfer and Communication Speed:

1. LAN Connecting Network Controllers: 100 Mbps.
2. LAN Connecting Programmable Application Controllers: 100 kbps.
3. LAN Connecting Application-Specific Controllers: 19,200 bps.

C. DDC system shall consist of dedicated LANs that are not shared with other building systems and tenant data and communication networks.

D. System architecture shall be modular and have inherent ability to expand to not less than two times system size indicated with no impact to performance indicated.

E. System architecture shall perform modifications without having to remove and replace existing network equipment.

F. Number of LANs and associated communication shall be transparent to operator. All I/O points residing on any LAN shall be capable of global sharing between all system LANs.

G. System design shall eliminate dependence on any single device for system alarm reporting and control execution. Each controller shall operate independently by performing its' own control, alarm management and historical data collection.

H. Special Network Architecture Requirements:

1. Air-Handling Systems: For control applications of an air-handling system that consists of air-handling unit(s) and VAV terminal units, include a dedicated LAN of application-specific controllers serving VAV terminal units connected directly to controller that is
controlling air-handling system air-handling unit(s). Basically, create a DDC system LAN that aligns with air-handling system being controlled.

2.5 DDC SYSTEM OPERATOR INTERFACES

A. Operator Means of System Access: Operator shall be able to access entire DDC system through any of multiple means, including, but not limited to, the following:
 1. Portable operator terminal with hardwired connection through LAN port.
 2. PDA with wireless connection through LAN router.
 3. Remote connection using outside of system personal computer or PDA through Web access.

B. Access to system, regardless of operator means used, shall be transparent to operator.

C. Network Ports: For hardwired connection of desktop or portable operator workstation. Network port shall be easily accessible, properly protected, clearly labeled, and installed at the following locations:
 1. Each mechanical equipment room.

D. POT:
 1. Connect DDC controller through a communications port local to controller.
 2. Able to communicate with any DDC system controller that is directly connected or connected to DDC system.

E. Personal Digital Assistant:
 1. Connect to system through a wireless router connected to LAN.
 2. Able to communicate with any DDC controller connected to DDC system.

F. Critical Alarm Reporting:
 1. Operator-selected critical alarms shall be sent by DDC system to notify operator of critical alarms that require immediate attention.
 2. DDC system shall send alarm notification to multiple recipients that are assigned for each alarm.
 3. DDC system shall notify recipients by any or all means, including e-mail, text message and prerecorded phone message to mobile and landline phone numbers.

G. Simultaneous Operator Use: Capable of accommodating up to five simultaneous operators that are accessing DDC system through any one of operator interfaces indicated.

2.6 NETWORKS

A. Acceptable networks for connecting workstations, mobile devices, and network controllers include the following:
1. ATA 878.1, ARCNET.
2. CEA-709.1-C.
3. IP.
4. IEEE 8802-3, Ethernet.

B. Acceptable networks for connecting programmable application controllers include the following:

1. ATA 878.1, ARCNET.
2. CEA-709.1-C.
3. IP.
4. IEEE 8802-3, Ethernet.

C. Acceptable networks for connecting application-specific controllers include the following:

1. ATA 878.1, ARCNET.
2. CEA-709.1-C.
3. EIA-485A.
4. IP.
5. IEEE 8802-3, Ethernet.

2.7 NETWORK COMMUNICATION PROTOCOL

A. Network communication protocol(s) used throughout entire DDC system shall be open to Owner and available to other companies for use in making future modifications to DDC system.

B. ASHRAE 135 Protocol:

1. ASHRAE 135 communication protocol shall be sole and native protocol used throughout entire DDC system.
2. DDC system shall not require use of gateways except to integrate HVAC equipment and other building systems and equipment, not required to use ASHRAE 135 communication protocol.
3. If used, gateways shall connect to DDC system using ASHRAE 135 communication protocol and Project object properties and read/write services indicated by interoperability schedule.
4. Operator workstations, controllers and other network devices shall be tested and listed by BACnet Testing Laboratories.

C. Industry Standard Protocols:

1. DDC system shall use any one or a combination of the following industry standard protocols for network communication while complying with other DDC system requirements indicated:

a. ASHRAE 135.
2. Operator workstations and network controllers shall communicate through ASHRAE 135 protocol.

3. Portions of DDC system networks using ASHRAE 135 communication protocol shall be an open implementation of network devices complying with ASHRAE 135. Network devices shall be tested and listed by BACnet Testing Laboratories.

4. Portions of DDC system networks using CEA-709.1-C communication protocol shall be an open implementation of LonWorks technology using CEA-709.1-C communication protocol and using LonMark SNVTs as defined in LonMark SNVT list exclusively for DDC system.

6. Gateways shall be used to connect networks and network devices using different protocols.

2.8 PORTABLE OPERATOR TERMINAL

A. Description: Handheld device with integral keypad or touch screen operator interface.

B. Display: Multiple lines of text display for use in operator interaction with DDC system.

C. Cable: Flexible cable, at least 36 inches long, with a plug-in jack for connection to DDC controllers, network ports or instruments with an integral LAN port. As an alternative to hardwired connection, POT shall be accessible to DDC controllers through a wireless network connection.

D. POT shall be powered through network connection.

E. Connection of POT to DDC system shall not interrupt or interfere with normal network operation in any way, prevent alarms from being transmitted, or preclude central initiated commands and system modification.

F. POT shall give operator the ability to do the following:

 1. Display and monitor BI point status.
 2. Change BO point set point (on or off, open or closed).
 3. Display and monitor analog point values.
 4. Change analog control set points.
 5. Command a setting of AO point.
 6. Display and monitor I/O point in alarm.
 7. Add a new or delete an existing I/O point.
 8. Enable and disable I/O points, initiators, and programs.
 9. Display and change time and date.
 10. Display and change time schedules.
 11. Display and change run-time counters and run-time limits.
 12. Display and change time and event initiation.
 13. Display and change control application and DDC parameters.
 14. Display and change programmable offset values.
2.9 SERVERS

A. Performance Requirements:

1. Performance requirements may dictate equipment exceeding minimum requirements indicated.
2. Energy Star compliant.
3. Redundant Array of Independent Disks: one configuration.
4. Drive Bays: Eight at 2.5 inches (65 mm) or eight at 3.5 inches (90 mm).
5. Hard-Drive Storage: two drives.
7. DVD +RW Drive.
8. Color, flat-screen display.
10. Next-day on-site warranty for three-year period following Substantial Completion.

B. Servers shall include the following:

1. Full-feature backup server (server and backup minimum requirement).
2. Software licenses.
3. CAT-5e or CAT-6 cable installation between server(s) and network.

C. Web Server:

1. If required to be separate, include Web server hardware and software to match, except backup server is not required.
2. Firewalls between server Web and networks.
3. Password protection for access to server from Web server.
4. CAT-5e or CAT 6 cable installation between the server(s) and building Ethernet network.

D. Power each server through a dedicated UPS unit.

2.10 SYSTEM SOFTWARE

A. System Software Minimum Requirements:

1. Real-time multitasking and multiuser 32-bit operating system that allows concurrent multiple operator workstations operating and concurrent execution of multiple real-time programs and custom program development.
2. Operating system shall be capable of operating DOS and Microsoft Windows applications.
3. Database management software shall manage all data on an integrated and non-redundant basis. Additions and deletions to database shall be without detriment to existing data. Include cross linkages so no data required by a program can be deleted by an operator until that data have been deleted from respective programs.
4. Network communications software shall manage and control multiple network communications to provide exchange of global information and execution of global programs.

5. Operator interface software shall include day-to-day operator transaction processing, alarm and report handling, operator privilege level and data segregation control, custom programming, and online data modification capability.

6. Scheduling software shall schedule centrally based time and event, temporary, and exception day programs.

B. Operator Interface Software:

1. Minimize operator training through use of English language prorating and English language point identification.

2. Minimize use of a typewriter-style keyboard through use of a pointing device similar to a mouse.

3. Operator sign-off shall be a manual operation or, if no keyboard or mouse activity takes place, an automatic sign-off.

4. Automatic sign-off period shall be programmable from one to 60 minutes in one-minute increments on a per operator basis.

5. Operator sign-on and sign-off activity shall be recorded and sent to printer.

6. Security Access:

 a. Operator access to DDC system shall be under password control.
 b. An alphanumeric password shall be field assignable to each operator.
 c. Operators shall be able to access DDC system by entry of proper password.
 d. Operator password shall be same regardless of which computer or other interface means is used.
 e. Additions or changes made to passwords shall be updated automatically.
 f. Each operator shall be assigned an access level to restrict access to data and functions the operator is capable of performing.
 g. Software shall have at least five access levels.
 h. Each menu item shall be assigned an access level so that a one-for-one correspondence between operator assigned access level(s) and menu item access level(s) is required to gain access to menu item.
 i. Display menu items to operator with those capable of access highlighted. Menu and operator access level assignments shall be online programmable and under password control.

7. Data Segregation:

 a. Include data segregation for control of specific data routed to a workstation, to an operator or to a specific output device, such as a printer.
 b. Include at least 32 segregation groups.
 c. Segregation groups shall be selectable such as "fire points," "fire points on second floor," "space temperature points," "HVAC points," and so on.
 d. Points shall be assignable to multiple segregation groups. Display and output of data to printer or monitor shall occur where there is a match of operator or peripheral segregation group assignment and point segregations.
e. Alarms shall be displayed and printed at each peripheral to which segregation allows, but only those operators assigned to peripheral and having proper authorization level will be allowed to acknowledge alarms.

f. Operators and peripherals shall be assignable to multiple segregation groups and all assignments are to be online programmable and under password control.

8. Operators shall be able to perform commands including, but not limited to, the following:

a. Start or stop selected equipment.
b. Adjust set points.
c. Add, modify, and delete time programming.
d. Enable and disable process execution.
e. Lock and unlock alarm reporting for each point.
f. Enable and disable totalization for each point.
g. Enable and disable trending for each point.
h. Override control loop set points.
i. Enter temporary override schedules.
j. Define holiday schedules.
k. Change time and date.
l. Enter and modify analog alarm limits.
m. Enter and modify analog warning limits.
n. View limits.
o. Enable and disable demand limiting.
p. Enable and disable duty cycle.
q. Display logic programming for each control sequence.

9. Reporting:

a. Generated automatically and manually.
b. Sent to displays, printers and disk files.
c. Types of Reporting:

1) General listing of points.
2) List points currently in alarm.
3) List of off-line points.
4) List points currently in override status.
5) List of disabled points.
6) List points currently locked out.
7) List of items defined in a "Follow-Up" file.
8) List weekly schedules.
9) List holiday programming.
10) List of limits and deadbands.

10. Summaries: For specific points, for a logical point group, for an operator selected group(s), or for entire system without restriction due to hardware configuration.

C. Graphic Interface Software:

1. Include a full interactive graphical selection means of accessing and displaying system data to operator. Include at least five levels with the penetration path operator assignable
(for example, site, building, floor, air-handling unit, and supply temperature loop). Native language descriptors assigned to menu items are to be operator defined and modifiable under password control.

2. Include a hierarchical-linked dynamic graphic operator interface for accessing and displaying system data and commanding and modifying equipment operation. Interface shall use a pointing device with pull-down or penetrating menus, color and animation to facilitate operator understanding of system.

3. Include at least 10 levels of graphic penetration with the hierarchy operator assignable.

4. Descriptors for graphics, points, alarms and such shall be modified through operator's workstation under password control.

5. Graphic displays shall be online user definable and modifiable using the hardware and software provided.

6. Data to be displayed within a graphic shall be assignable regardless of physical hardware address, communication or point type.

7. Graphics are to be online programmable and under password control.

8. Points may be assignable to multiple graphics where necessary to facilitate operator understanding of system operation.

9. Graphics shall also contain software points.

10. Penetration within a graphic hierarchy shall display each graphic name as graphics are selected to facilitate operator understanding.

11. Back-trace feature shall permit operator to move upward in the hierarchy using a pointing device. Back trace shall show all previous penetration levels. Include operator with option of showing each graphic full screen size with back trace as horizontal header or by showing a "stack" of graphics, each with a back trace.

12. Display operator accessed data on the monitor.

13. Operator shall select further penetration using pointing device to click on a site, building, floor, area, equipment, and so on. Defined and linked graphic below that selection shall then be displayed.

14. Include operator with means to directly access graphics without going through penetration path.

15. Dynamic data shall be assignable to graphics.

16. Display points (physical and software) with dynamic data provided by DDC system with appropriate text descriptors, status or value, and engineering unit.

17. Use color, rotation, or other highly visible means, to denote status and alarm states. Color shall be variable for each class of points, as chosen by operator.

18. Points shall be dynamic with operator adjustable update rates on a per point basis from one second to over a minute.

19. For operators with appropriate privilege, points shall be commanded directly from display using pointing device.

a. For an analog command point such as set point, current conditions and limits shall be displayed and operator can position new set point using pointing device.

b. For a digital command point such as valve position, valve shall show its current state such as open or closed and operator could select alternative position using pointing device.

c. Keyboard equivalent shall be available for those operators with that preference.

20. Operator shall be able to split or resize viewing screen into quadrants to show one graphic on one quadrant of screen and other graphics or spreadsheet, bar chart, word processing, curve plot and other information on other quadrants on screen. This feature
shall allow real-time monitoring of one part of system while displaying other parts of system or data to better facilitate overall system operation.

21. Help Features:

 a. On-line context-sensitive help utility to facilitate operator training and understanding.
 b. Bridge to further explanation of selected keywords. Document shall contain text and graphics to clarify system operation.

 1) If help feature does not have ability to bridge on keywords for more information, a complete set of user manuals shall be provided in an indexed word-processing program, which shall run concurrently with operating system software.

 c. Available for Every Menu Item:

 1) Index items for each system menu item.

22. Graphic generation software shall allow operator to add, modify, or delete system graphic displays.

 a. Include libraries of symbols depicting HVAC symbols such as fans, coils, filters, dampers, valves pumps, and electrical symbols.
 b. Graphic development package shall use a pointing device in conjunction with a drawing program to allow operator to perform the following:

 1) Define background screens.
 2) Define connecting lines and curves.
 3) Locate, orient and size descriptive text.
 4) Define and display colors for all elements.
 5) Establish correlation between symbols or text and associated system points or other displays.

D. Project-Specific Graphics: Graphics documentation including, but not limited to, the following:

 1. Site plan showing each building, and additional site elements, which are being controlled or monitored by DDC system.
 2. Plan for each building floor, including interstitial floors, and each roof level of each building, showing the following:

 a. Room layouts with room identification and name.
 b. Locations and identification of all monitored and controlled HVAC equipment and other equipment being monitored and controlled by DDC system.
 c. Location and identification of each hardware point being controlled or monitored by DDC system.

 3. Control schematic for each of following, including a graphic system schematic representation with point identification, set point and dynamic value indication.
 4. Graphic display for each piece of equipment connected to DDC system through a data communications link. Include dynamic indication of all points associated with equipment.
5. DDC system network riser diagram that shows schematic layout for entire system including all networks and all controllers, and other network devices.

E. Customizing Software:

1. Software to modify and tailor DDC system to specific and unique requirements of equipment installed, to programs implemented and to staffing and operational practices planned.

2. Online modification of DDC system configuration, program parameters, and database using menu selection and keyboard entry of data into preformatted display templates.

3. As a minimum, include the following modification capability:

 a. Operator assignment shall include designation of operator passwords, access levels, point segregation and auto sign-off.

 b. Peripheral assignment capability shall include assignment of segregation groups and operators to consoles and printers, designation of backup workstations and printers, designation of workstation header points and enabling and disabling of print-out of operator changes.

 c. System configuration and diagnostic capability shall include communications and peripheral port assignments, DDC controller assignments to network, DDC controller enable and disable, assignment of command trace to points and application programs and initiation of diagnostics.

 d. System text addition and change capability shall include English or native language descriptors for points, segregation groups and access levels and action messages for alarms, run time and trouble condition.

 e. Time and schedule change capability shall include time and date set, time and occupancy schedules, exception and holiday schedules and daylight savings time schedules.

 f. Point related change capability shall include the following:

 1) System and point enable and disable.
 2) Run-time enable and disable.
 3) Assignment of points to segregation groups, calibration tables, lockout, and run time and to a fixed I/O value.
 4) Assignment of alarm and warning limits.

 g. Application program change capability shall include the following:

 1) Enable and disable of software programs.
 2) Programming changes.
 3) Assignment of comfort limits, global points, time and event initiators, time and event schedules and enable and disable time and event programs.

4. Software shall allow operator to add points, or groups of points, to DDC system and to link them to energy optimization and management programs. Additions and modifications shall be online programmable using operator workstation, downloaded to other network devices and entered into their databases. After verification of point additions and associated program operation, database shall be uploaded and recorded on hard drive and disk for archived record.
5. Include high-level language programming software capability for implementation of custom DDC programs. Software shall include a compiler, linker, and up- and down-load capability.

6. Include a library of DDC algorithms, intrinsic control operators, arithmetic, logic and relational operators for implementation of control sequences. Also include, as a minimum, the following:
 a. Proportional control (P).
 b. Proportional plus integral (PI).
 c. Proportional plus integral plus derivative (PID).
 d. Adaptive and intelligent self-learning control.

 1) Algorithm shall monitor loop response to output corrections and adjust loop response characteristics according to time constant changes imposed.
 2) Algorithm shall operate in a continuous self-learning manner and shall retain in memory a stored record of system dynamics so that on system shut down and restart, learning process starts from where it left off.

7. Fully implemented intrinsic control operators including sequence, reversing, ratio, time delay, time of day, highest select AO, lowest select AO, analog controlled digital output, analog control AO, and digitally controlled AO.

8. Logic operators such as "And," "Or," "Not," and others that are part of a standard set available with a high-level language.

9. Arithmetic operators such as "Add," "Subtract," "Multiply," "Divide," and others that are part of a standard set available with a high-level language.

10. Relational operators such as "Equal To," "Not Equal To," "Less Than," "Greater Than," and others that are part of a standard set available with a high-level language.

F. Alarm Handling Software:

1. Include alarm handling software to report all alarm conditions monitored and transmitted through DDC controllers and other network devices.

2. Include first in, first out handling of alarms according to alarm priority ranking, with most critical alarms first, and with buffer storage in case of simultaneous and multiple alarms.

3. Alarm handling shall be active at all times to ensure that alarms are processed even if an operator is not currently signed on to DDC system.

4. Alarms display shall include the following:
 a. Indication of alarm condition such as "Abnormal Off," "Hi Alarm," and "Low Alarm."
 b. "Analog Value" or "Status" group and point identification with native language point descriptor such as "Space Temperature, Building 110, 2nd Floor, Room 212."
 c. Discrete per point alarm action message, such as "Call Maintenance Dept. Ext-5561."
 d. Include extended message capability to allow assignment and printing of extended action messages. Capability shall be operator programmable and assignable on a per point basis.
5. Alarms shall be directed to appropriate operator workstations, printers, and individual operators by privilege level and segregation assignments.

6. Send e-mail alarm messages to designated operators.

7. Send e-mail, page, text and voice messages to designated operators for critical alarms.

8. Alarms shall be categorized and processed by class.

 a. Class 1:

 1) Associated with fire, security and other extremely critical equipment monitoring functions; have alarm, trouble, return to normal, and acknowledge conditions printed and displayed.
 2) Unacknowledged alarms to be placed in unacknowledged alarm buffer.
 3) All conditions shall cause an audible sound and shall require individual acknowledgment to silence audible sound.

 b. Class 2:

 1) Critical, but not life-safety related, and processed same as Class 1 alarms, except do not require individual acknowledgment.
 2) Acknowledgement may be through a multiple alarm acknowledgment.

 c. Class 3:

 1) General alarms; printed, displayed and placed in unacknowledged alarm buffer queues.
 2) Each new alarm received shall cause an audible sound. Audible sound shall be silenced by "acknowledging" alarm or by pressing a "silence" key.
 3) Acknowledgement of queued alarms shall be either on an individual basis or through a multiple alarm acknowledgement.
 4) Alarms returning to normal condition shall be printed and not cause an audible sound or require acknowledgment.

 d. Class 4:

 1) Routine maintenance or other types of warning alarms.
 2) Alarms to be printed only, with no display, no audible sound and no acknowledgment required.

9. Include an unacknowledged alarm indicator on display to alert operator that there are unacknowledged alarms in system. Operator shall be able to acknowledge alarms on an individual basis or through a multiple alarm acknowledge key, depending on alarm class.

10. To ensure that no alarm records are lost, it shall be possible to assign a backup printer to accept alarms in case of failure of primary printer.

G. Reports and Logs:

 1. Include reporting software package that allows operator to select, modify, or create reports using DDC system I/O point data available.
 2. Each report shall be definable as to data content, format, interval and date.
3. Report data shall be sampled and stored on DDC controller, within storage limits of DDC controller, and then uploaded to archive on server for historical reporting.
4. Operator shall be able to obtain real-time logs of all I/O points by type or status, such as alarm, point lockout, or normal.
5. Reports and logs shall be stored on server hard drives in a format that is readily accessible by other standard software applications, including spreadsheets and word processing.
6. Reports and logs shall be readily printed and set to be printed either on operator command or at a specific time each day.

H. Standard Reports: Standard DDC system reports shall be provided and operator shall be able to customize reports later.
 1. All I/O: With current status and values.
 2. Alarm: All current alarms, except those in alarm lockout.
 3. Disabled I/O: All I/O points that are disabled.
 4. Alarm Lockout I/O: All I/O points in alarm lockout, whether manual or automatic.
 5. Alarm Lockout I/O in Alarm: All I/O in alarm lockout that are currently in alarm.
 6. Logs:
 a. Alarm history.
 b. System messages.
 c. System events.
 d. Trends.

I. Custom Reports: Operator shall be able to easily define any system data into a daily, weekly, monthly, or annual report. Reports shall be time and date stamped and shall contain a report title.

J. Tenant Override Reports: Prepare Project-specific reports.
 1. Weekly report showing daily total time in hours that each tenant has requested after-hours HVAC.
 2. Monthly report showing daily total time in hours that each tenant has requested after-hours HVAC.
 3. Annual summary report that shows after-hours HVAC usage on a monthly basis.

K. Utility Reports: Prepare Project-specific reports.
 1. Electric Report:
 a. Include weekly report showing daily electrical consumption and peak electrical demand with time and date stamp for each meter.
 b. Include monthly report showing the daily electrical consumption and peak electrical demand with time and date stamp for each meter.
 c. Include annual report showing the monthly electrical consumption and peak electrical demand with time and date stamp for each meter.
 d. For each weekly, monthly and annual report, include sum total of submeters combined by load type, such as lighting, receptacles and HVAC equipment showing daily electrical consumption and peak electrical demand.
e. For each weekly, monthly and annual report, include sum total of all submeters in building showing electrical consumption and peak electrical demand.

2. Natural Gas Report:
 a. Include weekly report showing daily natural gas consumption and peak natural gas demand with time and date stamp for each meter.
 b. Include monthly report showing the daily natural gas consumption and peak natural gas demand with time and date stamp for each meter.
 c. Include annual report showing the monthly natural gas consumption and peak natural gas demand with time and date stamp for each meter.
 d. For each weekly, monthly and annual report, include sum total of submeters combined by load type, such as boilers and service water heaters showing daily natural gas consumption and peak natural gas demand.
 e. For each weekly, monthly and annual report, include sum total of all submeters in building showing natural gas consumption and peak natural gas demand.

3. Service Water Report:
 a. Include weekly report showing daily service water consumption and peak service water demand with time and date stamp for each meter.
 b. Include monthly report showing the daily service water consumption and peak service water demand with time and date stamp for each meter.
 c. Include annual report showing the monthly service water consumption and peak service water demand with time and date stamp for each meter.
 d. For each weekly, monthly and annual report, include sum total of submeters combined by load type, such as cooling tower makeup and irrigation showing daily service water consumption and peak service water demand.
 e. For each weekly, monthly and annual report, include sum total of all submeters in building showing service water consumption and peak service water demand.

L. Energy Reports: Prepare Project-specific daily, weekly, monthly annual and since-installed energy reports.

1. Prepare report for each purchased energy utility, indicating the following:
 a. Time period being reported with beginning and end date, and time indicated.
 b. Consumption in units of measure commonly used to report specific utility consumption over time.
 c. Gross area served by utility.
 d. Consumption per unit area served using utility-specific unit of measure.
 e. Cost per utility unit.
 f. Utility cost per unit area.
 g. Convert all utilities to a common energy consumption unit of measure and report for each utility.
 h. Consumption per unit area using common unit of measure.

2. Prepare report for each renewable energy source, indicating the following:
 a. Time period being reported with beginning and end date, and time indicated.
b. Harvested energy in units of measure commonly used to report specific harvested
energy consumption over time.
c. Gross area served by renewable energy source.
d. Harvested energy per unit area served using specific unit of measure.
e. Cost per purchased utility unit displaced by renewable energy.
f. Cost savings attributed to harvested energy source.
g. Cost savings per unit area attributed to harvested energy.
h. Convert all renewable energy sources to a common energy consumption unit of
measure and report for each.
i. Harvested energy per unit area using common unit of measure.

3. Prepare purchased energy utility report for each submetered area that indicates the
following:
 a. Time period being reported with beginning and end date, and time indicated.
 b. Gross area served.
 c. Energy consumption by energy utility type.
 d. Energy consumption per unit area by energy utility type.
 e. Total energy consumption of all utilities in common units of measure.
 f. Total energy consumption of all utilities in common units of measure per unit area.
 g. Unit energy cost by energy utility type.
 h. Energy cost by energy utility type.
 i. Energy cost per unit area by energy utility type.
 j. Total cost of all energy utilities.
 k. Total cost of all energy utilities per unit area.

4. Prepare Project total purchased energy utility report that combines all purchased energy
utilities and all areas served. Project total energy report shall indicate the following:
 a. Time period being reported with beginning and end date, and time indicated.
 b. Gross area served.
 c. Energy consumption by energy utility type.
 d. Energy consumption per unit area by energy utility type.
 e. Total energy consumption of all utilities in common units of measure.
 f. Total energy consumption of all utilities in common units of measure per unit area.
 g. Unit energy cost by energy utility type.
 h. Energy cost by energy utility type.
 i. Energy cost per unit area by energy utility type.
 j. Total cost of all energy utilities.
 k. Total cost of all energy utilities per unit area.

M. Weather Reports:

 1. Include daily report showing the following:
 a. Daily minimum, maximum, and average outdoor dry-bulb temperature.
 b. Daily minimum, maximum, and average outdoor wet-bulb temperature.
 c. Daily minimum, maximum, and average outdoor dew point temperature.
 d. Number of heating degree-days for each day calculated from a base temperature of
 55 deg F (13 deg C).
e. Number of cooling degree-days for each day calculated from a base temperature of 65 deg F (18 deg C).

f. Daily minimum, maximum, and average outdoor carbon dioxide level.

g. Daily minimum, maximum, and average relative humidity.

h. Daily minimum, maximum, and average barometric pressure.

i. Daily minimum, maximum, and average wind speed and direction.

2. Include weekly report showing the following:

a. Daily minimum, maximum, and average outdoor dry-bulb temperature.

b. Daily minimum, maximum, and average outdoor wet-bulb temperature.

c. Daily minimum, maximum, and average outdoor dew point temperature.

d. Number of heating degree-days for each day calculated from a base temperature of 55 deg F (13 deg C).

e. Number of cooling degree-days for each day calculated from a base temperature of 65 deg F (18 deg C).

f. Weekly minimum, maximum, and average outdoor carbon dioxide level.

g. Daily minimum, maximum, and average relative humidity.

h. Daily minimum, maximum, and average barometric pressure.

i. Daily minimum, maximum, and average wind speed and direction.

3. Include monthly report showing the following:

a. Daily minimum, maximum, and average outdoor dry-bulb temperature.

b. Daily minimum, maximum, and average outdoor wet-bulb temperature.

c. Daily minimum, maximum, and average outdoor dew point temperature.

d. Number of heating degree-days for each day calculated from a base temperature of 55 deg F (13 deg C).

e. Number of cooling degree-days for each day calculated from a base temperature of 65 deg F (18 deg C).

f. Monthly minimum, maximum, and average outdoor carbon dioxide level.

g. Daily minimum, maximum, and average relative humidity.

h. Daily minimum, maximum, and average barometric pressure.

i. Daily minimum, maximum, and average wind speed and direction.

4. Include annual (12-month) report showing the following:

a. Monthly minimum, maximum, and average outdoor dry-bulb temperature.

b. Monthly minimum, maximum, and average outdoor wet-bulb temperature.

c. Monthly minimum, maximum, and average outdoor dew point temperature.

d. Number of heating degree-days for each day calculated from a base temperature of 55 deg F (13 deg C).

e. Number of cooling degree-days for each day calculated from a base temperature of 65 deg F (18 deg C).

f. Annual minimum, maximum, and average outdoor carbon dioxide level.

g. Monthly minimum, maximum, and average relative humidity.

h. Daily minimum, maximum, and average barometric pressure.

i. Daily minimum, maximum, and average wind speed and direction.

N. Standard Trends:
1. Trend all I/O point present values, set points, and other parameters indicated for trending.
2. Trends shall be associated into groups, and a trend report shall be set up for each group.
3. Trends shall be stored within DDC controller and uploaded to hard drives automatically on reaching 75 of DDC controller buffer limit, or by operator request, or by archiving time schedule.
4. Preset trend intervals for each I/O point after review with Owner.
5. Trend intervals shall be operator selectable from 10 seconds up to 60 minutes. Minimum number of consecutive trend values stored at one time shall be 100 per variable.
6. When drive storage memory is full, most recent data shall overwrite oldest data.
7. Archived and real-time trend data shall be available for viewing numerically and graphically by operators.

O. Custom Trends: Operator shall be able to define a custom trend log for any I/O point in DDC system.
 1. Each trend shall include interval, start time, and stop time.
 2. Data shall be sampled and stored on DDC controller, within storage limits of DDC controller, and then uploaded to archive on server hard drives.
 3. Data shall be retrievable for use in spreadsheets and standard database programs.

P. Programming Software:
 1. Include programming software to execute sequences of operation indicated.
 2. Include programming routines in simple and easy to follow logic with detailed text comments describing what the logic does and how it corresponds to sequence of operation.
 3. Programming software shall be any of the following:
 a. Graphic Based: Programming shall use a library of function blocks made from preprogrammed code designed for DDC control systems.
 1) Function blocks shall be assembled with interconnection lines that represent control sequence in a flowchart.
 2) Programming tools shall be viewable in real time to show present values and logical results of each function block.
 b. Menu Based: Programming shall be done by entering parameters, definitions, conditions, requirements and constraints.
 c. Line by Line and Text Based: Programming shall declare variable types such as local, global, real, integer, and so on, at the beginning of the program. Use descriptive comments frequently to describe programming code.
 4. Include means for detecting programming errors and testing software control strategies with a simulation tool before implementing in actual control. Simulation tool may be inherent with programming software or as a separate product.

Q. Database Management Software:
1. Where a separate SQL database is used for information storage, DDC system shall include database management software that separates database monitoring and managing functions by supporting multiple separate windows.

2. Database secure access shall be accomplished using standard SQL authentication including ability to access data for use outside of DDC system applications.

3. Database management function shall include summarized information on trend, alarm, event, and audit for the following database management actions:
 a. Backup.
 b. Purge.
 c. Restore.

4. Database management software shall support the following:
 a. Statistics: Display database server information and trend, alarm, event, and audit information on database.
 b. Maintenance: Include method of purging records from trend, alarm, event and audit databases by supporting separate screens for creating a backup before purging, selecting database, and allowing for retention of a selected number of day's data.
 c. Backup: Include means to create a database backup file and select a storage location.
 d. Restore: Include a restricted means of restoring a database by requiring operator to have proper security level.

5. Database management software shall include information of current database activity, including the following:
 a. Ready.
 b. Purging record from a database.
 c. Action failed.
 d. Refreshing statistics.
 e. Restoring database.
 f. Shrinking a database.
 g. Backing up a database.
 h. Resetting Internet information services.
 i. Starting network device manager.
 j. Shutting down the network device manager.
 k. Action successful.

6. Database management software monitoring functions shall continuously read database information once operator has logged on.

7. Include operator notification through on-screen pop-up display and e-mail message when database value has exceeded a warning or alarm limit.

8. Monitoring settings window shall have the following sections:
 a. Allow operator to set and review scan intervals and start times.
 b. E-mail: Allow operator to create and review e-mail and phone text messages to be delivered when a warning or an alarm is generated.
c. Warning: Allow operator to define warning limit parameters, set reminder frequency and link e-mail message.
d. Alarm: Allow operator to define alarm limit parameters, set reminder frequency and link e-mail message.
e. Database Login: Protect system from unauthorized database manipulation by creating a read access and a write access for each of trend, alarm, event and audit databases as well as operator proper security access to restore a database.

9. Monitoring settings taskbar shall include the following informational icons:
 a. Normal: Indicates by color and size, or other easily identifiable means that all databases are within their limits.
 b. Warning: Indicates by color and size, or other easily identifiable means that one or more databases have exceeded their warning limit.
 c. Alarm: Indicates by color and size, or other easily identifiable means that one or more databases have exceeded their alarm limit.

2.11 ASHRAE 135 GATEWAYS

A. Include BACnet communication ports, whenever available as an equipment OEM standard option, for integration via a single communication cable. BACnet-controlled equipment includes, but is not limited to, VRF System and DOAS Unit.

B. Include gateways to connect BACnet to legacy systems, existing non-BACnet devices, and existing non-BACnet DDC-controlled equipment, only when specifically requested and approved by Owner.

C. Include with each gateway an interoperability schedule showing each point or event on legacy side that BACnet "client" will read, and each parameter that BACnet network will write to. Describe this interoperability of BACnet services, or BIBBs, defined in ASHRAE 135, Annex K.

D. Gateway Minimum Requirements:
 1. Read and view all readable object properties on non-BACnet network to BACnet network and vice versa where applicable.
 2. Write to all writeable object properties on non-BACnet network from BACnet network and vice versa where applicable.
 3. Include single-pass (only one protocol to BACnet without intermediary protocols) translation from non-BACnet protocol to BACnet and vice versa.
 4. Comply with requirements of Data Sharing Read Property, Data Sharing Write Property, Device Management Dynamic Device Binding-B, and Device Management Communication Control BIBBs according to ASHRAE 135.
 5. Hardware, software, software licenses, and configuration tools for operator-to-gateway communications.
 6. Backup programming and parameters on CD media and the ability to modify, download, backup, and restore gateway configuration.
2.12 ASHRAE 135 PROTOCOL ANALYZER

A. Analyzer and required cables and fittings for connection to ASHRAE 135 network.

B. Analyzer shall include the following minimum capabilities:
 1. Capture and store to a file data traffic on all network levels.
 2. Measure bandwidth usage.
 3. Filtering options with ability to ignore select traffic.

2.13 WIRELESS ROUTERS FOR OPERATOR INTERFACE

A. Single-Band Wireless Routers:
 1. Description: High-speed router with integral Ethernet ports.
 2. Technology: IEEE 802.11n; 2.4-GHz speed band.
 3. Speed: Up to 300 Mbps.
 4. Compatibility: IEEE 802.11n/g/b/a wireless devices.
 5. Ethernet Ports: Four, gigabit (1000 Mbps).
 6. Wireless Security: Wi-Fi Protected Access (WPA) and WPA2 according to IEEE 802.11i.

B. Dual-Band Wireless Routers:
 1. Description: High-speed, dual-band router with integral Ethernet ports and USB port.
 2. Technology: IEEE 802.11n; 2.4- and 5-GHz speed bands.
 3. Speed: Up to 300 Mbps on 2.4-GHz band and up to 450 Mbps on 5-GHz band.
 4. Compatibility: IEEE 802.11n/g/b/a wireless devices.
 5. Ethernet Ports: Four, gigabit (1000 Mbps).
 6. USB Port: One, USB 2.0 or 3.0.
 7. Wireless Security: Wi-Fi Protected Access (WPA) and WPA2 according to IEEE 802.11i.

2.14 DDC CONTROLLERS

A. DDC system shall consist of a combination of network controllers, programmable application controllers and application-specific controllers to satisfy performance requirements indicated.

B. DDC controllers shall perform monitoring, control, energy optimization and other requirements indicated.

C. DDC controllers shall use a multitasking, multiuser, real-time digital control microprocessor with a distributed network database and intelligence.

D. Each DDC controller shall be capable of full and complete operation as a completely independent unit and as a part of a DDC system wide distributed network.

E. Environment Requirements:
 1. Controller hardware shall be suitable for the anticipated ambient conditions.
2. Controllers located in conditioned space shall be rated for operation at 32 to 120 deg F (Zero to 50 deg C).
3. Controllers located outdoors shall be rated for operation at 40 to 150 deg F (40 to 65 deg C).

F. Power and Noise Immunity:

1. Controller shall operate at 90 to 110 percent of nominal voltage rating and shall perform an orderly shutdown below 80 percent of nominal voltage.
2. Operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios with up to 5 W of power located within 36 inches (900 mm) of enclosure.

G. DDC Controller Spare Processing Capacity:

1. Include spare processing memory for each controller. RAM, PROM, or EEPROM will implement requirements indicated with the following spare memory:
 a. Network Controllers: 50 percent.
 b. Programmable Application Controllers: Not less than 60 percent.
 c. Application-Specific Controllers: Not less than 70 percent.

2. Memory shall support DDC controller's operating system and database and shall include the following:
 a. Monitoring and control.
 b. Energy management, operation and optimization applications.
 c. Alarm management.
 d. Historical trend data of all connected I/O points.
 e. Maintenance applications.
 f. Operator interfaces.
 g. Monitoring of manual overrides.

H. DDC Controller Spare I/O Point Capacity: Include spare I/O point capacity for each controller as follows:

1. Network Controllers:
 a. 10 percent of each AI, AO, BI, and BO point connected to controller.
 b. Minimum Spare I/O Points per Controller:
 1) AIs: Two.
 2) AOs: Two.
 3) BIs: Three.
 4) BOs: Three.

2. Programmable Application Controllers:
 a. 10 percent of each AI, AO, BI, and BO point connected to controller.
 a. Minimum Spare I/O Points per Controller:
1) AIs: Two.
2) AOs: Two.
3) BIs: Three.
4) BOs: Three.

3. Application-Specific Controllers:
 a. Minimum Spare I/O Points per Controller:
 1) AIs: Two.
 2) AOs: Two.
 3) BIs: Three.
 4) BOs: Three.

I. Maintenance and Support: Include the following features to facilitate maintenance and support:
 1. Mount microprocessor components on circuit cards for ease of removal and replacement.
 2. Means to quickly and easily disconnect controller from network.
 3. Means to quickly and easily access connect to field test equipment.
 4. Visual indication that controller electric power is on, of communication fault or trouble, and that controller is receiving and sending signals to network.

J. Input and Output Point Interface:
 1. Hardwired input and output points shall connect to network, programmable application and application-specific controllers.
 2. Input and output points shall be protected so shorting of point to itself, to another point, or to ground will not damage controller.
 3. Input and output points shall be protected from voltage up to 24 V of any duration so that contact will not damage controller.
 4. AIs:
 a. AIs shall include monitoring of low-voltage (zero- to 10-V dc), current (4 to 20 mA) and resistance signals from thermistor and RTD sensors.
 b. AIs shall be compatible with, and field configurable to, sensor and transmitters installed.
 c. Controller AIs shall perform analog-to-digital (A-to-D) conversion with a minimum resolution of 8 bits or better to comply with accuracy requirements indicated.
 d. Signal conditioning including transient rejection shall be provided for each AI.
 e. Capable of being individually calibrated for zero and span.
 f. Incorporate common-mode noise rejection of at least 50 dB from zero to 100 Hz for differential inputs, and normal-mode noise rejection of at least 20 dB at 60 Hz from a source impedance of 10000 ohms.

5. AOs:
a. Controller AOs shall perform analog-to-digital (A-to-D) conversion with a minimum resolution of 8 bits or better to comply with accuracy requirements indicated.
b. Output signals shall have a range of 4 to 20 mA dc or zero- to 10-V dc as required to include proper control of output device.
c. Capable of being individually calibrated for zero and span.
d. AOs shall not exhibit a drift of greater than 0.4 percent of range per year.

6. BIs:
 a. Controller BIs shall accept contact closures and shall ignore transients of less than 5-ms duration.
 b. Isolation and protection against an applied steady-state voltage of up to 180-V ac peak.
 c. BIs shall include a wetting current of at least 12 mA to be compatible with commonly available control devices and shall be protected against effects of contact bounce and noise.
 d. BIs shall sense "dry contact" closure without external power (other than that provided by the controller) being applied.
 e. Pulse accumulation input points shall comply with all requirements of BIs and accept up to 10 pulses per second for pulse accumulation. Buffer shall be provided to totalize pulses. Pulse accumulator shall accept rates of at least 20 pulses per second. The totalized value shall be reset to zero on operator's command.

7. BOs:
 a. Controller BOs shall include relay contact closures or triac outputs for momentary and maintained operation of output devices.
 1) Relay contact closures shall have a minimum duration of 0.1 second. Relays shall include at least 180 V of isolation. Electromagnetic interference suppression shall be provided on all output lines to limit transients to non-damaging levels. Minimum contact rating shall be 1 A at 24-V ac.
 2) Triac outputs shall include at least 180 V of isolation. Minimum contact rating shall be 1 A at 24-V ac.
 b. BOs shall include for two-state operation or a pulsed low-voltage signal for pulse-width modulation control.
 c. BOs shall be selectable for either normally open or normally closed operation.
 d. Include tristate outputs (two coordinated BOs) for control of three-point floating-type electronic actuators without feedback.

2.15 NETWORK CONTROLLERS

A. General Network Controller Requirements:
 1. Include adequate number of controllers to achieve performance indicated.
 2. System shall consist of one or more independent, standalone, microprocessor-based network controllers to manage global strategies indicated.
3. Controller shall have enough memory to support its operating system, database, and programming requirements.
4. Data shall be shared between networked controllers and other network devices.
5. Operating system of controller shall manage input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
6. Controllers that perform scheduling shall have a real-time clock.
7. Controller shall continually check status of its processor and memory circuits. If an abnormal operation is detected, controller shall assume a predetermined failure mode and generate an alarm notification.
8. Controllers shall be fully programmable.

B. Communication:

1. Network controllers shall communicate with other devices on DDC system Level one network.
2. Network controller also shall perform routing if connected to a network of programmable application and application-specific controllers.

C. Operator Interface:

1. Controller shall be equipped with a service communications port for connection to a portable operator's workstation or PDA.
2. Local Keypad and Display:
 a. Equip controller with local keypad and digital display for interrogating and editing data.
 b. Use of keypad and display shall require security password.

D. Serviceability:

1. Controller shall be equipped with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
2. Wiring and cable connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
3. Controller shall maintain BIOS and programming information in event of a power loss for at least 72 hours.

2.16 PROGRAMMABLE APPLICATION CONTROLLERS

A. General Programmable Application Controller Requirements:

1. Include adequate number of controllers to achieve performance indicated.
2. Controller shall have enough memory to support its operating system, database, and programming requirements.
3. Data shall be shared between networked controllers and other network devices.
4. Operating system of controller shall manage input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
5. Controllers that perform scheduling shall have a real-time clock.
6. Controller shall continually check status of its processor and memory circuits. If an abnormal operation is detected, controller shall assume a predetermined failure mode and generate an alarm notification.
7. Controllers shall be fully programmable.

B. Communication:

1. Programmable application controllers shall communicate with other devices on network.

C. Operator Interface:

1. Controller shall be equipped with a service communications port for connection to a portable operator's workstation or PDA.
2. Local Keypad and Display:
 a. Equip controller with local keypad and digital display for interrogating and editing data.
 b. Use of keypad and display shall require security password.

D. Serviceability:

1. Controller shall be equipped with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
2. Wiring and cable connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
3. Controller shall maintain BIOS and programming information in event of a power loss for at least 72 hours.

2.17 APPLICATION-SPECIFIC CONTROLLERS

A. Description: Microprocessor-based controllers, which through hardware or firmware design are dedicated to control a specific piece of equipment. Controllers are not fully user-programmable but are configurable and customizable for operation of equipment they are designed to control.

1. Capable of standalone operation and shall continue to include control functions without being connected to network.
2. Data shall be shared between networked controllers and other network devices.

B. Communication: Application-specific controllers shall communicate with other application-specific controller and devices on network, and to programmable application and network controllers.

C. Operator Interface: Controller shall be equipped with a service communications port for connection to a portable operator's workstation. Connection shall extend to port on space temperature sensor that is connected to controller.

D. Serviceability:
1. Controller shall be equipped with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
2. Wiring and cable connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
3. Controller shall use nonvolatile memory and maintain all BIOS and programming information in event of power loss.

2.18 CONTROLLER SOFTWARE

A. General Controller Software Requirements:

1. Software applications shall reside and operate in controllers. Editing of applications shall occur at operator workstations.
2. I/O points shall be identified by up to 30-character point name and up to 16-character point descriptor. Same names shall be used at operator workstations.
3. Control functions shall be executed within controllers using DDC algorithms.
4. Controllers shall be configured to use stored default values to ensure fail-safe operation. Default values shall be used when there is a failure of a connected input instrument or loss of communication of a global point value.

B. Security:

1. Operator access shall be secured using individual security passwords and usernames.
2. Passwords shall restrict operator to points, applications, and system functions as assigned by system manager.
3. Operator log-on and log-off attempts shall be recorded.
4. System shall protect itself from unauthorized use by automatically logging off after last keystroke. The delay time shall be operator-definable.

C. Scheduling: Include capability to schedule each point or group of points in system. Each schedule shall consist of the following:

1. Weekly Schedule:
 a. Include separate schedules for each day of week.
 b. Each schedule should include the capability for start, stop, optimal start, optimal stop, and night economizer.
 c. Each schedule may consist of up to 10 events.
 d. When a group of objects are scheduled together, include capability to adjust start and stop times for each member.

2. Exception Schedules:
 a. Include ability for operator to designate any day of the year as an exception schedule.
 b. Exception schedules may be defined up to a year in advance. Once an exception schedule is executed, it will be discarded and replaced by regular schedule for that day of week.
3. Holiday Schedules:
 a. Include capability for operator to define up to 99 special or holiday schedules.
 b. Schedules may be placed on scheduling calendar and will be repeated each year.
 c. Operator shall be able to define length of each holiday period.

D. System Coordination:
 1. Include standard application for proper coordination of equipment.
 2. Application shall include operator with a method of grouping together equipment based on function and location.
 3. Group may then be used for scheduling and other applications.

E. Binary Alarms:
 1. Each binary point shall be set to alarm based on operator-specified state.
 2. Include capability to automatically and manually disable alarming.

F. Analog Alarms:
 1. Each analog object shall have both high and low alarm limits.
 2. Alarming shall be able to be automatically and manually disabled.

G. Alarm Reporting:
 1. Operator shall be able to determine action to be taken in event of an alarm.
 2. Alarms shall be routed to appropriate operator workstations based on time and other conditions.
 3. Alarm shall be able to start programs, print, be logged in event log, generate custom messages, and display graphics.

H. Remote Communication:
 1. System shall have ability to dial out in the event of an alarm.

I. Electric Power Demand Limiting:
 1. Demand-limiting program shall monitor building or other operator-defined electric power consumption from signals connected to electric power meter or from a watt transducer or current transformer.
 2. Demand-limiting program shall predict probable power demand such that action can be taken to prevent exceeding demand limit. When demand prediction exceeds demand limit, action will be taken to reduce loads in a predetermined manner. When demand prediction indicates demand limit will not be exceeded, action will be taken to restore loads in a predetermined manner.
 3. Demand reduction shall be accomplished by the following means:
 a. Reset air-handling unit supply temperature set points.
 b. Reset space temperature set points.
 c. De-energize equipment based on priority.
4. Demand-limiting parameters, frequency of calculations, time intervals, and other relevant variables shall be based on the means by which electric power service provider computes demand charges.

5. Include demand-limiting prediction and control for any individual meter monitored by system or for total of any combination of meters.

6. Include means operator to make the following changes online:
 a. Addition and deletion of loads controlled.
 b. Changes in demand intervals.
 c. Changes in demand limit for meter(s).
 d. Maximum shutoff time for equipment.
 e. Minimum shutoff time for equipment.
 f. Select rotational or sequential shedding and restoring.
 g. Shed and restore priority.

7. Include the following information and reports, to be available on an hourly, daily, weekly, monthly and annual basis:
 a. Total electric consumption.
 b. Peak demand.
 c. Date and time of peak demand.
 d. Daily peak demand.

J. Maintenance Management: System shall monitor equipment status and generate maintenance messages based on operator-designated run-time, starts, and calendar date limits.

K. Sequencing: Include application software based on sequences of operation indicated to properly sequence chillers, boilers, and other applicable HVAC equipment.

L. Control Loops:
 1. Support any of the following control loops, as applicable to control required:
 a. Two-position (on/off, open/close, slow/fast) control.
 b. Proportional control.
 c. Proportional plus integral (PI) control.
 d. Proportional plus integral plus derivative (PID) control.
 1) Include PID algorithms with direct or reverse action and anti-windup.
 2) Algorithm shall calculate a time-varying analog value used to position an output or stage a series of outputs.
 3) Controlled variable, set point, and PID gains shall be operator-selectable.
 e. Adaptive (automatic tuning).

M. Staggered Start: Application shall prevent all controlled equipment from simultaneously restarting after a power outage. Order which equipment (or groups of equipment) is started, along with the time delay between starts, shall be operator-selectable.

N. Energy Calculations:
1. Include software to allow instantaneous power or flow rates to be accumulated and converted to energy usage data.
2. Include an algorithm that calculates a sliding-window average (rolling average). Algorithm shall be flexible to allow window intervals to be operator specified (such as 15, 30, or 60 minutes).
3. Include an algorithm that calculates a fixed-window average. A digital input signal shall define start of window period (such as signal from utility meter) to synchronize fixed-window average with that used by utility.

O. Anti-Short Cycling:
1. BO points shall be protected from short cycling.
2. Feature shall allow minimum on-time and off-time to be selected.

P. On and Off Control with Differential:
1. Include an algorithm that allows a BO to be cycled based on a controlled variable and set point.
2. Algorithm shall be direct- or reverse-acting and incorporate an adjustable differential.

Q. Run-Time Totalization:
1. Include software to totalize run-times for all BI and BO points.
2. A high run-time alarm shall be assigned, if required, by operator.

2.19 ENCLOSURES

A. General Enclosure Requirements:
1. House each controller and associated control accessories in a single enclosure. Enclosure shall serve as central tie-in point for control devices such as switches, transmitters, transducers, power supplies and transformers.
2. Do not house more than one controller in a single enclosure.
3. Include enclosure door with key locking mechanism. Key locks alike for all enclosures and include one pair of keys per enclosure.
4. Equip doors of enclosures housing controllers and components with analog or digital displays with windows to allow visual observation of displays without opening enclosure door.
5. Individual wall-mounted single-door enclosures shall not exceed 36 inches wide and 48 inches high.
6. Individual wall-mounted double-door enclosures shall not exceed 60 inches wide and 36 inches high.
7. Include wall-mounted enclosures with brackets suitable for mounting enclosures to wall or freestanding support stand as indicated.
8. Supply each enclosure with a complete set of as-built schematics, tubing, and wiring diagrams and product literature located in a pocket on inside of door. For enclosures with windows, include pocket on bottom of enclosure.

B. Internal Arrangement:
1. Internal layout of enclosure shall group and protect pneumatic, electric, and electronic components associated with a controller, but not an integral part of controller.
2. Arrange layout to group similar products together.
3. Include a barrier between line-voltage and low-voltage electrical and electronic products.
4. Factory or shop install products, tubing, cabling and wiring complying with requirements and standards indicated.
5. Terminate field cable and wire using heavy-duty terminal blocks.
6. Include spare terminals, equal to not less than 10 percent of used terminals.
7. Include spade lugs for stranded cable and wire.
8. Install a maximum of two wires on each side of a terminal.
9. Include enclosure field power supply with a toggle-type switch located at entrance inside enclosure to disconnect power.
10. Include enclosure with a line-voltage nominal 20-A GFCI duplex receptacle for service and testing tools. Wire receptacle on hot side of enclosure disconnect switch and include with a 5-A circuit breaker.
11. Mount products within enclosure on removable internal panel(s).
12. Include products mounted in enclosures with engraved, laminated phenolic nameplates (black letters on a white background). The nameplates shall have at least 1/4-inch-high lettering.
13. Route tubing cable and wire located inside enclosure within a raceway with a continuous removable cover.
14. Label each end of cable, wire and tubing in enclosure following an approved identification system that extends from field I/O connection and all intermediate connections throughout length to controller connection.
15. Size enclosure internal panel to include at least 25 percent spare area on face of panel.

C. Environmental Requirements:

1. Evaluate temperature and humidity requirements of each product to be installed within each enclosure.
2. Calculate enclosure internal operating temperature considering heat dissipation of all products installed within enclosure and ambient effects (solar, conduction and wind) on enclosure.
3. Where required by application, include temperature-controlled electrical heat to maintain inside of enclosure above minimum operating temperature of product with most stringent requirement.
4. Where required by application, include temperature-controlled ventilation fans with filtered louver(s) to maintain inside of enclosure below maximum operating temperature of product with most stringent requirement.
5. Include temperature-controlled cooling within the enclosure for applications where ventilation fans cannot maintain inside temperature of enclosure below maximum operating temperature of product with most stringent requirement.
6. Where required by application, include humidity-controlled electric dehumidifier or cooling to maintain inside of enclosure below maximum relative humidity of product with most stringent requirement and to prevent surface condensation within enclosure.

D. Wall-Mounted, NEMA 250, Type 1:

1. Enclosure shall be NRTL listed according to UL 50 or UL 50E.
2. Construct enclosure of steel, not less than:
a. Enclosure size less than 24 in. (600 mm): 0.053 in. (1.35 mm) or 0.067 in. (1.7 mm) thick.
b. Enclosure size 24 in. (600 mm) and larger: 0.067 in. (1.7 mm) or 0.093 in. (2.36 mm) thick.

3. Finish enclosure inside and out with polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 a. Exterior color shall be selected by Architect.
 b. Interior color shall be manufacturer's standard.

4. Hinged door full size of front face of enclosure and supported using:
 a. Enclosures sizes less than 36 in. (900 mm) tall: Multiple butt hinges.
 b. Enclosures sizes 36 in. (900 mm) tall and larger: Continuous piano hinges.

5. Removable internal panel with a white polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 a. Size less than 24 in. (600 mm): Solid or perforated steel, 0.053 in. (1.35 mm) thick.
 b. Size 24 in. (600 mm) and larger: Solid aluminum, 0.10 in. (3 mm) or steel, 0.093 in. (2.36 mm) thick.

6. Internal panel mounting hardware, grounding hardware and sealing washers.

7. Grounding stud on enclosure body.

8. Thermoplastic pocket on inside of door for record Drawings and Product Data.

E. Wall Mounted NEMA 250, Types 4 and 12:
1. Enclosure shall be NRTL listed according to UL 508A.
2. Seam and joints are continuously welded and ground smooth.
3. Where recessed enclosures are indicated, include enclosures with face flange for flush mounting.
4. Externally formed body flange around perimeter of enclosure face for continuous perimeter seamless gasket door seal.
5. Single-door enclosure sizes up to 60 inches tall by 36 inches wide (1500 mm tall by 900 mm wide).
6. Double-door enclosure sizes up to 36 inches tall by 60 inches wide (900 mm tall by 1500 mm wide).
7. Construct enclosure of steel, not less than the following:
 c. Enclosure size less than 24 in. (600 mm): 0.053 in. (1.35 mm) or 0.067 in. (1.7 mm) thick.
 a. Size 24 Inches (600 mm) and Larger: 0.067 inch (1.7 mm) thick.

8. Finish enclosure with polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 a. Exterior color shall be as selected by Architect.
 b. Interior color shall be manufacturer's standard.
9. Corner-formed door, full size of enclosure face, supported using multiple concealed hinges with easily removable hinge pins.
 a. Sizes through 24 Inches (600 mm) Tall: Two hinges.
 b. Sizes between 24 Inches (600 mm) through 48 Inches (1200 mm) Tall: Three hinges.
 c. Sizes Larger 48 Inches (1200 mm) Tall: Four hinges.

10. Double-door enclosures with overlapping door design to include unobstructed full-width access.
 a. Single-door enclosures 48 inches (1200 mm) and taller, and all double-door enclosures, with three-point (top, middle and bottom) latch system.

11. Removable internal panel with a white polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 d. Size less than 24 in. (600 mm): Solid or perforated steel, 0.053 in. (1.35 mm) thick.
 a. Size 24 in. (600 mm) and larger: Solid aluminum, 0.10 in. (3 mm) or steel, 0.093 in. (2.36 mm) thick.

12. Internal panel mounting studs with hardware, grounding hardware, and sealing washers.

14. Thermoplastic pocket on inside of door for record Drawings and Product Data.

2.20 RELAYS

A. General-Purpose Relays:
 1. Relays shall be heavy duty and rated for at least 10 A at 250-V ac and 60 Hz.
 2. Relays shall be either double pole double throw (DPDT) or three-pole double throw, depending on the control application.
 3. Use a plug-in-style relay with an eight-pin octal plug for DPDT relays and an 11-pin octal plug for three-pole double-throw relays.
 4. Construct the contacts of either silver cadmium oxide or gold.
 5. Enclose the relay in a clear transparent polycarbonate dust-tight cover.
 6. Relays shall have LED indication and a manual reset and push-to-test button.
 7. Performance:
 a. Mechanical Life: At least 10 million cycles.
 b. Electrical Life: At least 100,000 cycles at rated load.
 c. Pickup Time: 15 ms or less.
 d. Dropout Time: 10 ms or less.
 e. Pull-in Voltage: 85 percent of rated voltage.
 f. Dropout Voltage: 50 percent of nominal rated voltage.
 g. Power Consumption: 2 VA.
 h. Ambient Operating Temperatures: Minus 40 to 115 deg F (Minus 40 to 46 deg C).
 8. Equip relays with coil transient suppression to limit transients to non-damaging levels.
9. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.

10. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.

B. Multifunction Time-Delay Relays:

1. Relays shall be continuous duty and rated for at least 10 A at 240-V ac and 60 Hz.
2. Relays shall be DPDT relay with up to eight programmable functions to provide on/off delay, interval and recycle timing functions.
3. Use a plug-in-style relay with either an 8- or 11-pin octal plug.
4. Construct the contacts of either silver cadmium oxide or gold.
5. Enclose the relay in a dust-tight cover.
6. Include knob and dial scale for setting delay time.
7. Performance:
 a. Mechanical Life: At least 10 million cycles.
 b. Electrical Life: At least 100,000 cycles at rated load.
 c. Timing Ranges: Multiple ranges from 0.1 seconds to 100 minutes.
 d. Repeatability: Within 2 percent.
 e. Recycle Time: 45 ms.
 f. Minimum Pulse Width Control: 50 ms.
 g. Power Consumption: 5 VA or less at 120-V ac.
 h. Ambient Operating Temperatures: Minus 40 to 115 deg F (Minus 40 to 46 deg C).

8. Equip relays with coil transient suppression to limit transients to non-damaging levels.

9. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.

10. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.

C. Latching Relays:

1. Relays shall be continuous duty and rated for at least 10 A at 250-V ac and 60 Hz.
2. Relays shall be either DPDT or three-pole double throw, depending on the control application.
3. Use a plug-in-style relay with a multibladed plug.
4. Construct the contacts of either silver cadmium oxide or gold.
5. Enclose the relay in a clear transparent polycarbonate dust-tight cover.
6. Performance:
 a. Mechanical Life: At least 10 million cycles.
 b. Electrical Life: At least 100,000 cycles at rated load.
 c. Pickup Time: 15 ms or less.
 d. Dropout Time: 10 ms or less.
 e. Pull-in Voltage: 85 percent of rated voltage.
 f. Dropout Voltage: 50 percent of nominal rated voltage.
 g. Power Consumption: 2 VA.
 h. Ambient Operating Temperatures: Minus 40 to 115 deg F (Minus 40 to 46 deg C).

7. Equip relays with coil transient suppression to limit transients to non-damaging levels.
8. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.
9. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.

D. Current Sensing Relay:
 1. Monitors ac current.
 2. Independent adjustable controls for pickup and dropout current.
 3. Energized when supply voltage is present and current is above pickup setting.
 4. De-energizes when monitored current is below dropout current.
 5. Dropout current is adjustable from 50 to 95 percent of pickup current.
 6. Include a current transformer, if required for application.
 7. House current sensing relay and current transformer in its own enclosure. Use NEMA 250, Type 12 enclosure for indoors and NEMA 250, Type 4 for outdoors.

E. Combination On-Off Status Sensor and On-Off Relay:
 1. Description:
 a. On-off control and status indication in a single device.
 b. LED status indication of activated relay and current trigger.
 c. Closed-Open-Auto override switch located on the load side of the relay.
 2. Performance:
 a. Ambient Temperature: Minus 30 to 140 deg F (Minus 34 to 60 deg C).
 3. Status Indication:
 a. Current Sensor: Integral sensing for single-phase loads up to 20 A and external solid or split sensing ring for three-phase loads up to 150 A.
 b. Current Sensor Range: As required by application.
 c. Current Set Point: Fixed or adjustable as required by application.
 d. Current Sensor Output:
 1) Solid-state, single-pole double-throw contact rated for 30-V ac and dc and for 0.4 A.
 2) Solid-state, single-pole double-throw contact rated for 120-V ac and 1.0 A.
 3) Analog, zero- to 5- or 10-V dc.
 4) Analog, 4 to 20 mA, loop powered.
 5. Enclosure: NEMA 250, Type 1 enclosure.
2.21 ELECTRICAL POWER DEVICES

A. Transformers:
 1. Transformer shall be sized for the total connected load, plus an additional 25 percent of connected load.
 2. Transformer shall be at least 40 VA.
 3. Transformer shall have both primary and secondary fuses.

B. Power-Line Conditioner:
 1. General Power-Line Conditioner Requirements:
 a. Design to ensure maximum reliability, serviceability and performance.
 b. Overall function of the power-line conditioner is to receive raw, polluted electrical power and purify it for use by electronic equipment. The power-line conditioner shall provide isolated, regulated, transient and noise-free sinusoidal power to loads served.
 2. Standards: NRTL listed per UL 1012.
 3. Performance:
 a. Single phase, continuous, 100 percent duty rated KVA/KW capacity. Design to supply power for linear or nonlinear, high crest factor, resistive and reactive loads.
 b. Automatically regulate output voltage to within 2 percent or better with input voltage fluctuations of plus 10 to minus 20 percent of nominal when system is loaded 100 percent. Use Variable Range Regulation to obtain improved line voltage regulation when operating under less than full load conditions.
 1) At 75 Percent Load: Output voltage automatically regulated to within 3 percent with input voltage fluctuations of plus 10 to minus 35 percent of nominal.
 2) At 50 Percent Load: Output voltage automatically regulated to within 3 percent with input voltage fluctuations of plus 10 to minus 40 percent of nominal.
 3) At 25 Percent Load: Output voltage automatically regulated to within 3 percent with input voltage fluctuations of plus 10 to minus 45 percent of nominal.
 c. With input voltage distortion of up to 40 percent, limit the output voltage sine wave to a maximum harmonic content of 5 percent.
 d. Automatically regulate output voltage to within 2.5 percent when load (resistive) changes from zero percent to 100 percent to zero percent.
 e. Output voltage returns to 95 percent of nominal level within two cycles and to 100 percent within three cycles when the output is taken from no load to full resistive load or vice-versa. Recovery from partial resistive load changes is corrected in a shorter period of time.
 f. K Factor: 30, designed to operate with nonlinear, non-sinusoidal, high crest factor loads without overheating.
 g. Input power factor within 0.95 approaching unity with load power factor as poor as 0.6.
h. Attenuate load-generated odd current harmonics 23 dB at the input.

i. Electrically isolate the primary from the secondary. Meet isolation criteria as defined in NFPA 70, Article 250-5D.

j. Lighting and Surge Protection: Compares to UL 1449 rating of 330 V when subjected to Category B3 (6000 V/3000 A) combination waveform as established by IEEE C62.41.

k. Common-mode noise attenuation of 140 dB.

l. Transverse-mode noise attenuation of 120 dB.

m. With loss of input power for up to 16.6 ms, the output sine wave remains at usable ac voltage levels.

n. Reliability of 200,000 hours' MTBF.

o. At full load, when measured at 1-m distance, audible noise is not to exceed 54 dB.

p. Approximately 92 percent efficient at full load.

4. Transformer Construction:

a. Ferro resonant, dry type, convection cooled, 600V class. Transformer windings of Class H (220 deg C) insulated copper.

b. Use a Class H installation system throughout with operating temperatures not to exceed 150 deg C over a 40-deg C ambient temperature.

c. Configure transformer primary for multi-input voltage. Include input terminals for source conductors and ground.

d. Manufacture transformer core using M-6 grade, grain-oriented, stress-relieved transformer steel.

e. Configure transformer secondary in a 240/120-V split with a 208-V tap or straight 120 V, depending on power output size.

f. Electrically isolate the transformer secondary windings from the primary windings. Bond neutral conductor to cabinet enclosure and output neutral terminal.

g. Include interface terminals for output power hot, neutral and ground conductors.

h. Label leads, wires and terminals to correspond with circuit wiring diagram.

i. Vacuum impregnate transformer with epoxy resin.

5. Cabinet Construction:

a. Design for panel or floor mounting.

b. NEMA 250, Type 1, general-purpose, indoor enclosure.

c. Manufacture the cabinet from heavy gauge steel complying with UL 50.

d. Include a textured baked-on paint finish.

C. Transient Voltage Suppression and High-Frequency Noise Filter Unit:

1. The maximum continuous operating voltage shall be at least 125 percent.

2. The operating frequency range shall be 47 to 63 Hz.

3. Protection modes according to NEMA LS-1.

4. The rated single-pulse surge current capacity, for each mode of protection, shall be no less than the following:

a. Line to Neutral: 45,000 A.

b. Neutral to Ground: 45,000 A.

c. Line to Ground: 45,000 A.

d. Per Phase: 90,000 A.
5. Clamping voltages shall be in compliance with test and evaluation procedures defined in NEMA LS-1. Maximum clamping voltage shall be as follows:

a. Line to Neutral: 360 V.

b. Line to Ground: 360 V.

c. Neutral to Ground: 360 V.

6. Electromagnetic interference and RF interference noise rejection or attenuation values shall comply with test and evaluation procedures defined in NEMA LS-1.

a. Line to Neutral:
 1) 100 kHz: 42 dB.
 2) 1 MHz: 25 dB.
 3) 10 MHz: 21 dB.
 4) 100 MHz: 36 dB.

b. Line to Ground:
 1) 100 kHz: 16 dB.
 2) 1 MHz: 55 dB.
 3) 10 MHz: 81 dB.
 4) 100 MHz: 80 dB.

7. Unit shall have LED status indicator that extinguishes to indicate a failure.

8. Unit shall be listed by an NRTL as a transient voltage surge suppressor per UL 1449, and as an electromagnetic interference filter per UL 1283.

9. Unit shall not generate any appreciable magnetic field.

10. Unit shall not generate an audible noise.

D. DC Power Supply:

1. Plug-in style suitable for mating with a standard eight-pin octal socket. Include the power supply with a mating mounting socket.

2. Enclose circuitry in a housing.

3. Include both line and load regulation to ensure a stable output. To protect both the power supply and the load, power supply shall have an automatic current limiting circuit.

4. Performance:

 a. Output voltage nominally 25-V dc within 5 percent.
 b. Output current up to 100 mA.
 c. Input voltage nominally 120-V ac, 60 Hz.
 d. Load regulation within 0.5 percent from zero- to 100-mA load.
 e. Line regulation within 0.5 percent at a 100-mA load for a 10 percent line change.
 f. Stability within 0.1 percent of rated volts for 24 hours after a 20-minute warmup.

2.22 CONTROL WIRE AND CABLE

A. Wire: Single conductor control wiring above 24 V.
1. Wire size shall be at least No. 18 AWG.
2. Conductor shall be 7/24 soft annealed copper strand with 2- to 2.5-inch lay.
3. Conductor insulation shall be 600 V, Type THWN or Type THHN, and 90 deg C according to UL 83.
4. Conductor colors shall be black (hot), white (neutral), and green (ground).
5. Furnish wire on spools.

B. Single Twisted Shielded Instrumentation Cable above 24 V:

1. Wire size shall be a minimum No. 18 AWG.
2. Conductors shall be a twisted, 7/24 soft annealed copper strand with a 2- to 2.5-inch lay.
3. Conductor insulation shall have a Type THHN/THWN or Type TFN rating.
4. Shielding shall be 100 percent type, 0.35/0.5-mil aluminum/Mylar tape, helically applied with 25 percent overlap, and aluminum side in with tinned copper drain wire.
5. Outer jacket insulation shall have a 600-V, 90-deg C rating and shall be Type TC cable.
6. For twisted pair, conductor colors shall be black and white. For twisted triad, conductor colors shall be black, red and white.
7. Furnish wire on spools.

C. Single Twisted Shielded Instrumentation Cable 24 V and Less:

1. Wire size shall be a minimum No. 18 AWG.
2. Conductors shall be a twisted, 7/24 soft annealed copper stranding with a 2- to 2.5-inch lay.
3. Conductor insulation shall have a nominal 15-mil thickness, constructed from flame-retardant PVC.
4. Shielding shall be 100 percent type, 1.35-mil aluminum/polymer tape, helically applied with 25 percent overlap, and aluminum side in with tinned copper drain wire.
5. Outer jacket insulation shall have a 300-V, 105-deg C rating and shall be Type PLTC cable.
6. For twisted pair, conductor colors shall be black and white. For twisted triad, conductor colors shall be black, red and white.
7. Furnish wire on spools.

D. LAN and Communication Cable: Comply with DDC system manufacturer requirements for network being installed.

1. Cable shall be plenum rated.
2. Cable shall comply with NFPA 70.
3. Cable shall have a unique color that is different from other cables used on Project.
4. Copper Cable for Ethernet Network:
 a. 1000BASE-T or 1000BASE-TX.
 b. TIA/EIA 586, Category 5e or Category 6.
 c. Minimum No. 24 AWG solid.
 d. Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP).
 e. Thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, Class CMP as plenum rated.
2.23 RACEWAYS FOR CONTROL WIRING, CABLEING AND TUBING

A. Metal Conduits, Tubing, and Fittings:

1. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. GRC: Comply with NEMA ANSI C80.1 and UL 6.
3. ARC: Comply with NEMA ANSI C80.5 and UL 6A.
4. IMC: Comply with NEMA ANSI C80.6 and UL 1242.
5. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit or IMC.
 a. Comply with NEMA RN 1.
 b. Coating Thickness: 0.040 inch (1 mm), minimum.
6. EMT: Comply with NEMA ANSI C80.3 and UL 797.
7. FMC: Comply with UL 1; zinc-coated steel or aluminum.
8. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
9. Fittings for Metal Conduit: Comply with NEMA ANSI FB 1 and UL 514B.
 a. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.
 b. Fittings for EMT:
 1) Material: Steel or die cast.
 2) Type: Setscrew or compression.
 c. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
 d. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints.
10. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.24 OPTICAL FIBER CABLE AND CONNECTORS

A. Cables:

1. Performance Requirements:
 a. Fiber: Multimode graded index. Core/cladding size shall be either 62.5/125 or 100/140 micrometers.
 b. Numerical Aperture:
 1) 62.5/125 Micrometer Fiber: 0.275 plus or minus 0.015.
 2) 100/140 Micrometer Fiber: 0.29 plus or minus 0.015.
c. Maximum Attenuation:

1) 850 nm: 6.0 dB/km.
2) 1300 nm: 5.0 dB/km.

d. Minimum Bandwidth Dispersion: 300 MHz-km at 850 nm.

e. Core/Cladding Index Difference: 0.3 percent plus or minus 0.05 percent, measured using refractive rear field measurement procedure.

f. Color-code finished fibers for easy identification.

g. Splice Loss: Fibers shall be spliced together to form a longer fiber using a commercially available fiber splicing machine recommended by cable manufacturer. Maximum loss per fiber splice shall be 0.20 dB.

h. Connection: Fibers shall be connected using fiber-optic connectors. Nominal connector loss shall not be greater than 1 dB.

i. Fiber-optic cable shall be suitable for use with 100Base-FX or 100Base-SX standard (as applicable) as defined in IEEE 802.3.

2. Mechanical and Environmental Requirements:

a. Tensile Strength: Fiber cable shall withstand a minimum tensile strength of 2700 N with maximum elongation of less than 0.5 percent.

b. Bending Radius: Minimum static bending radius for cable shall be 10 times outside diameter for non-armored cables and 20 times outside diameter for armored cables. Non-armored cables shall withstand being flexed at minimum static bending radius plus or minus 90 degrees for at least 20 cycles at 20 to 40 cycles per minute at 20 deg C. Armored cables shall withstand being flexed at minimum static bending radius plus or minus 90 degrees for at least 10 cycles at 20 to 40 cycles per minute at 20 deg C.

c. Vibration: Cable shall withstand a vibration test with vibration amplitude of 5 mm and frequency of 10 cycles per second for at least five hours.

d. Twist: Cable shall withstand twisting of 360 degrees over a length of 2 m for at least 10 cycles at 10 cycles per minute.

e. Temperature: Cable shall withstand the following temperatures:

1) Installation: Minus 30 to 70 deg C.
2) Operation: Minus 40 to 70 deg C.
3) Storage/Shipping: Minus 40 to 70 deg C.

f. Lifetime: Average lifetime of a 2-km, 12-fiber cable shall be at least 20 years when installed in a natural ambient environment. End of useful life shall be reached if failing to comply with requirements indicated or a spontaneous catastrophic fiber failure.

g. Crush Resistance: Cable shall withstand a compressive force of 705 N/cm for armored cables and 600 N/cm for non-armored cables. There shall be no attenuation increase after force is removed.

3. Cable Structure:
a. Number of Fibers: Supply the required number of fibers in each cable for DDC system indicated, plus not less than 50 percent spare. Cable structure shall have fibers grouped for easy handling.
b. Strength Members: Include cable with strength members to satisfy mechanical and environmental conditions indicated.
c. Cable Core: Core shall consist of stranded buffer tubes around a central member of appropriate geometric size and shall be filled and bound to maintain core integrity. A fibrous strength member may be stranded around core to provide necessary strength for cable.
d. Cable Jacket: Protect cable by an extruded-polyethylene jacket.
e. Cable Armor: For cables requiring extra mechanical protection, one or two layers of galvanized corrugated steel tape coated by an anticorrosive compound shall be either helically or longitudinally applied over standard outer jacket. Apply a second outer jacket of polyethylene over coated steel tape. Thickness of sheaths and jackets are not specified as long as mechanical and environmental conditions are satisfied.
f. Cable Installation: Cables shall be suitable for a semiprotected outdoor installation.

4. Packaging and Shipping:

a. Seal both ends of each length of cable.
b. Test individual fibers in each cable before shipping to verify compliance with Specifications.

B. Connectors:

1. Performance Requirements:

a. Type: Fiber-optic connectors shall be either Type ST or Type SMA. Use either connector type exclusively. No substitutions are allowed.
b. Insertion Loss: Connector shall have an insertion loss of not greater than 1 dB.
c. Coupling Tolerance: Connector shall withstand at least 500 couplings with insertion loss within 0.25-dB tolerance limit.
d. Mechanical Requirements:

1) Connector shall enclose outermost coating of single fiber cable and be able to be mated or unmated without using a tool.
2) Mount connector rigidly in a metal frame.
3) Connector shall allow a semiskilled person to properly install connector to a single fiber easily in a field environment with simple tools.

C. Splice Organizer Cabinet:

1. Minimum Capacity: Each splice organizer shall accommodate number of connectors required for DDC system indicated, plus 100 percent spare.
2. Mounting: Wall mount the splice organizer cabinet.

D. Raceways:

1. Mechanical and Performance Requirements:
a. Construction: Nonmetallic, flexible raceway system manufactured specifically for routing fiber-optic cables.
b. Suitable for use in return-air plenums, air-handling rooms, above ceilings and under access floors.
c. Exhibit low smoke generation and flame-spread characteristics, and have high-temperature service tolerance.
d. Size raceway according to NFPA 70 requirements for communications cables.
e. Tensile Strength at Yield: 10,800 psi.
f. Elongation at Break: 25 percent.

E. Cable Identification:
1. Labeling product shall be self-laminating cable marker.
2. Cable labeling shall include numeric designation, source, destination, and cable type.

2.25 ACCESSORIES

A. Damper Blade Limit Switches:
1. Sense positive open and/or closed position of the damper blades.
2. NEMA 250, Type 13, oil-tight construction.
3. Arrange for the mounting application.
4. Additional waterproof enclosure when required by its environment.
5. Arrange to prevent "over-center" operation.

B. Instrument Enclosures:
1. Include instrument enclosure for secondary protection to comply with requirements indicated in "Performance Requirements" Article.
2. NRTL listed and labeled to UL 50.
3. Sized to include at least 25 percent spare area on subpanel.
4. Instrument(s) mounted within enclosure on internal subpanel(s).
5. Enclosure face with engraved, laminated phenolic nameplate for each instrument within enclosure.
6. Enclosures housing pneumatic instruments shall include main pressure gage and a branch pressure gage for each pneumatic device, installed inside.
7. Enclosures housing multiple instruments shall route tubing and wiring within enclosure in a raceway having a continuous removable cover.
8. Enclosures larger than 12 inches shall have a hinged full-size face cover.
9. Equip enclosure with lock and common key.

2.26 IDENTIFICATION

A. Control Equipment, Instruments, and Control Devices:
1. Engraved tag bearing unique identification.
 a. Include instruments with unique identification identified by equipment being controlled or monitored, followed by point identification.
2. Letter size shall be as follows:
 a. Servers: Minimum of 0.5 inch (13 mm) high.
 b. DDC Controllers: Minimum of 0.5 inch (13 mm) high.
 c. Enclosures: Minimum of 0.5 inch (13 mm) high.
 d. Electrical Power Devices: Minimum of 0.5 inch (13 mm) high.
 e. UPS units: Minimum of 0.5 inch (13 mm) high.
 f. Accessories: Minimum of 0.25 inch (6 mm) high.
 g. Instruments: Minimum of 0.25 inch (6 mm) high.
 h. Control Damper and Valve Actuators: Minimum of 0.25 inch (6 mm) high.

3. Tag shall consist of white lettering on black background.
4. Tag shall be engraved phenolic consisting of three layers of rigid laminate. Top and bottom layers are color-coded black with contrasting white center exposed by engraving through outer layer.
5. Tag shall be fastened with drive pins.
6. Instruments, control devices and actuators with Project-specific identification tags having unique identification numbers following requirements indicated and provided by original manufacturer do not require an additional tag.

B. Raceway and Boxes:

1. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
2. Paint cover plates on junction boxes and conduit same color as the tape banding for conduits. After painting, label cover plate "HVAC Controls," using an engraved phenolic tag.
3. For raceways housing pneumatic tubing, add a phenolic tag labeled "HVAC Instrument Air Tubing."
4. For raceways housing air signal tubing, add a phenolic tag labeled "HVAC Air Signal Tubing."

C. Equipment Warning Labels:

1. Acrylic label with pressure-sensitive adhesive back and peel-off protective jacket.
2. Lettering size shall be at least 14-point type with white lettering on red background.
3. Warning label shall read "CAUTION-Equipment operated under remote automatic control and may start or stop at any time without warning. Switch electric power disconnecting means to OFF position before servicing."
4. Lettering shall be enclosed in a white line border. Edge of label shall extend at least 0.25 inch (6 mm) beyond white border.

2.27 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate the following according to industry standards for each product, and to verify DDC system reliability specified in performance requirements:

1. DDC controllers.
2. Routers.
3. Operator workstations.

B. Product(s) and material(s) will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

1. Verify compatibility with and suitability of substrates.

B. Examine roughing-in for products to verify actual locations of connections before installation.

1. Examine roughing-in for instruments installed in piping to verify actual locations of connections before installation.
2. Examine roughing-in for instruments installed in duct systems to verify actual locations of connections before installation.

C. Examine walls, floors, roofs, and ceilings for suitable conditions where product will be installed.

D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 DDC SYSTEM INTERFACE WITH OTHER SYSTEMS AND EQUIPMENT

A. Communication Interface to Equipment with Integral Controls:

1. DDC system shall have communication interface with equipment having integral controls and having a communication interface for remote monitoring or control.
2. Equipment to Be Connected:
 a. Roof-top units specified in Section 237413 "Packaged, Outdoor, Central-Station Air-Handling Units."
 b. Switchboards specified in Section 262300 "Low-Voltage Switchgear."
 c. Motor-control centers specified in Section 262419 "Motor-Control Centers."
 d. Variable-frequency controllers specified in Section 262923 "Variable-Frequency Motor Controllers."

B. Communication Interface to Other Building Systems:
1. DDC system shall have a communication interface with systems having a communication interface.

2. Systems to Be Connected:
 a. Power monitoring specified in Section 260913 "Electrical Power Monitoring and Control."
 b. Lighting controls specified in Section 260926 "Lighting Control Panelboards."
 c. Lighting controls specified in Section 260943.16 "Addressable-Luminaire Lighting Controls."
 d. Lighting controls specified in Section 260943.23 "Relay-Based Lighting Controls."
 e. Fire-alarm system specified in Section 283111 "Digital, Addressable Fire Alarm System."
 f. Fire-alarm system specified in Section 283112 "Zoned (DC Loop) Fire-Alarm System."
 g. Access controls specified in Section 281300 "Access Control."
 h. Intrusion detection specified in Section 281600 "Intrusion Detection."

3.3 CONTROL DEVICES FOR INSTALLATION BY INSTALLERS

A. Deliver selected control devices, specified in indicated HVAC instrumentation and control device Sections, to identified equipment and systems manufacturers for factory installation and to identified installers for field installation.

B. Deliver the following to duct fabricator and Installer for installation in ductwork. Include installation instructions to Installer and supervise installation for compliance with requirements.
 1. DDC control dampers, which are specified in Section 230923.12 "DDC Control Dampers."
 2. Airflow sensors and switches, which are specified in Section 230923.14 "Flow Instruments."

C. Deliver the following to plumbing and HVAC piping installers for installation in piping. Include installation instructions to Installer and supervise installation for compliance with requirements.
 1. DDC control valves, which are specified in Section 230923.11 "Control Valves."
 2. Pipe-mounted flow meters, which are specified in Section 230923.14 "Flow Instruments."
 3. Pipe-mounted sensors, switches and transmitters. Flow meters are specified in Section 230923.14 "Flow Instruments." Liquid temperature sensors, switches, and transmitters are specified in Section 230923.27 "Temperature Instruments."
 4. Pressure sensors, switches, and transmitters are specified in Section 230923.23 "Pressure Instruments." Liquid temperature sensors, switches, and transmitters are specified in Section 230923.27 "Temperature Instruments."
 5. Pipe- and tank-mounted thermowells. Liquid thermowells are specified in Section 230923.27 "Temperature Instruments."
3.4 CONTROL DEVICES FOR EQUIPMENT MANUFACTURER FACTORY INSTALLATION

A. Deliver the following to air-handling unit manufacturer for factory installation. Include installation instructions to air-handling unit manufacturer.

1. Programmable application or application-specific controller.
2. Unit-mounted DDC control dampers and actuators, which are specified in Section 230923.12 "Control Dampers."
3. Unit-mounted airflow sensors, switches and transmitters, which are specified in Section 230923.14 "Flow Instruments."
4. Unit-mounted pressure sensors, switches and transmitters, which are specified in Section 230923.23 "Pressure Instruments."
5. Unit-mounted temperature sensors, switches and transmitters. Air-temperature sensors, switches, and transmitters are specified in Section 230923.27 "Temperature Instruments."
6. Relays.

B. Deliver the following to terminal unit manufacturer for factory installation. Include installation instructions to terminal unit manufacturer.

1. Programmable application or application-specific controller.
2. Electric damper actuator. Dampers actuators are specified in Section 230923.12 "Control Dampers."
3. Unit-mounted flow and pressure sensors, transmitters and transducers. Flow sensors, transmitters, and transducers are specified in Section 230923.14 "Flow Instruments." Pressure sensors, switches, and transmitters are specified in Section 230923.23 "Pressure Instruments."
4. Unit-mounted temperature sensors. Air-temperature sensors, switches, and transmitters are specified in Section 230923.27 "Temperature Instruments."
5. Relays.

3.5 GENERAL INSTALLATION REQUIREMENTS

A. Install products to satisfy more stringent of all requirements indicated.

B. Install products level, plumb, parallel, and perpendicular with building construction.

C. Support products, tubing, piping wiring and raceways. Brace products to prevent lateral movement and sway or a break in attachment.

D. If codes and referenced standards are more stringent than requirements indicated, comply with requirements in codes and referenced standards.

E. Fabricate openings and install sleeves in ceilings, floors, roof, and walls required by installation of products. Before proceeding with drilling, punching, and cutting, check for concealed work to avoid damage. Patch, flash, grout, seal, and refinish openings to match adjacent condition.

F. Firestop penetrations made in fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."
G. Seal penetrations made in acoustically rated assemblies. Comply with requirements in Section 079200 "Joint Sealants."

H. Welding Requirements:
 1. Restrict welding and burning to supports and bracing.
 2. No equipment shall be cut or welded without approval. Welding or cutting will not be approved if there is risk of damage to adjacent Work.
 3. Welding, where approved, shall be by inert-gas electric arc process and shall be performed by qualified welders according to applicable welding codes.
 4. If requested on-site, show satisfactory evidence of welder certificates indicating ability to perform welding work intended.

I. Fastening Hardware:
 1. Stillson wrenches, pliers, and other tools that damage surfaces of rods, nuts, and other parts are prohibited for work of assembling and tightening fasteners.
 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
 3. Lubricate threads of bolts, nuts and screws with graphite and oil before assembly.

J. If product locations are not indicated, install products in locations that are accessible and that will permit service and maintenance from floor, equipment platforms, or catwalks without removal of permanently installed furniture and equipment.

3.6 POT INSTALLATION
 A. Install one portable operator terminal(s).
 B. Turn over POTs to Owner at Substantial Completion.
 C. Install software on each POT and verify that software functions properly.

3.7 SERVER INSTALLATION
 A. Install one server at location directed by Owner.
 B. Install number of servers required to suit requirements indicated. Review Project requirements and indicate layout of proposed location in Shop Drawings.
 C. Install software indicated on server(s) and verify that software functions properly.
 D. Develop Project-specific graphics, trends, reports, logs, and historical database.
 E. Power servers through dedicated UPS unit. Locate UPS adjacent to server.
3.8 ROUTER INSTALLATION

A. Install routers if required for DDC system communication interface requirements.
B. Test router to verify that communication interface functions properly.

3.9 CONTROLLER INSTALLATION

A. Install controllers in enclosures to comply with indicated requirements.
B. Connect controllers to field power supply.
C. Install controller with latest version of applicable software and configure to execute requirements indicated.
D. Test and adjust controllers to verify operation of connected I/O to achieve performance indicated requirements while executing sequences of operation.

E. Installation of Network Controllers:
 1. Quantity and location of network controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
 2. Install controllers in a protected location that is easily accessible by operators.
 3. Top of controller shall be within 72 inches (1800 mm) of finished floor.

F. Installation of Programmable Application Controllers:
 1. Quantity and location of programmable application controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
 2. Install controllers in a protected location that is easily accessible by operators.
 3. Top of controller shall be within 72 inches (1800 mm) of finished floor.

G. Application-Specific Controllers:
 1. Quantity and location of application-specific controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
 2. For controllers not mounted directly on equipment being controlled, install controllers in a protected location that is easily accessible by operators.

3.10 INSTALLATION OF WIRELESS ROUTERS FOR OPERATOR INTERFACE

A. Install wireless routers to achieve optimum performance and best possible coverage.
B. Mount wireless routers in a protected location that is within 60 inches (1500 mm) of floor and easily accessible by operators.
C. Connect wireless routers to field power supply and to UPS units if network controllers are powered through UPS units.
D. Install wireless router with latest version of applicable software and configure wireless router with WPA2 security and password protection. Create access password with not less than 12 characters consisting of letters and numbers and at least one special character. Document password in operations and maintenance manuals for reference by operators.

E. Test and adjust wireless routers for proper operation with portable workstation and other wireless devices intended for use by operators.

3.11 ENCLOSURES INSTALLATION

A. Install the following items in enclosures, to comply with indicated requirements:
 1. Routers.
 2. Controllers.
 3. Electrical power devices.
 4. UPS units.
 5. Relays.
 6. Accessories.
 7. Instruments.
 8. Actuators

B. Attach wall-mounted enclosures to wall using the following types of steel struts:
 1. For NEMA 250, Type 1 Enclosures: Use corrosion-resistant-coated steel strut and hardware.
 2. For NEMA 250, Type 4 Enclosures and Enclosures Located Outdoors: Use stainless-steel strut and hardware.
 3. Install plastic caps on exposed cut edges of strut.

C. Align top of adjacent enclosures.

D. Install continuous and fully accessible wireways to connect conduit, wire, and cable to multiple adjacent enclosures. Wireway used for application shall have protection equal to NEMA 250 rating of connected enclosures.

3.12 ELECTRIC POWER CONNECTIONS

A. Connect electrical power to DDC system products requiring electrical power connections.

B. Design of electrical power to products not indicated with electric power is delegated to DDC system provider and installing trade. Work shall comply with NFPA 70 and other requirements indicated.

C. Comply with requirements in Section 262816 "Enclosed Switches and Circuit Breakers" for electrical power circuit breakers.

D. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for electrical power conductors and cables.
E. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for electrical power raceways and boxes.

3.13 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements in Section 260553 "Identification for Electrical Systems" for identification products and installation.

B. Install engraved phenolic nameplate with unique identification on face for each of the following:
 1. Server.
 2. Router.
 4. DDC controller.
 5. Enclosure.
 6. Electrical power device.
 7. UPS unit.
 8. Accessory.

C. Install engraved phenolic nameplate with unique instrument identification on face of each instrument connected to a DDC controller.

D. Install engraved phenolic nameplate with identification on face of each control damper and valve actuator connected to a DDC controller.

E. Where product is installed above accessible tile ceiling, also install matching engraved phenolic nameplate with identification on face of ceiling grid located directly below.

F. Where product is installed above an inaccessible ceiling, also install engraved phenolic nameplate with identification on face of access door directly below.

G. Warning Labels:
 1. Shall be permanently attached to equipment that can be automatically started by DDC control system.
 2. Shall be located in highly visible location near power service entry points.

3.14 NETWORK INSTALLATION

A. Install fiber-optic cable when connecting between the following network devices and when located in different buildings on campus.
 1. Network controllers.

B. Install copper or fiber-optic cable when connecting between the following network devices located in same building:
 1. Network controllers.
C. Install copper cable when connecting between the following:
 1. Network controllers or programmable application controllers.
 2. Routers.
 3. Routers and network controllers or programmable application controllers.
 4. Network controllers and programmable application controllers.
 5. Programmable application controllers.
 6. Programmable application controllers and application-specific controllers.
 7. Application-specific controllers.

D. Install network cable in continuous raceway.
 1. Where indicated on Drawings, cable trays may be used for copper cable in lieu of conduit.

3.15 NETWORK NAMING AND NUMBERING

A. Coordinate with Owner and provide unique naming and addressing for networks and devices.

B. ASHRAE 135 Networks:
 1. MAC Address:
 a. Every network device shall have an assigned and documented MAC address unique to its network.
 b. Ethernet Networks: Document MAC address assigned at its creation.
 c. ARCNET or MS/TP networks: Assign from 00 to 64.

 2. Network Numbering:
 a. Assign unique numbers to each new network.
 b. Provide ability for changing network number through device switches or operator interface.
 c. DDC system, with all possible connected LANs, can contain up to 65,534 unique networks.

 3. Device Object Identifier Property Number:
 a. Assign unique device object identifier property numbers or device instances for each device network.
 b. Provide for future modification of device instance number by device switches or operator interface.
 c. LAN shall support up to 4,194,302 unique devices.

 4. Device Object Name Property Text:
 a. Device object name property field shall support 32 minimum printable characters.
 b. Assign unique device "Object Name" property names with plain-English descriptive names for each device.
1) Example 1: Device object name for device controlling boiler plant at Building 1000 would be "HW System B1000."
2) Example 2: Device object name for a VAV terminal unit controller could be "VAV unit 102."

5. Object Name Property Text for Other Than Device Objects:
 a. Object name property field shall support 32 minimum printable characters.
 b. Assign object name properties with plain-English names descriptive of application.
 1) Example 1: "Zone 1 Temperature."
 2) Example 2 "Fan Start and Stop."

6. Object Identifier Property Number for Other Than Device Objects:
 a. Assign object identifier property numbers according to [Drawings] or [tables] indicated.
 b. If not indicated, object identifier property numbers may be assigned at Installer's discretion but must be approved by Owner in advance, be documented and be unique for like object types within device.

3.16 CONTROL WIRE, CABLE AND RACEWAYS INSTALLATION

A. Comply with NECA 1.

B. Comply with TIA 568-C.1.

 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 2. Comply with requirements for cable trays specified in Section 260536 "Cable Trays for Electrical Systems."
 3. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

D. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

E. Field Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

F. Conduit Installation:
 1. Install conduit expansion joints where conduit runs exceed 200 feet (60 m), and conduit crosses building expansion joints.
 2. Coordinate conduit routing with other trades to avoid conflicts with ducts, pipes and equipment and service clearance.
3. Maintain at least 3-inch (75-mm) separation where conduits run axially above or below ducts and pipes.
4. Limit above-grade conduit runs to 100 feet (30 m) without pull or junction box.
5. Do not install raceways or electrical items on any "explosion-relief" walls, or rotating equipment.
6. Do not fasten conduits onto the bottom side of a metal deck roof.
7. Flexible conduit is permitted only where flexibility and vibration control is required.
8. Limit flexible conduit to 3 feet (1 m) long.
9. Conduit shall be continuous from outlet to outlet, from outlet to enclosures, pull and junction boxes, and shall be secured to boxes in such manner that each system shall be electrically continuous throughout.
10. Direct bury conduits underground or install in concrete-encased duct bank where indicated.
 a. Use rigid, nonmetallic, Schedule 80 PVC.
 b. Provide a burial depth according to NFPA 70, but not less than 24 inches (600 mm).
11. Secure threaded conduit entering an instrument enclosure, cabinet, box, and trough, with a locknut on outside and inside, such that conduit system is electrically continuous throughout. Provide a metal bushing on inside with insulated throats. Locknuts shall be the type designed to bite into the metal or, on inside of enclosure, shall have a grounding wedge lug under locknut.
12. Conduit box-type connectors for conduit entering enclosures shall have an insulated throat.
13. Connect conduit entering enclosures in wet locations with box-type connectors or with watertight sealing locknuts or other fittings.
14. Offset conduits where entering surface-mounted equipment.
15. Seal conduit runs used by sealing fittings to prevent the circulation of air for the following:
 a. Conduit extending from interior to exterior of building.
 b. Conduit extending into pressurized duct and equipment.
 c. Conduit extending into pressurized zones that are automatically controlled to maintain different pressure set points.

G. Wire and Cable Installation:

1. Cables serving a common system may be grouped in a common raceway. Install control wiring and cable in separate raceway from power wiring. Do not group conductors from different systems or different voltages.
2. Install cables with protective sheathing that is waterproof and capable of withstanding continuous temperatures of 90 deg C with no measurable effect on physical and electrical properties of cable.
 a. Provide shielding to prevent interference and distortion from adjacent cables and equipment.
3. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
4. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIMM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.

5. UTP Cable Installation:
 a. Comply with TIA 568-C.2.
 b. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination, to maintain cable geometry.

6. Installation of Cable Routed Exposed under Raised Floors:
 a. Install plenum-rated cable only.
 b. Install cabling after the flooring system has been installed in raised floor areas.
 c. Coil cable 6 feet (1.8 m) long not less than 12 inches (300 mm) in diameter below each feed point.

7. Identify each wire on each end and at each terminal with a number-coded identification tag. Each wire shall have a unique tag.

8. Provide strain relief.

9. Terminate wiring in a junction box.
 a. Clamp cable over jacket in junction box.
 b. Individual conductors in the stripped section of the cable shall be slack between the clamping point and terminal block.

10. Terminate field wiring and cable not directly connected to instruments and control devices having integral wiring terminals using terminal blocks.

11. Install signal transmission components according to IEEE C2, REA Form 511a, NFPA 70, and as indicated.

12. Keep runs short. Allow extra length for connecting to terminal boards. Do not bend flexible coaxial cables in a radius less than 10 times the cable OD. Use sleeves or grommets to protect cables from vibration at points where they pass around sharp corners and through penetrations.

13. Ground wire shall be copper and grounding methods shall comply with IEEE C2. Demonstrate ground resistance.

14. Wire and cable shall be continuous from terminal to terminal without splices.

15. Use insulated spade lugs for wire and cable connection to screw terminals.

16. Use shielded cable to transmitters.

17. Use shielded cable to temperature sensors.

18. Perform continuity and meager testing on wire and cable after installation.

19. Do not install bruised, kinked, scored, deformed, or abraded wire and cable. Remove and discard wire and cable if damaged during installation, and replace it with new cable.

20. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.

21. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

22. Protection from Electro-Magnetic Interference (EMI): Provide installation free of (EMI). As a minimum, comply with the following requirements:
a. Comply with BICSI TDMM and TIA 569-C for separating unshielded cable from potential EMI sources, including electrical power lines and equipment.

b. Separation between open cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:

1) Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
3) Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (610 mm).

c. Separation between cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:

1) Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
3) Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).

d. Separation between cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:

1) Electrical Equipment Rating Less Than 2 kVA: No requirement.
2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (76 mm).
3) Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).

e. Separation between Cables and Electrical Motors and Transformers, 5 kVA or 5 HP and Larger: A minimum of 48 inches (1200 mm).

f. Separation between Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

3.17 FIBER-OPTIC CABLE SYSTEM INSTALLATION

A. Comply with TIA 568-C.3, except where requirements indicated are more stringent.

B. Raceway Installation:

1. Install continuous raceway for routing fiber-optic cables.
2. Install raceways continuously between pull boxes and junction boxes. Raceways shall enter and be secured to enclosures.
3. Make bends in raceway using large-radius preformed ells. Field bending shall be according to NFPA 70 minimum radii requirements. Use only equipment specifically designed for material and size involved.
4. Install no more than the equivalent of two 90-degree bends in any pathway run. Support within 12 inches (300 mm) of changes in direction. Use long radius elbows for all fiber-optic cables.
5. Entire raceway shall be complete and raceway interior cleaned before installation of fiber-optic cables.
6. Securely fasten raceway to building structure using clamps and clips designed for purpose.
7. Install nylon or polyethylene pulling line in raceways. Clearly label as "pulling line," indicating source and destination.

C. Fiber-Optic Cable Installation:
1. Route cables as efficiently as possible, minimizing amount of cable required.
2. Continuously lubricate cables during pulling-in process.
3. Do not exceed maximum pulling tensions provided by cable manufacturer. Monitor cable pulling tension with a mechanical tension meter.
4. Arrange cables passing through pull boxes to obtain maximum clearance among cables within box.
5. As cables emerge from intermediate point pull boxes, coil cable in a figure eight pattern with loops not less than 24 inches (600 mm) in diameter.
6. Terminate fiber-optic cables in a fiber-optic splice organizer cabinet, unless connected equipment can accept fiber-optic cables directly. Terminate cables with connectors.
7. Install and connect appropriate opto-electronic equipment and fiber jumper cables between opto-electronic equipment and fiber-optic cable system to DDC system fiber-optic cable system. Verify interface compatibility.

D. Cable and Raceway Identification:
1. Label cables at both ends. Labels shall be typed, not handwritten.
2. Mark raceways at each pull box indicating the type and number of cables within.

3.18 FIELD QUALITY CONTROL
A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and installations, including connections.
C. Perform the following tests and inspections:
1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
D. Testing:
1. Perform preinstallation, in-progress, and final tests, supplemented by additional tests, as necessary.
2. Preinstallation Cable Verification: Verify integrity and serviceability for new cable lengths before installation. This assurance may be provided by using vendor verification documents, testing, or other methods. As a minimum, furnish evidence of verification for cable attenuation and bandwidth parameters.

3. In-Progress Testing: Perform standard tests for correct pair identification and termination during installation to ensure proper installation and cable placement. Perform tests in addition to those specified if there is any reason to question condition of material furnished and installed. Testing accomplished is to be documented by agency conducting tests. Submit test results for Project record.

4. Final Testing: Perform final test of installed system to demonstrate acceptability as installed. Testing shall be performed according to a test plan supplied by DDC system manufacturer. Defective Work or material shall be corrected and retested. As a minimum, final testing for cable system, including spare cable, shall verify conformance of attenuation, length, and bandwidth parameters with performance indicated.

5. Test Equipment: Use a fiber-optic time domain reflectometer for testing of length and optical connectivity.

6. Test Results: Record test results and submit copy of test results for Project record.

3.19 DDC SYSTEM I/O CHECKOUT PROCEDURES

A. Check installed products before continuity tests and calibration.

B. Check instruments for proper location and accessibility.

C. Check instruments for proper installation on direction of flow, elevation, orientation, insertion depth, or other applicable considerations that will impact performance.

D. Control Damper Checkout:
1. Verify that control dampers are installed correctly for flow direction.
2. Verify that proper blade alignment, either parallel or opposed, has been provided.
3. Verify that damper frame attachment is properly secured and sealed.
4. Verify that actuator and linkage attachment is secure.
5. Verify that actuator wiring is complete, enclosed and connected to correct power source.
6. Verify that damper blade travel is unobstructed.

E. Control Valve Checkout:
1. Verify that control valves are installed correctly for flow direction.
2. Verify that valve body attachment is properly secured and sealed.
3. Verify that valve actuator and linkage attachment is secure.
4. Verify that actuator wiring is complete, enclosed and connected to correct power source.
5. Verify that valve ball, disc or plug travel is unobstructed.
6. After piping systems have been tested and put into service, but before insulating and balancing, inspect each valve for leaks. Adjust or replace packing to stop leaks. Replace the valve if leaks persist.

F. Instrument Checkout:
1. Verify that instrument is correctly installed for location, orientation, direction and operating clearances.
2. Verify that attachment is properly secured and sealed.
3. Verify that conduit connections are properly secured and sealed.
4. Verify that wiring is properly labeled with unique identification, correct type and size and is securely attached to proper terminals.
5. Inspect instrument tag against approved submittal.
6. For flow instruments, verify that recommended upstream and downstream distances have been maintained.
7. For temperature instruments:
 a. Verify sensing element type and proper material.
 b. Verify length and insertion.

3.20 DDC SYSTEM I/O ADJUSTMENT, CALIBRATION AND TESTING:

A. Calibrate each instrument installed that is not factory calibrated and provided with calibration documentation.

B. Provide a written description of proposed field procedures and equipment for calibrating each type of instrument. Submit procedures before calibration and adjustment.

C. For each analog instrument, make a three-point test of calibration for both linearity and accuracy.

D. Equipment and procedures used for calibration shall comply with instrument manufacturer's written instructions.

E. Provide diagnostic and test equipment for calibration and adjustment.

F. Field instruments and equipment used to test and calibrate installed instruments shall have accuracy at least twice the instrument accuracy being calibrated. An installed instrument with an accuracy of 1 percent shall be checked by an instrument with an accuracy of 0.5 percent.

G. Calibrate each instrument according to instrument instruction manual supplied by manufacturer.

H. If after calibration indicated performance cannot be achieved, replace out-of-tolerance instruments.

I. Comply with field testing requirements and procedures indicated by ASHRAE's Guideline 11, "Field Testing of HVAC Control Components," in the absence of specific requirements, and to supplement requirements indicated.

J. Analog Signals:
 1. Check analog voltage signals using a precision voltage meter at zero, 50, and 100 percent.
 2. Check analog current signals using a precision current meter at zero, 50, and 100 percent.
3. Check resistance signals for temperature sensors at zero, 50, and 100 percent of operating span using a precision-resistant source.

K. Digital Signals:
 1. Check digital signals using a jumper wire.
 2. Check digital signals using an ohmmeter to test for contact making or breaking.

L. Control Dampers:
 1. Stroke and adjust control dampers following manufacturer's recommended procedure, from 100 percent open to 100 percent closed and back to 100 percent open.
 2. Check and document open and close cycle times for applications with a cycle time less than 30 seconds.
 3. For control dampers equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.

M. Control Valves:
 1. Stroke and adjust control valves following manufacturer's recommended procedure, from 100 percent open to 100 percent closed and back to 100 percent open.
 2. Check and document open and close cycle times for applications with a cycle time less than 30 seconds.
 3. For control valves equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.

N. Meters: Check sensors at zero, 50, and 100 percent of Project design values.

O. Sensors: Check sensors at zero, 50, and 100 percent of Project design values.

P. Switches: Calibrate switches to make or break contact at set points indicated.

Q. Transmitters:
 1. Check and calibrate transmitters at zero, 50, and 100 percent of Project design values.
 2. Calibrate resistance temperature transmitters at zero, 50, and 100 percent of span using a precision-resistant source.

3.21 DDC SYSTEM CONTROLLER CHECKOUT

A. Verify power supply.
 1. Verify voltage, phase and hertz.
 2. Verify that protection from power surges is installed and functioning.
 3. Verify that ground fault protection is installed.
 4. If applicable, verify if connected to UPS unit.
 5. If applicable, verify if connected to a backup power source.
 6. If applicable, verify that power conditioning units, transient voltage suppression and high-frequency noise filter units are installed.
B. Verify that wire and cabling is properly secured to terminals and labeled with unique identification.

C. Verify that spare I/O capacity is provided.

3.22 DDC CONTROLLER I/O CONTROL LOOP TESTS

A. Testing:

1. Test every I/O point connected to DDC controller to verify that safety and operating control set points are as indicated and as required to operate controlled system safely and at optimum performance.
2. Test every I/O point throughout its full operating range.
3. Test every control loop to verify operation is stable and accurate.
4. Adjust control loop proportional, integral and derivative settings to achieve optimum performance while complying with performance requirements indicated. Document testing of each control loop's precision and stability via trend logs.
5. Test and adjust every control loop for proper operation according to sequence of operation.
6. Test software and hardware interlocks for proper operation. Correct deficiencies.
7. Operate each analog point at the following:
 a. Upper quarter of range.
 b. Lower quarter of range.
 c. At midpoint of range.
8. Exercise each binary point.
9. For every I/O point in DDC system, read and record each value at operator workstation, at DDC controller and at field instrument simultaneously. Value displayed at operator workstation, at DDC controller and at field instrument shall match.
10. Prepare and submit a report documenting results for each I/O point in DDC system and include in each I/O point a description of corrective measures and adjustments made to achieve desired results.

3.23 DDC SYSTEM VALIDATION TESTS

A. Perform validation tests before requesting final review of system. Before beginning testing, first submit Pretest Checklist and Test Plan.

B. After approval of Test Plan, execute all tests and procedures indicated in plan.

C. After testing is complete, submit completed test checklist.

D. Pretest Checklist: Submit the following list with items checked off once verified:

1. Detailed explanation for any items that are not completed or verified.
2. Required mechanical installation work is successfully completed and HVAC equipment is working correctly.
3. HVAC equipment motors operate below full-load amperage ratings.
4. Required DDC system components, wiring, and accessories are installed.
5. Installed DDC system architecture matches approved Drawings.
6. Control electric power circuits operate at proper voltage and are free from faults.
7. Required surge protection is installed.
8. DDC system network communications function properly, including uploading and downloading programming changes.
9. Using BACnet protocol analyzer, verify that communications are error free.
10. Each controller's programming is backed up.
11. Equipment, products, tubing, wiring cable and conduits are properly labeled.
12. All I/O points are programmed into controllers.
13. Testing, adjusting and balancing work affecting controls is complete.
14. Dampers and actuators zero and span adjustments are set properly.
15. Each control damper and actuator goes to failed position on loss of power.
16. Valves and actuators zero and span adjustments are set properly.
17. Each control valve and actuator goes to failed position on loss of power.
18. Meter, sensor and transmitter readings are accurate and calibrated.
19. Control loops are tuned for smooth and stable operation.
20. View trend data where applicable.
21. Each controller works properly in standalone mode.
22. Safety controls and devices function properly.
23. Interfaces with fire-alarm system function properly.
24. Electrical interlocks function properly.
25. Operator workstations and other interfaces are delivered, all system and database software is installed, and graphic are created.
26. Record Drawings are completed.

E. Test Plan:

1. Prepare and submit a validation test plan including test procedures for performance validation tests.
2. Test plan shall address all specified functions of DDC system and sequences of operation.
3. Explain detailed actions and expected results to demonstrate compliance with requirements indicated.
4. Explain method for simulating necessary conditions of operation used to demonstrate performance.
5. Include a test checklist to be used to check and initial that each test has been successfully completed.
6. Submit test plan documentation 10 business days before start of tests.

F. Validation Test:

1. Verify operating performance of each I/O point in DDC system.
 a. Verify analog I/O points at operating value.
 b. Make adjustments to out-of-tolerance I/O points.
 1) Identify I/O points for future reference.
 2) Simulate abnormal conditions to demonstrate proper function of safety devices.
3) Replace instruments and controllers that cannot maintain performance indicated after adjustments.

2. Simulate conditions to demonstrate proper sequence of control.
3. Readjust settings to design values and observe ability of DDC system to establish desired conditions.
4. After 24 Hours following Initial Validation Test:
 a. Re-check I/O points that required corrections during initial test.
 b. Identify I/O points that still require additional correction and make corrections necessary to achieve desired results.

5. After 24 Hours of Second Validation Test:
 a. Re-check I/O points that required corrections during second test.
 b. Continue validation testing until I/O point is normal on two consecutive tests.

6. Completely check out, calibrate, and test all connected hardware and software to ensure that DDC system performs according to requirements indicated.
7. After validation testing is complete, prepare and submit a report indicating all I/O points that required correction and how many validation re-tests it took to pass. Identify adjustments made for each test and indicate instruments that were replaced.

G. DDC System Response Time Test:
1. Simulate HLC.
 a. Heavy load shall be an occurrence of 50 percent of total connected binary COV, one-half of which represent an "alarm" condition, and 50 percent of total connected analog COV, one-half of which represent an "alarm" condition, that are initiated simultaneously on a one-time basis.

2. Initiate 10 successive occurrences of HLC and measure response time to typical alarms and status changes.
3. Measure with a timer having at least 0.1-second resolution and 0.01 percent accuracy.
4. Purpose of test is to demonstrate DDC system, as follows:
 a. Reaction to COV and alarm conditions during HLC.
 b. Ability to update DDC system database during HLC.

5. Passing test is contingent on the following:
 a. Alarm reporting at printer beginning no more than two seconds after the initiation (time zero) of HLC.
 b. All alarms, both binary and analog, are reported and printed; none are lost.
 c. Compliance with response times specified.

6. Prepare and submit a report documenting HLC tested and results of test including time stamp and print out of all alarms.
H. DDC System Network Bandwidth Test:
 1. Test network bandwidth usage on all DDC system networks to demonstrate bandwidth usage under DDC system normal operating conditions and under simulated HLC.
 2. To pass, none of DDC system networks shall use more than 70 percent of available bandwidth under normal and HLC operation.

3.24 DDC SYSTEM WIRELESS NETWORK VERIFICATION
 A. DDC system Installer shall design wireless DDC system networks to comply with performance requirements indicated.
 B. Installer shall verify wireless network performance through field testing and shall document results in a field test report.
 C. Testing and verification of all wireless devices shall include, but not be limited to, the following:
 1. Speed.
 2. Online status.
 3. Signal strength.

3.25 FINAL REVIEW
 A. Submit written request to Construction Manager when DDC system is ready for final review. Written request shall state the following:
 1. DDC system has been thoroughly inspected for compliance with contract documents and found to be in full compliance.
 2. DDC system has been calibrated, adjusted and tested and found to comply with requirements of operational stability, accuracy, speed and other performance requirements indicated.
 3. DDC system monitoring and control of HVAC systems results in operation according to sequences of operation indicated.
 4. DDC system is complete and ready for final review.
 B. Review by Construction Manager shall be made after receipt of written request. A field report shall be issued to document observations and deficiencies.
 C. Take prompt action to remedy deficiencies indicated in field report and submit a second written request when all deficiencies have been corrected. Repeat process until no deficiencies are reported.
 D. Should more than two reviews be required, DDC system manufacturer and Installer shall compensate entity performing review for total costs, labor and expenses, associated with third and subsequent reviews. Estimated cost of each review shall be submitted and approved by DDC system manufacturer and Installer before making the review.
E. Prepare and submit closeout submittals when no deficiencies are reported.

F. A part of DDC system final review shall include a demonstration to parties participating in final review.

1. Provide staff familiar with DDC system installed to demonstrate operation of DDC system during final review.
2. Provide testing equipment to demonstrate accuracy and other performance requirements of DDC system that is requested by reviewers during final review.
3. Demonstration shall include, but not be limited to, the following:
 a. Accuracy and calibration of 10 I/O points randomly selected by reviewers. If review finds that some I/O points are not properly calibrated and not satisfying performance requirements indicated, additional I/O points may be selected by reviewers until total I/O points being reviewed that satisfy requirements equals quantity indicated.
 b. HVAC equipment and system hardwired and software safeties and life-safety functions are operating according to sequence of operation. Up to 10 I/O points shall be randomly selected by reviewers. Additional I/O points may be selected by reviewers to discover problems with operation.
 c. Correct sequence of operation after electrical power interruption and resumption after electrical power is restored for randomly selected HVAC systems.
 d. Operation of randomly selected dampers and valves in normal-on, normal-off and failed positions.
 e. Reporting of alarm conditions for randomly selected alarms, including different classes of alarms, to ensure that alarms are properly received by operators and operator workstations.
 f. Trends, summaries, logs and reports set-up for Project.
 g. For up to three HVAC systems randomly selected by reviewers, use graph trends to show that sequence of operation is executed in correct manner and that HVAC systems operate properly through complete sequence of operation including different modes of operations indicated. Show that control loops are stable and operating at set points and respond to changes in set point of 20 percent or more.
 h. Software's ability to communicate with controllers, operator workstations, uploading and downloading of control programs.
 i. Software's ability to edit control programs off-line.
 j. Data entry to show Project-specific customizing capability including parameter changes.
 k. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
 l. Execution of digital and analog commands in graphic mode.
 m. Spreadsheet and curve plot software and its integration with database.
 n. Online user guide and help functions.
 o. Multitasking by showing different operations occurring simultaneously on four quadrants of split screen.
 p. System speed of response compared to requirements indicated.
 q. For Each Network and Programmable Application Controller:
 1) Memory: Programmed data, parameters, trend and alarm history collected during normal operation is not lost during power failure.
2) Operator Interface: Ability to connect directly to each type of digital controller with a portable operator workstation and PDA. Show that maintenance personnel interface tools perform as indicated in manufacturer's technical literature.

3) Standalone Ability: Demonstrate that controllers provide stable and reliable standalone operation using default values or other method for values normally read over network.

4) Electric Power: Ability to disconnect any controller safely from its power source.

5) Wiring Labels: Match control drawings.

6) Network Communication: Ability to locate a controller's location on network and communication architecture matches Shop Drawings.

7) Nameplates and Tags: Accurate and permanently attached to control panel doors, instrument, actuators and devices.

r. For Operator Workstation:

1) I/O points lists agree with naming conventions.
2) Graphics are complete.
3) UPS unit, if applicable, operates.

s. Communications and Interoperability: Demonstrate proper interoperability of data sharing, alarm and event management, trending, scheduling, and device and network management. Use ASHRAE 135 protocol analyzer to help identify devices, view network traffic, and verify interoperability. Requirements must be met even if only one manufacturer's equipment is installed.

1) Data Presentation: On operator workstation, demonstrate graphic display capabilities.
2) Reading of Any Property: Demonstrate ability to read and display any used readable object property of any device on network.
3) Set Point and Parameter Modifications: Show ability to modify set points and tuning parameters indicated.
4) Peer-to-Peer Data Exchange: Network devices are installed and configured to perform without need for operator intervention to implement Project sequence of operation and to share global data.
5) Alarm and Event Management: Alarms and events are installed and prioritized according to Owner. Demonstrate that time delays and other logic are set up to avoid nuisance tripping. Show that operators with sufficient privileges are permitted.
6) Schedule Lists: Schedules are configured for start and stop, mode change, occupant overrides, and night setback as defined in sequence of operations.
7) Schedule Display and Modification: Ability to display any schedule with start and stop times for calendar year. Show that all calendar entries and schedules are modifiable from any connected operator workstation by an operator with sufficient privilege.
8) Archival Storage of Data: Data archiving is handled by operator workstation and server and local trend archiving and display is accomplished.
9) Modification of Trend Log Object Parameters: Operator with sufficient privilege can change logged data points, sampling rate, and trend duration.
10) Device and Network Management:
 a) Display of network device status.
 b) Display of BACnet Object Information.
 c) Silencing devices transmitting erroneous data.
 d) Time synchronization.
 e) Remote device re-initialization.
 f) Backup and restore network device programming and master database(s).
 g) Configuration management of routers.

3.26 ADJUSTING
 A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.27 MAINTENANCE SERVICE
 A. Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by DDC system manufacturer's authorized service representative. Include monthly preventive maintenance, repair or replacement of worn or defective components, cleaning, calibration and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

3.28 SOFTWARE SERVICE AGREEMENT
 A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two year(s).

 B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two year(s) from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

 1. Upgrade Notice: At least 30 days to allow Owner to schedule and access system and to upgrade computer equipment if necessary.

3.29 DEMONSTRATION
 A. Engage a factory-authorized service representative with complete knowledge of Project-specific system installed to train Owner's maintenance personnel to adjust, operate, and maintain DDC system.

 B. Extent of Training:
1. Base extent of training on scope and complexity of DDC system indicated and training requirements indicated. Provide extent of training required to satisfy requirements indicated even if more than minimum training requirements are indicated.

2. Inform Owner of anticipated training requirements if more than minimum training requirements are indicated.

C. Training Schedule:

 1. Schedule training with Owner 20 business days before expected Substantial Completion.
 2. Schedule training to provide Owner with at least 20 business days of notice in advance of training.
 3. Training shall occur within normal business hours at a mutually agreed on time. Unless otherwise agreed to, training shall occur Monday through Friday, except on U.S. Federal holidays, with two morning sessions and two afternoon sessions. Each morning session and afternoon session shall be split in half with 15-minute break between sessions. Morning and afternoon sessions shall be separated by 60-minute lunch period. Training, including breaks and excluding lunch period, shall not exceed eight hours per day.
 4. Provide staggered training schedule as requested by Owner.

D. Training Attendee List and Sign-in Sheet:

 1. Request from Owner in advance of training a proposed attendee list with name, phone number and e-mail address.
 2. Provide a preprinted sign-in sheet for each training session with proposed attendees listed and no fewer than six blank spaces to add additional attendees.
 3. Preprinted sign-in sheet shall include training session number, date and time, instructor name, phone number and e-mail address, and brief description of content to be covered during session. List attendees with columns for name, phone number, e-mail address and a column for attendee signature or initials.
 4. Circulate sign-in sheet at beginning of each session and solicit attendees to sign or initial in applicable location.
 5. At end of each training day, send Owner an e-mail with an attachment of scanned copy (PDF) of circulated sign-in sheet for each session.

E. Training Attendee Headcount:

 1. Plan in advance of training for Owner supplied number of attendees.
 2. Make allowance for Owner to add up to two attendee(s) at time of training.
 3. Headcount may vary depending on training content covered in session. Attendee access may be restricted to some training content for purposes of maintaining system security.

F. Training Attendee Prior Knowledge: For guidance in planning required training and instruction, assume attendees have the following:

 1. High school education and degree.
 2. Basic user knowledge of computers and office applications.
 3. Basic knowledge of HVAC systems.
 4. Basic knowledge of DDC systems.
 5. Basic knowledge of DDC system and products installed.
G. Attendee Training Manuals:
 1. Provide each attendee with a color hard copy of all training materials and visual presentations.
 2. Hard-copy materials shall be organized in a three-ring binder with table of contents and individual divider tabs marked for each logical grouping of subject matter. Organize material to provide space for attendees to take handwritten notes within training manuals.
 3. In addition to hard-copy materials included in training manual, provide each binder with a sleeve or pocket that includes a DVD or flash drive with PDF copy of all hard-copy materials.

H. Instructor Requirements:
 1. One or multiple qualified instructors, as required, to provide training.
 2. Instructors shall have not less than five years of providing instructional training on not less than five past projects with similar DDC system scope and complexity to DDC system installed.

I. Organization of Training Sessions:
 1. Organize training sessions into logical groupings of technical content and to reflect different levels of operators having access to system. Plan training sessions to accommodate the following three levels of operators:
 a. Daily operators.
 b. Advanced operators.
 c. System managers and administrators.
 2. Plan and organize training sessions to group training content to protect DDC system security. Some attendees may be restricted to some training sessions that cover restricted content for purposes of maintaining DDC system security.

J. Training Outline:
 1. Submit training outline for Owner review at least 10 business day before scheduling training.
 2. Outline shall include a detailed agenda for each training day that is broken down into each of four training sessions that day, training objectives for each training session and synopses for each lesson planned.

K. On-Site Training:
 1. Owner will provide conditioned classroom or workspace with ample desks or tables, chairs, power and data connectivity for instructor and each attendee.
 2. Instructor shall provide training materials, projector and other audiovisual equipment used in training.
 3. Provide as much of training located on-site as deemed feasible and practical by Owner.
 4. On-site training shall include regular walk-through tours, as required, to observe each unique product type installed with hands-on review of operation, calibration and service requirements.
5. Operator workstation provided with DDC system shall be used in training. If operator workstation is not indicated, provide a temporary workstation to convey training content.

L. Off-Site Training:

1. Provide conditioned training rooms and workspace with ample tables, desks or tables, chairs, power and data connectivity for each attendee.
2. Provide capability to remotely access to Project DDC system for use in training.
3. Provide a workstation for use by each attendee.

M. Training Content for Daily Operators:

1. Basic operation of system.
2. Understanding DDC system architecture and configuration.
3. Understanding each unique product type installed including performance and service requirements for each.
4. Understanding operation of each system and equipment controlled by DDC system including sequences of operation, each unique control algorithm and each unique optimization routine.
5. Operating operator workstations, printers and other peripherals.
6. Logging on and off system.
7. Accessing graphics, reports and alarms.
8. Adjusting and changing set points and time schedules.
9. Recognizing DDC system malfunctions.
10. Understanding content of operation and maintenance manuals including control drawings.
11. Understanding physical location and placement of DDC controllers and I/O hardware.
12. Accessing data from DDC controllers.
14. Review of DDC testing results to establish basic understanding of DDC system operating performance and HVAC system limitations as of Substantial Completion.
15. Running each specified report and log.
16. Displaying and demonstrating each data entry to show Project-specific customizing capability. Demonstrating parameter changes.
17. Stepping through graphics penetration tree, displaying all graphics, demonstrating dynamic updating, and direct access to graphics.
18. Executing digital and analog commands in graphic mode.
19. Demonstrating control loop precision and stability via trend logs of I/O for not less than 10 percent of I/O installed.
20. Demonstrating DDC system performance through trend logs and command tracing.
22. Demonstrating spreadsheet and curve plot software, and its integration with database.
23. Demonstrating on-line user guide, and help function and mail facility.
24. Demonstrating multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
25. Demonstrating the following for HVAC systems and equipment controlled by DDC system:
a. Operation of HVAC equipment in normal-off, -on and failed conditions while observing individual equipment, dampers and valves for correct position under each condition.
b. For HVAC equipment with factory-installed software, show that integration into DDC system is able to communicate with DDC controllers or gateways, as applicable.
c. Using graphed trends, show that sequence of operation is executed in correct manner, and HVAC systems operate properly through complete sequence of operation including seasonal change, occupied and unoccupied modes, warm-up and cool-down cycles and other modes of operation indicated.
d. Hardware interlocks and safeties function properly and DDC system performs correct sequence of operation after electrical power interruption and resumption after power is restored.
e. Reporting of alarm conditions for each alarm, and confirm that alarms are received at assigned locations, including operator workstations.
f. Each control loop responds to set point adjustment and stabilizes within time period indicated.
g. Sharing of previously graphed trends of all control loops to demonstrate that each control loop is stable and set points are being maintained.

N. Training Content for Advanced Operators:

1. Making and changing workstation graphics.
2. Creating, deleting and modifying alarms including annunciation and routing.
3. Creating, deleting and modifying point trend logs including graphing and printing on an ad-hoc basis and operator-defined time intervals.
4. Creating, deleting and modifying reports.
5. Creating, deleting and modifying points.
6. Creating, deleting and modifying programming including ability to edit control programs off-line.
7. Creating, deleting and modifying system graphics and other types of displays.
8. Adding DDC controllers and other network communication devices such as gateways and routers.
10. Performing DDC system checkout and diagnostic procedures.
11. Performing DDC controllers operation and maintenance procedures.
12. Performing operator workstation operation and maintenance procedures.
13. Configuring DDC system hardware including controllers, workstations, communication devices and I/O points.
14. Maintaining, calibrating, troubleshooting, diagnosing and repairing hardware.
15. Adjusting, calibrating and replacing DDC system components.

O. Training Content for System Managers and Administrators:

1. DDC system software maintenance and backups.
2. Uploading, downloading and off-line archiving of all DDC system software and databases.
3. Interface with Project-specific, third-party operator software.
4. Understanding password and security procedures.
5. Adding new operators and making modifications to existing operators.
6. Operator password assignments and modification.
7. Operator authority assignment and modification.
8. Workstation data segregation and modification

P. Training requirements per the City of Philadelphia:
1. All training shall be coordinated with the Owner and with the Systems Integrator (if applicable)
2. Basic Operator Training:
 a. One day (8 hours total) conduct training courses for designated personnel in the maintenance, service, and operation of the RBOp system and other systems as specified in the contract, including specified hardware and software. The training shall be oriented to those specific systems provided under this contract. The BAS Contractor is responsible for providing audiovisual equipment, manuals, instructors and other training material and supplies. The Systems Integrator shall review all training manuals, assist the BAS Contractors in conducting the training and coordinate training with the Owner.
3. Materials
 a. Training manuals shall include an agenda, defined objectives for each lesson, and a detailed description of the subject matter for each lesson. Where the Contractor presents portions of the course material by audiovisuals, copies of those audiovisuals shall be delivered to the Owner. Upon completion of this course, each student, using appropriate documentation, should be able to start the system, operate the system, recover the system after a failure, perform routine maintenance and describe the specific hardware architecture and operation of the system.
4. System Training and Coordination
 a. If available, the BAS Contractor, Owner and Systems Integrator, shall provide 8 hours of training on the sequence of operations that includes Server level integration i.e. integration of lighting, card access, etc. and other topics as requested by the Owner, or as listed in the FMCS section of the contractor.
5. Systems Follow-Up Training:
 a. The BAS Contractor shall provide 12 hours of warranty follow up training, in no less than 4 hour increments, to be scheduled at the request of the owner during the one-year warranty period. These sessions address questions and advanced topics as requested by the owner.

Q. Video of Training Sessions:
1. Provide a digital video and audio recording of each training session. Create a separate recording file for each session.
2. Stamp each recording file with training session number, session name and date.
3. Provide Owner with two copies of digital files on DVDs or flash drives for later reference and for use in future training.
4. Owner retains right to make additional copies for intended training purposes without having to pay royalties.

END OF SECTION 230923
3.30 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 230923
THIS PAGE LEFT BLANK INTENTIONALLY
SECTION 230923.121 - CONTROL

DAMPERS PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections “Construction Waste Management” and “Sustainable Design Requirements - LEEDv4 BD+C”, apply to this Section.

1.2 SUMMARY

A. Section includes control dampers and actuators for DDC systems.

B. Related Requirements:

1. Section 230923 "Direct-Digital Control System for HVAC" for control equipment and software, relays, electrical power devices, uninterruptible power supply units, wire, and cable.
2. Section 230993 "Sequence of Operations for HVAC Controls" for requirements that relate to Section 230923.12.

C. Related Sections Include the following:

1. Division 01 Section “Construction Waste Management.”
2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 DEFINITIONS

A. DDC: Direct-digital control.

B. RMS: Root-mean-square value of alternating voltage, which is the square root of the mean value of the square of the voltage values during a complete cycle.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product, including the following:

1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
2. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.
3. Product description with complete technical data, performance curves, and product
specification sheets.
4. Installation instructions, including factors affecting performance.

B. Shop Drawings:

1. Include plans, elevations, sections, and mounting details.
2. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Include diagrams for power, signal, and control wiring.
4. Include diagrams for air and process signal tubing.
5. Include diagrams for pneumatic signal and main air tubing.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plan drawings and corresponding product installation details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Product installation location shown in relationship to room, duct, and equipment.
2. Size and location of wall access panels for control dampers and actuators installed behind walls.
3. Size and location of ceiling access panels for control dampers and actuators installed above inaccessible ceilings.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For control dampers to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASME Compliance: Fabricate and label products to comply with ASME Boiler and Pressure Vessel Code where required by authorities having jurisdiction.

C. Ground Fault: Products shall not fail due to ground fault condition when suitably grounded.

D. Backup Power Source: Systems and equipment served by a backup power source shall have associated control damper actuators served from a backup power source.

E. Environmental Conditions:
1. Provide electric control-damper actuators, with protective enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Electric control-damper actuators not available with integral enclosures, complying with requirements indicated, shall be housed in protective secondary enclosures.

F. Selection Criteria:

1. Fail positions unless otherwise indicated:
 a. Supply Air: Close.
 b. Return Air: Close.
 c. Exhaust Air: Close.

2. Dampers shall have stable operation throughout full range of operation, from design to minimum airflow over varying pressures and temperatures encountered.
3. Two-position dampers shall be full size of duct or equipment connection unless otherwise indicated.

2.2 RECTANGULAR CONTROL DAMPERS

A. General Requirements:

1. Unless otherwise indicated, use parallel blade configuration for two-position control, equipment isolation service, and when mixing two airstreams. For other applications, use opposed blade configuration.
2. Factory assemble multiple damper sections to provide a single damper assembly of size required by the application.
3. Damper actuator shall be factory installed by damper manufacturer as integral part of damper assembly. Coordinate actuator location and mounting requirements with damper manufacturer.

B. Rectangular Dampers with Steel Airfoil Blades:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Ruskin Company.
 b. Greenheck.

2. Performance:
 a. Leakage: AMCA 511, Class 1A. Leakage shall not exceed 3 cfm/sq. ft. against 1- in. wg differential static pressure.
 b. Pressure Drop: 0.06-in. wg at 1500 fpm across a 24-by-24-inch damper when tested according to AMCA 500-D, figure 5.3.
 c. Velocity: Up to 6000 fpm.
 d. Temperature: Minus 40 to plus 185 deg F.
 e. Pressure Rating: Damper close-off pressure equal to fan shutoff pressure with a maximum blade deflection of 1/200 of blade length.
f. Damper shall have AMCA seal for both air leakage and air performance.

3. Construction:

a. Frame:

1) Material: ASTM A 653/A 653M galvanized-steel profiles, 0.06 inch thick.
2) Hat-shaped channel with integral flanges. Mating face shall be a minimum of 1 inch.
3) Width not less than 5 inches.

b. Blades:

1) Hollow, airfoil, galvanized steel.
2) Parallel or opposed blade configuration as required by application.
3) Material: ASTM A 653/A 653M galvanized steel, 0.05 inch thick.
4) Width not to exceed 6 inches.
5) Length as required by close-off pressure, not to exceed 48 inches.

c. Seals:

1) Blades: Replaceable, mechanically attached extruded silicone, vinyl, or plastic composite.
2) Jambs: Stainless steel, compression type.

d. Axles: 0.5-inch- diameter plated or stainless steel, mechanically attached to blades.

e. Bearings:

1) Stainless steel mounted in frame.
2) Where blade axles are installed in vertical position, provide thrust bearings.

f. Linkage:

g. Concealed in frame.

1) Constructed of aluminum and plated or stainless steel.
2) Hardware: Stainless steel.

h. Transition:

1) For round and flat oval duct applications, provide damper assembly with integral transitions to mate to adjoining field connection.
2) Factory mount damper in a sleeve with a close transition to mate to field connection.
3) Damper size and sleeve shall be connection size plus 2 inches.
4) Sleeve length shall be not less than 12 inches for dampers without jackshafts and shall be not less than 16 inches for dampers with jackshafts.
5) Sleeve material shall match adjacent duct.

2.3 ROUND CONTROL DAMPERS
A. Round Dampers, Sleeve Type:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Ruskin Company.
 b. Greenheck.

2. Performance:
 a. Leakage: Leakage shall not exceed 0.15 cfm/in. of perimeter blade at 4-in. wg differential static pressure.
 b. Pressure Drop: 0.02-in. wg at 1500 fpm across a 12-inch damper when tested according to AMCA 500-D, figure 5.3.
 c. Velocity: Up to 4000 fpm.
 d. Temperature: Minus 25 to plus 200 deg F.
 e. Pressure Rating: 8-in. wg for sizes through 12 inches, 6-in. wg for larger sizes.

3. Construction:
 a. Frame:
 1) Material: Galvanized steel, 0.04 in thick.
 2) Outward rolled stiffener beads positioned approximately 1 inch inboard of each end.
 3) Sleeve-type connection for mating to adjacent ductwork.
 4) Size Range: 4 to 24 inches.
 5) Length not less than 7 inches.
 6) Provide 2-inch sheet metal stand-off for mounting actuator.
 c. Blade Seal: Polyethylene foam seal sandwiched between two sides of blades and fully encompassing blade edge.
 d. Axle: 0.5-inch- diameter plated steel, mechanically attached to blade.
 e. Bearings: Stainless-steel sleeve pressed into frame.

B. Round Dampers, Flanged Type:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Ruskin Company.
 b. Greenheck.

2. Performance:
 a. Leakage: Leakage shall not exceed 0.15 cfm/in. of perimeter blade at 4-in. wg differential static pressure.
 b. Pressure Drop: 0.03-in. wg at 1500 fpm across a 12-inch damper when tested
according to AMCA 500-D, figure 5.3.

c. Velocity: Up to 4000 fpm.
d. Temperature: Minus 25 to plus 250 deg F.
e. Pressure Rating: 8-in. wg for sizes through 36 inches in diameter, 6-in. wg for larger sizes.

3. Construction:

a. Frame:

1) Size Range: 4 to 60 inches.
2) Material: Galvanized steel.
 a) Sizes through 24 Inches in Diameter: 0.15 inch thick.
 b) Sizes 26 through 48 Inches in Diameter: 0.25 inch thick.
 c) Larger Sizes: 0.31 inch thick.

3) Flanges:
 a) Outward rolled with bolt holes on each end of frame for mating to adjacent ductwork.
 b) Face: Not less than 1.25 inch for damper sizes through 12 inches in diameter, 1.5 inch for damper sizes 14 through 24 inches in diameter, and 2 inches for larger sizes.

4) Length (Flange Face to Face): Not less than 8 inches.
5) Provide 3-inch sheet metal stand-off for mounting actuator.

1) Sizes through 24 Inches: 0.15 inch thick.
2) Sizes 26 through 48 Inches: 0.19 inch thick.
3) Larger Sizes: 0.25 inch thick.

c. Blade Stop: Full circumference, located in airstream, minimum 0.5 by 0.25 inch galvanized- steel bar.

d. Blade Seal: Neoprene, mechanically attached to blade and fully encompassing blade edge.

e. Axle: Plated steel, mechanically attached to blade.

1) Sizes through 14 Inches: 0.5 inch in diameter.
2) Sizes 16 through 42 Inches: 0.75 inch in diameter.
3) Larger Sizes: 1 inch in diameter.

2.4 GENERAL CONTROL-DAMPER ACTUATORS REQUIREMENTS

A. Actuators shall operate related damper(s) with sufficient reserve power to provide smooth modulating action or two-position action and proper speed of response at velocity and
pressure conditions to which the damper is subjected.

B. Actuators shall produce sufficient power and torque to close off or open against the maximum system pressures encountered. Actuators shall be sized to close off or open against the fan shutoff pressure as a minimum requirement.

C. The total damper area operated by an actuator shall not exceed 80 percent of manufacturer's maximum area rating.

D. Provide one actuator for each damper assembly where possible. Multiple actuators required to drive a single damper assembly shall operate in unison.

E. Avoid the use of excessively oversized actuators which could overdrive and cause linkage failure when the damper blade has reached either its fully open or closed position.

F. Use jackshafts and shaft couplings in lieu of blade-to-blade linkages when driving axially aligned damper sections.

G. Provide mounting hardware and linkages for connecting actuator to damper.

H. Select actuators to fail in desired position in the event of a power failure.

2.5 ELECTRIC AND ELECTRONIC ACTUATORS

A. Type: Motor operated, with or without gears, electric and electronic.

B. Voltage:

1. 24 V.
2. Actuator shall deliver torque required for continuous uniform movement of controlled device from limit to limit when operated at rated voltage.
3. Actuator shall function properly within a range of 85 to 120 percent of nameplate voltage.

C. Construction:

1. Less Than 100 W: Fiber or reinforced nylon gears with steel shaft, copper alloy or nylon bearings, and pressed steel enclosures.
2. 100 up to 400 W: Gears ground steel, oil immersed, shaft-hardened steel running in bronze, copper alloy, or ball bearings. Operator and gear trains shall be totally enclosed in dustproof cast-iron, cast-steel, or cast-aluminum housing.

D. Field Adjustment:

1. Spring return actuators shall be easily switchable from fail open to fail closed in the field without replacement.
2. Provide gear-type actuators with an external manual adjustment mechanism to allow manual positioning of the damper when the actuator is not powered.
E. Two-Position Actuators: Single direction, spring return or reversing type.

F. Modulating Actuators:
 1. Capable of stopping at all points across full range and starting in either direction from any point in range.
 2. Control Input Signal:
 a. Three Point, Tristate, or Floating Point: Clockwise and counter-clockwise inputs. One input drives actuator to open position, and other input drives actuator to close position. No signal of either input remains in last position.

G. Position Feedback:
 1. Equip two-position actuators with limits switches or other positive means of a position indication signal for remote monitoring of open and close position.
 2. Provide a position indicator and graduated scale on each actuator indicating open and closed travel limits.

H. Fail-Safe:
 1. Where indicated, provide actuator to fail to an end position.
 2. Internal spring return mechanism to drive controlled device to an end position (open or close) on loss of power.

I. Integral Overload Protection:
 1. Provide against overload throughout the entire operating range in both directions.
 2. Electronic overload, digital rotation sensing circuitry, mechanical end switches, or magnetic clutches are acceptable methods of protection.

J. Damper Attachment:
 1. Unless otherwise required for damper interface, provide actuator designed to be directly coupled to damper shaft without need for connecting linkages.
 2. Attach actuator to damper drive shaft in a way that ensures maximum transfer of power and torque without slippage.
 3. Bolt and set screw method of attachment is acceptable only if provided with at least two points of attachment.

K. Temperature and Humidity:
 1. Temperature: Suitable for operating temperature range encountered by application with minimum operating temperature range of minus 20 to plus 120 deg F.
 2. Humidity: Suitable for humidity range encountered by application; minimum operating range shall be from 5 to 95 percent relative humidity, non-condensing.

L. Enclosure:
 1. Suitable for ambient conditions encountered by application.
2. NEMA 250, Type 2 for indoor and protected applications.
3. NEMA 250, Type 4 or Type 4X for outdoor and unprotected applications.
4. Provide actuator enclosure with a heater and controller where required by application.

M. Stroke Time:
1. Operate damper from fully closed to fully open within 15 seconds.
2. Operate damper from fully open to fully closed within 15 seconds.
3. Move damper to failed position within 15 seconds.
4. Select operating speed to be compatible with equipment and system operation.
5. Actuators operating in smoke control systems comply with governing code and NFPA requirements.

N. Sound:
1. Spring Return: 62 dBA.
2. Non-Spring Return: 45 dBA

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Examine roughing-in for dampers and instruments installed in duct systems to verify actual locations of connections before installation.
C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance.
D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 CONTROL-DAMPER APPLICATIONS
A. Control Dampers:

3.3 INSTALLATION, GENERAL
A. Furnish and install products required to satisfy most stringent requirements indicated.
B. Provide ceiling, floor, roof, and wall openings and sleeves required by installation. Before proceeding with drilling, punching, or cutting, check location first for concealed products that could potentially be damaged. Patch, flash, grout, seal, and refinish openings to match adjacent condition.
C. Seal penetrations made in fire-rated and acoustically rated assemblies.
D. Fastening Hardware:
1. Stillson wrenches, pliers, or other tools that will cause injury to or mar surfaces of rods, nuts, and other parts are prohibited for assembling and tightening nuts.
2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.

E. Install products in locations that are accessible and that will permit calibration and maintenance from floor, equipment platforms, or catwalks. Where ladders are required for Owner's access, confirm unrestricted ladder placement is possible under occupied condition.

3.4 ELECTRIC POWER

A. Furnish and install electrical power to products requiring electrical connections.
B. Furnish and install circuit breakers. Comply with requirements in Section 262816 "Enclosed Switches and Circuit Breakers."
C. Furnish and install power wiring. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
D. Furnish and install raceways. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems."

3.5 CONTROL DAMPERS

A. Install smooth transitions, not exceeding 15 degrees, to dampers smaller than adjacent duct. Install transitions as close to damper as possible but at distance to avoid interference and impact to performance. Consult manufacturer for recommended clearance.

B. Clearance:

1. Locate dampers for easy access and provide separate support of dampers that cannot be handled by service personnel without hoisting mechanism.
2. Install dampers with at least 24 inches of clear space on sides of dampers requiring service access.

C. Service Access:

1. Dampers and actuators shall be accessible for visual inspection and service.
2. Install access door(s) in duct or equipment located upstream of damper to allow service personnel to hand clean any portion of damper, linkage, and actuator. Comply with requirements in Section 233300 "Air Duct Accessories."

D. Install dampers straight and true, level in all planes, and square in all dimensions. Install supplementary structural steel reinforcement for large multiple-section dampers if factory support alone cannot handle loading.

E. Attach actuator(s) to damper drive shaft.
3.6 CONNEXIONS
A. Connect electrical devices and components to electrical grounding system. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

3.7 IDENTIFICATION
A. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of connection. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems." "Section 16075 "Electrical Identification."
B. Install engraved phenolic nameplate with damper identification on damper and on face of ceiling where damper is concealed above ceiling.

3.8 CHECKOUT PROCEDURES
A. Control-Damper Checkout:
 1. Check installed products before continuity tests, leak tests, and calibration.
 2. Check dampers for proper location and accessibility.
 3. Check instrument tubing for proper isolation, fittings, slope, dirt legs, drains, material, and support.
 4. Verify that control dampers are installed correctly for flow direction.
 5. Verify that proper blade alignment, either parallel or opposed, has been provided.
 6. Verify that damper frame attachment is properly secured and sealed.
 7. Verify that damper actuator and linkage attachment are secure.
 8. Verify that actuator wiring is complete, enclosed, and connected to correct power source.
 9. Verify that damper blade travel is unobstructed.

3.9 ADJUSTMENT, CALIBRATION, AND TESTING:
A. Stroke and adjust control dampers following manufacturer’s recommended procedure, from 100 percent open to 100 percent closed back to 100 percent open.
B. Stroke control dampers with pilot positioners. Adjust damper and positioner following manufacturer’s recommended procedure, so damper is 100 percent closed, 50 percent closed, and 100 percent open at proper air pressure.
C. Check and document open and close cycle times for applications with a cycle time of less than 30 seconds.
D. For control dampers equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.

3.10 COMMISSIONING

A. The installing contractor shall provide a field technician and specialized tools to facilitate a successful site system commissioning and testing for all equipment and systems. This contractor and technician shall be part of the overall commissioning team. Where applicable and required, the contractor shall secure and pay for a factory technician to be part of the startup, testing and commissioning team and efforts.

1. All equipment shall be commissioned, and the operation of that equipment shall be checked by the installing contractor. Specific systems shall be commissioned when more than one contractor is involved in the installation or there is multiple system interface and control involved with that piece of equipment.

2. The contractors shall check and verify all equipment nameplate data against the design parameters, prior to installation.

3. The contractors shall submit a Spare Parts List for all equipment in the Maintenance and Operations Manuals to include, but not limited to the following:

 a. Part Numbers
 b. Part and Equipment Description
 c. Quantity of Parts Required
 d. Lubrication Requirements
 e. Full Warranty Information
 f. Complete Operation and Maintenance Manuals

3.11 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section "Construction Waste Management."

3.12 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 230923.121
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes thermal and electric power energy meters that connect to DDC systems.
B. Related Requirements:
 1. Section 230923 "Direct-Digital Control System for HVAC" for control equipment and software, relays, electrical power devices, uninterruptible power supply units, wire, and cable.
 2. Section 230993 "Sequence of Operations for HVAC Controls" for requirements that relate to Section 230923.13.
C. Related Sections Include the following:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 DEFINITIONS
A. DDC: Direct-digital control.
B. Ethernet: Local area network based on IEEE 802.3.1 standards.
C. Firmware: Software (programs or data) that has been written onto read-only memory (ROM). Firmware is a combination of software and hardware. Storage media with ROMs that have data or programs recorded on them are firmware.
D. I/O: Input/output.
E. RMS: Root-mean-square value of alternating voltage, which is the square root of the mean value of the square of the voltage values during a complete cycle.
H. RTD: Resistance temperature detector.
1.4 ACTION SUBMITTALS

A. Product Data: For each type of product, including the following:
 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 2. Operating characteristics, electrical characteristics, and furnished accessories indicating electrical power requirements.

B. Shop Drawings:
 1. Include plans, elevations, sections, and mounting details.
 2. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each product requiring a certificate.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For energy meters to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 THERMAL ENERGY METERS

A. Performance Requirements: Manufacturer shall certify that each energy meter indicated complies with specified performance requirements and characteristics.
 1. Product certificates are required.

B. Insertion-Type Thermal Energy Meters:
 1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
 2. Description:
 a. Factory-packaged meter consisting of supply and return temperature sensors, flow sensor, digital display, keypad user interface, installation hardware, color-coded interconnecting cabling, and installation instructions.
 b. Each thermal energy meter shall be individually calibrated and provided with calibration certification traceable to NIST.
3. Alphanumeric display of the following on face of enclosure:
 a. Total energy consumption.
 b. Energy rate.
 c. Flow rate.
 d. Supply temperature.
 e. Return temperature.
 f. Visual indication of power status (on/off) on face of enclosure.

4. Electronics Enclosure:
 a. Remote from temperature and flow sensors.
 b. NEMA 250, Type 12 or Type 13 for indoor applications and NEMA 250, Type 4 or Type 4X for outdoor applications.
 c. Labeled terminal strip for field wiring connections.

5. Programming:
 a. Factory programmed for specific application and field programmable through keypad on face of enclosure.
 b. Programmed parameters and total energy consumption shall be stored in non-volatile EEPROM memory.

6. Output Signals:
 a. Total Energy Consumption: Isolated solid-state dry contact with 100 mA, 50-V rating and contact duration of 0.5, 1, 2, or 6 seconds.
 b. Energy Rate, Flow Rate, Supply Temperature, Return Temperature: 4 to 20 mA or zero- to 10-V dc for each.
 c. In lieu of hardwired analog signals, a serial communication interface may be used.

7. Serial Communication Interface: Compatible with host to share total energy consumption, energy rate, flow rate, and supply and return temperature data.

8. Temperature Sensors:
 a. Temperature range matched to application.
 b. Differential temperature accuracy within 0.15 deg F over the calibrated range.
 c. NEMA 250, Type 4 junction box with thermal isolation.
 d. Stainless-steel thermowell with NPS 1/2 NPT connection for each sensor.

9. Flow Sensor:
 a. Suitable for an operating pressure of at least 200 psig.
 b. Meters in hot-water systems shall be suitable for maximum system temperatures encountered, but not less than 250 deg F.
 c. Pressure drop not to exceed 1 psig at 20-fps flow velocity in NPS 2 pipe and decreasing in large pipe with lower velocity.
 d. Sensor Accuracy:
 1) Within 1 percent of actual flow between the flow velocity range of 3 to 30 fps.
2) Within 2 percent of actual flow between the flow velocity range of 0.4 to 20 fps.
3) Within 0.5 percent of actual reading at the calibrated velocity.

e. Wet calibrate and tag each sensor to standards traceable to NIST, and provide each sensor with a certificate of calibration.
f. Provide single turbine sensors for pipe size NPS 2 and smaller. Provide dual turbine sensors for pipe size NPS 2-1/2 and larger. Provide bidirectional dual turbine sensors where installed in bypass piping.
g. For sensors with dual contra-rotating turbine elements, provide each turbine element with its own rotational sensing system and an averaging circuit to reduce measurement errors due to a poor flow profile.
h. Rotational sensing of each turbine shall be accomplished electronically by sensing impedance change. The sensor shall have an integral frequency output linear with flow rate and individual top and bottom turbine outputs for diagnostic purposes.
i. Provide the flow sensor complete with installation hardware necessary to enable insertion and removal from the pipe without system shutdown.
j. Construct turbine elements of polypropylene with sapphire jewel bearings and tungsten carbide shafts. Construct wetted metal components of Type 316 stainless steel, including the installation hardware.
k. House the sensor electronics in a NEMA 250, Type 4 weathertight aluminum enclosure with a gasketed cover. Housing shall include connection for field-installed conduit.
l. Sensor cable length shall be sufficient to connect to display module.
m. Sensor housing shall have full-port Type 316 stainless-steel ball valve for system isolation.

10. Power Supply:

 a. Field Power: 120-V ac, 60 Hz unless otherwise required by the application.
 b. Internal Power: As required by flow meter.

C. In-Line, Compact-Type Thermal Energy Meters:

1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
2. Description:

 a. Factory-packaged meter consisting of supply and return temperature sensors, flow sensor, digital display, operator interface, installation hardware, interconnecting cabling, and installation instructions.
 b. Each thermal energy meter shall be individually calibrated and provided with calibration certifications traceable to NIST.
 c. Meter limited to flow rates between 0.8 and 38 gpm.
 d. Meter mode of operation shall be field configurable to accommodate two pipe systems that change from between heating and cooling.

3. Alphanumeric display of the following on face of enclosure:

 a. Total energy consumption.
 b. Energy rate.
 c. Flow rate.
d. Supply temperature.
e. Return temperature.

4. Diagnostic Lights:
 a. Meter equipped with diagnostic indicator lights that confirm the operation of the microprocessor and its input circuitry.
 b. Red LED labeled "BTU" shall flash as energy is transferred.
 c. Red LED labeled "FLOW" shall flash at a rate that is proportional to the liquid flow rate. An unlit LED indicates no flow signal.

5. Programming:
 a. Meter shall be factory programmed for specific application.
 b. Programmed parameters and total energy consumption shall be stored in non-volatile memory.

6. Output Signals:
 a. Mode 1 and Mode 2 Total Energy Consumption: Isolated solid-state dry contact with 100 mA, 50-V rating and contact duration of 0.5, 1, 2, or 6 seconds.
 b. Factory-set isolated analog output for energy rate, flow rate, or temperature difference: 4 to 20 mA, zero to 5 or 10 V.
 c. In lieu of hardwired output signals, a serial communication interface may be used.

7. Serial Communication Interface: Compatible with host to share total energy consumption, energy rate, flow rate, and supply and return temperature data.

8. Temperature Sensors:
 a. Temperature range matched to application.
 b. Differential temperature accuracy within 0.15 deg F over the calibrated range.
 c. One temperature sensor shall be built into the body of the flow sensor.
 d. Second sensor shall be provided with brass thermowell with NPS 1/2 sweat fitting or NPS 1/4 NPT connection.

9. Flow Sensor:
 a. Ambient Temperature: 40 to 120 deg F.
 b. Process Temperature: 32 to 200 deg F.
 c. Maximum Process Pressure: 400 psig.
 d. Pressure Drop: 3 psig at 38 gpm.
 e. Accuracy:
 1) Within 1 percent of actual flow overflow rate range of 5.7 to 38 gpm.
 2) Within 2 percent of actual flow overflow rate range of 0.8 to 38 gpm.
 3) Within 0.5 percent of actual reading at the calibrated velocity.
 f. Construct flow sensor body of brass.
 g. Furnish with two tail pieces to facilitate connection to the piping system. One end of each tail piece shall be a compression fitting with retaining nut, and the other end shall either be a sweat fitting for copper or a threaded nipple with NPT threads.
i. House electronics in a NEMA 250, Type 4 weathertight aluminum enclosure with a gasketed cover. Housing shall include connection for field-installed conduit.
j. Sensor cable length shall be sufficient to connect to display module.

10. Power Supply:
 a. Field Power: 24-V ac, 50 or 60 Hz unless otherwise required by the application.

2.2 ELECTRIC POWER METERS

A. Performance Requirements: Manufacturer shall certify that each energy meter indicated complies with specified performance requirements and characteristics.

1. Product certificates are required.

B. Fully Programmable Multifunction Electric Power Meter:

1. <Double click here to find, evaluate, and insert list of manufacturers and products.>

 2. Hardware:

 a. Voltage Inputs: Three voltage inputs, capable of measuring from zero- to 347-V rms (line to neutral) or from zero- to 600-V rms (line to line). The device shall have provisions for direct connection for wye (Star) systems up to 347/600-V ac. For higher voltage systems, PTs with 120-, 277-, or 347-V ac secondary shall be supported. Voltage inputs shall provide the following:

 1) 1500-V ac continuous surge protection.
 2) 25 percent of full-scale voltage over range capability.

 b. Current Inputs: Three 5-A nominal (10-A full-scale) current inputs. Current inputs shall be transformer coupled and accept CTs with 5-A nominal (10-A full-scale) outputs. Current inputs shall provide the following:

 1) 300-A surge protection for one second.
 2) 25 percent of full-scale current continuous over range capability.

 c. Power Supply: 95- to 240-V ac (within 10 percent) at 47 to 440 Hz, 110- to 300-V dc, or 20- to 60-V dc power source. Load shall not exceed 12 W.

 d. On-board I/O:

 1) Four digital (status) inputs.
 2) Four optically isolated, Darlington transistor digital (status) outputs with the following features:

 a) Outputs shall have the ability to be used to provide pulse outputs according to any energy consumption levels.
 b) Outputs shall be scalable to within 1,000,000,000 units per pulse.

 3) Four analog I/O operator selectable from:
a) Milliamp inputs.
b) Zero- to 20-mA inputs.
c) Four zero- to 1-mA outputs.
d) Four zero- to 20-mA outputs.
e) Four zero- to 1-mA inputs and four zero- to 1-mA outputs.
f) Four zero- to 20-mA inputs and four zero- to 20-mA outputs.

4) Analog inputs and outputs shall be accurate to within 0.3 percent of full scale.

e. Provisions for future external I/O: Instrument shall support the following provisions for I/O for future applications. The external I/O shall support up to four digital output devices and shall support the following devices:

1) 120-V ac, 3.5 A, N.O. solid-state relay.
2) 120-V ac, 3.5 A, zero voltage turn-on, manual override relay.
3) 240-V ac, 3.5 A, N.O. solid-state relay.
4) 240-V ac, 3.5 A, zero voltage turn-on, manual override relay.
5) 60-V dc, 3.5 A, N.O. solid-state relay.
6) 60-V dc, 1.5 mA, zero voltage turn-on, manual override relay.
7) 60-V dc, 1.0 A, low-leakage, N.O. solid-state relay.
8) 200-V dc, 1.0 A, N.O. solid-state relay.
9) 100-V dc, 0.5 A, N.O. mechanical relay.

f. Communications:

1) Provide the following built-in communication ports of standard technology, as defined by IEEE:

 a) Two optically isolated RS-485 communication ports, supporting data rates from 1200 to 19200 bits per second.
 b) One front-panel infrared optical port for RS-232 communications, supporting data rates from 1200 to 19200 bits per second. This port shall support an ANSI Type II optocoupler.
 c) Ethernet port that has a gateway that allows the host system to communicate through the Ethernet port to additional metering devices connected to the card's COM2 RS-485 port. The device shall have provisions for an internal Ethernet port compatible with 10Base-T Ethernet. The Ethernet port shall be terminated using an RJ-45 connector.
 d) Internal 33.6-kbps modem that has a gateway that allows the host system to communicate through the modem port to additional metering devices connected to the card's COM1 RS-485 port. The internal modem shall be certified for use on North American telephone systems only. The modem port shall be terminated using either an RJ11 or a captured wire connector.

2) Communication ports shall support the following communication capabilities, independently configurable:

 a) SEA bus/ION protocol.
b) Modbus RTU protocol.
c) DNP 3.0 protocol.
d) Simultaneous access through all communication ports to any measured or derived parameter.
e) Protocols shall be field configurable from the front display, or via communication ports, and be capable of being accomplished without resetting the meter or interrupting its operation in any way.
f) Provisions for flash firmware that can be field upgraded through any communication port, without de-commissioning the instrument or de-energizing the circuit or equipment. The firmware-upgrade procedure shall be robust and able to recover from power failure during an upgrade.
g) Support time synchronization broadcast messages from a host computer system.

g. Mounting Options:

1) 3.6-by-3.6-inch panel cutout, using sliding clamps tightened by thumbscrews.
2) Transducer-type base unit with a remote backlit digital display, with cable for remote display applications.
3) Transducer-type base unit with no display, locally mounted.
4) Allow operator to remove and replace the display panel without removing the instrument from the equipment in which it is mounted.

h. Front-Panel Display:

1) Programmable buttons that allow access to eight data display screens.
2) Display measured parameter with its corresponding label.
3) Display any four parameters simultaneously using alphanumeric characters.
4) Display any two parameter simultaneously using large alphanumeric characters.
5) Display any parameter using very large alphanumeric characters.
6) Display basic voltage, current, and power readings using extra-large alphanumeric characters.
7) Allow the operator to change parameter labels.
8) Feature a programmable time-out interval and adjustable contrast.

i. Enclosure: If installation requires meter to be installed in a dedicated enclosure, install meter in an NRTL-listed enclosure suitable for operating environment at meter location.

1) Indoors: NEMA 250, Type 1 or Type 12.
2) Outdoors: NEMA 250, Type 4 or Type 4X.

j. Memory: 512 kBs of non-volatile RAM to store the following:

1) Setup data.
2) A time-stamped event log with the following features:
3) Support at least 500 events.
a) Number of records in the log shall be programmable.
b) Each event record shall record the date and time of the event, the cause and effect of the event, and the priority of the event.
c) Events relating to set-point activity, relay operation, and self-diagnostics shall be recorded in the event log.
d) Time stamps shall have a resolution of one millisecond.
e) Time stamps shall be able to be synchronized to within 100 ms between devices on the same serial communication medium.
f) Minimum event recording response time shall be one second.
g) The priority of set-point events shall be programmable.

4) Two programmable data recorders that can each store up to 16 channels of historical trend data with the following features:

a) Each data recorder shall be able to record any parameter, either measured or derived.
b) Each data recorder shall be enabled and triggered manually or through internal operating conditions, including periodic timer or set-point activity.
c) The number of records (depth) of each data recorder and the overflow conditions (stop-when-full or circular) shall be programmable.
d) Memory shall be dynamically allocated between data recorders and event log to allow storage of any 16 parameters at 15-minute intervals for not less than 30 days.

5) Min/Max data for any monitored parameter.

3. Instrument:
 a. Display Web pages over a standard Internet browser. Web pages shall include real-time instantaneous values, accumulated energy values, and total harmonic distortion.
 b. Automatically e-mail alarm notifications or scheduled system status updates. E-mail messages sent shall be received as ordinary e-mail message.
 c. Data logs shall be sent on an event-driven or scheduled basis.
 d. Accommodate high-speed Modbus TCP communications when connected to Ethernet port.

4. Instrument shall measure and calculate the following information at one-second intervals:
 a. Voltage line-to-neutral and line-to-line for each phase and average of all three phases.
 b. Percent voltage unbalance.
 c. Current for each phase and average of three phases.
 d. Percent current unbalance.
 e. kW for each phase and total of three phases.
 f. kVAR for each phase and total of three phases.
 g. kVA for each phase and total of three phases.
 h. kWh for total of three phases, provided as accumulating import, export, net, and total readings.
i. kVARh for total of three phases, provided as accumulating import, export, net, and total readings.

j. kVAh for total of three phases, provided as an accumulating net reading.

k. Power factor for each phase and total of three phases.

l. Frequency.

m. Harmonic distortion for each voltage and current input, provided as individual harmonic magnitudes up to the 15th harmonic and as total odd, total even, and total overall harmonic distortion; readings given as a percentage of fundamental.

n. K-Factor calculations of the first 15 harmonics for all current inputs.

5. Operator interface features are as follows:

a. Capable of calculating the following information for any reading at one-second intervals:

1) Thermal demand calculations for any parameter, with operator-programmable length of demand period to match local utility billing method.

2) Sliding window demands for any parameter with operator-programmable length of demand period and number of subperiods to match local utility billing method.

3) Predicted Demand calculations of sliding window demand parameters, with operator-programmable predictive response characteristics.

4) Minimum value for any measured parameter.

5) Maximum value for any measured parameter.

6) Derived values for any combination of measured or calculated parameter, using the following arithmetic, trigonometric, and logic functions (equivalent PLC capabilities):

 a) Arithmetic functions: division, multiplication, addition, subtraction, power, absolute value, square root, average, max, min, rms, sum, sum-of-squares, unary minus, integer ceiling, integer floor, modulus, exponent, PI.

 b) Trigonometric Functions: COS, SIN, TAN, ARCCOS, ARCSIN, ARCTAN, LN, and LOG10.

 c) Logic Functions: Equal to, equal to or more than, equal to or less than, more than or less than, less than, more than, and, "OR," "NOT," and "IF."

 d) Thermocouple Linearization Functions: Type J, Type K, Type R, Type RTD, or Type T.

 e) Temperature Conversion Functions: C to F, F to C.

b. Support direct display of all parameters on the front panel or remote display in user-programmable groups, using plain language labels. Simultaneous access to all parameters shall be available through any communication port.

c. Field programmable as follows:

1) Basic Parameters: Voltage input scale, voltage mode (wye, delta, single phase), current input scale, auxiliary input and output scales, and communication setup parameters are programmable from the front panel.
2) Parameters described above, plus additional set-point/relay and data log setup parameters, shall be programmed via the communication port using a portable or remotely located computer terminal.
3) Using ION modules, support customized configurations of all operating parameters.
4) Provisions to ensure that programming through a computer can be secured by user ID and password.
5) Provisions to ensure that programming through the front panel is secured by password.

d. Provisions for creating periodic or non-periodic schedules for up to two years. Schedules may be used to perform the following functions:
 1) Demand control.
 2) Load scheduling.
 3) Logging.
 4) Periodic resetting.

6. Alarming and set-point control shall include following minimum requirements:
 a. Set-point control of internal recording mechanisms and all digital output relays as follows:
 1) 12 programmable set points, each of which shall respond to out-of-range and alarm conditions for any measured parameter.
 a) Each set point shall have one-second minimum response time.
 b) Each set point shall have programmable pick-up and drop-out levels (high and low limits) and time delays on operate and release.
 c) Activity of each set point shall generate an event of a programmable priority. Priority levels shall support up to 256 levels of alarm severity.
 d) Any set point shall be programmable to any operating condition, and any number of available set points shall be concurrently programmable to operate on a particular condition to support multiple threshold conditions.
 2) Set points shall be programmable to operate on any over or under condition for the following:
 a) Any voltage or current input or average.
 b) Voltage or current imbalance.
 c) kW or kVAR forward or reverse.
 d) kVA.
 e) Power factor lag or lead.
 f) Frequency.
 g) kW or current demand on any phase or total or average.
 h) Individual harmonic distortion on any phase input.
 i) Total harmonic distortion on any phase input.
 j) Total even or odd harmonic distortion on any phase input.
 k) Any maximum or minimum value.
l) Multiple energy accumulation conditions.
m) Phase reversal.
n) Pulse count levels.
o) Any internally derived value.

3) Any set-point condition shall be able to control any number of digital output relays in an AND or an OR configuration, using pulse mode or latch mode operation, for control and alarm purposes. Digital outputs shall also be operable remotely via any communication port.

4) Any set-point condition shall be able to provide breaker trip relay operation.

5) Consecutive alarm conditions and triggers shall be supported with no "dead" time between events. There shall be no need for a rearming delay time between events.

6) It shall be possible to use any logical combination of any number of available set-point conditions to control any internal or external function or event.

7) Digital outputs shall support pulse output relay operation for kWh total, kWh imported, kWh exported, kVARh total, kVARh imported, kVARh exported, and kVAh values.

C. Multifunction Electric Power Meter:

1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
2. Hardware:

 a. Voltage Inputs: Three voltage inputs capable of measuring from zero- to 400-V rms (line to neutral) or from zero- to 690-V rms (line to line). The instrument shall have provisions for direct connection for wye (Star) systems up to 347/600-V ac. For higher-voltage systems, PTs with 120-, 277-, or 347-V ac secondaries shall be supported. Voltage inputs shall provide the following:

 1) 1500-V ac continuous surge protection.
 2) 25 percent of full-scale voltage over range capability.

 b. Current Inputs: Three 5-A nominal (6-A full-scale) current inputs. Current inputs shall be transformer coupled and accept CTs with 5-A nominal (6-A full-scale) outputs. Current inputs shall provide the following:

 1) 120-A surge protection for one second.
 2) 20 percent of nominal current continuous over range capability.

 c. Power Supply: 100- to 240-V ac (within 10 percent) at 50 to 60 Hz, 110- to 300-V dc, or 20- to 60-V dc power source. Load shall not exceed 15 W.

 d. Onboard I/O:

 1) Two Form A solid-state digital (status) outputs with the following features:

 a) The ability to be used to provide pulse outputs according to any energy consumption levels.
 b) Rated 200-V ac/dc with a maximum current of 100 mA.
e. Communications:

1) Provide the following built-in communication ports of standard technology, as defined by the IEEE:

a) One optically isolated RS-485 communication port, supporting data rates from 1200 to 19200 bits per second.

2) Communication ports shall support the following communication capabilities, independently configurable:

a) PML protocol.

b) Modbus RTU protocol.

c) Shall provide simultaneous access through all communication ports to any measured or derived parameter.

d) Protocols shall be field configurable from the front display, or via communication ports, and be capable of being accomplished without resetting the meter or interrupting its operation in any way.

e) Support time synchronization broadcast messages from a host computer system.

f. Mounting and Display:

1) The instrument shall support the following mounting options:

a) 3.6-by-3.6-inch panel cutout, using sliding clamps tightened by thumbscrews.

b) ANSI 4-inch round cut-out.

c) Transducer-type base unit with a remote LED display with cable for remote display applications.

d) Transducer-type base unit only with no display locally mounted.

e) Allow the operator to remove and replace the display panel without removing the instrument from the equipment in which it is mounted.

g. Enclosure: If installation requires meter to be installed in a dedicated enclosure, install meter in an NRTL-listed enclosure suitable for operating environment at meter location.

1) Indoors: NEMA 250, Type 1 or Type 12.

2) Outdoors: NEMA 250, Type 4 or Type 4X.

h. Memory: Sufficient non-volatile (RAM) to store setup data and accumulated energy values.

3. The instrument shall measure and calculate the following information:

a. Voltage line-to-neutral and line-to-line for each phase and average of three phases.

b. Current for each phase and average of three phases.

c. Peak current demand.

d. Neutral current.

e. Power (kW).
f. Peak power demand (kW).
g. Energy (kWh) import/export.
h. Power factor total.
i. Frequency.

4. Operator interface features are as follows:
 a. Capable of calculating the following information for any reading at one-second intervals:
 1) Sliding window demands for any parameter with operator-programmable length of demand period and number of subperiods to match local utility billing method.
 b. Support direct display of all parameters on the front panel or remote display in user-programmable groups, using plain language labels. Simultaneous access to all parameters shall be available through any communication port.
 c. Field programmable as follows:
 1) Basic Parameters: Voltage input scale, voltage mode (wye, delta, single phase), current input scale, auxiliary input and output scales, and communication setup parameters are programmable from the front panel.
 2) Using ION modules, support customized configurations of all operating parameters.
 3) Provisions to ensure that programming through a computer can be secured by user ID and password.
 4) Provisions to ensure that programming through the front panel is secured by password.
 5) Digital outputs shall support pulse output relay operation for kWh total, kWh imported, kWh exported, kVARh total, kVARh imported, kVARh exported, and kVAh values.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 B. Examine roughing-in for instruments installed in piping to verify actual locations of connections before installation.
 C. Examine roughing-in for instruments installed in duct systems to verify actual locations of connections before installation.
 D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance.
 E. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION, GENERAL

A. Install products level, plumb, parallel, and perpendicular with building construction.

B. Support instruments, tubing, piping wiring, and conduit to comply with requirements indicated. Brace all products to prevent lateral movement and sway or a break in attachment.

C. Install products in locations that are accessible and that will permit calibration and maintenance from floor, equipment platforms, or catwalks. Where ladders are required for Owner's access, confirm unrestricted ladder placement is possible under occupied condition.

3.3 ELECTRIC POWER

A. Furnish and install electrical power to products requiring electrical connections.

B. Furnish and install circuit breakers. Comply with requirements in Section 262816 "Enclosed Switches and Circuit Breakers."

C. Furnish and install power wiring. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

D. Furnish and install raceways. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems."

3.4 MAINTENANCE SERVICE

A. Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by manufacturer's authorized service representative. Include semiannual preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain instrumentation and control devices.

B. Coordinate video with operation and maintenance manuals and classroom instruction for use by Owner in operating, maintaining, and troubleshooting.

C. Record videos on DVD disks.

D. Owner shall have right to make additional copies of video for internal use without paying royalties.
3.6 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 230923.13
SECTION 230923.16 - GAS INSTRUMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes the Following Gas Instruments:

B. Related Requirements:
 1. Section 230923 "Direct-Digital Control System for HVAC" for control equipment and software, relays, electrical power devices, uninterruptible power supply units, wire, and cable.

C. Related Sections Include the following:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 DEFINITIONS

A. NDIR: Nondispersive infrared.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product, including the following:
 1. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.
 2. Installation instructions, including factor affecting performance.

B. Sustainable Design Submittals:
 1. Product data showing compliance with ASHRAE 62.1.

C. Shop Drawings:
1. Include plans, elevations, sections, and mounting details.
2. Include diagrams for power, signal, and control wiring.
3. Number-coded identification system for unique identification of wiring, cable, and tubing ends.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plan drawings and corresponding product installation details, drawn to scale, on which wall-mounted instruments located in finished space are shown and coordinated with each other, showing relationship to light switches, fire alarm devices, and other installed devices using input from installers of the items involved.

B. Product Test Reports: For each product, for tests performed by manufacturer and witnessed by a qualified testing agency.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For gas instruments to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 CARBON-DIOXIDE SENSORS AND TRANSMITTERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Honeywell.
 2. JCI
 3. Siemens

B. Description:
 1. NDIR technology or equivalent technology providing long-term stability and reliability.
 2. Two-wire, 4-20 mA output signal, linearized to carbon-dioxide concentration in ppm.

C. Construction:
 1. House electronics in an ABS plastic enclosure. Provide equivalent of NEMA 250, Type 1 enclosure for wall-mounted space applications and NEMA 250, Type 4 for duct-mounted applications.
 2. Equip with digital display for continuous indication of carbon-dioxide concentration.

D. Performance:
 2. Accuracy: Within 2 percent of reading, plus or minus 30 ppm.
3. Repeatability: Within 1 percent of full scale.
4. Temperature Dependence: Within 0.05 percent of full scale over an operating range of 25 to 110 deg F.
5. Long-Term Stability: Within 5 percent of full scale after more than five years.
6. Response Time: Within 60 seconds.
7. Warm-up Time: Within five minutes.

E. Provide calibration kit. Turn over to Owner at start of warranty period.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for instruments installed in piping to verify actual locations of connections before installation.

C. Examine roughing-in for instruments installed in duct systems to verify actual locations of connections before installation.

D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION, GENERAL

A. Furnish and install products required to satisfy more stringent of all requirements indicated.

B. Install products level, plumb, parallel, and perpendicular with building construction.

C. Properly support instruments, wiring, and conduit to comply with requirements indicated. Brace all products to prevent lateral movement and sway or a break in attachment when subjected to seismic loads.

D. Install products in locations that are accessible and that permit calibration and maintenance from floor, equipment platforms, or catwalks. Where ladders are required for Owner's access, confirm unrestricted ladder placement is possible under occupied condition.

3.3 INSTRUMENTS, GENERAL INSTALLATION REQUIREMENTS

A. Mounting Height:

1. Mount instruments in user-occupied space to match mounting height of light switches unless otherwise indicated on Drawings. Mounting height shall comply with codes and accessibility requirements.
B. Seal penetrations to ductwork, plenums, and air-moving equipment to comply with duct static-pressure class and leakage and seal classes indicated, using neoprene gaskets or grommets.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of connection. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

B. Install engraved phenolic nameplate with instrument identification on face.

3.5 CHECKOUT PROCEDURES

A. Check out installed products before continuity tests, leak tests, and calibration.

B. Check instruments for proper location and accessibility.

C. Check instruments for proper installation on elevation, orientation, or other applicable considerations that impact performance.

3.6 ADJUSTMENT, CALIBRATION, AND TESTING

A. Description:

1. Calibrate each instrument installed that is not factory calibrated and provided with calibration documentation.
2. Provide a written description of proposed field procedures and equipment for calibrating each type of instrument. Submit procedures before calibration and adjustment.
3. For each analog instrument, perform a three-point calibration test for both linearity and accuracy.
4. Equipment and procedures used for calibration shall comply with instrument manufacturer's written recommendations.
5. Provide diagnostic and test equipment for calibration and adjustment.
6. Field instruments and equipment used to test and calibrate installed instruments shall have an accuracy of at least twice the instrument accuracy being calibrated. For example, an installed instrument with an accuracy of 1 percent shall be checked by an instrument with an accuracy of 0.5 percent.
7. Calibrate each instrument according to instrument instruction manual supplied by manufacturer.
8. If, after calibration, indicated performance cannot be achieved, replace out-of-tolerance instruments.
9. Comply with field-testing requirements and procedures in ASHRAE Guideline 11, "Field Testing of HVAC Control Components," in the absence of specific requirements, and to supplement requirements indicated.

B. Analog Signals:
1. Check analog voltage signals using a precision voltage meter at zero, 50, and 100 percent.
2. Check analog current signals using a precision current meter at zero, 50, and 100 percent.
3. Check resistance signals for temperature sensors at zero, 50, and 100 percent of operating span using a precision-resistant source.

C. Digital Signals:

1. Check digital signals using a jumper wire.
2. Check digital signals using an ohmmeter to test for contact.

D. Sensors: Check sensors at zero, 50, and 100 percent of Project design values.

E. Transmitters:

1. Check and calibrate transmitters at zero, 50, and 100 percent of Project design values.
2. Calibrate resistance temperature transmitters at zero, 50, and 100 percent of span using a precision-resistance source.

3.7 MAINTENANCE SERVICE

A. Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by manufacturer's authorized service representative. Include quarterly preventive maintenance, repair or replacement of worn or defective components, cleaning, and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain instrumentation and control devices.

3.9 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 230923.16
THIS PAGE LEFT BLANK INTENTIONALLY
SECTION 232300 - REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Refrigerant pipes and fittings.
 2. Refrigerant piping valves and specialties.
 3. Refrigerants.

B. Related Sections Include the following:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 ACTION SUBMITTALS

A. Product Data: For each type of valve, refrigerant piping, and piping specialty. Include pressure drop, based on manufacturer's test data, for the following:
 1. Thermostatic expansion valves.
 2. Solenoid valves.
 3. Hot-gas bypass valves.
 4. Filter dryers.
 5. Strainers.
 6. Pressure-regulating valves.

B. Sustainable Design Submittals:
 1. Product Data for EA Prerequisite "Fundamental Refrigerant Management": For refrigerants, indicating compliance with refrigerant management practices.

C. Shop Drawings:
 1. Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes; flow capacities; valve arrangements and locations; slopes of horizontal runs; oil traps; double risers; wall and floor penetrations; and equipment connection details.
 2. Show piping size and piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.
3. Show interface and spatial relationships between piping and equipment.
4. Shop Drawing Scale: 1/4 inch equals 1 foot.

1.4 INFORMATIONAL SUBMITTALS
A. Welding certificates.
B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.6 QUALITY ASSURANCE
A. Welding Qualifications: Qualify procedures and personnel according to 2010 ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.7 PRODUCT STORAGE AND HANDLING
A. Store piping with end caps in place to ensure that piping interior and exterior are clean when installed.

1.8 COORDINATION
A. Coordinate size and location of roof curbs, equipment supports, and roof penetrations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Line Test Pressure for Refrigerant R-410A:
2.2 COPPER TUBE AND FITTINGS

A. Copper Tube: ASTM B 280, Type ACR.

B. Wrought-Copper Fittings: ASME B16.22.

C. Wrought-Copper Unions: ASME B16.22.

D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.

E. Brazing Filler Metals: AWS A5.8/A5.8M.

F. Flexible Connectors:
 2. End Connections: Socket ends.
 3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inch-long assembly.
 5. Maximum Operating Temperature: 250 deg F.

G. Copper-Tube, Pressure-Seal-Joint Fittings for Refrigerant Piping:
 1. Standard: UL 207; certified by UL for field installation. Certification as a UL-recognized component alone is unacceptable.
 2. Housing: Copper.
 3. O-Rings: HNBR or compatible with specific refrigerant.
 4. Tools: Manufacturer's approved special tools.

2.3 VALVES AND SPECIALTIES

A. Diaphragm Packless Valves:
 1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
 3. Operator: Rising stem and hand wheel.
 5. End Connections: Socket, union, or flanged.
 7. Maximum Operating Temperature: 275 deg F.

B. Packed-Angle Valves:
 1. Body and Bonnet: Forged brass or cast bronze.
 2. Packing: Molded stem, back seating, and replaceable under pressure.
 3. Operator: Rising stem.
5. Seal Cap: Forged-brass or valox hex cap.
6. End Connections: Socket, union, threaded, or flanged.
8. Maximum Operating Temperature: 275 deg F.

C. Check Valves:
1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
6. End Connections: Socket, union, threaded, or flanged.
7. Maximum Opening Pressure: 0.50 psig.
9. Maximum Operating Temperature: 275 deg F.

D. Service Valves:
1. Body: Forged brass with brass cap including key end to remove core.
2. Core: Removable ball-type check valve with stainless-steel spring.
4. End Connections: Copper spring.

E. Solenoid Valves: Comply with ARI 760 and UL 429; listed and labeled by an NRTL.
4. End Connections: Threaded.
5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter, and 24 or 115-V ac coil.
7. Maximum Operating Temperature: 240 deg F.

F. Safety Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
4. End Connections: Threaded.
6. Maximum Operating Temperature: 240 deg F.

G. Thermostatic Expansion Valves: Comply with ARI 750.
1. Body, Bonnet, and Seal Cap: Forged brass or steel.
4. Capillary and Bulb: Copper tubing filled with refrigerant charge.
5. Suction Temperature: As indicated by refrigerant and unit manufacturer’s unit design.
7. Reverse-flow option (for heat-pump applications).
8. End Connections: Socket, flare, or threaded union.

H. Hot-Gas Bypass Valves: Comply with UL 429; listed and labeled by an NRTL.

1. Body, Bonnet, and Seal Cap: Ductile iron or steel.
5. Seat: Polytetrafluoroethylene.
7. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter, and 24 or 115-V ac coil.
9. Set Pressure: As indicated by refrigerant and manufacturer’s unit design
10. Throttling Range: Maximum 5 psig.
12. Maximum Operating Temperature: 240 deg F.

I. Straight-Type Strainers:

2. Screen: 100-mesh stainless steel.
3. End Connections: Socket or flare.
5. Maximum Operating Temperature: 275 deg F.

J. Angle-Type Strainers:

1. Body: Forged brass or cast bronze.
2. Drain Plug: Brass hex plug.
3. Screen: 100-mesh Monel.
4. End Connections: Socket or flare.
6. Maximum Operating Temperature: 275 deg F.

K. Moisture/Liquid Indicators:

2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
3. Indicator: Color coded to show moisture content in ppm.
5. End Connections: Socket or flare.
7. Maximum Operating Temperature: 240 deg F.
L. Replaceable-Core Filter Dryers: Comply with ARI 730.
 1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets.
 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
 3. Desiccant Media: Activated alumina or charcoal.
 4. Designed for reverse flow (for heat-pump applications).
 5. End Connections: Socket.
 8. Rated Flow: Per system design.
 10. Maximum Operating Temperature: 240 deg F.

M. Permanent Filter Dryers: Comply with ARI 730.
 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
 3. Desiccant Media: Activated alumina or charcoal.
 4. Designed for reverse flow (for heat-pump applications).
 5. End Connections: Socket.
 8. Rated Flow: Per system design.
 10. Maximum Operating Temperature: 240 deg F.

N. Mufflers:
 2. End Connections: Socket or flare.
 4. Maximum Operating Temperature: 275 deg F.

O. Receivers: Comply with ARI 495.
 1. Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
 2. Comply with UL 207; listed and labeled by an NRTL.
 4. Tappings: Inlet, outlet, liquid level indicator, and safety relief valve.
 5. End Connections: Socket or threaded.
 7. Maximum Operating Temperature: 275 deg F.

P. Liquid Accumulators: Comply with ARI 495.
 2. End Connections: Socket or threaded.
4. Maximum Operating Temperature: 275 deg F.

2.4 REFRIGERANTS

A. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Arkema Inc.
 b. DuPont Fluorochemicals Div.
 c. Genetron Refrigerants; Honeywell International Inc.
 d. Mexichem Fluor Inc.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT R-410A

A. Suction Lines NPS 1-1/2 and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed joints.

B. Suction Lines NPS 2 to NPS 4 for Conventional Air-Conditioning Applications: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with brazed joints.

C. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type ACR, annealed-temper tubing and wrought-copper fittings with brazed joints.

D. Safety-Relief-Valve Discharge Piping: Copper, Type ACR, drawn-temper tubing and wrought-copper fittings with soldered joints.

3.2 VALVE AND SPECIALTY APPLICATIONS

A. Install diaphragm packless and packed-angle valves in suction and discharge lines of compressor per unit manufacturer’s recommendations.

B. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers.

C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.

D. Except as otherwise indicated, install diaphragm packless valves on inlet and outlet side of filter dryers.

E. Install a full-sized, three-valve bypass around filter dryers.

F. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top.
G. Install thermostatic expansion valves as close as possible to distributors on evaporators.
 1. Install valve so diaphragm case is warmer than bulb.
 2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
 3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.

H. Install safety relief valves where required by ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.

I. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.

J. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for device being protected:
 1. Solenoid valves.
 2. Thermostatic expansion valves.
 3. Hot-gas bypass valves.
 4. Compressor.

K. Install filter dryers in liquid line between compressor and thermostatic expansion valve.

L. Install receivers sized to accommodate pump-down charge.

M. Install flexible connectors at compressors.

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.

B. Install refrigerant piping according to ASHRAE 15.

C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping adjacent to machines to allow service and maintenance.

G. Install piping free of sags and bends.
H. Install fittings for changes in direction and branch connections.

I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

K. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 083113 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.

L. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.

M. Slope refrigerant piping as follows:
 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 2. Install horizontal suction lines with a uniform slope downward to compressor.
 3. Install traps and double risers to entrain oil in vertical runs.
 4. Liquid lines may be installed level.

N. When brazing remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.

O. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

P. Identify refrigerant piping and valves according to Section 230553 "Identification for HVAC Piping and Equipment."

Q. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

R. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

S. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.4 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.

D. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 1. Use Type BCuP (copper-phosphorus) alloy for joining copper socket fittings with copper pipe.
 2. Use Type BAg (cadmium-free silver) alloy for joining copper with bronze or steel.

3.5 HANGERS AND SUPPORTS

A. Comply with requirements for pipe hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Install the following pipe attachments:
 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 4. Spring hangers to support vertical runs.
 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

C. Install hangers for copper tubing with the following maximum spacing and minimum rod diameters:
 1. NPS 1/2: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 2. NPS 5/8: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 3. NPS 1: Maximum span, 72 inches; minimum rod size, 1/4 inch.
 4. NPS 1-1/4: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 5. NPS 1-1/2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 6. NPS 2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 7. NPS 2-1/2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 8. NPS 3: Maximum span, 10 feet; minimum rod size, 3/8 inch.
 9. NPS 4: Maximum span, 12 feet; minimum rod size, 1/2 inch.

3.6 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Comply with ASME B31.5, Chapter VI.
 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in "Performance Requirements" Article.
THE CITY OF PHILADELPHIA
Office of Emergency Management

3.7 SYSTEM CHARGING

A. Charge system using the following procedures:
 1. Install core in filter dryers after leak test but before evacuation.
 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
 4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.

B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.

C. Adjust set-point temperature of air-conditioning controllers to the system design temperature.

D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 1. Verify that compressor oil level is correct.
 2. Open compressor suction and discharge valves.
 3. Open refrigerant valves except bypass valves that are used for other purposes.
 4. Check open compressor-motor alignment and verify lubrication for motors and bearings.

E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

3.9 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION
THIS PAGE LEFT BLANK INTENTIONALLY
SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Single-wall rectangular ducts and fittings.
 2. Double-wall rectangular ducts and fittings.
 4. Double-wall round and flat-oval ducts and fittings.
 5. Sheet metal materials.
 6. Duct liner.
 7. Sealants and gaskets.
 8. Hangers and supports.

 B. Related Sections:
 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 DEFINITIONS
 A. OSHPD: Office of Statewide Health Planning and Development (State of California).

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of the following products:
 1. Liners and adhesives.
 2. Sealants and gaskets.

 B. Sustainable Design Submittals:
 1. Product Data for Prerequisite IEQ 1: Documentation indicating that duct systems comply with ASHRAE 62.1, Section 5 - "Systems and Equipment."
2. Product Data for Prerequisite EA 2: Documentation indicating that duct systems comply with ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

3. Leakage Test Report for Prerequisite EA 2: Documentation of work performed for compliance with ASHRAE/IESNA 90.1, Section 6.4.4.2 - "Duct Leakage Tests."

4. Duct-Cleaning Test Report for Prerequisite IEQ 1: Documentation of work performed for compliance with ASHRAE 62.1, Section 7.2.4 - "Ventilation System Start-up."

5. Product Data for Credit IEQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content.

6. Laboratory Test Reports for Credit IEQ 4: For adhesives and sealants, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Shop Drawings:

1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
2. Factory- and shop-fabricated ducts and fittings.
3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
4. Elevation of top and bottom of ducts.
5. Dimensions of all duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Penetrations through fire-rated and other partitions.
10. Equipment installation based on equipment being used on Project.
11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.

D. Delegated-Design Submittal:

1. Sheet metal thicknesses.
2. Joint and seam construction and sealing.
3. Reinforcement details and spacing.
4. Materials, fabrication, assembly, and spacing of hangers and supports.
5. Design Calculations: Calculations for selecting hangers and supports and seismic restraints.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Perimeter moldings.
 g. Other ceiling-mounted accessories, such as motion sensors, fire alarm devices, and similar items.

B. Welding certificates.

C. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel in accordance with the following:

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and with performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and ASCE/SEI 7 Seismically brace duct hangers and supports in accordance with SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."

C. Airstream Surfaces: Surfaces in contact with airstream shall comply with requirements in ASHRAE 62.1.

D. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment," and Section 7 - "Construction and System Startup."

E. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."
F. Duct Dimensions: Unless otherwise indicated, all duct dimensions indicated on Drawings are inside clear dimensions and do not include insulation or duct wall thickness.

2.2 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated. Construct ducts of galvanized sheet steel unless otherwise indicated.

B. Transverse Joints: Fabricate joints in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Ch. 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 DOUBLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following or approved equal:

1. McGill AirFlow LLC.
2. MKT Metal Manufacturing.
3. Set Duct Manufacturing.
4. Sheet Metal Connectors, Inc.

B. Rectangular Ducts: Fabricate ducts with indicated dimensions for clear internal dimensions of the inner duct.

C. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated. Construct ducts of galvanized sheet steel unless otherwise indicated.

D. Transverse Joints: Select joint types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
E. Longitudinal Seams: Select seam types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

F. Interstitial Insulation: Fibrous-glass liner complying with ASTM C1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."

1. Maximum Thermal Conductivity: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
3. Coat insulation with antimicrobial coating.
4. Cover insulation with polyester film complying with UL 181, Class 1.

G. Interstitial Insulation: Flexible elastomeric duct liner complying with ASTM C534/C534M, Type II for sheet materials, and with NFPA 90A or NFPA 90B.

1. Maximum Thermal Conductivity: 0.25 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.

2.4 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Ch. 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following or approved equal:
 a. Linx Industries (formerly Lindab)
 b. McGill AirFlow LLC.
 c. SEMCO Incorporated.
 d. Sheet Metal Connectors, Inc.

B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).

C. Transverse Joints: Select joint types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
D. Longitudinal Seams: Select seam types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.

E. Tees and Laterals: Select types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.5 DOUBLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following or approved equal:

1. Linx Industries (formerly Lindab).
2. McGill AirFlow LLC.
3. MKT Metal Manufacturing.
4. SEMCO, LLC; part of FlaktGroup.
5. Set Duct Manufacturing.
6. Sheet Metal Connectors, Inc.

B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension) of the inner duct.

1. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Ch. 3, "Round, Oval, and Flexible Duct," based on static-pressure class unless otherwise indicated.

2. Transverse Joints: Select joint types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

3. Longitudinal Seams: Select seam types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

 a. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
b. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.

4. Tees and Laterals: Select types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Inner Duct: Minimum 23-gauge perforated galvanized sheet steel having 3/32-inch-diameter perforations, with overall open area of 23 percent.

D. Interstitial Insulation: Fibrous-glass liner complying with ASTM C1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 1. Maximum Thermal Conductivity: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
 3. Coat insulation with antimicrobial coating.
 4. Cover insulation with polyester film complying with UL 181, Class 1.

E. Interstitial Insulation: Flexible elastomeric duct liner complying with ASTM C534/C534M, Type II for sheet materials, and with NFPA 90A or NFPA 90B.
 1. Maximum Thermal Conductivity: 0.25 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.

2.6 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A653/A653M.
 2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Carbon-Steel Sheets: Comply with ASTM A1008/A1008M, with oiled, matte finish for exposed ducts.

D. Factory- or Shop-Applied Antimicrobial Coating:
 1. Apply to the surface of sheet metal that will form the interior surface of the duct. An untreated clear coating shall be applied to the exterior surface.
 2. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
3. Coating containing the antimicrobial compound shall have a hardness of 2H, minimum, when tested in accordance with ASTM D3363.
4. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested in accordance with UL 723; certified by an NRTL.
5. Shop-Applied Coating Color: Black.
6. Antimicrobial coating on sheet metal is not required for duct containing liner treated with antimicrobial coating.

E. Reinforcement Shapes and Plates: ASTM A36/A36M, steel plates, shapes, and bars; black and galvanized.
 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

F. Tie Rods: Galvanized steel, 1/4-inch-minimum diameter for lengths 36 inches or less; 3/8-inch-minimum diameter for lengths longer than 36 inches.

2.7 DUCT LINER

A. Fibrous-Glass Duct Liner: Comply with ASTM C1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following or approved equal:
 a. CertainTeed Corporation; Saint-Gobain North America.
 b. Johns Manville; a Berkshire Hathaway company.
 c. Knauf Insulation.
 d. Owens Corning.

 2. Maximum Thermal Conductivity:
 a. Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 b. Type II, Rigid: 0.23 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.

 3. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.

 4. Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C916.
 a. Products:
 1) Foster 85-60/85-00.
 2) Childers CP-127

 b. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
c. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. Insulation Pins and Washers:

1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick galvanized steel aluminum or stainless steel; with beveled edge sized as required to hold insulation securely in place, but not less than 1-1/2 inches in diameter.

C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."

1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
3. Butt transverse joints without gaps, and coat joint with adhesive.
4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm or greater.
7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 a. Fan discharges.
 b. Intervals of lined duct preceding unlined duct.
 c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.
9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
 a. Sheet Metal Inner Duct Perforations: 3/32-inch diameter, with an overall open area of 23 percent.
10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other
buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.8 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested in accordance with UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:

1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
2. Tape Width: 3 inches.
5. Mold and mildew resistant.
6. Maximum Static-Pressure Class: 10 inch wg, positive and negative.
7. Service: Indoor and outdoor.
8. Service Temperature: Minus 40 to plus 200 deg F.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
10. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
11. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Water-Based Joint and Seam Sealant:

1. Application Method: Brush on.
2. Solids Content: Minimum 65 percent.
5. Mold and mildew resistant.
6. VOC: Maximum 75 g/L (less water).
7. Maximum Static-Pressure Class: 10 inch wg, positive and negative.
8. Service: Indoor or outdoor.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
10. Products:

 b. Childers CP-146.

D. Solvent-Based Joint and Seam Sealant:

1. Application Method: Brush on.
2. Base: Synthetic rubber resin.
4. Solids Content: Minimum 60 percent.
5. Shore A Hardness: Minimum 60.
7. Mold and mildew resistant.
8. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
9. VOC: Maximum 395 g/L.
10. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
11. Maximum Static-Pressure Class: 10-inch wg, positive or negative.
12. Service: Indoor or outdoor.
14. Products:
 b. Childers CP-140.

E. Flanged Joint Sealant: Comply with ASTM C920.
2. Type: S.
3. Grade: NS.
5. Use: O.
6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

F. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

G. Round Duct Joint O-Ring Seals:
1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.9 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Galvanized-steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A603.

E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A492.

F. Steel Cable End Connections: Galvanized-steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

H. Trapeze and Riser Supports:

3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

2.10 SEISMIC-RESTRAINT DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. B-line; Eaton, Electrical Sector.
2. CADDY; nVent.
3. Ductmate Industries, Inc.
4. Elgen Manufacturing.
5. Hilti, Inc.
7. Mason Industries, Inc.
8. Unistrut; Atkore International.

B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an evaluation service member of the ICC Evaluation Service or an agency acceptable to authorities having jurisdiction.

1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.

C. Channel Support System: Shop- or field-fabricated support assembly made of slotted steel channels rated in tension, compression, and torsion forces and with accessories for attachment to braced component at one end and to building structure at the other end. Include matching components and corrosion-resistant coating.

D. Restraint Cables: ASTM A603, galvanized-steel cables with end connections made of galvanized-steel assemblies with brackets, swivel, and bolts designed for restraining cable service; and with an automatic-locking and clamping device or double-cable clips.
E. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.

F. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type. Select anchor bolts with strength required for anchor and as tested in accordance with ASTM E488/E488M.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and coordination drawings.

B. Install ducts in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install ducts in maximum practical lengths with fewest possible joints.

D. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

E. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

F. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

G. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

H. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

I. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

J. Install fire, combination fire/smoke, and smoke dampers where indicated on Drawings and as required by code, and by local authorities having jurisdiction. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers and specific installation requirements of the damper UL listing.

K. Install heating coils, cooling coils, air filters, dampers, and all other duct-mounted accessories in air ducts where indicated on Drawings.

L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials both before and after installation. Comply with SMACNA's "IAQ Guidelines for Occupied

M. Elbows: Use long-radius elbows wherever they fit.
 1. Fabricate 90-degree rectangular mitered elbows to include turning vanes.
 2. Fabricate 90-degree round elbows with a minimum of three segments for 12 inches and smaller and a minimum of five segments for 14 inches and larger.

N. Branch Connections: Use lateral or conical branch connections.

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCTWORK EXPOSED TO WEATHER

A. All external joints are to be welded and have secure watertight mechanical connections. Seal all openings to provide weatherproof construction.

B. Construct ductwork to resist external loads of wind, snow, ice, and other effects of weather. Provide necessary supporting structures.

C. Single Wall:
 1. Ductwork shall be galvanized steel.
 a. If duct outer surface is uninsulated, protect outer surface with suitable paint. Paint materials and application requirements are specified in Section 099113 "Exterior Painting."
 2. Where ducts have external insulation, provide weatherproof aluminum jacket. See Section 230713 "Duct Insulation."

D. Double Wall:
 1. Ductwork shall comply with requirements in "Double-Wall Rectangular Ducts and Fittings" or "Double-Wall Round and Flat-Oval Ducts and Fittings" Article.
2. Provide interstitial insulation.

3.4 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts at a minimum to the following seal classes in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible":

1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2. Outdoor, Supply-Air Ducts: Seal Class A.
3. Outdoor, Exhaust Ducts: Seal Class C.
4. Outdoor, Return-Air Ducts: Seal Class C.
5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
7. Unconditioned Space, Exhaust Ducts: Seal Class C.
8. Unconditioned Space, Return-Air Ducts: Seal Class B.
9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
11. Conditioned Space, Exhaust Ducts: Seal Class B.
12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Where practical, install concrete inserts before placing concrete.
2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.6 SEISMIC-RESTRAINT-DEVICE INSTALLATION

A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."

B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.

C. Install cables so they do not bend across edges of adjacent equipment or building structure.

D. Install cable restraints on ducts that are suspended with vibration isolators.

E. Install seismic-restraint devices using methods approved by an evaluation service member of the ICC Evaluation Service or an agency acceptable to authorities having jurisdiction.

F. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.

G. Drilling for and Setting Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
 5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.7 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."
B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.8 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

3.9 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:

2. Test the following systems:

 a. Ducts with a Pressure Class Higher Than 3-Inch wg: Test representative duct sections, selected by Architect from sections installed, totaling no less than 25 percent of total installed duct area for each designated pressure class.

 b. Supply Ducts with a Pressure Class of 4-Inch wg or Higher: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.

 c. Return Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.

 d. Exhaust Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.

 e. Outdoor Air Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.

3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.

4. Testing of each duct section is to be performed with access doors, coils, filters, dampers, and other duct-mounted devices in place as designed. No devices are to be removed or blanked off so as to reduce or prevent additional leakage.

5. Test for leaks before applying external insulation.

6. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.

7. Give seven days' advance notice for testing.

C. Duct System Cleanliness Tests:
1. Visually inspect duct system to ensure that no visible contaminants are present.
2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness in accordance with "Description of Method 3 - NADCA Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."

a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.10 DUCT CLEANING

A. Clean new duct system(s) before testing, adjusting, and balancing.

B. Use duct cleaning methodology as indicated in NADCA ACR.

C. Use service openings for entry and inspection.

 1. Provide openings with access panels appropriate for duct static-pressure and leakage class at dampers, coils, and any other locations where required for inspection and cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.
 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 3. Remove and reinstall ceiling to gain access during the cleaning process.

D. Particulate Collection and Odor Control:

 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

E. Clean the following components by removing surface contaminants and deposits:

 1. Air outlets and inlets (registers, grilles, and diffusers).
 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 7. Dedicated exhaust and ventilation components and makeup air systems.
F. Mechanical Cleaning Methodology:

1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
5. Clean coils and coil drain pans in accordance with NADCA ACR. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
6. Provide drainage and cleanup for wash-down procedures.
7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents in accordance with manufacturer's written instructions after removal of surface deposits and debris.

3.11 STARTUP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.12 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:

B. Supply Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:

a. Pressure Class: Positive 1-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

2. Ducts Connected to Constant-Volume Air-Handling Units:

a. Pressure Class: Positive 3-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

3. Ducts Connected to Variable-Air-Volume Air-Handling Units:

a. Pressure Class: Positive 4-inch wg.
 b. Minimum SMACNA Seal Class: A.
c. SMACNA Leakage Class for Rectangular: 3.
d. SMACNA Leakage Class for Round and Flat Oval: 3.

4. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

C. Return Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive or negative 1-inch wg.
 b. Minimum SMACNA Seal Class: C.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

D. Exhaust Ducts:

1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 a. Pressure Class: Negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.
3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

E. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive or negative 1-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.
 2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.
 3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

F. Intermediate Reinforcement:

G. Liner:
 1. Supply Air Ducts: Fibrous glass, Type I, 1-1/2 inches thick.
 2. Return Air Ducts: Fibrous glass, Type I, 1 inch thick.
 3. Exhaust Air Ducts: Fibrous glass, Type I, 1 inch thick.
 4. Supply Fan Plenums: Fibrous glass, Type II, 2 inches thick.
 5. Return- and Exhaust-Fan Plenums: Fibrous glass, Type II, 2 inches thick.
 6. Transfer Ducts: Fibrous glass, Type I, 1 inch thick.

H. Double-Wall Duct Interstitial Insulation:
 2. Return-Air Ducts: 1 inch thick.
 3. Exhaust-Air Ducts: 1 inch thick.

I. Elbow Configuration:
1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Velocity 1000 fpm or Lower:
 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 2) Mitered Type RE 4 without vanes.
 b. Velocity 1000 to 1500 fpm:
 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 c. Velocity 1500 fpm or Higher:
 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 4) Radius-to-Diameter Ratio: 1.5.
b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
c. Round Elbows, 14 Inches and Larger in Diameter: Welded.

J. Branch Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."
 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: Conical spin in.

2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 a. Velocity 1000 fpm or Lower: 90-degree tap.
 b. Velocity 1000 to 1500 fpm: Conical tap.
 c. Velocity 1500 fpm or Higher: 45-degree lateral.
SECTION 233300 - AIR DUCT ACCESSORIES

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Backdraft and pressure relief dampers.
3. Control dampers.
4. Fire dampers.
5. Smoke dampers.
6. Combination fire and smoke dampers.
7. Flange connectors.
8. Turning vanes.
10. Duct-mounted access doors.
11. Flexible connectors.
12. Flexible ducts.
13. Duct accessory hardware.

B. Related Sections Include the following:

1. Division 01 Section “Construction Waste Management.”
2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.

1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:

a. Special fittings.
c. Control-damper installations.
d. Fire-damper, smoke-damper, and combination fire- and smoke-damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
e. Wiring Diagrams: For power, signal, and control wiring.
1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.

B. Source quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Fusible Links: Furnish quantity equal to 5 percent of amount installed.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.

 2. Exposed-Surface Finish: Mill phosphatized.

B. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a No. 2 finish for concealed ducts and No. 4 finish for exposed ducts.

C. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for stainless-steel ducts.

D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.
2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Nailor Industries Inc.
 2. Ruskin Company.
 3. Potterff.

B. Description: Gravity balanced.

C. Maximum Air Velocity: 1250 fpm.

D. Maximum System Pressure: 2-inch wg.

E. Frame: Hat-shaped, 0.05-inch- thick, galvanized sheet steel or 0.03-inch- thick stainless steel, with welded corners or mechanically attached and mounting flange.

F. Blades: Multiple single-piece blades, off-center pivoted or end pivoted, maximum 6-inch width, 0.025-inch- thick, roll-formed aluminum with sealed edges.

G. Blade Action: Parallel.

H. Blade Seals: Neoprene, mechanically locked.

I. Blade Axles:
 2. Diameter: 0.20 inch.

J. Tie Bars and Brackets: Galvanized steel.

K. Return Spring: Adjustable tension.

L. Bearings: Steel ball or corrosion resistant synthetic, manufacturer’s standard.

M. Accessories:
 1. Adjustment device to permit setting for varying differential static pressure.
 2. Counterweights and spring-assist kits for vertical airflow installations.
 a. Sleeve Thickness: 20 gage minimum.
 b. Sleeve Length: 6 inches minimum.
 4. Screen Mounting: Rear mounted.
 5. Screen Material: Galvanized steel.
 6. Screen Type: Bird or Insect, as indicated.
 7. 90-degree stops.
2.4 MANUAL VOLUME DAMPERS

A. Standard, Steel, Manual Volume Dampers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Nailor Industries Inc.
 b. Pottorff.
 c. Ruskin Company.
 d. McGill Airflow LLC.
 e. Trox USA Inc.

2. Standard leakage rating, with linkage outside airstream.
3. Suitable for horizontal or vertical applications.
4. Frames:
 a. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel or 0.05-inch-thick stainless steel.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.

5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized or Stainless-steel, 0.064 inch thick.

7. Bearings:
 a. Oil-impregnated bronze or Oil-impregnated stainless-steel sleeve.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

8. Tie Bars and Brackets: Galvanized steel.

B. Jackshaft:

1. Size: 0.5-inch diameter.
2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.

C. Damper Hardware:

2. Include center hole to suit damper operating-rod size.
3. Include elevated platform for insulated duct mounting.

2.5 CONTROL DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Nailor Industries Inc.
2. Pottorff.
3. Ruskin Company.
4. Greenheck Fan Corporation
5. McGill Airflow LLC.

B. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.

C. Frames:

1. Hat, U, or Angle shaped.
2. 0.094-inch-thick, galvanized sheet steel or 0.05-inch-thick stainless steel.
3. Mitered and welded corners.

D. Blades:

1. Multiple blade with maximum blade width of 6 inches.
2. Parallel- and opposed-blade design.
3. Galvanized-steel or Stainless steel.
4. 0.0747-inch-thick dual skin.
5. Blade Edging: Closed-cell neoprene, inflatable seal blade edging, or replaceable rubber seals.

E. Blade Axles: 1/2-inch-diameter; stainless or zinc-plated steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.

1. Operating Temperature Range: From minus 40 to plus 200 deg F.

F. Bearings:

1. Oil-impregnated bronze or Oil-impregnated stainless-steel sleeve.
2. Thrust bearings at each end of every blade in applications where blades are mounted vertically.

2.6 FIRE DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Nailor Industries Inc.
2. Pottorff.
3. Ruskin Company.
4. Greenheck Fan Corporation
5.

B. Type: Static and dynamic; rated and labeled according to UL 555 by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.

D. Fire Rating: 1-1/2 and 3 hours.

E. Frame: Curtain type with blades outside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.

F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 1. Minimum Thickness: 0.052 inch thick (18 gauge), or gauge required to meet manufacturer’s UL listing, and of length to suit application.
 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.

G. Mounting Orientation: Vertical or horizontal as indicated.

H. Blades: Roll-formed, interlocking, 0.024-inch-thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.

I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

2.7 SMOKE DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Nailor Industries Inc.
 2. Pottorff.
 3. Ruskin Company.
 4. Greenheck Fan Corporation

B. General Requirements: Label according to UL 555S by an NRTL.

C. Smoke Detector: Integral, factory wired for single-point connection.

D. Frame: Hat-shaped, 0.064-inch-thick (16 gauge), or gauge required to meet manufacturer’s UL listing, galvanized sheet steel, with welded corners or roll-formed and toggle locked, and mounting flange.

E. Blades: Roll-formed, horizontal, interlocking or overlapping, 0.034-inch-thick, galvanized sheet steel, or gauge required to meet manufacturer’s UL listing.
F. Leakage: Class I.

G. Rated pressure and velocity to exceed design airflow conditions.

H. Mounting Sleeve: Factory-installed, 0.05-inch-thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.

I. Damper Motors: two-position action.

J. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section "Common Motor Requirements for HVAC Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Section "Instrumentation and Control for HVAC."
3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.
5. Non-spring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.
6. Electrical Connection: 115 V, single phase, 60 Hz, unless indicated otherwise.

K. Accessories:

1. Auxiliary switches for signaling or position indication.
2. Test and reset switches, remote mounted.

2.8 COMBINATION FIRE AND SMOKE DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Nailor Industries Inc.
2. Potterff.
3. Ruskin Company.
4. Greenheck Fan Corporation

B. Type: Dynamic; rated and labeled according to UL 555 and UL 555S by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.

D. Fire Rating: 1-1/2 and 3 hours.

E. Frame: Hat-shaped, 0.094-inch-thick, or gauge required to meet manufacturer’s UL listing, galvanized sheet steel, with welded corners and mounting flange.
F. Heat-Responsive Device: Replaceable, 165 deg F rated, fusible links or electronic resettable links, as indicated or required for damper operation listed in Sequences of Operation.

G. Smoke Detector: Integral, factory wired for single-point connection.

H. Blades: Roll-formed, horizontal, interlocking or overlapping, 0.063-inch thick, galvanized sheet steel.

I. Leakage: Class I.

J. Rated pressure and velocity to exceed design airflow conditions.

K. Mounting Sleeve: Factory-installed, 0.05-inch thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.

L. Damper Motors: Two-position action.

M. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section "Common Motor Requirements for HVAC Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Section "Instrumentation and Control for HVAC."

3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.

4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.

5. Non-spring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.

6. Electrical Connection: 115 V, single phase, 60 Hz, unless indicated otherwise.

N. Accessories:

1. Auxiliary switches for signaling or position indication.

2. Test and reset switches, remote mounted.

2.9 FLANGE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ductmate Industries, Inc.

2. Nexus PDQ; Division of Shilco Holdings Inc.

B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.

C. Material: Galvanized steel.

D. Gage and Shape: Match connecting ductwork.

2.10 TURNING VANES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ductmate Industries, Inc.
2. Duro Dyne Inc.
3. SEMCO Incorporated.
4. METALAIRE, Inc.

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."

D. Vane Construction: Double wall.

2.11 REMOTE DAMPER OPERATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Pottorff.
2. Ventfabrics, Inc.
3. Young Regulator Company.

B. Description: Cable system designed for remote manual damper adjustment.

C. Tubing: Brass, Copper, or Aluminum.

D. Cable: Stainless steel.

E. Wall-Box Mounting: Recessed.

F. Wall-Box Cover-Plate Material: Stainless steel.
2.12 DUCT-MOUNTED ACCESS DOORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Nailor Industries Inc.
3. Pottorff.
4. Flexmaster USA, Inc.
5. McGill Airflow LLC

1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 d. Fabricate doors airtight and suitable for duct pressure class.

2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.

3. Number of Hinges and Locks:
 a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 c. Access Doors up to 24 by 48 Inches: Continuous and two compression latches.
 d. Access Doors Larger Than 24 by 48 Inches: Continuous and two compression latches with outside and inside handles.

2.13 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ductmate Industries, Inc.
2. Ventfabrics, Inc.

B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.

D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4-inch- wide, 0.028-inch- thick, galvanized sheet steel sheets. Provide metal compatible with connected ducts.

1. Minimum Weight: 26 oz./sq. yd.
2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
3. Service Temperature: Minus 40 to plus 200 deg F.

1. Minimum Weight: 24 oz./sq. yd.
2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
3. Service Temperature: Minus 50 to plus 250 deg F.

G. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.14 FLEXIBLE DUCTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Flexmaster U.S.A., Inc.
2. CASCO.
3. McGill AirFlow LLC.

B. Non-insulated, Flexible Duct: UL 181, Class 1, multiple layers of aluminized laminate supported by helically wound, spring-steel wire.
1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
3. Temperature Range: Minus 20 to plus 210 deg F.

C. Insulated, Flexible Duct: UL 181, Class 1, 2-ply spun bond nylon fabric supported by helically wound, spring-steel wire; fibrous-glass insulation; aluminized vapor-barrier film.
1. Pressure Rating: 6-inch wg positive and 1.0-inch wg negative.
3. Temperature Range: Minus 10 to plus 160 deg F.
D. Insulated, Flexible Metal Duct: UL 181, Class 1, flexible metal inner duct, fibrous-glass insulation; aluminized vapor-barrier film.

1. Pressure Rating: 10-inch wg positive and 4.0-inch wg negative.
3. Temperature Range: Minus 20 to plus 175 deg F.

E. Flexible Duct Connectors:

1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches, to suit duct size.

2.15 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of Pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel ducts and stainless-steel accessories in stainless-steel ducts.

C. Install backdraft and control dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install fire and smoke dampers according to UL listing.

H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
1. On both sides of duct coils.
2. Upstream from duct filters.
3. At outdoor-air intakes and mixed-air plenums.
4. At drain pans and seals.
5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links.
7. At each change in direction and at maximum 50-foot spacing.
8. Upstream and downstream from turning vanes.
9. Upstream or downstream from duct silencers.
10. Control devices requiring inspection.
11. Elsewhere as indicated.

I. Install access doors with swing against duct static pressure.

J. Access Door Sizes:

1. One-Hand or Inspection Access: 8 by 5 inches.
2. Two-Hand Access: 12 by 6 inches.

K. Label access doors according to Section "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

L. Install flexible connectors to connect ducts to equipment.

M. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.

N. Connect terminal units to supply ducts with maximum 24-inch lengths of flexible duct. Do not use flexible ducts to change directions.

O. Connect diffusers or light troffer boots to ducts with maximum 96-inch lengths of flexible duct clamped or strapped in place.

P. Connect flexible ducts to metal ducts with draw bands or adhesive plus sheet metal screws.

Q. Install duct test holes where required for testing and balancing purposes.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Operate dampers to verify full range of movement.
2. Inspect locations of access doors and verify that purpose of access door can be performed.
3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
4. Inspect turning vanes for proper and secure installation.
5. Operate remote damper operators to verify full range of movement of operator and damper.

3.3 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 233300
SECTION 233346 - FLEXIBLE DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Insulated flexible ducts.

B. Related Sections Include the following:

1. Division 01 Section “Construction Waste Management.”
2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:

1. Product data showing compliance with ASHRAE 62.1.
2. Product Data: For adhesives and sealants, indicating VOC content.
3. Laboratory Test Reports: For adhesives and sealants, indicating compliance with requirements for low-emitting materials.
4. Laboratory Test Reports: For insulation, indicating compliance with requirements for low-emitting materials.
5. Product Data: For insulation, indicating that R-values comply with tables in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air Conditioning."

C. Shop Drawings: For flexible ducts.

1. Include plans showing locations and mounting and attachment details.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from installers of the items involved.
PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

C. Comply with the Air Diffusion Council's "ADC Flexible Air Duct Test Code FD 72-R1."

2.2 INSULATED FLEXIBLE DUCTS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Flexmaster U.S.A., Inc.
2. McGill AirFlow LLC.
3. Thermaflex; a Flex-Tek Group company.

B. Insulated, Flexible Duct: UL 181, Class 0, interlocking spiral of aluminum foil; fibrous-glass insulation; aluminized vapor-barrier film.

1. Pressure Rating: 8-inch wg positive or negative.
3. Temperature Range: Minus 20 to plus 250 deg F.
4. Insulation R-Value: Comply with ASHRAE/IES 90.1.

2.3 FLEXIBLE DUCT CONNECTORS

A. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches, to suit duct size.

B. Non-Clamp Connectors: Adhesive plus sheet metal screws.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install flexible ducts according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts.

B. Install in indoor supply air applications only. Flexible ductwork should not be exposed to UV lighting.

C. Connect indoor VRF units and Fans to supply or exhaust ducts directly or with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.

D. Connect diffusers or light troffer boots to ducts directly or with maximum 60-inch lengths of flexible duct clamped or strapped in place.

E. Connect flexible ducts to metal ducts with adhesive plus sheet metal screws.

F. Install duct test holes where required for testing and balancing purposes.

G. Installation:
 1. Install ducts fully extended.
 2. Do not bend ducts across sharp corners.
 3. Bends of flexible ducting shall not exceed a minimum of one duct diameter.
 4. Avoid contact with metal fixtures, water lines, pipes, or conduits.
 5. Install flexible ducts in a direct line, without sags, twists, or turns.

H. Supporting Flexible Ducts:
 1. Suspend flexible ducts with bands 1-1/2 inches wide or wider and spaced a maximum of 48 inches apart. Maximum centerline sag between supports shall not exceed 1/2 inch per 12 inches.
 2. Install extra supports at bends placed approximately one duct diameter from center line of the bend.
 3. Ducts may rest on ceiling joists or truss supports. Spacing between supports shall not exceed the maximum spacing per manufacturer's written installation instructions.
 4. Vertically installed ducts shall be stabilized by support straps at a maximum of 72 inches o.c.

3.2 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”
SECTION 233416 - CENTRIFUGAL HVAC FANS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Square in-line centrifugal fans.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes for fans.
 2. Rated capacities, operating characteristics, and furnished specialties and accessories.
 3. Certified fan performance curves with system operating conditions indicated.
 4. Certified fan sound-power ratings.
 5. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 6. Material thickness and finishes, including color charts.
 7. Dampers, including housings, linkages, and operators.
 8. Fan speed controllers.

B. Delegated Design Submittal: For vibration isolation, supports, and seismic restraints indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Fan room layout and relationships between components and adjacent structural and mechanical elements, drawn to scale, and coordinated with each other, using input from installers of the items involved.

B. Seismic Qualification Data: For fans, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity, and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For centrifugal fans to include in normal operation, emergency operation, and maintenance manuals with replacement parts listing.

1.6 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Belts: One set for each belt-driven unit.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of unit components.
C. ASHRAE 62.1 Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Startup."
D. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."
E. Seismic Performance: Centrifugal fans shall withstand the effects of earthquake motions determined according to ASCE/SEI 7. See Section 230548 "Vibration and Seismic Controls for HVAC."
F. Capacities and Characteristics: As shown on the Mechanical Plans

2.2 SQUARE IN-LINE CENTRIFUGAL FANS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following or approved equal:
 1. Carnes Company.
 2. Greenheck Fan Corporation.
 3. Loren Cook Company.
B. Description: Square in-line centrifugal fans.
C. Housing:
 1. Housing Material: Aluminum.
 2. Housing Construction: Side panels shall be easily removable for service. Include inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.

D. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing; with wheel, inlet cone, and motor on swing-out service door.

E. Belt-Driven Units: Motor mounted on adjustable base, with adjustable sheaves, enclosures around belts within fan housing, and lubricating tubes from fan bearings extended to outside of fan housing.

F. Fan Wheels: Aluminum airfoil blades welded to aluminum hub.

G. Accessories:
 2. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 3. Volume-Control Damper: Manually operated with quadrant lock, located in fan outlet.
 5. Fan Guards: 1/2- by 1-inch mesh of galvanized steel in removable frame. Provide guard for inlet or outlet for units not connected to ductwork.
 6. Motor and Drive Cover (Belt Guard): Epoxy-coated steel.

2.3 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

B. Where variable-frequency drives are indicated or scheduled, provide fan motor compatible with variable-frequency drive.

2.4 SOURCE QUALITY CONTROL

A. AMCA Certification for Fan Sound Performance Rating: Test, rate, and label in accordance with AMCA 311.

B. AMCA Certification for Fan Aerodynamic Performance Ratings: Test, rate, and label in accordance with AMCA 211.

C. AMCA Certification for Fan Energy Index (FEI): Test, rate, and label in accordance with AMCA 211.

D. Operating Limits: Classify fans in accordance with AMCA 99, Section 14.
PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Install centrifugal fans level and plumb.

B. Disassemble and reassemble units, as required for moving to the final location, according to manufacturer's written instructions.

C. Lift and support units with manufacturer's designated lifting or supporting points.

D. Equipment Mounting:
 1. Support duct-mounted and other hanging centrifugal fans directly from the building structure, using suitable hanging systems as specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
 2. Comply with requirements for vibration isolation and seismic-control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

E. C

F. Unit Support: Install centrifugal fans level on structural. Coordinate with duct connections. Secure units to structural support with anchor bolts.

G. Isolation Curb Support: Install centrifugal fans on isolation curbs, and install flexible duct connectors and vibration-isolation and seismic-control devices.
 1. Comply with requirements for vibration isolation and seismic-control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."
 2. Comply with requirements in Section 230548.13 "Vibration Controls for HVAC."

H. Install units with clearances for service and maintenance.

I. Label fans according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."

3.2 DUCTWORK AND PIPING CONNECTIONS

A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."

B. Install ducts adjacent to fans to allow service and maintenance.

C. Install piping from scroll drain connection, with trap with seal equal to 1.5 times specified static pressure, to nearest floor drain with pipe sizes matching the drain connection.

D. Install heat tracing on all drain piping subject to freezing temperature and as indicated on Drawings. Furnish and install heat tracing according to Section 230533 "Heat Tracing for HVAC Piping."
3.3 ELECTRICAL CONNECTIONS

A. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.

D. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
 1. Nameplate shall be laminated acrylic or melamine plastic signs, as specified in Section 260553 "Identification for Electrical Systems."
 2. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.4 CONTROL CONNECTIONS

A. Install control and electrical power wiring to field-mounted control devices.

B. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."

3.5 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Adjust belt tension.

C. Lubricate bearings.

D. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.6 CLEANING

A. After completing system installation and testing, adjusting, and balancing and after completing startup service, clean fans internally to remove foreign material and construction dirt and dust.

3.7 FIELD QUALITY CONTROL

A. Testing Agency: Owner and/or Contractor will engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
C. Perform tests and inspections.

 1. Fan Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 3. Fans and components will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

END OF SECTION 233416
SECTION 233423 - HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Centrifugal ventilators - roof upblast and sidewall.

B. Related Sections Include the following:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes for fans.
 2. Rated capacities, operating characteristics, and furnished specialties and accessories.
 3. Certified fan performance curves with system operating conditions indicated.
 4. Certified fan sound-power ratings.
 5. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 6. Material thickness and finishes, including color charts.
 7. Dampers, including housings, linkages, and operators.
 8. Prefabricated roof curbs.

B. Shop Drawings:
 1. Include plans, elevations, sections, and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.
 4. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints.

C. Delegated-Design Submittal: For unit hangars and supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
1. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans, reflected ceiling plans, and other details, or BIM model, drawn to scale, showing the items described in this Section and coordinated with all building trades.

B. Seismic Qualification Data: For fans, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For HVAC power ventilators to include in normal and emergency operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Belts: One set for each belt-driven unit.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design vibration isolation and seismic restraints, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Capacities and Characteristics as shown on the Mechanical Drawings.
2.2 CENTRIFUGAL VENTILATORS - ROOF UPBLAST OR SIDEWALL

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following or approved equal:

1. Carnes Company.
2. Greenheck Fan Corporation.
3. Loren Cook Company.

B. Configuration: Centrifugal roof upblast ventilator.

C. Housing: Continuously weld steel housing. Welded steel air straightening vanes. Lifting lugs. Punched flange connections. Heavy duty, steel motor supports with adjustment screws for belt tensioning. Structural parts are phosphatized and coated with Permatector. BEARINGS, SHAFT: Heavy duty, Air Handling Quality, self-aligning ball or roller bearings with extended lubrication lines.

D. WHEEL: Welded construction.

E. Single thickness cambered blades.

1. Upblast Units: Provide spun-aluminum discharge baffle to direct discharge air upward, with rain and snow drains.

F. Fan Wheels: Aluminum hub and wheel with backward-inclined blades; spark-proof construction.

G. Belt Drives:

1. Resiliently mounted to housing.
2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
3. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings; minimum ABMA9, L(10) of 100,000 hours.
4. Fan Pulleys: Cast iron or cast steel with split, tapered bushing; dynamically balanced at factory.
5. Motor Pulleys: Adjustable pitch for use with motors through 5 hp. Select pulley so pitch adjustment is at the middle of adjustment range at fan design conditions. Provide fixed pitch for use with motors larger than 5 hp.
6. Fan and motor isolated from exhaust airstream.

H. Accessories:

1. Variable-Frequency Motor Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted outside fan housing, factory wired through an internal aluminum conduit.
3. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
4. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.
5. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.
7. Mounting Pedestal: Galvanized steel with removable access panel.
8. Wall Mount Adapter: Attach wall-mounted fan to wall.

I. Prefabricated Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch-thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base.

1. Configuration: Self-flashing without a cant strip, with mounting flange or Built-in cant and mounting flange manufactured to accommodate roof slope.

2.3 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.4 SOURCE QUALITY CONTROL

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

B. AMCA Certification: Fans shall comply with AMCA 11 and bear the AMCA-Certified Ratings Seal.

C. Fan Sound Ratings: Comply with AMCA 311, and label fans with the AMCA-Certified Ratings Seal. Sound ratings shall comply with AMCA 301. The fans shall be tested according to AMCA 300.

D. Fan Performance Ratings: Comply with AMCA 211 and label fans with AMCA-Certified Rating Seal. The fans shall be tested for air performance - flow rate, fan pressure, power, fan efficiency, air density, speed of rotation, and fan efficiency - according to AMCA 210/ASHRAE 51.

E. Operating Limits: Classify according to AMCA 99.

F. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.

PART 3 - EXECUTION

3.1 INSTALLATION OF HVAC POWER VENTILATORS

A. Install power ventilators level and plumb.
B. Equipment Mounting:
 1. Comply with requirements for vibration isolation and seismic-control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

C. Secure roof-mounted fans to roof curbs with zinc-plated hardware. See Section 077200 "Roof Accessories" for installation of roof curbs.

D. Ceiling Units: Suspend units from structure; use steel wire or metal straps.

E. Support suspended units from structure using threaded steel rods and elastomeric hangers or spring hangers having a static deflection of 1 inch. Vibration-control devices are specified in Section 230548 "Vibration and Seismic Controls for HVAC."

F. Install units with clearances for service and maintenance.

G. Label units according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."

3.2 DUCTWORK CONNECTIONS

A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."

3.3 ELECTRICAL CONNECTIONS

A. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.
 1. Nameplate shall be laminated acrylic or melamine plastic signs, as specified in Section 260553 "Identification for Electrical Systems."
 2. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.4 CONTROL CONNECTIONS

A. Install control and electrical power wiring to field-mounted control devices.

B. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."
3.5 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections with the assistance of a factory-authorized service representative.

E. Tests and Inspections:
 1. Verify that shipping, blocking, and bracing are removed.
 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 3. Verify that there is adequate maintenance and access space.
 4. Verify that cleaning and adjusting are complete.
 5. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 6. Adjust belt tension.
 7. Adjust damper linkages for proper damper operation.
 8. Verify lubrication for bearings and other moving parts.
 9. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 10. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
 11. Shut unit down and reconnect automatic temperature-control operators.
 12. Remove and replace malfunctioning units and retest as specified above.

F. Test and adjust controls and safeties. Controls and equipment will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports.

3.6 STARTUP SERVICE:

A. Engage a factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks in accordance with manufacturer's written instructions.
 2. Verify that shipping, blocking, and bracing are removed.
 3. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 4. Verify that cleaning and adjusting are complete.
 5. For direct-drive fans, verify proper motor rotation direction and verify fan wheel free rotation and smooth bearing operation.
6. For belt-drive fans, disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.

7. Adjust belt tension.

8. Adjust damper linkages for proper damper operation.

9. Verify lubrication for bearings and other moving parts.

10. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.

11. Disable automatic temperature-control operators, energize motor and confirm proper motor rotation and unit operation, adjust fan to indicated rpm, and measure and record motor voltage and amperage.

12. Shut unit down and reconnect automatic temperature-control operators.

13. Remove and replace malfunctioning units and retest as specified above.

3.7 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Adjust belt tension.

C. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

D. Replace fan and motor pulleys as required to achieve design airflow.

E. Lubricate bearings.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain centrifugal fans.

3.9 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 233423
SECTION 233713.13 - AIR DIFFUSERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Round ceiling diffusers.
2. Square ceiling diffusers.

B. Related Requirements:

1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers.
2. Section 233713.23 "Air Registers and Grilles" for adjustable-bar register and grilles, fixed-face registers and grilles, and linear bar grilles.

C. Related Sections Include the following:

1. Division 01 Section “Construction Waste Management.”
2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
2. Diffuser Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Ceiling suspension assembly members.
2. Method of attaching hangers to building structure.
3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
5. Duct access panels.

B. Source quality-control reports.

PART 2 - PRODUCTS

2.1 ROUND CEILING DIFFUSERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Price Industries.
2. Titus.
3. Tuttle & Bailey.

B. Devices shall be specifically designed for variable-air-volume flows.

C. Material: Steel.

D. Finish: Baked enamel, color selected by Architect.

E. Face Style: Three cone.

F. Mounting: Duct connection.

G. Pattern: Fully adjustable.

H. Dampers: Radial opposed blade.

I. Accessories:

1. Equalizing grid.
2. Sectorizing baffles.

2.2 SQUARE CEILING DIFFUSERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Price Industries.
2. Titus.
3. Tuttle & Bailey.

B. Devices shall be specifically designed for variable-air-volume flows.

C. Material: Steel.

D. Finish: Baked enamel, color selected by Architect.
E. Face Size: 24 by 24 inches.
F. Face Style: Three cone.
G. Mounting: T-bar.
H. Pattern: Adjustable.
I. Dampers: Radial opposed blade.
J. Accessories:
 1. Equalizing grid.
 2. Sectorizing baffles.
 3. Operating rod extension.

2.3 SOURCE QUALITY CONTROL
A. Verification of Performance: Rate diffusers according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas where diffusers are installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Install diffusers level and plumb.
B. Ceiling-Mounted Outlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
C. Install diffusers with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING
A. After installation, adjust diffusers to air patterns indicated, or as directed, before starting air balancing.

3.4 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION
SECTION 233713.23 - AIR REGISTERS AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Adjustable blade face registers.
2. Fixed face registers and grilles.

B. Related Requirements:

1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to registers and grilles.
2. Section 233713.13 "Air Diffusers" for various types of air diffusers.

C. Related Sections Include the following:

1. Division 01 Section “Construction Waste Management.”
2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
2. Register and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Ceiling suspension assembly members.
2. Method of attaching hangers to building structure.
3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
5. Duct access panels.

B. Source quality-control reports.

PART 2 - PRODUCTS

2.1 REGISTERS

A. Adjustable Blade Face Register:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Price Industries.
 b. Titus.
 c. Tuttle & Bailey.

7. Mounting: Countersunk screw or Lay in.
8. Damper Type: Adjustable opposed blade.
9. Accessories:
 a. Front-blade gang operator.
 b. Filter.

B. Fixed Face Register:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Price Industries.
 b. Titus.
 c. Tuttle & Bailey.

5. Face Arrangement: Perforated core.
7. Mounting: Countersunk screw or Lay in.
8. Damper Type: Adjustable opposed blade.
2.2 GRILLES

A. Fixed Face Grille:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Price Industries.
 b. Titus.
 c. Tuttle & Bailey.

5. Face Arrangement: Perforated core.
7. Mounting: Countersunk screw or Lay in.

2.3 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate registers and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where registers and grilles are installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install registers and grilles level and plumb.

B. Outlets and Inlets Locations: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install registers and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.
3.3 ADJUSTING

A. After installation, adjust registers and grilles to air patterns indicated, or as directed, before starting air balancing.

3.4 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 233713.023
SECTION 237223.23 - PACKAGED, OUTDOOR, HEAT WHEEL ENERGY RECOVERY UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Heat wheels in packaged, outdoor, total energy-recovery units.

B. Related Requirements:

C. Related Sections Include the following:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include packaged, outdoor, heat-wheel, energy-recovery-unit rated capacities, operating characteristics, furnished specialties, and accessories.
 2. Fans:
 a. Certified fan-performance curves with system operating conditions indicated.
 b. Certified fan-sound power ratings.
 c. Fan construction and accessories.
 d. Motor ratings, electrical characteristics, and motor accessories.

B. Sustainable Design Submittals:
 1. Product data showing compliance with ASHRAE 62.1.
 2. Laboratory Test Reports: For antimicrobial coatings, indicating compliance with requirements for low-emitting materials.

C. Shop Drawings: For packaged, outdoor, heat-wheel, energy-recovery units.
 1. Include plans, elevations, sections, details, and mounting details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, lifting requirements, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.
1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: roof plans, elevations, and other details, drawn to scale and coordinated with each other, using input from installers of items involved.

B. Seismic Qualification Data: Certificates, for packaged, outdoor, heat-wheel, energy-recovery units, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity, and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which certification is based and their installation requirements.

C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For packaged, outdoor, heat-wheel, energy-recovery equipment to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed. Package with protective covering for storage and identify with labels describing contents.
 1. Filters: One set of each type of filter specified.
 2. Fan Belts: One set of belts for each belt-driven fan in energy-recovery units.
 3. Wheel Belts: One set of belts for each heat wheel.

1.7 COORDINATION

A. Coordinate sizes and locations of building openings and duct connections with actual equipment provided.

1.8 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of packaged, outdoor, heat-wheel, energy-recovery units that fail in materials or workmanship within specified warranty period.
 1. Warranty Period for Packaged Energy-Recovery Units: Three years from date of Substantial Completion.
 2. Warranty Period for Energy-Recovery Wheel: Five years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of air-handling units and components.

B. ASHRAE Compliance:

1. Applicable requirements in ASHRAE 62.1.
2. Capacity ratings for heat-wheel, energy-recovery equipment: Comply with ASHRAE 84.

C. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1.

D. UL Compliance:

1. Packaged Heat-Recovery Ventilators: Comply with requirements in UL 1815 or UL 1812.

E. Comply with ASTM E84 or UL 723.

2.2 CAPACITIES AND CHARACTERISTICS: Refer to Mechanical Drawings

2.3 PACKAGED, OUTDOOR, HEAT-WHEEL, ENERGY-RECOVERY UNITS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following or approved equal:

1. Daikin.
2. Greenheck Fan Corporation.
3. Loren Cook Company.

B. Source Limitations: Obtain packaged, outdoor, heat-wheel, energy-recovery units from single manufacturer.

C. Surfaces in Contact with Airstream: Comply with requirements in ASHRAE 62.1.

D. Housing: Manufacturer's standard construction with corrosion-protection coating and exterior finish, gasketed hinged access doors with neoprene gaskets for inspection and access to internal parts, minimum 2 inches thick, R-13 and 2” part injected foam thermal insulation, knockouts for electrical connections, exterior drain connection, and lifting lugs.

E. Heat Wheel:

1. Casing:

 a. Manufacturer's standard construction with standard factory finish.
b. Slide-in, slide-out cassette style.
c. Provide casing seals on periphery of rotor and on duct divider and purge section.
d. Support vertical rotors on grease-lubricated ball bearings having extended grease fittings or permanently lubricated bearings with minimum L-50 of 200,000 hours. Support horizontal rotors on tapered roller bearing.

2. Rotor: Aluminum, metallic, or polymer segmented wheel, strengthened with radial spokes impregnated with nonmigrating, water-selective, four-angstrom, molecular-sieve desiccant coating.

3. Drive: Electric motor, with speed changed by variable-frequency motor controller and self-adjusting multilink belt around outside of rotor.
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 b. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

F. Supply and Exhaust Fans: fans shall be a single width, single inlet airfoil centrifugal fan. The fan wheel shall be Class II construction with fan blades that are continuously welded to the hub plate and end rim. Insert fan type fan with spring isolators of 1-inch static deflection.
 1. Motor and Drive: Direct driven, with speed changed by variable-frequency motor controller.
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 b. Motor Sizes: Minimum size as indicated. If size is not indicated, provide motor large enough so driven load will not require motor to operate in service factor range above 1.0.

 2. The unit DDC controller shall provide building static pressure control. The unit controller shall provide proportional control of the exhaust fans from 25% to 100% of the supply air fan designed airflow to maintain the adjustable building pressure setpoint. The field shall mount the required sensing tubing from the building to the factory mounted building static pressure sensor.

G. Filters:
 1. As Scheduled.

H. Heating Section:
 1. The rooftop unit shall include a natural gas heating section. The gas furnace design shall be one natural gas fired heating module factory installed downstream of the supply air fan in the heat section. The heating module shall be a tubular design with in-shot gas burners.
 2. Each module shall have four stages of heating control.
 3. The heat exchanger tubes shall be constructed of stainless steel.
 4. The module shall have an induced draft fan that will maintain a negative pressure in the heat exchanger tubes for the removal of the flue gases.
5. Each burner module shall have two flame roll-out safety protection switches and a high temperature limit switch that will shut the gas valve off upon detection of improper burner manifold operation. The induced draft fan shall have an airflow safety switch that will prevent the heating module from turning on in the event of no airflow in the flue chamber.

6. The factory-installed DDC unit control system shall control the gas heat module. Field installed heating modules shall require a field ETL certification. The manufacturer’s rooftop unit ETL certification shall cover the complete unit including the gas heating modules.

I. Cooling Coil:

1. The indoor coil section shall be installed in a draw through configuration, upstream of the supply air fan. The coil section shall be complete with a factory piped cooling coil and an ASHRAE 62.1 compliant double sloped drain pan.
2. The direct expansion (DX) cooling coils shall be fabricated of seamless high efficiency copper tubing. All cooling coils shall have an interlaced coil circuiting that keeps the full coil face active at all load conditions. All coils shall be factory leak tested with high pressure air under water.
3. The cooling coil shall have an electronic controlled expansion valve. The unit controller shall control the expansion valve to maintain liquid subcooling and the superheat of the refrigerant system.
4. The refrigerant suction lines shall be fully insulated from the expansion valve to the compressors.
5. The drain pan shall be stainless steel and positively sloped. The slope of the drain pan shall be in two directions and comply with ASHRAE Standard 62.1. The drain pan shall have a minimum slope of 1/8" per foot to provide positive draining. The drain pan shall extend beyond the leaving side of the coil. The drain pan shall have a threaded drain connection extending through the unit base.

J. Hot Gas Reheat:

1. Unit shall be equipped with a fully modulating hot gas reheat coil with hot gas coming from the unit condenser.
2. The capacity of the reheat coil shall allow for a 20°F temperature rise at all operating conditions.
3. The modulating hot gas reheat systems shall allow for independent control of the cooling coil leaving air temperature and the reheat coil leaving air temperature. The cooling coil and reheat coil leaving air temperature setpoints shall be adjustable through the unit controller. During the dehumidification cycle the unit shall be capable of 100% of the cooling capacity. The hot gas reheat coil shall provide discharge temperature control within +/- 2°F.
4. Each coil shall be factory leak tested with high-pressure air under water.

K. Roof Curb:

1. Prefabricated heavy gauge galvanized steel, mounting curb shall be provided for field assembly on the roof decking prior to unit shipment. The roof curb shall be a full perimeter type with complete perimeter support of the air handling section and condensing section. The curb shall be a minimum of 14" high and include a nominal 2" x 4" wood nailing strip. Gasket shall be provided for field mounting between the unit base and roof curb.
2.4 CONTROLS

A. Control Panel: Solid-state, integrated, programmable and microprocessor-based control unit. Integrate to BACnet, LonWorks, or Modbus.

B. Provide a complete integrated microprocessor based Direct Digital Control (DDC) system to control all unit functions including temperature control, scheduling, monitoring, unit safety protection, including compressor minimum run and minimum off times, and diagnostics. This system shall consist of all required temperature sensors, pressure sensors, controller and keypad/display operator interface. All MCBs and sensors shall be factory mounted, wired and tested.

C. The stand-alone DDC controllers shall not be dependent on communications with any on-site or remote PC or master control panel for proper unit operation. The microprocessor shall maintain existing set points and operate stand-alone if the unit loses either direct connect or network communications. The microprocessor memory shall be protected from voltage fluctuations as well as any extended power failures. All factory and user set schedules and control points shall be maintained in nonvolatile memory. No settings shall be lost, even during extended power shutdowns.

D. The DDC control system shall permit starting and stopping of the unit locally or remotely. The control system shall be capable of providing a remote alarm indication. The unit control system shall provide for outside air damper actuation, emergency shutdown, remote heat enable/disable, remote cool enable/disable, heat indication, cool indication, and fan operation.

E. All digital inputs and outputs shall be protected against damage from transients or incorrect voltages. All field wiring shall be terminated at a separate, clearly marked terminal strip.

F. The DDC controller shall have a built-in time schedule. The schedule shall be programmable from the unit keypad interface. The schedule shall be maintained in nonvolatile memory to ensure that it is not lost during a power failure. There shall be one start/stop per day and a separate holiday schedule. The controller shall accept up to sixteen holidays each with up to a 5-day duration. Each unit shall also have the ability to accept a time schedule via BAS network communications.

G. Starting relay, factory mounted and wired, and manual motor starter for field wiring.

H. Frost Control: Timed exhaust-only operation

I. Carbon Dioxide Sensor: Adjustable control from 600 to 2000 ppm for wall mounting, with digital display and direct digital control (DDC) system interface to energize unit.

J. Economizer Control, Stop Wheel: Stop wheel rotation or modulate wheel rotation speed when conditions are favorable for economizer operation.

K. Enthalpy sensor.

L. Rotation sensor and alarm.

M. Dirty filter switch.
N. Low-Voltage Transformer: Integral transformer to provide control voltage to unit from primary incoming electrical service.

O. Variable-Speed Control: Factory mounted and wired, permitting input of field-connected, 4- to 20-mA or 1- to 10-V control signal.

P. Variable-Speed Control: Factory mounted and wired, with exhaust-air sensor to vary rotor speed and maintain exhaust temperature above freezing.

2.5 SOURCE QUALITY CONTROL

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended application.

B. AHRI Compliance: Capacity ratings for air-to-air energy-recovery equipment certified as complying with AHRI 1060.

C. Fan Performance Rating: Comply with AMCA 211, and label fans with AMCA-certified rating seal. Factory test fan performance for airflow, pressure, power, air density, rotation speed, and efficiency in accordance with AMCA 210 and ASHRAE 51.

D. Fan Sound Rating: Comply with AMCA 301 or AHRI 260.

E. UL Compliance:

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine casing insulation materials and filter media before packaged, outdoor, heat wheel energy-recovery unit installation. Replace insulation materials and filter media that are wet, moisture damaged, or mold contaminated.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION OF PACKAGED, OUTDOOR, HEAT-WHEEL, ENERGY-RECOVERY UNITS

A. Install packaged, outdoor, heat-wheel, energy-recovery units, so supply and exhaust airstreams flow in opposite directions, and rotation is away from exhaust side to purge section to supply side.

1. Install access doors in both supply and exhaust ducts, both upstream and downstream, for access to wheel surfaces, drive motor, and seals.
2. Install removable panels or access doors between supply and exhaust ducts on building side for bypass during startup.
3. Access doors and panels are specified in Section 233300 "Air Duct Accessories."

B. Equipment Mounting:
1. Install roof-mounted packaged, outdoor, heat-wheel, energy-recovery units on manufacturer's-recommended-height equipment roof curbs. Comply with requirements for equipment curbs specified in Section 077200 "Roof Accessories."
2. Comply with requirements for vibration-isolation and seismic-control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

C. Install units with clearances for service and maintenance.

D. Do not operate equipment fans until temporary or permanent filters are in place. Replace temporary filters used during construction and testing with new, clean filters prior to final inspection.

3.3 DUCTWORK CONNECTIONS

A. Comply with requirements for ductwork in accordance with Section 233113 "Metal Ducts."

B. Connect duct to units with flexible connections. Comply with requirements in Section 233300 "Air Duct Accessories."

C. Isolation Dampers: Install isolation dampers in accordance with Section 230923.12 "Control Dampers."

3.4 ELECTRICAL CONNECTIONS

A. Install electrical devices furnished by manufacturer, but not factory mounted, in accordance with NFPA 70 and NECA 1.

B. Connect wiring in accordance with Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Ground equipment in accordance with Section 260526 "Grounding and Bonding for Electrical Systems."

D. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
1. Nameplate shall be laminated acrylic or melamine plastic signs, as specified in Section 260553 "Identification for Electrical Systems."
2. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.5 CONTROL CONNECTIONS
 A. Install control and electrical power wiring to field-mounted control devices.
 B. Connect control wiring in accordance with Section 260523 "Control-Voltage Electrical Power Cables."

3.6 STARTUP SERVICE
 A. Engage factory-authorized service representative to perform startup service.
 1. Complete installation and startup checks in accordance with manufacturer's written instructions.

3.7 ADJUSTING
 A. Adjust moving parts to function smoothly, and lubricate as recommended by manufacturer.
 B. Adjust initial temperature and humidity set points.
 C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

3.8 FIELD QUALITY CONTROL
 A. Testing Agency: Engage qualified testing agency to perform tests and inspections.
 B. Manufacturer's Field Service: Engage factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
 C. Perform tests and inspections with assistance of factory-authorized service representative.
 D. Tests and Inspections:
 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 2. Test and adjust controls and safety. Replace damaged and malfunctioning controls and equipment.
 E. Packaged, outdoor, heat-wheel, energy-recovery equipment will be considered defective if it does not pass tests and inspections.
 F. Prepare test and inspection reports.
3.9 DEMONSTRATION

A. Engage factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air-to-air energy-recovery units.

3.10 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 237223.23
SECTION 238129 - VARIABLE-REFRIGERANT-FLOW HVAC SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes complete VRF HVAC system(s) including, but not limited to, delegated design and the following components to make a complete operating system(s) according to requirements indicated:

1. Indoor, ceiling-mounted units for ducting.
2. Indoor, recessed, ceiling-mounted units.
3. Indoor, suspended, ceiling-mounted units.
4. Outdoor, air-source heat recovery units.
5. Heat recovery control units.
7. System refrigerant and oil.
8. System condensate drain piping.
10. Metal hangers and supports.
11. Metal framing systems.
12. Fastener systems.
13. Pipe stands.
14. Miscellaneous support materials.
15. Piping and tubing insulation.

B. Related Sections Include the following:
1. Division 01 Section “Construction Waste Management.”
2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.2 DEFINITIONS

A. Air-Conditioning System Operation: System capable of operation with all zones in cooling only.

B. Heat-Pump System Operation: System capable of operation with all zones in either heating or cooling, but not with simultaneous heating and cooling zones that transfer heat between zones.

C. Heat Recovery System Operation: System capable of operation with simultaneous heating and cooling zones that transfer heat between zones.

D. HRCU: Heat Recovery Control Unit. HRCUs are used in heat recovery VRF HVAC systems to manage and control refrigerant between indoor units to provide simultaneous heating and cooling zones. "Heat Recovery Control Unit" is the term used by ASHRAE for what different manufacturers term as branch circuit controller, branch selector box, changeover box, flow selector unit, mode change unit, and other such terms.
E. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

F. Plenum: A space forming part of the air distribution system to which one or more air ducts are connected. An air duct is a passageway, other than a plenum, for transporting air to or from heating, ventilating, or air-conditioning equipment.

G. Three-Pipe System Design: One high pressure refrigerant vapor line, one low pressure refrigerant vapor line, and one refrigerant liquid line connect a single outdoor unit or multiple manifold outdoor units in a single system to associated system HRCUs. One liquid line and refrigerant vapor line connect HRCUs to associated indoor units.

H. VRF: Variable refrigerant flow.

1.3 ACTION SUBMITTALS

A. Product data.

B. Sustainable Design Submittals:

1. Product Data: For energy performance.

C. ASHRAE 62.1 Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."

1. Air-Balance Report: Documentation indicating that Work complies with ASHRAE 62.1, Section 7.2.2 - "Air Balancing."
2. TAB Report: Documentation indicating that Work complies with ASHRAE/IES 90.1, Section 6.7.2.3 - "System Balancing."
4. Product Data for EA Credit "Optimize Energy Performance": Indicating that system meets efficiency requirements.
5. Refrigerant: Product Data for refrigerants, indicating compliance with refrigerant management practices.
6. Product Data for EA Credit "Advanced Energy Metering": For continuous metering equipment.
7. Product Data for EQ Credit "Acoustic Performance": Documentation indicating that systems and equipment comply.
8. Thermal Comfort: Product Data indicating that systems, equipment, and controls comply.

D. Shop Drawings: For VRF HVAC systems.

1. Include plans, elevations, sections, and mounting and attachment details.
2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
4. Include diagrams and details of refrigerant piping and tubing showing installation requirements for manufacturer-furnished divided flow fittings.
5. Include diagrams for power, signal, and control wiring.

E. Delegated-Design Submittals:

1. Include design calculations for selecting vibration isolators and for designing vibration isolation bases.
2. Include design calculations with corresponding diagram of refrigerant piping and tubing sizing for each system installed.
3. Include design calculations with corresponding floor plans indicating that refrigerant concentration limits are within allowable limits of ASHRAE 15 and governing codes.
4. Include calculations showing that system travel distance for refrigerant piping and controls cabling are within horizontal and vertical travel distances set by manufacturer. Provide a comparison table for each system installed.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, elevations, sections, and details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Suspended ceiling components.
2. Structural floors, roofs and associated members to which equipment, piping, ductwork, cables, and conduit will be attached.
3. Size and location of initial access modules for acoustical tile.
4. Wall-mounted controllers located in finished space showing relationship to light switches, fire-alarm devices, and other installed devices.
5. Size and location of access doors and panels installed behind walls and inaccessible ceilings for products installed behind walls and requiring access.

B. Qualification Data:

1. For Installer.
2. For VRF HVAC system manufacturer.
3. For VRF HVAC system provider.

C. Seismic Qualification Data: Certificates, for equipment, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

D. Product Certificates: For each type of product.
E. Product test reports.
F. Source quality-control reports.
G. Field quality-control reports.
H. Sample warranties.

1.5 CLOSEOUT SUBMITTALS
A. Operation and maintenance data: For VRF HVAC systems to include in emergency, operation, and maintenance manuals.
B. Software and Firmware Operational Documentation:
 1. Software operating and upgrade manuals.
 2. Program Software Backup: On CD or DVD, USB media, or approved cloud storage platform, complete with data files.
 3. Device address list.
 4. Printout of software application and graphic screens.

1.6 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Filters:
 a. One set for each unit with replaceable filters.
 b. One set for each unit type and unique size of washable filters.

1.7 QUALITY ASSURANCE
A. Factory-Authorized Service Representative Qualifications:
 1. Authorized representative of, and trained by, VRF HVAC system manufacturer.
 2. Staffing resources of competent and experienced full-time employees that are assigned to execute work according to schedule.
 3. Service and maintenance staff assigned to support Project during warranty period.
 4. VRF HVAC system manufacturer's backing to take over execution of Work if necessary, to comply with requirements indicated. Include Project-specific written letter, signed by manufacturer's corporate officer, if requested.
B. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by VRF HVAC system manufacturer.
 1. Each employee shall be certified by manufacturer for proper installation of systems, including, but not limited to, equipment, piping, controls, and accessories indicated and furnished for installation.
2. Installer certification shall be valid and current for duration of Project.

C. ISO Compliance: System equipment and components furnished by VRF HVAC system manufacturer shall be manufactured in an ISO 9001 and ISO 14001 facility.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver and store products in a clean and dry place.

B. Comply with manufacturer's written rigging and installation instructions for unloading and moving to final installed location.

C. Handle products carefully to prevent damage, breaking, denting, and scoring. Do not install damaged products.

D. Protect products from weather, dirt, dust, water, construction debris, and physical damage.

1. Retain factory-applied coverings on equipment to protect finishes during construction and remove just prior to operating unit.
2. Cover unit openings before installation to prevent dirt and dust from entering inside of units. If required to remove coverings during unit installation, reapply coverings over openings after unit installation and remove just prior to operating unit.

E. Replace installed products damaged during construction.

1.9 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace equipment and components that fail(s) in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures.
 b. Faulty operation.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering and use.

2. Warranty Period:
 a. For Compressor: Five years from date of Substantial Completion.
 b. For Parts, Including Controls: Three years from date of Substantial Completion.
 c. For Labor: One year from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following or approved equal:

1. Carrier Corporation; a unit of United Technologies Corp.
2. Daikin AC (Americas), Inc.
3. Johnson Controls, Inc.
4. LG Electronics.
5. Mitsubishi Electric & Electronics USA, Inc.
7. Trane Company
8. Gree
9. Samsung

B. The Variable Flow Refrigerant systems specified in the section shall serve as the sole source of heating for those areas of the building served. The system and equipment provided shall be capable of providing the indicated (scheduled) heating output at winter design conditions at the airflow rates and at the temperatures indicated. The system shall be a heat recovery system allowing individual indoor units to serve simultaneously in the heating and cooling modes as required.

2.2 SYSTEM DESCRIPTION

A. Direct-expansion (DX) VRF HVAC systems with variable capacity in response to varying cooling and heating loads. System shall consist of multiple indoor units, outdoor units, piping, controls, and electrical power to make complete operating system(s) complying with requirements indicated.

1. Three-pipe system design.
2. Systems operation, air-conditioning heat pump or heat recovery as indicated on Drawings.
3. Each system with one refrigerant circuit shared by all indoor units connected to system.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. AHRI Compliance: System and equipment performance certified according to AHRI 1230 and products listed in AHRI directory.

D. ASHRAE Compliance:

1. ASHRAE 15: For safety code for mechanical refrigeration.
2. ASHRAE 62.1: For indoor air quality.
3. ASHRAE 135: For control network protocol with remote communication.
4. ASHRAE/IES 90.1 Compliance: For system and component energy efficiency.

E. UL Compliance: Comply with UL 1995.
2.3 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional specialist, as defined in Section 014000 "Quality Requirements," to design complete and operational VRF HVAC systems complying with requirements indicated.

1. Provide system refrigerant calculations.
 a. Refrigerant concentration limits shall be within allowable limits of ASHRAE 15 and governing codes.
 b. Indicate compliance with manufacturer's maximum vertical and horizontal travel distances. Prepare a comparison table for each system showing calculated distances compared to manufacturer's maximum allowed distances.

2. Include a mechanical ventilation system and gas detection system as required to comply with ASHRAE 15 and governing codes.

3. System Refrigerant Piping and Tubing:
 a. Arrangement: Arrange piping to interconnect indoor units and outdoor unit(s) in compliance with manufacturer requirements and requirements indicated.
 b. Routing: Conceal piping above ceilings and behind walls to maximum extent possible.
 c. Sizing: Size piping system, using a software program acceptable to manufacturer, to provide performance requirements indicated. Consider requirements to accommodate future change requirements.

4. System Controls:
 a. Network arrangement.
 b. Network interface with other building systems.
 c. Product selection.
 d. Sizing.

B. Service Access:

1. Provide and document service access requirements.
2. Locate equipment, system isolation valves, and other system components that require service and inspection in easily accessible locations. Avoid locations that are difficult to access if possible.
3. Where serviceable components are installed behind walls and above inaccessible ceilings, provide finished assembly with access doors or panels to gain access. Properly size the openings to allow for service, removal, and replacement.
4. If less than full and unrestricted access is provided, locate components within an 18-inch reach of the finished assembly.
5. Where ladder access is required to service elevated components, provide an installation that provides for sufficient access within ladder manufacturer's written instructions for use.
6. Comply with OSHA regulations.

C. System Design and Installation Requirements:
1. Design and install systems indicated according to manufacturer's recommendations and written instructions.
2. Where manufacturer's requirements differ from requirements indicated, contact Architect for direction. The most stringent requirements should apply unless otherwise directed in writing by Architect.

D. Isolation of Equipment: Provide isolation valves to isolate each indoor unit and outdoor unit for service, removal, and replacement without interrupting system operation.

E. System Auto Refrigerant Charge: Each system shall have an automatic refrigerant charge function to ensure the proper amount of refrigerant is installed in system.

F. Outdoor Conditions:
 1. Suitable for outdoor ambient conditions encountered.
 a. Design equipment and supports to withstand wind loads of governing code and ASCE/SEI 7.
 b. Design equipment and supports to withstand snow and ice loads of governing code and ASCE/SEI 7.
 c. Provide corrosion-resistant coating for components and supports where located in coastal or industrial climates that are known to be harmful to materials and finishes.

G. Seismic Performance: VRF HVAC systems shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified."
 2. Component Importance Factor: 1.0.

H. Sound Performance: Sound levels generated by operating HVAC equipment shall be within requirements indicated.
 1. Indoor: Within design guidelines of "2015 ASHRAE HANDBOOK- HVAC Applications."
 2. Outdoor: Within ordinance of governing authorities.

I. Thermal Movements: Allow for controlled thermal movements from ambient, surface, and system temperature changes.

J. Capacities and Characteristics: As indicated on Drawings.
2.4 INDOOR, CEILING-MOUNTED UNITS FOR DUCTING

A. Description: Factory-assembled and -tested complete unit with components, piping, wiring, and controls required for mating to ductwork, piping, power, and controls field connections.

B. Cabinet:

1. Material: Galvanized steel.
2. Insulation: Manufacturer's standard internal insulation, complying with ASHRAE 62.1, to provide thermal resistance and prevent condensation.
3. Duct Connections: Extended collar or flange, or designated exterior cabinet surface, designed for attaching field-installed ductwork.
4. Mounting: Manufacturer-designed provisions for field installation.
5. Internal Access: Removable panels or hinged doors of adequate size for field access to internal components for inspection, cleaning, service, and replacement.

C. DX Coil Assembly:

1. Coil Casing: Aluminum, galvanized, or stainless steel.
2. Coil Fins: Aluminum, mechanically bonded to tubes, with arrangement required by performance.
3. Coil Tubes: Copper, of diameter and thickness required by performance.
4. Expansion Valve: Electronic modulating type with linear or proportional characteristics.
5. Unit Internal Tubing: Copper tubing with brazed joints.
6. Unit Internal Tubing Insulation: Manufacturer's standard insulation, of thickness to prevent condensation.
7. Field Piping Connections: Manufacturer's standard.
8. Factory Charge: Dehydrated air or nitrogen.
9. Testing: Factory pressure tested and verified to be without leaks.

D. Drain Assembly:

1. Pan: Non-ferrous material, with bottom sloped to low point drain connection.
2. Condensate Removal: Unit-mounted pump or other integral lifting mechanism, capable of lifting drain water to an elevation above top of cabinet.
3. Field Piping Connection: Non-ferrous material.

E. Fan and Motor Assembly:

1. Fan(s):
 a. Direct-drive arrangement.
 b. Single or multiple fans connected to a common motor shaft and driven by a single motor.
 c. Fabricated from non-ferrous components or ferrous components with corrosion-resistant finish.
 d. Wheels statically and dynamically balanced.

2. Motor: Brushless dc or electronically commutated with permanently lubricated bearings.
4. Speed Settings and Control: Two (low, high), three (low, medium, high), or more than three speed settings or variable speed with a speed range of least 50 percent.
5. Vibration Control: Integral isolation to dampen vibration transmission.

F. Filter Assembly: As Scheduled and as provided by the Manufacturer.

G. Unit Accessories:
 1. Outdoor Air Ventilation Kit: Connection, motorized damper, and control sized to allow sequence of operation indicated on Drawings.
 2. Remote Room Temperature Sensor Kit: Wall-mounted, hardwired room temperature sensor kit for use in rooms that do not have room temperature measurement.

H. Unit Controls:
 1. Enclosure: Metal, suitable for indoor locations.
 2. Factory-Installed Controller: Configurable digital control.
 3. Factory-Installed Sensors:
 a. Unit inlet air temperature.
 b. Coil entering refrigerant temperature.
 c. Coil leaving refrigerant temperature.
 4. Features and Functions:
 a. Self-diagnostics.
 b. Time delay.
 c. Auto-restart.
 d. External static pressure control.
 e. Auto operation mode.
 f. Manual operation mode.
 g. Filter service notification.
 h. Power consumption display.
 i. Drain assembly high water level safety shutdown and notification.
 j. Run test switch.
 5. Communication: Network communication with other indoor and outdoor units.
 6. Cable and Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
 7. Field Connection: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

I. Unit Electrical:
 1. Enclosure: Metal, suitable for indoor locations.
 2. Field Connection: Single point connection to power unit and integral controls.
 4. Control Transformer: Manufacturer's standard. Coordinate requirements with field power supply.
 5. Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
2.5 INDOOR, EXPOSED, WALL-MOUNTED UNITS

A. Description: Factory-assembled and -tested complete unit with components, piping, wiring, and controls required for mating to piping, power, and controls field connections.

B. Cabinet:

1. Material: Painted steel, or coated steel frame covered by a plastic cabinet, with an architectural acceptable finish suitable for tenant occupancy on exposed surfaces.
2. Insulation: Manufacturer's standard internal insulation, complying with ASHRAE 62.1, to provide thermal resistance and prevent condensation.
3. Mounting: Manufacturer-designed provisions for field installation.
4. Internal Access: Removable panels of adequate size for field access to internal components for inspection, cleaning, service, and replacement.

C. DX Coil Assembly:

1. Coil Casing: Aluminum, galvanized, or stainless steel.
2. Coil Fins: Aluminum, mechanically bonded to tubes, with arrangement required by performance.
3. Coil Tubes: Copper, of diameter and thickness required by performance.
4. Expansion Valve: Electronic modulating type with linear or proportional characteristics.
5. Unit Internal Tubing: Copper tubing with brazed joints.
6. Unit Internal Tubing Insulation: Manufacturer's standard insulation, of thickness to prevent condensation.
7. Field Piping Connections: Manufacturer's standard.
8. Factory Charge: Dehydrated air or nitrogen.
9. Testing: Factory pressure tested and verified to be without leaks.

D. Drain Assembly:

1. Pan: Non-ferrous material, with bottom sloped to low point drain connection.
 a. If a floor drain is not available at unit, provide unit with field-installed condensate pump accessory.
3. Field Piping Connection: Non-ferrous material.

E. Fan and Motor Assembly:

1. Fan(s):
 a. Direct-drive arrangement.
 b. Single or multiple fans connected to a common motor shaft and driven by a single motor.
 c. Fabricated from non-ferrous components or ferrous components with corrosion protection finish.
 d. Wheels statically and dynamically balanced.

2. Motor: Brushless dc or electronically commutated with permanently lubricated bearings.
4. Speed Settings and Control: Two (low, high), three (low, medium, high), or more than three speed settings or variable speed with a speed range of at least 50 percent.
5. Vibration Control: Integral isolation to dampen vibration transmission.

F. Filter Assembly: As Scheduled and as provided by the Manufacturer.

G. Grille Assembly: Manufacturer's standard discharge grille with field-adjustable air pattern mounted in top or front face of unit cabinet.

H. Unit Accessories:

1. Remote Room Temperature Sensor Kit: Wall-mounted, hardwired room temperature sensor kit for use in rooms that do not have room temperature measurement.
2. Condensate Pump: Integral reservoir and control with electrical power connection through unit power.

I. Unit Controls:

1. Enclosure: Metal, suitable for indoor locations.
2. Factory-Installed Controller: Configurable digital control.
3. Factory-Installed Sensors:
 a. Unit inlet air temperature.
 b. Coil entering refrigerant temperature.
 c. Coil leaving refrigerant temperature.

4. Features and Functions:
 a. Self-diagnostics.
 b. Time delay.
 c. Auto-restart.
 d. External static pressure control.
 e. Auto operation mode.
 f. Manual operation mode.
 g. Filter service notification.
 h. Power consumption display.
 i. Drain assembly high water level safety shutdown and notification.
 j. Run test switch.

5. Communication: Network communication with other indoor and outdoor units.
6. Cable and Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
7. Field Connection: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

J. Unit Electrical:

1. Enclosure: Manufacturer's standard, and suitable for indoor locations.
2. Field Connection: Single point connection to power entire unit and integral controls.
3. **Disconnecting Means:** Factory-mounted circuit breaker or switch, complying with NFPA 70.
4. **Control Transformer:** Manufacturer's standard. Coordinate requirements with field power supply.
5. **Wiring:** Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
6. **Raceways:** Enclose line voltage wiring in raceways to comply with NFPA 70.

2.6 INDOOR, RECESSED, CEILING-MOUNTED UNITS

A. Description: Factory-assembled and -tested complete unit with components, piping, wiring, and controls required for mating to ductwork, piping, power, and controls field connections.

B. Cabinet:

1. **Material:** Painted steel, or coated steel frame covered by a plastic cabinet, with an architectural acceptable finish suitable for tenant occupancy on exposed surfaces.
2. **Insulation:** Manufacturer's standard internal insulation, complying with ASHRAE 62.1, to provide thermal resistance and prevent condensation.
3. **Mounting:** Manufacturer-designed provisions for field installation.
4. **Internal Access:** Removable panels of adequate size for field access to internal components for inspection, cleaning, service, and replacement.

C. DX Coil Assembly:

1. **Coil Casing:** Aluminum, galvanized, or stainless steel.
2. **Coil Fins:** Aluminum, mechanically bonded to tubes, with arrangement required by performance.
3. **Coil Tubes:** Copper, of diameter and thickness required by performance.
4. **Expansion Valve:** Electronic modulating type with linear or proportional characteristics.
5. **Internal Tubing:** Copper tubing with brazed joints.
6. **Internal Tubing Insulation:** Manufacturer's standard insulation, of thickness to prevent condensation.
7. **Field Piping Connections:** Manufacturer's standard.
8. **Factory Charge:** Dehydrated air or nitrogen.
9. **Testing:** Factory pressure tested and verified to be without leaks.

D. Drain Assembly:

1. **Pan:** Non-ferrous material, with bottom sloped to low point drain connection.
2. **Condensate Removal:** Unit-mounted pump or other integral lifting mechanism, capable of lifting drain water to an elevation above top of cabinet.
3. **Field Piping Connection:** Non-ferrous material.

E. Fan and Motor Assembly:

1. **Fan(s):**
 a. Direct-drive arrangement.
b. Single or multiple fans connected to a common motor shaft and driven by a single motor.
c. Fabricated from non-ferrous components or ferrous components with corrosion protection finish.
d. Wheels statically and dynamically balanced.

2. Motor: Brushless dc or electronically commutated with permanently lubricated bearings.
4. Speed Settings and Control: Two (low, high), three (low, medium, high), or more than three speed settings or variable speed with a speed range of least 50 percent.
5. Vibration Control: Integral isolation to dampen vibration transmission.

F. Filter Assembly: As Scheduled and provided by the Manufacturer.

G. Discharge-Air Grille Assembly: Mounted in bottom of unit cabinet.
 1. Discharge Pattern: One-, two-, three-, or four-way throw as indicated on Drawings.
 a. Discharge Pattern Adjustment: Field-adjustable limits for up and down range of motion.
 b. Discharge Pattern Closure: Ability to close individual discharges of units with multiple patterns.

 2. Motorized Vanes: Modulating up and down flow pattern for uniform room air distribution.
 3. Additional Branch Supply Duct Connection: Sheet metal knockout for optional connection to one additional supply branch duct.

H. Return-Air Grille Assembly: Manufacturer's standard grille mounted in bottom of unit cabinet.

I. Outdoor Air Ventilation Connection: Sheet metal knockout for optional connection to outdoor air ventilation duct.

J. Unit Accessories:
 1. Outdoor Air Ventilation Kit: Connection, motorized damper, and control to satisfy unit control sequence of operation indicated on Drawings.
 2. Remote Room Temperature Sensor Kit: Wall-mounted, hardwired room temperature sensor kit for use in rooms that do not have room temperature measurement.

K. Unit Controls:
 1. Enclosure: Manufacturer's standard, and suitable for indoor locations.
 2. Factory-Installed Controller: Configurable digital control.
 3. Factory-Installed Sensors: Unit inlet air temperature and Coil leaving refrigerant temperature.
 5. Communication: Network communication with other indoor units and outdoor unit(s).
6. Cable and Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
7. Field Connection: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

L. Unit Electrical:
 1. Enclosure: Manufacturer's standard, and suitable for indoor locations.
 2. Field Connection: Single point connection to power entire unit and integral controls.
 3. Disconnecting Means: Factory-mounted circuit breaker or switch, complying with NFPA 70.
 4. Control Transformer: Manufacturer's standard. Coordinate requirements with field power supply.
 5. Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
 6. Raceways: Enclose line voltage wiring in raceways to comply with NFPA 70.

2.7 INDOOR, SUSPENDED, CEILING-MOUNTED UNITS

A. Description: Factory-assembled and -tested complete unit with components, piping, wiring, and controls required for mating to piping, power, and controls field connections.

B. Cabinet:
 1. Material: Painted steel, or coated steel frame covered by a plastic cabinet, with an architectural acceptable finish suitable for tenant occupancy on exposed surfaces.
 2. Insulation: Manufacturer's standard internal insulation, complying with ASHRAE 62.1, to provide thermal resistance and prevent condensation.
 3. Mounting: Manufacturer-designed provisions for field installation.
 4. Internal Access: Removable panels of adequate size for field access to internal components for inspection, cleaning, service, and replacement.

C. DX Coil Assembly:
 1. Coil Casing: Aluminum, galvanized, or stainless steel.
 2. Coil Fins: Aluminum, mechanically bonded to tubes, with arrangement required by performance.
 3. Coil Tubes: Copper, of diameter and thickness required by performance.
 4. Expansion Valve: Electronic modulating type with linear or proportional characteristics.
 5. Internal Tubing: Copper tubing with brazed joints.
 6. Internal Tubing Insulation: Manufacturer's standard insulation, of thickness to prevent condensation.
 7. Field Piping Connections: Manufacturer's standard.
 8. Factory Charge: Dehydrated air or nitrogen.
 9. Testing: Factory pressure tested and verified to be without leaks.

D. Drain Assembly:
 1. Pan: Non-ferrous material, with bottom sloped to low point drain connection.
a. If a floor drain is not available at unit, provide unit with field-installed condensate pump accessory.

3. Field Piping Connection: Non-ferrous material.

E. Fan and Motor Assembly:

1. Fan(s):
 a. Direct-drive arrangement.
 b. Single or multiple fans connected to a common motor shaft and driven by a single motor.
 c. Fabricated from non-ferrous components or ferrous components with corrosion protection finish.
 d. Wheels statically and dynamically balanced.

2. Motor: Brushless dc or electronically commutated with permanently lubricated bearings.
4. Speed Settings and Control: Two (low, high), three (low, medium, high), or more than three speed settings or variable speed with a speed range of least 50 percent.
5. Vibration Control: Integral isolation to dampen vibration transmission.

F. Filter Assembly: As Scheduled and as provided by the Manufacturer.

G. Return-Air Grille Assembly: Manufacturer's standard.

H. Outdoor Air Ventilation Connection: Sheet metal knockout for optional connection to outdoor air ventilation duct.

I. Unit Accessories:

1. Remote Room Temperature Sensor Kit: Wall-mounted, hardwired room temperature sensor kit for use in rooms that do not have room temperature measurement.
2. Condensate Pump: Integral reservoir and control with electrical power connection through unit power.

J. Unit Controls:

1. Enclosure: Manufacturer's standard, and suitable for indoor locations.
2. Factory-Installed Controller: Configurable digital control.
3. Factory-Installed Sensors: Unit inlet air temperature and Coil leaving refrigerant temperature.
5. Communication: Network communication with other indoor units and outdoor unit(s).
6. Cable and Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
7. Field Connection: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
K. Unit Electrical:

1. Enclosure: Manufacturer's standard, and suitable for indoor locations.
2. Field Connection: Single point connection to power entire unit and integral controls.
3. Disconnecting Means: Factory-mounted circuit breaker or switch, complying with NFPA 70.
4. Control Transformer: Manufacturer's standard. Coordinate requirements with field power supply.
5. Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
6. Raceways: Enclose line voltage wiring in raceways to comply with NFPA 70.

2.8 OUTDOOR, AIR-SOURCE HEAT RECOVERY UNITS

A. Description: Factory-assembled and -tested complete unit with components, piping, wiring, and controls required for mating to piping, power, and controls field connections.

1. Specially designed for use in systems with simultaneous heating and cooling.
2. Systems shall consist of one unit, or multiple unit modules that are designed by variable refrigerant system manufacturer for field interconnection to make a single refrigeration circuit that connects multiple indoor units.
3. All units installed shall be from the same product development generation.

B. Cabinet:

1. Galvanized steel and coated with a corrosion-resistant finish.
 a. Coating with documented salt spray test performance of 1000 hours according ASTM B117 surface scratch test (SST) procedure.
2. Mounting: Manufacturer-designed provisions for field installation.
3. Internal Access: Removable panels or hinged doors of adequate size for field access to internal components for inspection, cleaning, service, and replacement.

C. Compressor and Motor Assembly:

1. One or more positive-displacement, direct-drive and hermetically sealed scroll compressor(s) with inverter drive and turndown to 15 percent of rated capacity.
2. Protection: Integral protection against the following:
 a. High refrigerant pressure.
 b. Low oil level.
 c. High oil temperature.
 d. Thermal and overload.
 e. Voltage fluctuations.
 f. Phase failure and phase reversal.
 g. Short cycling.
3. Speed Control: Variable to automatically maintain refrigerant suction and condensing pressures while varying refrigerant flow to satisfy system cooling and heating loads.
5. Oil management system to ensure safe and proper lubrication over entire operating range.
6. Crankcase heaters with integral control to maintain safe operating temperature.
7. Fusible plug.

D. Condenser Coil Assembly:

1. Plate Fin Coils:
 a. Casing: Aluminum, galvanized, or stainless steel.
 b. Fins: Aluminum or copper, mechanically bonded to tubes, with arrangement required by performance.
 c. Tubes: Copper, of diameter and thickness required by performance.

2. Aluminum Microchannel Coils:
 b. Single- or multiple-pass arrangement.
 c. Construct fins, tubes, and header manifolds of aluminum alloy.

3. Coating: Corrosion resistant.
4. Hail Protection: Provide condenser coils with louvers, baffles, or hoods to protect against hail damage.

E. Condenser Fan and Motor Assembly:

1. Fan(s): Propeller type.
 a. Direct-drive arrangement.
 b. Fabricated from non-ferrous components or ferrous components with corrosion protection finish to match performance indicated for condenser coil.
 c. Statically and dynamically balanced.

2. Fan Guards: Removable safety guards complying with OSHA regulations. If using metal materials, coat with corrosion-resistant coating to match performance indicated for condenser coil.
3. Motor(s): Brushless dc or electronically commutated with permanently lubricated bearings and rated for outdoor duty.
5. Speed Settings and Control: Variable speed with a speed range of least 75 percent.

F. Drain Pan: If required by manufacturer's design, provide unit with non-ferrous drain pan with bottom sloped to a low point drain connection.

G. Unit Controls:

1. Enclosure: Manufacturer's standard, and suitable for unprotected outdoor locations.
2. Factory-Installed Controller: Configurable digital control.
3. Factory-Installed Sensors:
a. Refrigerant suction temperature.
b. Refrigerant discharge temperature.
c. Outdoor air temperature.
d. Refrigerant high pressure.
e. Refrigerant low pressure.
f. Oil level.

4. Features and Functions: Self-diagnostics, time delay, auto-restart, fuse protection, auto operation mode, manual operation mode, night setback control, run test switch equalize run time between multiple same components.

5. Communication: Network communication with indoor units and other outdoor unit(s).

6. Cable and Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

7. Field Connection: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

H. Unit Electrical:

1. Enclosure: Metal, similar to enclosure, and suitable for unprotected outdoor locations.
2. Field Connection: Single point connection to power entire unit and integral controls.
3. Disconnecting Means: Factory-mounted circuit breaker or switch, complying with NFPA 70.
4. Control Transformer: Manufacturer's standard. Coordinate requirements with field power supply.
5. Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
6. Raceways: Enclose line voltage wiring in raceways to comply with NFPA 70.

I. Unit Hardware: Zinc-plated steel, or stainless steel. Coat exposed surfaces with additional corrosion-resistant coating if required to prevention corrosion when exposed to salt spray test for 1000 hours according ASTM B117.

J. Unit Piping:

1. Unit Tubing: Copper tubing with brazed joints.
2. Unit Tubing Insulation: Manufacturer's standard insulation, of thickness to prevent condensation.
3. Field Piping Connections: Manufacturer's standard.
4. Factory Charge: Dehydrated air or nitrogen.
5. Testing: Factory pressure tested and verified to be without leaks.

2.9 HEAT RECOVERY CONTROL UNITS (HRCUs)

A. Description: Factory-assembled and -tested complete unit with components, piping, wiring, and controls required for mating to piping, power, and controls field connections.

1. Specially designed for use in systems with simultaneous heating and cooling.
2. Systems shall consist of one unit, or multiple unit that are designed by variable refrigerant system manufacturer for field interconnection to make a single refrigeration circuit that connects multiple indoor units.
B. Cabinet:
2. Insulation: Manufacturer's standard internal insulation to provide thermal resistance and prevent condensation.
3. Mounting: Manufacturer-designed provisions for field installation.
4. Internal Access: Removable panels or hinged doors of adequate size for field access to internal components for inspection, cleaning, service, and replacement.

C. Drain Pan: If required by manufacturer's design, provide unit with non-ferrous drain pan with bottom sloped to a low point drain connection.

D. Refrigeration Assemblies and Specialties:
1. Specially designed by manufacturer for type of VRF HVAC system being installed, either two or three pipes.
2. Each refrigerant branch circuit shall have refrigerant control valves to control refrigerant flow.
3. Each system piping connection upstream of heat recovery unit shall be fitted with an isolation valve to allow for service to any heat recovery control unit in the system without interrupting operation of the system.
4. Each branch circuit connection shall be fitted with an isolation valve and capped service port to allow for service to any individual branch circuit without interrupting operation of the system.
 a. If not available as an integral part of the heat recovery control unit, isolation valves shall be field installed adjacent to the unit pipe connection.

E. Unit Controls:
1. Enclosure: Manufacturer's standard, and suitable for indoor locations.
2. Factory-Installed Controller: Configurable digital control.
4. Communication: Network communication with indoor units and outdoor unit(s).
5. Cable and Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
6. Field Connection: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

F. Unit Electrical:
1. Enclosure: Metal, similar to enclosure, and suitable for indoor locations.
2. Field Connection: Single point connection to power entire unit and integral controls.
3. Disconnecting Means: Factory-mounted circuit breaker or switch, complying with NFPA 70.
4. Control Transformer: Manufacturer's standard. Coordinate requirements with field power supply.
5. Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
6. Raceways: Enclose line voltage wiring in raceways to comply with NFPA 70.
G. Unit Piping:

1. Unit Tubing: Copper tubing with brazed joints.
2. Unit Tubing Insulation: Manufacturer's standard insulation, of thickness to prevent condensation.
3. Field Piping Connections: Manufacturer's standard.
4. Factory Charge: Dehydrated air or nitrogen.
5. Testing: Factory pressure tested and verified to be without leaks.

2.10 SYSTEM CONTROLS

A. General Requirements:

1. Network: Indoor units and outdoor units shall include integral controls and connect through a manufacturer-selected control network.
3. Integration with Building Automation System: ASHRAE 135, BACnet IP and certified by BACnet Testing Lab (BTL), including the following:
 a. Ethernet connection via RJ-45 connectors and port with transmission at 100 Mbps or higher.
 b. Integration devices shall be connected to local uninterruptible power supply unit(s) to provide at least 30 minutes of battery backup operation after a power loss.
 c. Integration shall include control, monitoring and scheduling change of value notifications.
4. Operator Interface:
 a. Operators shall interface with system and unit controls through the following:
 1) Operator interfaces integral to controllers.
 2) Owner-furnished PC connected to central controller(s).
 3) Web interface through web browser software.
 4) Integration with Building Automation System.
 b. Users shall be capable of interface with controllers for control of indoor units to extent privileges are enabled. Control features available to users shall include the following:
 1) On/off control.
 2) Temperature set-point adjustment.

B. VRF HVAC System Operator Software for PC:

1. Software offered by VRF HVAC system manufacturer shall provide system operators with ability to monitor and control VRF HVAC system(s) from a single dedicated Owner-furnished PC.
2. Software shall provide operator with a graphic user interface to allow monitoring and control of multiple central controllers from a single device location through point-and-click mouse exchange.

3. Plan views shall show building plans with location of indoor units and identification superimposed on plans.

4. Controls operation mode of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units. Operation modes available through central controller shall match those operation modes of controllers for indoor units.

5. Schedules operation of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units. Schedules daily, weekly, and annual events.

6. Changes operating set points of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units.

7. Optimized start feature to start indoor units before scheduled time to reach temperature set-point at scheduled time based on operating history.

8. Night setback feature to operate indoor units at energy-conserving heating and cooling temperature set-points during unoccupied periods.

9. Supports Multiple Languages: English.

10. Supports Imperial and Metric Temperature Units: Fahrenheit and Celsius.

11. Displays service notifications and error codes.

12. Monitors and displays up to 3000 item error history and 10000 item operation history for regular reporting and further archiving.

13. Monitors and displays cumulative operating time of indoor units.

14. Able to disable and enable operation of individual controllers for indoor units.

15. Information displayed on individual controllers shall also be available for display.

16. Information displayed for outdoor units, including refrigerant high and low pressures.

C. Central Controllers:

1. Centralized control for all indoor and outdoor units from a single central controller location.
 a. Include multiple interconnected controllers as required.

2. Controls operation mode of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units. Operation modes available through central controller shall match those operation modes of controllers for indoor units.

3. Schedule operation of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units.
 a. Sets schedule for daily, weekly, and annual events.
 b. Schedule options available through central controller shall at least include the schedule options of controllers for indoor units.

4. Changes operating set points of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units.

5. Optimized start feature to start indoor units before scheduled time to reach temperature set-point at scheduled time based on operating history.

6. Night setback feature to operate indoor units at energy-conserving heating and cooling temperature set-points during unoccupied periods.

7. Service diagnostics tool.

8. Able to disable and enable operation of individual controllers for indoor units.
9. Information displayed on individual controllers shall also be available for display through central controller.
10. Information displayed for outdoor units, including refrigerant high and low pressures.
11. Multiple RJ-45 ports for direct connection to a local PC and an Ethernet network switch.
12. Operator interface through a backlit, high-resolution color display touch panel and web accessible through standard web browser software.

D. Wired Controllers for Indoor Units:

1. Single controller capable of controlling multiple indoor units as group.
2. Auto Timeout Touch Screen LCD: Timeout duration shall be adjustable.
3. Multiple Language: English.
4. Temperature Units: Fahrenheit and Celsius.
5. On/Off: Turns indoor unit on or off.
6. Hold: Hold operation settings until hold is released.
8. Temperature Display: 1-degree increments.
10. Relative Humidity Display: 1 percent increments.
11. Relative Humidity Set-Point: Adjustable in 1 percent increments between 40% - 50%.
12. Fan Speed Setting: Select between available options furnished with the unit.
13. Airflow Direction Setting: If applicable to unit, select between available options furnished with the unit.
14. Seven-day programmable operating schedule with up to five events per day. Operations shall include On/Off, Operation Mode, and Temperature Set-Point.
15. Auto Off Timer: Operates unit for an adjustable time duration and then turns unit off.
16. Occupancy detection.
17. Service Notification Display: "Filter".
18. Service Run Tests: Limit use by service personnel to troubleshoot operation.
21. Setting stored in nonvolatile memory to ensure that settings are not lost if power is lost. Battery backup for date and time only.
22. Low-voltage power required for controller shall be powered through non-polar connections to indoor unit.

2.11 SYSTEM REFRIGERANT AND OIL

A. Refrigerant:

1. As required by VRF HVAC system manufacturer for system to comply with performance requirements indicated.
2. ASHRAE 34, Class A1 refrigerant classification.

B. Oil:
1. As required by VRF HVAC system manufacturer and to comply with performance requirements indicated.

2.12 SYSTEM CONDENSATE DRAIN PIPING
A. If more than one material is listed, material selection is Contractor's option.
B. Copper Tubing:
 1. Drawn-Temper Tubing: According to ASTM B88, Type L, ASTM B88, Type M or Type DWV according to ASTM B306.

2.13 SYSTEM REFRIGERANT PIPING
A. Comply with requirements in Section 232300 "Refrigerant Piping" for system piping requirements.
B. Refrigerant Piping:
 1. Copper Tube: ASTM B280, Type ACR.
 3. Brazing Filler Metals: AWS A5.8/A5.8M.
C. Refrigerant Tubing Kits:
 1. Furnished by VRF HVAC system manufacturer.
 2. Factory-rolled and -bundled, soft-copper tubing with tubing termination fittings at each end.
 3. Standard one-piece length for connecting to indoor units.
 4. Pre-insulated with flexible elastomeric insulation of thickness to comply with governing energy code and sufficient to eliminate condensation.
 5. Factory Charge: Dehydrated air or nitrogen.
D. Divided-Flow Specialty Fittings: Where required by VRF HVAC system manufacturer for proper system operation, VRF HVAC system manufacturer shall furnish specialty fittings with identification and instructions for proper installation by Installer.
E. Refrigerant Isolation Ball Valves:
 1. Description: Uni-body full port design, rated for maximum system temperature and pressure, and factory tested under pressure to ensure tight shutoff. Designed for valve operation without removing seal cap.
 2. Seals: Compatible with system refrigerant and oil. Seal service life of at least 20 years.
 3. Valve Connections: Flare or sweat depending on size.
2.14 METAL HANGERS AND SUPPORTS

A. Copper Tube Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of galvanized or copper-coated steel.

2.15 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:
 1. Description: Shop- or field-fabricated, pipe-support assembly for supporting multiple parallel pipes.
 3. Channels: Continuous slotted steel channel with inturned lips.
 4. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

2.16 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded, zinc-coated steel stud, for use in hardened Portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type anchors, for use in hardened Portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

 1. Indoor Applications: Zinc-coated steel.
 2. Outdoor Applications: Stainless steel.

2.17 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

D. High-Type, Single-Pipe Stand:
1. **Description:** Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
2. **Base:** Stainless steel.
3. **Vertical Members:** Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
4. **Horizontal Member:** Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. **High-Type, Multiple-Pipe Stand:**
1. **Description:** Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
2. **Bases:** One or more; plastic.
3. **Vertical Members:** Two or more protective-coated-steel channels.
4. **Horizontal Member:** Protective-coated-steel channel.
5. **Pipe Supports:** Galvanized-steel, clevis-type pipe hangers.

F. **Curb-Mounted-Type Pipe Stands:** Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.18 OUTDOOR EQUIPMENT STANDS

A. **Description:** Individual foot supports with elevated adjustable channel cross bars and clamps/fasteners/bolts for ground or roof-supported outdoor equipment components, without roof membrane penetration, in a prefabricated system that can be modularly assembled on-site.

B. **Foot Material:** Rubber or polypropylene.

C. **Rails Material:** Hot-dip galvanized carbon steel.

D. **Wind/Sliding Load Resistance:** Up to 100 mph minimum.

2.19 MISCELLANEOUS SUPPORT MATERIALS

A. **Grout:** ASTM C1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

1. **Properties:** Nonstaining, noncorrosive, and nongaseous.
2. **Design Mix:** 5000-psi, 28-day compressive strength.

B. **Structural Steel:** ASTM A36/A36M, carbon-steel plates, shapes, and bars; galvanized.

C. **Threaded Rods:** Continuously threaded. Zinc-plated steel or galvanized steel for indoor applications and stainless steel for outdoor applications. Mating nuts and washers of similar material as rods.
2.20 PIPING AND TUBING INSULATION

A. Comply with requirements in Section 230719 "HVAC Piping Insulation" for system piping insulation requirements.

B. Condensate Drain Piping and Tubing Insulation and Jacket Requirements:
 1. Flexible Elastomeric Insulation:
 a. Closed-cell, sponge- or expanded-rubber materials, complying with ASTM C534, Type I for tubular materials.
 b. Indoors: 1 inch thick.
 c. Outdoors: 1 inch thick.

C. Refrigerant Tubing Insulation and Jacket Requirements:
 1. Flexible Elastomeric Insulation:
 a. Closed-cell, sponge- or expanded-rubber materials, complying with ASTM C534, Type I for tubular materials.
 b. Indoors: 1 inch thick.
 c. Outdoors: 1 inch thick.

2.21 SYSTEM CONTROL CABLE AND RACEWAYS

A. Low-Voltage Control Cabling:
 1. Plenum-Rated, Paired Cable: NFPA 70, Type CMP.

B. TIA-485A Network Cabling:
 1. Standard Cable: NFPA 70, Type CMG.
 2. Plenum-Rated Cable: NFPA 70, Type CMP.

D. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for control wiring and cable raceways.

2.22 MATERIALS

A. Steel:
 1. ASTM A36/A36M for carbon structural steel.
 2. ASTM A568/A568M for steel sheet.

B. Stainless Steel:
 1. Manufacturer's standard grade for casing.
2. Manufacturer's standard type, ASTM A240/A240M for bare steel exposed to airstream or moisture.

C. Galvanized Steel: ASTM A653/A653M.

E. Comply with Section 230546 "Coatings for HVAC" for corrosion-resistant coating.

F. Corrosion-Resistant Coating: Coat with a corrosion-resistant coating capable of withstanding a 3000-hour salt-spray test according to ASTM B117.

1. Standards:
 a. ASTM B117 for salt spray.
 b. ASTM D2794 for minimum impact resistance of 100 in-lb.
 c. ASTM B3359 for cross-hatch adhesion of 5B.

3. Thickness: 1 mil.
4. Gloss: Minimum gloss of 60 on a 60-degree meter.

2.23 SOURCE QUALITY CONTROL

A. Factory Tests: Test and inspect factory-assembled equipment.

B. Equipment will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports for historical record. Submit reports only if requested.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

A. Clearance:
 1. Maintain manufacturer's recommended clearances for service and maintenance.
 2. Maintain clearances required by governing code.

B. Loose Components: Install components, devices, and accessories furnished by manufacturer, with equipment, that are not factory mounted.
 1. Loose components shall be installed by manufacturer's service representative.

C. Indoor Unit Installations:
 1. Install units to be level and plumb while providing a neat and finished appearance.
 2. Unless otherwise required by VRF HVAC system manufacturer, support ceiling-mounted units from structure above using threaded rods; minimum rod size of 3/8 inch.
3. Adjust supports of exposed and recessed units to draw units tight to adjoining surfaces.
4. Protect finished surfaces of ceilings, floors, and walls that come in direct contact with units. Refinish or replaced damaged areas after units are installed.
5. In rooms with ceilings, conceal piping and tubing, controls, and electrical power serving units above ceilings.
6. In rooms without ceiling, arrange piping and tubing, controls, and electrical power serving units to provide a neat and finished appearance.
7. Provide lateral bracing if needed to limit movement of suspended units to not more than 0.25 inch.
8. Grouting: Place grout under equipment supports and make bearing surface smooth.

D. Outdoor Unit Installations:

1. Roof-Mounted Installations: Install outdoor units on equipment supports specified in Section 077200 "Roof Accessories." Anchor units to supports with removable, stainless-steel fasteners.

3.2 GENERAL REQUIREMENTS FOR PIPING AND TUBING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping and tubing systems. Install piping and tubing as indicated unless deviations to layout are approved on coordination drawings.

B. Install piping and tubing in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping and tubing at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping and tubing above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping and tubing to permit valve servicing.

F. Install piping and tubing at indicated slopes.

G. Install piping and tubing free of sags.

H. Install fittings for changes in direction and branch connections.

I. Install piping and tubing to allow application of insulation.

J. Install groups of pipes and tubing parallel to each other, spaced to permit applying insulation with service access between insulated piping and tubing.

K. Install sleeves for piping and tubing penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
L. Install escutcheons for piping and tubing penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.3 CONDENSATE DRAINPIPE AND TUBING INSTALLATION

A. General Requirements for Drain Piping and Tubing:
 1. Install a union in piping at each threaded unit connection.
 2. Install an adjustable stainless-steel hose clamp with adjustable gear operator on unit hose connections. Tighten clamp to provide a leak-free installation.
 3. If required for unit installation, provide a trap assembly in drain piping to prevent air circulated through unit from passing through drain piping. Comply with more stringent of the following:
 a. Details indicated on Drawings.
 b. Manufacturer's requirements.
 c. Governing codes.
 d. In the absence of requirements, comply with requirements of ASHRAE handbooks.
 4. Extend drain piping from units with drain connections to drain receptors as indicated on Drawings. If not indicated on Drawings, terminate drain connection at nearest accessible location that is not exposed to view by occupants.
 5. Provide each 90-degree change in direction with a Y- or T-fitting. Install a threaded plug connection in the dormant side of fitting or future use as a service cleanout.

B. Gravity Drains:
 1. Slope piping from unit connection toward drain termination at a constant slope of not less than one percent.

C. Pumped Drains:
 1. If unit condensate pump or lift mechanism is not included with an integral check valve, install a full-size check valve in each branch pipe near unit connection to prevent backflow into unit.

3.4 REFRIGERANT PIPING AND TUBING INSTALLATION

A. Refrigerant Tubing Kits:
 1. Unroll and straighten tubing to suit installation. Deviations in straightness of exposed tubing shall be unnoticeable to observer.
 2. Support tubing using hangers and supports indicated at intervals not to exceed 5 feet. Minimum rod size, 1/4 inch.
 3. Prepare tubing ends and make mating connections to provide a pressure tight and leak-free installation.
B. Install refrigerant piping according to ASHRAE 15 and governing codes.

C. Select system components with pressure rating equal to or greater than system operating pressure.

D. Install piping as short and direct as possible, with a minimum number of joints and fittings.

E. Arrange piping to allow inspection and service of equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 083113 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.

F. Install refrigerant piping and tubing in protective conduit where installed belowground.

G. Install refrigerant piping and tubing in rigid or flexible conduit in locations where exposed to mechanical damage.

H. Unless otherwise required by VRF HVAC system manufacturer, slope refrigerant piping and tubing as follows:
 1. Install horizontal hot-gas discharge piping and tubing with a uniform slope downward away from compressor.
 2. Install horizontal suction lines with a uniform slope downward to compressor.
 3. Install traps to entrain oil in vertical runs.
 4. Liquid lines may be installed level.

I. When brazing, remove or protect components that could be damaged by heat.

J. Before installation, clean piping, tubing, and fittings to cleanliness level required by VRF HVAC system manufacturer.

K. Joint Construction:
 1. Ream ends of tubes and remove burrs.
 2. Remove scale, slag, dirt, and debris from inside and outside of tube and fittings before assembly.
 a. Use Type BCuP (copper-phosphorus) alloy for joining copper fittings with copper tubing.
 b. Use Type BAg (cadmium-free silver) alloy for joining copper with bronze.

3.5 PIPE AND TUBING INSULATION INSTALLATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated. Installation to maintain a continuous vapor barrier.

B. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 2. When preformed valve covers are unavailable, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.
 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

E. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.6 DUCT, ACCESSORIES, AND AIR OUTLETS INSTALLATION
A. Where installing ductwork adjacent to equipment, allow space for service and maintenance.
B. Comply with requirements for metal ducts specified in Section 233113 "Metal Ducts."
C. Comply with requirements for air duct accessories specified in Section 233300 "Air Duct Accessories."
D. Comply with requirements for flexible ducts specified in Section 233346 "Flexible Ducts."
E. Comply with requirements for air diffusers specified in Section 233713.13 "Air Diffusers."
F. Comply with requirements for registers and grilles specified in Section 233713.23 "Registers and Grilles."

3.7 SOFTWARE
A. Cybersecurity:
 1. Software:
 a. Coordinate security requirements with IT department.
 b. Ensure that latest stable software release is installed and properly operating.
c. Disable or change default passwords to password using a combination of uppercase and lower letters, numbers, and symbols at least eight characters in length. Record passwords and turn over to party responsible for system operation and administration.

2. Hardware:
 a. Coordinate location and access requirements with IT department.
 b. Enable highest level of wireless encryption that is compatible with Owner's ICT network.
 c. Disable dual network connections.

3.8 FIRESTOPPING
 A. Comply with requirements in Section 078413 "Penetration Firestopping."
 B. Comply with TIA-569-D, Annex A, "Firestopping."
 C. Comply with BICSI TDMM, "Firestopping" Chapter.

3.9 FIELD QUALITY CONTROL
 A. Perform the following tests and inspections with the assistance of manufacturer's service representative:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 B. Refrigerant Tubing Positive Pressure Testing:
 1. Comply with more stringent of VRF HVAC system manufacturer's requirements and requirements indicated.
 2. After completion of tubing installation, pressurize tubing systems to a test pressure of not less than 1.5 times VRF HVAC system operating pressure, but not less than 600 psig, using dry nitrogen.
 3. Successful testing shall maintain a test pressure for a continuous and uninterrupted period of 24 hours. Allowance for pressure changes attributed to changes in ambient temperature are acceptable.
 4. Prepare test report to record the following information for each test:
 a. Name of person starting test, company name, phone number, and e-mail address.
 b. Name of manufacturer's service representative witnessing test, company name, phone number, and e-mail address.
c. Detailed description of extent of tubing tested.
d. Date and time at start of test.
e. Test pressure at start of test.
f. Outdoor temperature at start of test.
g. Name of person ending test, company name, phone number, and e-mail address.
h. Date and time at end of test.
i. Test pressure at end of test.
j. Outdoor temperature at end of test.
k. Remarks:

5. Submit test reports for Project record.

C. Refrigerant Tubing Evacuation Testing:

1. Comply with more stringent of VRF HVAC system manufacturer's requirements and requirements indicated.
2. After completion of tubing positive-pressure testing, evacuate tubing systems to a pressure of 500 microns.
3. Successful testing shall maintain a test pressure for a continuous and uninterrupted period of one hour(s) with no change.
4. Prepare test report to record the following information for each test:
 a. Name of person starting test, company name, phone number, and e-mail address.
 b. Name of manufacturer's service representative witnessing test, company name, phone number, and e-mail address.
 c. Detailed description of extent of tubing tested.
 d. Date and time at start of test.
 e. Test pressure at start of test.
 f. Outdoor temperature at start of test.
 g. Name of person ending test, company name, phone number, and e-mail address.
 h. Date and time at end of test.
 i. Test pressure at end of test.
 j. Outdoor temperature at end of test.
 k. Remarks:

5. Submit test reports for Project record.
6. Upon successful completion of evacuation testing, system shall be charged with refrigerant.

D. System Refrigerant Charge:

1. Using information collected from the refrigerant tubing evacuation testing, system Installer shall consult variable refrigerant system manufacturer to determine the correct system refrigerant charge.
2. Installer shall charge system following VRF HVAC system manufacturer's written instructions.
3. System refrigerant charging shall be witnessed by system manufacturer's representative.
4. Total refrigerant charge shall be recorded and permanently displayed at the system's outdoor unit.

E. Products will be considered defective if they do not pass tests and inspections.
F. Prepare test and inspection reports.

3.10 STARTUP SERVICE

A. Engage a VRF HVAC system manufacturer's service representative to perform system(s) startup service.
 1. Service representative shall be an employee or a factory-trained and -authorized service representative of VRF HVAC system manufacturer.
 2. Complete startup service of each separate system.
 3. Complete system startup service according to manufacturer's written instructions.

B. Startup checks shall include, but not be limited to, the following:
 1. Check control communications of equipment and each operating component in system(s).
 2. Check each indoor unit's response to demand for cooling and heating.
 3. Check each indoor unit's response to changes in airflow settings.
 4. Check each indoor unit and outdoor unit for proper condensate removal.
 5. Check sound levels of each indoor unit.

C. Installer shall accompany manufacturer's service representative during startup service and provide manufacturer's service representative with requested documentation and technical support during startup service.
 1. Installer shall correct deficiencies found during startup service for reverification.

D. System Operation Report:
 1. After completion of startup service, manufacturer shall issue a report for each separate system.
 2. Report shall include complete documentation describing each startup check, the result, and any corrective action required.
 3. Manufacturer shall electronically record not less than two hours of continuous operation of each system and submit with report for historical reference.
 a. All available system operating parameters shall be included in the information submitted.

E. Witness:
 1. Invite Owner and Commissioning Agent to witness startup service procedures.
 2. Provide written notice not less than 20 business days before start of startup service.

3.11 ADJUSTING

A. Adjust equipment and components to function smoothly and lubricate as recommended by manufacturer.

B. Adjust initial temperature and humidity set points. Adjust initial airflow settings and discharge airflow patterns.
C. Set field-adjustable switches and circuit-breaker trip ranges according to VRF HVAC system manufacturer's written instructions, and as indicated.

D. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.12 SOFTWARE SERVICE AGREEMENT

A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.

B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

1. Upgrade Notice: At least 30 days to allow Owner to schedule and access the system and to upgrade computer equipment if necessary.

3.13 DEMONSTRATION

A. Engage a VRF HVAC system manufacturer's employed training instructor or factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain entire system.

3.14 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 238129
SECTION 238239.19 - WALL AND CEILING UNIT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes wall and ceiling heaters with propeller fans and electric-resistance heating coils.

B. Related Sections Include the following:
 1. Division 01 Section “Construction Waste Management.”
 2. Division 01 Section “Sustainable Design Requirements – LEEDv4 ID+C.”

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.

B. LEED Submittals:

 1. Product Data for Prerequisite IEQ 1: Documentation indicating that units comply with ASHRAE 62.1, Section 5 - "Systems and Equipment."

C. Shop Drawings:

 1. Include plans, elevations, sections, and details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include details of anchorages and attachments to structure and to supported equipment.
 4. Include equipment schedules to indicate rated capacities, operating characteristics, furnished specialties, and accessories.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wall and ceiling unit heaters to include in emergency, operation, and maintenance manuals.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Berko; Marley Engineered Products.
2. Indeeco.
4. QMark; Marley Engineered Products.

2.2 DESCRIPTION

A. Assembly including chassis, electric heating coil, fan, motor, and controls. Comply with UL 2021.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 CABINET

A. Front Panel: Stamped-steel louver, with removable panels fastened with tamperproof fasteners.

B. Finish: Baked enamel over baked-on primer with manufacturer's custom color selected by Architect, applied to factory-assembled and -tested wall and ceiling heaters before shipping.

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

D. Surface-Mounted Cabinet Enclosure: Steel with finish to match cabinet.

2.4 COIL

2.5 FAN AND MOTOR

A. Fan: Aluminum propeller directly connected to motor.

B. Motor: Permanently lubricated, multispeed. Comply with requirements in Section "Common Motor Requirements for HVAC Equipment."
2.6 CONTROLS

A. Controls: Unit-mounted thermostat. Low-voltage relay with transformer kit.

B. Electrical Connection: Factory wire motors and controls for a single field connection with disconnect switch.

2.7 CAPACITIES AND CHARACTERISTICS – AS SCHEDULED

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas to receive wall and ceiling unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for electrical connections to verify actual locations before unit-heater installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall and ceiling unit heaters to comply with NFPA 90A.

B. Install wall and ceiling unit heaters level and plumb.

C. Install wall-mounted thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.

D. Ground equipment according to Section "Grounding and Bonding for Electrical Systems."

E. Connect wiring according to Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection, and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section “Construction Waste Management.”

END OF SECTION 238239.19
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Copper building wire rated 600 V or less.
 2. Metal-clad cable, Type MC, rated 600 V or less.
 3. Armored cable, Type AC, rated 600 V or less.
 4. Mineral-insulated cable, Type MI, rated 600 V or less.
 5. Connectors, splices, and terminations rated 600 V and less.

B. Related Requirements:
 1. Section 260523 "Control-Voltage Electrical Power Cables" for control systems communications cables and Classes 1, 2, and 3 control cables.
 2. Section 271313 "Communications Copper Backbone Cabling" for twisted pair cabling used for data circuits.
 3. Section 271513 "Communications Copper Horizontal Cabling" for twisted pair cabling used for data circuits.

1.3 DEFINITIONS

A. PV: Photovoltaic.

B. RoHS: Restriction of Hazardous Substances.

C. VFC: Variable-frequency controller.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Product Schedule: Indicate type, use, location, and termination locations.
PART 2 - PRODUCTS

2.1 COPPER BUILDING WIRE

A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Alpha Wire Company.
2. American Bare Conductor.
3. Belden Inc.
4. Cerro Wire LLC.
5. Encore Wire Corporation.
6. General Cable Technologies Corporation.
7. Okonite Company (The).
8. Service Wire Co.
10. WESCO.

C. Standards:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
2. RoHS compliant.
3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."

D. Conductors: Copper, complying with ASTM B3 for bare annealed copper and with ASTM B8 for stranded conductors.

E. Conductor Insulation:

1. Type THHN and Type THWN-2: Comply with UL 83.
2. Type XHHW-2: Comply with UL 44.

2.2 METAL-CLAD CABLE, TYPE MC

A. Description: A factory assembly of one or more current-carrying insulated conductors in an overall metallic sheath.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Alpha Wire Company.
2. American Bare Conductor.
3. Atkore International (AFC Cable Systems).
4. Belden Inc.
5. Encore Wire Corporation.
6. General Cable Technologies Corporation.
7. Okonite Company (The).
8. Southwire Company.
9. WESCO.

C. Standards:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
2. Comply with UL 1569.
3. RoHS compliant.
4. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."

D. Circuits:

E. Conductors: Copper, complying with ASTM B3 for bare annealed copper and with ASTM B8 for stranded conductors.

F. Ground Conductor: Insulated.

G. Conductor Insulation:

1. Type TFN/THHN/THWN-2: Comply with UL 83.
2. Type XHHW-2: Comply with UL 44.
3.

H. Armor: Steel, interlocked.

I. Jacket: PVC applied over armor.

2.3 ARMORED CABLE, TYPE AC

A. Description: A factory assembly of insulated current-carrying conductors with or without an equipment grounding conductor in an overall metallic sheath.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Alpha Wire Company.
2. American Bare Conductor.
3. Atkore International (AFC Cable Systems).
4. Belden Inc.
5. Cerro Wire LLC.
7. General Cable Technologies Corporation.
8. Okonite Company (The).
10. WESCO.

C. Standards:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
2. RoHS compliant.
4. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."

D. Circuits:

E. Conductors: Copper, complying with ASTM B3 for bare annealed copper and with ASTM B8 for stranded conductors.

F. Ground Conductor: Insulated.

G. Conductor Insulation: Type THHN/THWN-2. Comply with UL 83.

H. Armor: Steel, interlocked.

2.4 MINERAL-INSULATED CABLE, TYPE MI

A. Description: Solid copper conductors encased in compressed metal oxide with an outer metallic sheath, rated 600 V or less.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. KME America, Inc.
2. nVent (PYROTENAX).
3. Pentair.

C. Standards:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
2. UL 2196 for fire resistance.
3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."

D. Conductors: Copper, complying with ASTM B3 for bare annealed copper.

E. Insulation: Compressed magnesium oxide.

F. Sheath: Copper.
2.5 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors, splices, and lugs of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. 3M Electrical Products.
2. ABB (Electrification Products Division).
4. Atkore International (AFC Cable Systems).
5. Gardner Bender.
7. Ideal Industries, Inc.
8. ILSCO.
9. NSi Industries LLC.
10. TE Connectivity Ltd.

C. Jacketed Cable Connectors: For steel and aluminum jacketed cables, zinc die-cast with set screws, designed to connect conductors specified in this Section.

D. Lugs: One piece, seamless, designed to terminate conductors specified in this Section.

 1. Material: Copper.
 2. Type: Two hole with standard barrels.
 3. Termination: Crimp.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

C. VFC Output Circuits Cable: Extra-flexible stranded for all sizes.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Exposed Feeders: Mineral-insulated, metal-sheathed cable, Type MI.

B. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Mineral-insulated, metal-sheathed cable, Type MI.
C. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.

D. Feeders Installed below Raised Flooring: Mineral-insulated, metal-sheathed cable, Type MI.

E. Exposed Branch Circuits, Including in Crawlspace: Type THHN/THWN-2, single conductors in raceway or Mineral-insulated, metal-sheathed cable, Type MI.

F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway or Mineral-insulated, metal-sheathed cable, Type MI.

G. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.

H. Branch Circuits Installed below Raised Flooring: Type THHN/THWN-2, single conductors in raceway, Metal-clad cable, Type MC, or Mineral-insulated, metal-sheathed cable, Type MI.

I. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.

J. VFC Output Circuits: Type TC-ER cable with braided shield.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.

B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.

C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

G. Complete cable tray systems installation according to Section 260536 "Cable Trays for Electrical Systems" prior to installing conductors and cables.

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches (150 mm) of slack.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors for compliance with requirements.

 2. Perform each of the following visual and electrical tests:

 a. Inspect exposed sections of conductor and cable for physical damage and correct connection according to the single-line diagram.

 b. Test bolted connections for high resistance using one of the following:

 1) A low-resistance ohmmeter.

 2) Calibrated torque wrench.

 3) Thermographic survey.

 c. Inspect compression-applied connectors for correct cable match and indentation.

 d. Inspect for correct identification.

 e. Inspect cable jacket and condition.
f. Insulation-resistance test on each conductor for ground and adjacent conductors. Apply a potential of 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable for a one-minute duration.

g. Continuity test on each conductor and cable.

h. Uniform resistance of parallel conductors.

3. Initial Infrared Scanning: After Substantial Completion, but before Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.

a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

b. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

4. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion.

B. Cables will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports to record the following:

1. Procedures used.
2. Results that comply with requirements.
3. Results that do not comply with requirements, and corrective action taken to achieve compliance with requirements.

END OF SECTION 260519
SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes grounding and bonding systems and equipment.

B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 1. Underground distribution grounding.
 2. Ground bonding common with lightning protection system.
 3. Foundation steel electrodes.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. ABB (Electrification Products Division).
2. Advanced Lightning Technology, Ltd.
5. Galvan Industries, Inc.; Electrical Products Division, LLC.
6. ILSCO.
7. nVent (ERICO).
2.3 CONDUCTORS

A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:

4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch (6 mm) in diameter.
5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.

C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches (6.3 by 100 mm) in cross section, with 9/32-inch (7.14-mm) holes spaced 1-1/8 inches (28 mm) apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.4 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

D. Beam Clamps: Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.

E. Cable-to-Cable Connectors: Compression type, copper or copper alloy.

F. Cable Tray Ground Clamp: Mechanical type, zinc-plated malleable iron.

G. Conduit Hubs: Mechanical type, terminal with threaded hub.

H. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.

I. Lay-in Lug Connector: Mechanical type, copper rated for direct burial terminal with set screw.

J. Signal Reference Grid Clamp: Mechanical type, stamped-steel terminal with hex head screw.

K. Straps: Solid copper, copper lugs. Rated for 600 A.
L. Tower Ground Clamps: Mechanical type, copper or copper alloy, terminal one-piece clamp.

M. U-Bolt Clamps: Mechanical type, copper or copper alloy, terminal listed for direct burial.

N. Water Pipe Clamps:
 1. Mechanical type, two pieces with stainless-steel bolts.
 b. Listed for direct burial.
 2. U-bolt type with malleable-iron clamp and copper ground connector rated for direct burial.

2.5 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel; 3/4 inch by 10 feet (19 mm by 3 m).

B. Ground Plates: 1/4 inch (6 mm) thick, hot-dip galvanized.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Underground Grounding Conductors: Install barecopper conductor, No. 4/0 AWG minimum.
 1. Duct-Bank Grounding Conductor: Bury 12 inches (300 mm) above duct bank when indicated as part of duct-bank installation.

C. Grounding Conductors: Green-colored insulation with continuous yellow stripe.

D. Isolated Grounding Conductors: Green-colored insulation with more than one continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.

E. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus horizontally, on insulated spacers 2 inches (50 mm) minimum from wall, 6 inches (150 mm) above finished floor unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

F. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 GROUNDING SEPARATELY DERIVED SYSTEMS

A. Generator: Install grounding electrode(s) at the generator location. The electrode shall be connected to the equipment grounding conductor and to the frame of the generator.

3.3 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

A. Comply with IEEE C2 grounding requirements.

B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches (100 mm) will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches (50 mm) above to 6 inches (150 mm) below concrete. Seal floor opening with waterproof, nonshrink grout.

C. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.

D. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches (150 mm) from the foundation.

3.4 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:

1. Feeders and branch circuits.
2. Lighting circuits.
3. Receptacle circuits.
5. Three-phase motor and appliance branch circuits.
6. Flexible raceway runs.
7. Armored and metal-clad cable runs.
8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.

C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

E. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

F. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

G. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

H. Metallic Fences: Comply with requirements of IEEE C2.

1. Grounding Conductor: Bare, tinned copper, not less than No. 8 AWG.
2. Gates: Shall be bonded to the grounding conductor with a flexible bonding jumper.
3. Barbed Wire: Strands shall be bonded to the grounding conductor.

3.5 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.
C. Ground Rods: Drive rods until tops are 2 inches (50 mm) below finished floor or final grade unless otherwise indicated.

1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
2. Use exothermic welds for all below-grade connections.
3. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

D. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Section 260543 "Underground Ducts and Raceways for Electrical Systems," and shall be at least 12 inches (300 mm) deep, with cover.

1. Install at least one test well for each service unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.

E. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.

1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

F. Grounding and Bonding for Piping:

1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

G. Connections: Make connections so possibility of galvanic action or electrolysis is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact are galvanically compatible.

1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.
2. Make connections with clean, bare metal at points of contact.
5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Tests and Inspections:
 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.

C. Grounding system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

E. Report measured ground resistances that exceed the following values:
 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
 4. Power Distribution Units or Panelboards Serving Electronic Equipment: 1 ohm(s).

F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Steel slotted support systems.
2. Aluminum slotted support systems.
3. Conduit and cable support devices.
4. Support for conductors in vertical conduit.
5. Structural steel for fabricated supports and restraints.
6. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
7. Fabricated metal equipment support assemblies.

B. Related Requirements:

1. Section 260548.16 "Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:

 a. Slotted support systems, hardware, and accessories.
 b. Clamps.
 c. Hangers.
 d. Sockets.
 e. Eye nuts.
 f. Fasteners.
 g. Anchors.
 h. Saddles.
 i. Brackets.

2. Include rated capacities and furnished specialties and accessories.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design hanger and support system.

B. Seismic Performance: Hangers and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the supported equipment and systems will remain in place without separation of any parts when subjected to the seismic forces specified and the supported equipment and systems will be fully operational after the seismic event."

2. Component Importance Factor: 1.5.

C. Surface-Burning Characteristics: Comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Flame Rating: Class 1.
2. Self-extinguishing according to ASTM D635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inch-(10-mm-) diameter holes at a maximum of 8 inches (200 mm) o.c. in at least one surface.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. ABB (Electrification Products Division).
 c. Atkore International (Unistrut).
 d. B-line; Eaton, Electrical Sector.
 e. Flex-Strut Inc.
 f. G-Strut.
 g. Haydon Corporation.
 h. MIRO Industries.
 i. nVent (CADDY).
 j. Wesanco, Inc.

2. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.

3. Material for Channel, Fittings, and Accessories: Stainless steel, Type 316.

4. Channel Width: Selected for applicable load criteria.

5. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.

6. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
7. **Painted Coatings:** Manufacturer's standard painted coating applied according to MFMA-4.

8. **Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.**

B. **Aluminum Slotted Support Systems:** Extruded-aluminum channels and angles with minimum \(\frac{13}{32} \)-inch- (10-mm-) diameter holes at a maximum of 8 inches (200 mm) o.c. in at least one surface.

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. **ABB (Electrification Products Division).**
 b. **Atkore International (Unistrut).**
 c. **Cooper Industries, Inc.**
 d. **Flex-Strut Inc.**
 e. **Haydon Corporation.**
 f. **MKT Metal Manufacturing.**

2. **Standard:** Comply with MFMA-4 factory-fabricated components for field assembly.

3. **Channel Material:** 6063-T5 aluminum alloy.

4. **Fittings and Accessories Material:** 5052-H32 aluminum alloy.

5. **Channel Width:** Selected for applicable load criteria.

6. **Nonmetallic Coatings:** Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.

7. **Painted Coatings:** Manufacturer's standard painted coating applied according to MFMA-4.

8. **Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.**

C. **Conduit and Cable Support Devices:** Stainless-steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

D. **Support for Conductors in Vertical Conduit:** Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.

E. **Structural Steel for Fabricated Supports and Restraints:** ASTM A36/A36M steel plates, shapes, and bars; black and galvanized.

F. **Mounting, Anchoring, and Attachment Components:** Items for fastening electrical items or their supports to building surfaces include the following:

1. **Powder-Actuated Fasteners:** Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1) Hilti, Inc.
2) ITW Ramset/Red Head; Illinois Tool Works, Inc.
3) MKT Fastening, LLC.
4) Simpson Strong-Tie Co., Inc.

2. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.

a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1) B-line; Eaton, Electrical Sector.
2) Hilti, Inc.
3) ITW Ramset/Red Head; Illinois Tool Works, Inc.
4) MKT Fastening, LLC.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.

4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.

5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM F3125/F3125M, Grade A325 (Grade A325M).

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:

1. NECA 1.
2. NECA 101
3. NECA 102.

 B. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.

 C. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

 D. Maximum Support Spacing and Minimum Hanger Rod Size for Raceways: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.

 E. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 1. Secure raceways and cables to these supports with single-bolt conduit clamps using spring friction action for retention in support channel.

3.2 SUPPORT INSTALLATION

 A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.

 B. Raceway Support Methods: In addition to methods described in NECA 1, EMT IMC and RMC may be supported by openings through structure members, according to NFPA 70.

 C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).

 D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 1. To Wood: Fasten with lag screws or through bolts.
 2. To New Concrete: Bolt to concrete inserts.
 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 4. To Existing Concrete: Expansion anchor fasteners.
 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
 6. To Steel: Beam clamps (MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69.
 7. To Light Steel: Sheet metal screws.
 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes,
transformers, and other devices on slotted-channel racks attached to substrate by means that comply with seismic-restraint strength and anchorage requirements.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated, but not less than 4 inches (100 mm) larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

B. Use 4000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 033000 "Cast-in-Place Concrete."

C. Anchor equipment to concrete base as follows:

1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
2. Install anchor bolts to elevations required for proper attachment to supported equipment.
3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A780.

END OF SECTION 260529
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal conduits and fittings.
 2. Nonmetallic conduits and fittings.
 3. Metal wireways and auxiliary gutters.
 5. Handholes and boxes for exterior underground cabling.

B. Related Requirements:
 1. Section 078413 "Penetration Firestopping" for firestopping at conduit and box entrances.
 2. Section 260543 "Underground Ducts and Raceways for Electrical Systems" for exterior duct banks, manholes, and underground utility construction.
 3. Section 270528 "Pathways for Communications Systems" for conduits, wireways, surface pathways, innerduct, boxes, faceplate adapters, enclosures, cabinets, and handholes serving communications systems.

1.3 DEFINITIONS

A. ARC: Aluminum rigid conduit.

B. GRC: Galvanized rigid steel conduit.

C. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

A. Metal Conduit:
 1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. **ABB, Electrification Products Division.**
 b. **Appleton - O-Z/Gedney; Emerson Electric Co., Automation Solutions.**
 c. **Atkore International (AFC Cable Systems).**
 d. **Atkore International (Allied Tube & Conduit).**
 e. **Atkore International (Calconduit).**
 f. **Electri-Flex Company.**
 g. **NEC, Inc.**
 h. **Opti-Com Manufacturing Network, Inc (OMNI).**
 i. **Plasti-Bond.**
 j. **Southwire Company.**
 k. **Western Tube and Conduit Corporation.**
 l. **Wheatland Tube Company.**

 2. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

 3. GRC: Comply with ANSI C80.1 and UL 6.

 4. ARC: Comply with ANSI C80.5 and UL 6A.

 5. IMC: Comply with ANSI C80.6 and UL 1242.

 6. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.

 a. Comply with NEMA RN 1.
 b. Coating Thickness: **0.040 inch (1 mm), minimum.**

 7. EMT: Comply with ANSI C80.3 and UL 797.

 8. FMC: Comply with UL 1; zinc-coated steel.

 9. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

B. Metal Fittings:

 1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. **ABB, Electrification Products Division.**
 b. **Appleton - O-Z/Gedney; Emerson Electric Co., Automation Solutions.**
 c. **Atkore International (AFC Cable Systems).**
 d. **Atkore International (Allied Tube & Conduit).**
 e. **Atkore International (Calconduit).**
 f. **Electri-Flex Company.**
 g. **NEC, Inc.**
h. Opti-Com Manufacturing Network, Inc (OMNI).

i. Plasti-Bond.

j. Southwire Company.

k. Western Tube and Conduit Corporation.

l. Wheatland Tube Company.

2. Comply with NEMA FB 1 and UL 514B.

3. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

4. Fittings, General: Listed and labeled for type of conduit, location, and use.

5. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.

6. Fittings for EMT:
 a. Material: Steel.
 b. Type: compression.

7. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions were installed, and including flexible external bonding jumper.

8. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints.

C. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS AND FITTINGS

A. Nonmetallic Conduit:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. ABB, Electrification Products Division.
 b. Atkore International (AFC Cable Systems).
 c. Cantex Inc.
 d. Condux International, Inc.
 e. Electri-Flex Company.
 f. Kraloy Fittings.
 g. Raco Taymac Bell; Hubbell Incorporated, Commercial and Industrial.
 h. United Fiberglass of America (UFA).

2. Listing and Labeling: Nonmetallic conduit shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

3. Fiberglass:
b. Comply with UL 2515 for aboveground raceways.
c. Comply with UL 2420 for belowground raceways.

4. ENT: Comply with NEMA TC 13 and UL 1653.
5. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.
6. LFNC: Comply with UL 1660.
7. Rigid HDPE: Comply with UL 651A.
8. Continuous HDPE: Comply with UL 651A.
9. Coilable HDPE: Preassembled with conductors or cables, and complying with ASTM D3485.
10. RTRC: Comply with UL 2515A and NEMA TC 14.

B. Nonmetallic Fittings:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. ABB, Electrification Products Division.
 b. Atkore International (AFC Cable Systems).
 c. Cantex Inc.
 d. CertainTeed Corporation.
 e. Champion Fiberglass, Inc.
 g. Kraloy Fittings.
 h. Raco Taymac Bell; Hubbell Incorporated, Commercial and Industrial.
 i. United Fiberglass of America (UFA).

2. Fittings, General: Listed and labeled for type of conduit, location, and use.
3. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

 a. Fittings for LFNC: Comply with UL 514B.

4. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. ABB, Electrification Products Division.
2. B-line; Eaton, Electrical Sector.
3. nVent (Hoffman).
4. Schneider Electric USA (Square D).

B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.
1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: Hinged type unless otherwise indicated.

E. Finish: Manufacturer's standard enamel finish.

2.4 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. ABB, Electrification Products Division.
2. Adalet.
5. Crouse-Hinds; Eaton, Electrical Sector.
9. nVent (Hoffman).
10. Oldcastle Enclosure Solutions.
11. Plasti-Bond.
12. Raco Taymac Bell; Hubbell Incorporated, Commercial and Industrial.
13. Spring City Electrical Manufacturing Company.
14. Wiremold; Legrand North America, LLC.
15. Wiring Device-Kellems; Hubbell Incorporated, Commercial and Industrial.

B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, aluminum, Type FD, with gasketed cover.

E. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.

F. Metal Floor Boxes:

1. Material: Cast metal or sheet metal.
2. Type: Fully adjustable.
3. Shape: Rectangular.
4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
G. Nonmetallic Floor Boxes: Nonadjustable, rectangular.
 1. Listing and Labeling: Nonmetallic floor boxes shall be listed and labeled as defined in
 NFPA 70, by a qualified testing agency, and marked for intended location and
 application.

H. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb.
 (23 kg). Outlet boxes designed for attachment of luminaires weighing more than 50 lb. (23 kg)
 shall be listed and marked for the maximum allowable weight.

I. Paddle Fan Outlet Boxes: Nonadjustable, designed for attachment of paddle fan weighing 70 lb.
 (32 kg).
 1. Listing and Labeling: Paddle fan outlet boxes shall be listed and labeled as defined in
 NFPA 70, by a qualified testing agency, and marked for intended location and
 application.

J. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

K. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773,
 galvanized, cast iron with gasketed cover.

L. Box extensions used to accommodate new building finishes shall be of same material as
 recessed box.

M. Device Box Dimensions: 4 inches square by 2-1/8 inches deep (100 mm square by 60 mm
 deep).

N. Gangable boxes are allowed.

O. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 with continuous-hinge
 cover with flush latch unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

P. Cabinets:
 1. NEMA 250, Type 1 galvanized-steel box with removable interior panel and removable
 front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.
 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified
 testing agency, and marked for intended location and application.

2.5 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

A. General Requirements for Handholes and Boxes:
1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel, fiberglass, or a combination of the two.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Oldcastle Enclosure Solutions.
 b. Oldcastle Precast, Inc.
 c. Quazite; Hubbell Incorporated, Power Systems.

2. Standard: Comply with SCTE 77.
3. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
4. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
5. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
6. Cover Legend: Molded lettering, "ELECTRIC."
7. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.
8. Handholes 12 Inches Wide by 24 Inches Long (300 mm Wide by 600 mm Long) and Larger: Have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.6 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.

1. Tests of materials shall be performed by an independent testing agency.
2. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012 and traceable to NIST standards.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:

1. Exposed Conduit: GRC.
2. Concealed Conduit, Aboveground: IMC.
4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Indoors: Apply raceway products as specified below unless otherwise indicated:

1. Exposed, Not Subject to Physical Damage: IMC
2. Exposed, Not Subject to Severe Physical Damage: IMC
3. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
 d. Gymnasiums.
 e. Parking garages.
 f. Subject to vehicular traffic.

4. Concealed in Ceilings and Interior Walls and Partitions: IMC
5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
6. Damp or Wet Locations: GRC.
7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

C. Minimum Raceway Size: 3/4-inch (21-mm) trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.

1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.

F. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

G. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F (49 deg Ca).
3.2 INSTALLATION

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

B. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

C. Do not install raceways or electrical items on any "explosion-relief" walls or rotating equipment.

D. Do not fasten conduits onto the bottom side of a metal deck roof.

E. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

F. Complete raceway installation before starting conductor installation.

G. Arrange stub-ups so curved portions of bends are not visible above finished slab.

H. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches (300 mm) of changes in direction.

I. Make bends in raceway using large-radius preformed ells. Field bending shall be according to NFPA 70 minimum radii requirements. Use only equipment specifically designed for material and size involved.

J. Conceal conduit within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

K. Support conduit within 12 inches (300 mm) of enclosures to which attached.

L. Raceways Embedded in Slabs:
 1. Run conduit larger than 1-inch (27-mm) trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot (3-m) intervals.
 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 3. Arrange raceways to keep a minimum of 2 inches (50 mm) of concrete cover in all directions.
 4. Do not embed thread less fittings in concrete unless specifically approved by Architect for each specific location.
 5. Change from ENT to GRC or IMC before rising above floor.

M. Stub-Ups to Above Recessed Ceilings:
 1. Use IMC, or RMC for raceways.
2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

N. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

O. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

P. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

Q. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

R. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

S. Cut conduit perpendicular to the length. For conduits 2-inch (53-mm) trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

T. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

U. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

V. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:

 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 2. Where an underground service raceway enters a building or structure.
 3. Conduit extending from interior to exterior of building.
 4. Conduit extending into pressurized duct and equipment.
 5. Conduit extending into pressurized zones that are automatically controlled to maintain different pressure set points.
 6. Where otherwise required by NFPA 70.

W. Comply with manufacturer's written instructions for solvent welding RNC and fittings.

X. Expansion-Joint Fittings:

 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F (17 deg C) and that has straight-run length that exceeds 25
feet (7.6 m). Install in each run of aboveground RMC conduit that is located where environmental temperature change may exceed 100 deg F (55 deg C) and that has straight-run length that exceeds 100 feet (30 m).

2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:

 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F (70 deg C) temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F (86 deg C) temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F (70 deg C) temperature change.
 d. Attics: 135 deg F (75 deg C) temperature change.

3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F (0.06 mm per meter of length of straight run per deg C) of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F (0.0115 mm per meter of length of straight run per deg C) of temperature change for metal conduits.

4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.

5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

Y. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 36 inches (915 mm) of flexible conduit for recessed and semi recessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.

 1. Use LFMC in damp or wet locations subject to severe physical damage.
 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

Z. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

AA. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

BB. Horizontally separate boxes mounted on opposite sides of walls, so they are not in the same vertical channel.

CC. Locate boxes so that cover or plate will not span different building finishes.

DD. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

EE. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
FF. Set metal floor boxes level and flush with finished floor surface.

GG. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.

B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.

C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch (25 mm) above finished grade.

D. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables but short enough to preserve adequate working clearances in enclosure.

3.4 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.5 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.6 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.

2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533
SECTION 260543 - UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Metal conduits and fittings, including GRC and PVC-coated steel conduit.
 2. Rigid nonmetallic duct.
 3. Flexible nonmetallic duct.
 4. Duct accessories.
 5. Precast concrete handholes.
 6. Polymer concrete handholes and boxes with polymer concrete cover.
 7. Fiberglass handholes and boxes with polymer concrete cover.
 8. Fiberglass handholes and boxes.
 9. High-density plastic boxes.

1.3 DEFINITIONS
 A. Direct Buried: Duct or a duct bank that is buried in the ground, without any additional casing materials such as concrete.
 B. Duct: A single duct or multiple ducts. Duct may be either installed singly or as component of a duct bank.
 C. Duct Bank:
 1. Two or more ducts installed in parallel, with or without additional casing materials.
 2. Multiple duct banks.
 D. GRC: Galvanized rigid (steel) conduit.
 E. Trafficways: Locations where vehicular or pedestrian traffic is a normal course of events.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.
1. Include duct-bank materials, including spacers and miscellaneous components.
2. Include duct, conduits, and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
3. Include accessories for manholes, handholes, boxes.
4. Include underground-line warning tape.
5. Include warning planks.
6. Factory-Fabricated Handholes and Boxes Other Than Precast Concrete:
 a. Include dimensioned plans, sections, and elevations, and fabrication and installation details.
 b. Include duct entry provisions, including locations and duct sizes.
 c. Include cover design.
 d. Include grounding details.
 e. Include dimensioned locations of cable rack inserts, and pulling-in and lifting irons.

1.5 FIELD CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions, and then only after arranging to provide temporary electrical service according to requirements indicated:

1. Notify Owner no fewer than five days in advance of proposed interruption of electrical service.
2. Do not proceed with interruption of electrical service without Owner's written permission.

B. Ground Water: Assume ground-water level is at grade level unless a lower water table is noted on Drawings.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND FITTINGS

A. GRC: Comply with ANSI C80.1 and UL 6.
B. Coated Steel Conduit: PVC-coated GRC.
 1. Comply with NEMA RN 1.
 2. Coating Thickness: 0.040 inch (1 mm), minimum.
C. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. ABB (Electrification Products Division).
 3. Atkore International (AFC Cable Systems).
5. Atkore International (Calconduit).
7. NEC, Inc.
10. Southwire Company.
11. Western Tube and Conduit Corporation.

D. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.2 RIGID NONMETALLIC DUCT

A. Underground Plastic Utilities Duct: Type EPC-80-PVC and Type EPC-40-PVC RNC, complying with NEMA TC 2 and UL 651, with matching fittings complying with NEMA TC 3 by same manufacturer as duct.

B. Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Cantex Inc.
2. CertainTeed Corporation.
4. Electri-Flex Company.
6. Spiraduct/AFC Cable Systems, Inc.

C. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

D. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 FLEXIBLE NONMETALLIC DUCTS

A. HDPE Duct: Type EPEC-40 HDPE, complying with NEMA TC 7 and UL 651A.

1. Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Carlon; a brand of Thomas & Betts Corporation.
 c. Premier Conduit.

2. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.
2.4 DUCT ACCESSORIES

A. Duct Spacers: Factory-fabricated, rigid, PVC interlocking spacers; sized for type and size of duct with which used, and selected to provide minimum duct spacing indicated while supporting duct during concreting or backfilling.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 b. Cantex Inc.
 c. Carlon; a brand of Thomas & Betts Corporation.
 d. Underground Devices, Inc.

B. Underground-Line Warning Tape: Comply with requirements for underground-line warning tape specified in Section 260553 "Identification for Electrical Systems."

C. Concrete Warning Planks: Nominal 12 by 24 by 3 inches (300 by 600 by 75 mm) in size, manufactured from 6000-psi (41-MPa) concrete.

2. Mark each plank with "ELECTRIC" in 2-inch- (50-mm-) high, 3/8-inch- (10-mm-) deep letters.

2.5 POLYMER CONCRETE HANDHOLES AND BOXES WITH POLYMER CONCRETE COVER

A. Description: Molded of sand and aggregate, bound together with a polymer resin, and reinforced with steel or fiberglass or a combination of the two.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Armorcast Products Company.
2. Oldcastle Enclosure Solutions.

D. Color: Gray.

E. Configuration: Units shall be designed for flush burial and have open bottom unless otherwise indicated.

F. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.

G. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
H. Cover Legend: Molded lettering, "ELECTRIC."

I. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.6 SOURCE QUALITY CONTROL

A. Test and inspect precast concrete utility structures according to ASTM C1037.

B. Nonconcrete Handhole and Pull-Box Prototype Test: Test prototypes of manholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 1. Tests of materials shall be performed by an independent testing agency.
 2. Testing machine pressure gages shall have current calibration certification, complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 PREPARATION

A. Coordinate layout and installation of duct, duct bank, manholes, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Architect if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.

B. Coordinate elevations of duct and duct-bank entrances into manholes, handholes, and boxes with final locations and profiles of duct and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions and to ensure that duct and duct bank will drain to manholes and handholes, and as approved by Architect.

C. Clear and grub vegetation to be removed, and protect vegetation to remain according to Section 311000 "Site Clearing." Remove and stockpile topsoil for reapplication according to Section 311000 "Site Clearing."

3.2 UNDERGROUND DUCT APPLICATION

A. Duct for Electrical Feeders 600 V and Less: Type EPC-40-PVC RNC, concrete-encased unless otherwise indicated.

B. Duct for Electrical Branch Circuits: Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.

C. Bored Underground Duct: Type EPEC-40-HDPE unless otherwise indicated.

D. Underground Ducts Crossing Paved Paths Walks and Driveways Roadways and Railroads: Type EPC-40 PVC RNC, encased in reinforced concrete.
E. Stub-ups: Concrete-encased GRC.

3.3 UNDERGROUND ENCLOSURE APPLICATION

A. Handholes and Boxes for 600 V and Less:

1. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete. AASHTO HB 17, H-20 structural load rating.
2. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Polymer concrete, SCTE 77, Tier 15 structural load rating.
3. Units in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Polymer concrete units, SCTE 77, Tier 8 structural load rating.
4. Cover design load shall not exceed the design load of the handhole or box.

3.4 EARTHWORK

A. Excavation and Backfill: Comply with Section 312000 "Earth Moving," but do not use heavy-duty, hydraulic-operated, compaction equipment.
B. Restoration: Replace area immediately after backfilling is completed or after construction vehicle traffic in immediate area is complete.
C. Restore surface features at areas disturbed by excavation, and re-establish original grades unless otherwise indicated. Replace removed sod immediately after backfilling is completed.
D. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching. Comply with Section 329200 "Turf and Grasses" and Section 329300 "Plants."
E. Cut and patch existing pavement in the path of underground duct, duct bank, and underground structures according to "Cutting and Patching" Article in Section 017300 "Execution."

3.5 DUCT AND DUCT-BANK INSTALLATION

A. Where indicated on Drawings, install duct, spacers, and accessories into the duct-bank configuration shown. Duct installation requirements in this Section also apply to duct bank.
B. Install duct according to NEMA TCB 2.
C. Slope: Pitch duct a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope duct from a high point between two manholes, to drain in both directions.
D. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches (1200 mm), both horizontally and vertically, at other locations unless otherwise indicated.
1. Duct shall have maximum of two 90 degree bends or the total of all bends shall be no more 180 degrees between pull points.

E. Joints: Use solvent-cemented joints in duct and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent duct do not lie in same plane.

F. Installation Adjacent to High-Temperature Steam Lines: Where duct is installed parallel to underground steam lines, perform calculations showing the duct will not be subject to environmental temperatures above 40 deg C. Where environmental temperatures are calculated to rise above 40 deg C, and anywhere the duct crosses above an underground steam line, install insulation blankets listed for direct burial to isolate the duct bank from the steam line.

G. End Bell Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches (250 mm) o.c. for 5-inch (125-mm) duct, and vary proportionately for other duct sizes.

1. Begin change from regular spacing to end-bell spacing 10 feet (3 m) from the end bell, without reducing duct slope and without forming a trap in the line.
2. Grout end bells into structure walls from both sides to provide watertight entrances.

H. Terminator Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use manufactured, cast-in-place duct terminators, with entrances into structure spaced approximately 6 inches (150 mm) o.c. for 4-inch (100-mm) duct, and vary proportionately for other duct sizes.

1. Begin change from regular spacing to terminator spacing 10 feet (3 m) from the terminator, without reducing duct line slope and without forming a trap in the line.
2. Expansion and Deflection Fittings: Install an expansion and deflection fitting in each duct in the area of disturbed earth adjacent to manhole or handhole. Install an expansion fitting near the center of all straight line duct with calculated expansion of more than 3/4 inch (19 mm).

I. Building Wall Penetrations: Make a transition from underground duct to GRC at least 10 feet (3 m) outside the building wall, without reducing duct line slope away from the building and without forming a trap in the line. Use fittings manufactured for RNC-to-GRC transition. Install GRC penetrations of building walls as specified in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

J. Sealing: Provide temporary closure at terminations of duct with pulled cables. Seal spare duct at terminations. Use sealing compound and plugs to withstand at least 15-psig (1.03-MPa) hydrostatic pressure.

L. Concrete-Encased Ducts and Duct Bank:

1. Excavate trench bottom to provide firm and uniform support for duct. Prepare trench bottoms as specified in Section 312000 "Earth Moving" for pipes less than 6 inches (150 mm) in nominal diameter.
2. Width: Excavate trench 12 inches (300 mm) wider than duct on each side.
3. Depth: Install so top of duct envelope is at least 24 inches (600 mm) below finished grade in areas not subject to deliberate traffic, and at least 30 inches (750 mm) below finished grade in deliberate traffic paths for vehicles unless otherwise indicated.

4. Support duct on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.

5. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than four spacers per 20 feet (6 m) of duct. Place spacers within 24 inches (600 mm) of duct ends. Stagger spacers approximately 6 inches (150 mm) between tiers. Secure spacers to earth and to duct to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.

6. Minimum Space between Duct: 3 inches (75 mm) between edge of duct and exterior envelope wall, 2 inches (50 mm) between ducts for like services, and 4 inches (100 mm) between power and communications ducts.

7. Elbows: Use manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct run.
 a. Couple RNC duct to GRC with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.
 b. Stub-ups to Outdoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches (1500 mm) from edge of base. Install insulated grounding bushings on terminations at equipment.
 i. Stub-ups shall be minimum 4 inches (100 mm) above finished floor and minimum 3 inches (75 mm) from conduit side to edge of slab.
 c. Stub-ups to Indoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches (1500 mm) from edge of wall. Install insulated grounding bushings on terminations at equipment.
 i. Stub-ups shall be minimum 4 inches (100 mm) above finished floor and no less than 3 inches (75 mm) from conduit side to edge of slab.

8. Reinforcement: Reinforce concrete-encased duct where crossing disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.

9. Forms: Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.

10. Concrete Cover: Install a minimum of 3 inches (75 mm) of concrete cover between edge of duct to exterior envelope wall, 2 inches (50 mm) between duct of like services, and 4 inches (100 mm) between power and communications ducts.

11. Concreting Sequence: Pour each run of envelope between manholes or other terminations in one continuous operation.
 a. Start at one end and finish at the other, allowing for expansion and contraction of duct as its temperature changes during and after the pour. Use expansion fittings installed according to manufacturer's written instructions, or use other specific measures to prevent expansion-contraction damage.
 b. If more than one pour is necessary, terminate each pour in a vertical plane and install 3/4-inch (15-mm) reinforcing-rod dowels extending a minimum of 18 inches (450 mm) into concrete on both sides of joint near corners of envelope.
12. Pouring Concrete: Comply with requirements in "Concrete Placement" Article in Section 033000 "Cast-in-Place Concrete." Place concrete carefully during pours to prevent voids under and between duct and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Allow concrete to flow around duct and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-installation application.

M. Warning Planks: Bury warning planks approximately 12 inches (300 mm) above direct-buried duct, placing them 24 inches (600 mm) o.c. Align planks along the width and along the centerline of duct or duct bank. Provide an additional plank for each 12-inch (300-mm) increment of duct-bank width over a nominal 18 inches (450 mm). Space additional planks 12 inches (300 mm) apart, horizontally.

N. Underground-Line Warning Tape: Bury conducting underground line specified in Section 260553 "Identification for Electrical Systems" no less than 12 inches (300 mm) above all concrete-encased duct and duct banks and approximately 12 inches (300 mm) below grade. Align tape parallel to and within 3 inches (75 mm) of centerline of duct bank. Provide an additional warning tape for each 12-inch (300-mm) increment of duct-bank width over a nominal 18 inches (450 mm). Space additional tapes 12 inches (300 mm) apart, horizontally.

3.6 INSTALLATION OF CONCRETE MANHOLES, HANDHOLES, AND BOXES

A. Precast Concrete Handhole and Manhole Installation:
 1. Comply with ASTM C891 unless otherwise indicated.
 2. Install units level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances.
 3. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch (25-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.

B. Elevations:
 1. Manhole Roof: Install with rooftop at least 15 inches (375 mm) below finished grade.
 2. Manhole Frame: In paved areas and trafficways, set frames flush with finished grade. Set other manhole frames 1 inch (25 mm) above finished grade.
 3. Install handholes with bottom below frost line, below grade.
 4. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade. Set covers of other handholes 1 inch (25 mm) above finished grade.
 5. Where indicated, cast handhole cover frame integrally with handhole structure.

C. Drainage: Install drains in bottom of manholes where indicated. Coordinate with drainage provisions indicated.

D. Hardware: Install removable hardware, including pulling eyes, cable stanchions, and cable arms, as required for installation and support of cables and conductors and as indicated.

E. Field-Installed Bolting Anchors in Manholes and Concrete Handholes: Do not drill deeper than 3-7/8 inches (97 mm) for manholes and 2 inches (50 mm) for handholes, for anchor bolts installed in the field. Use a minimum of two anchors for each cable stanchion.
3.7 INSTALLATION OF HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances. Use box extension if required to match depths of duct, and seal joint between box and extension as recommended by manufacturer.

B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.

C. Elevation: In paved areas and trafficways, set cover flush with finished grade. Set covers of other handholes 1 inch (25 mm) above finished grade.

D. Install handholes and boxes with bottom below frost line, below grade.

E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in enclosure.

F. Field cut openings for duct according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

G. For enclosures installed in asphalt paving and subject to occasional, nondeliberate, heavy-vehicle loading, form and pour a concrete ring encircling, and in contact with, enclosure and with top surface screeded to top of box cover frame. Bottom of ring shall rest on compacted earth.

1. Concrete: 3000 psi (20 kPa), 28-day strength, complying with Section 033000 "Cast-in-Place Concrete," with a troweled finish.
2. Dimensions: 10 inches wide by 12 inches deep (250 mm wide by 300 mm deep).

3.8 GROUNDING

A. Ground underground ducts and utility structures according to Section 260526 "Grounding and Bonding for Electrical Systems."

3.9 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Demonstrate capability and compliance with requirements on completion of installation of underground duct, duct bank, and utility structures.
2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 12-inch- (300-mm-) long mandrel equal to duct size minus 1/4 inch (6 mm). If obstructions are indicated, remove obstructions and retest.
3. Test handhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Section 260526 "Grounding and Bonding for Electrical Systems."

B. Correct deficiencies and retest as specified above to demonstrate compliance.

C. Prepare test and inspection reports.

3.10 CLEANING

A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of duct until duct cleaner indicates that duct is clear of dirt and debris. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.

B. Clean internal surfaces of manholes, including sump.

1. Sweep floor, removing dirt and debris.
2. Remove foreign material.
THIS PAGE LEFT BLANK INTENTIONALLY
SECTION 260544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
2. Sleeve-seal systems.
5. Silicone sealants.

B. Related Requirements:

1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:

2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral water stop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.
C. PVC-Pipe Sleeves: ASTM D1785, Schedule 40.

D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

F. Sleeves for Rectangular Openings:
 2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and with no side larger than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 b. For sleeve cross-section rectangle perimeter 50 inches (1270 mm) or more and one or more sides larger than 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Advance Products & Systems, Inc.
 b. BWM Company.
 c. CALPICO, Inc.
 d. Flexicraft Industries.
 e. Metraflex Company (The).
 f. Pipeline Seal and Insulator, Inc.
 g. Proco Products, Inc.

 2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

 3. Pressure Plates: Stainless steel.

 4. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, water stop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber water stop collar with center opening to match piping OD.
1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. **HOLDRITE; Reliance Worldwide Company.**

2.4 **GROUT**

 A. **Description:** Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

 B. **Standard:** ASTM C1107/C1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.

 C. **Design Mix:** 5000-psi (34.5-MPa), 28-day compressive strength.

 D. **Packaging:** Premixed and factory packaged.

PART 3 - EXECUTION

3.1 **SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS**

 A. **Comply with NECA 1.**

 B. **Comply with NEMA VE 2 for cable tray and cable penetrations.**

 C. **Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:**

 1. **Interior Penetrations of Non-Fire-Rated Walls and Floors:**

 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."

 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall, so no voids remain. Tool exposed surfaces smooth; protect material while curing.

 2. **Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.**

 3. **Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.**

 4. **Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.**

 D. **Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:**

 1. **Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.**
2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.

G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position water stop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 260544
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Color and legend requirements for raceways, conductors, and warning labels and signs.
2. Labels.
4. Tapes and stencils.
5. Tags.
7. Cable ties.
9. Fasteners for labels and signs.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.

B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.

C. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.

D. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Comply with ASME A13.1.
B. Comply with NFPA 70.

D. Comply with ANSI Z535.4 for safety signs and labels.

E. Comply with NFPA 70E and Section 260573.19 "Arc-Flash Hazard Analysis" requirements for arc-flash warning labels.

F. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

G. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

A. Raceways and Cables Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.

B. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded feeder and branch-circuit conductors.
 1. Color shall be factory applied.
 2. Colors for 208/120-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.
 3. Colors for 480/277-V Circuits:
 b. Phase B: Orange.
 c. Phase C: Yellow.
 6. Colors for Isolated Grounds: Green with two or more yellow stripes.

C. Warning Label Colors:
 1. Identify system voltage with black letters on an orange background.

D. Warning labels and signs shall include, but are not limited to, the following legends:
1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."

2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES (915 MM)."

E. Equipment Identification Labels:

1. Black letters on a white field.

2.3 LABELS

A. Vinyl Wraparound Labels: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. Brady Corporation.
b. Champion America.
c. emedco.
d. Grafolast Wire Markers.
e. HellermannTyton.
f. LEM Products Inc.
g. Marking Services, Inc.
h. Panduit Corp.

B. Self-Adhesive Wraparound Labels: Preprinted, 3-mil- (0.08-mm-) thick, vinyl flexible label with acrylic pressure-sensitive adhesive.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. Brady Corporation.
b. Brother International Corporation.
c. emedco.
d. Grafolast Wire Markers.
e. Ideal Industries, Inc.
f. LEM Products Inc.
g. Marking Services, Inc.
h. Panduit Corp.

2. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized such that the clear shield overlaps the entire printed legend.
3. Marker for Labels: Permanent, waterproof, black ink marker recommended by tag manufacturer.

C. Self-Adhesive Labels: Vinyl, thermal, transfer-printed, 3-mil- (0.08-mm-) thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Brady Corporation.
 b. Brother International Corporation.
 c. emedco.
 d. Grafoplast Wire Markers.
 e. HellermannTyton.
 f. Ideal Industries, Inc.
 g. LEM Products Inc.
 h. Marking Services, Inc.
 i. Panduit Corp.

2. Minimum Nominal Size:
 a. 1-1/2 by 6 inches (37 by 150 mm) for raceway and conductors.
 b. 3-1/2 by 5 inches (76 by 127 mm) for equipment.
 c. As required by authorities having jurisdiction.

2.4 BANDS AND TUBES

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Brady Corporation.
 b. Panduit Corp.

2.5 TAPES AND STENCILS

A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Champion America.
 b. HellermannTyton.
THE CITY OF PHILADELPHIA
Office of Emergency Management

IDENTIFICATION FOR ELECTRICAL SYSTEMS

B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide; compounded for outdoor use.

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. **Brady Corporation.**
 b. **Carlton Industries, LP.**
 c. **emedco.**
 d. **Marking Services, Inc.**

C. Tape and Stencil: 4-inch- (100-mm-) wide black stripes on 10-inch (250-mm) centers placed diagonally over orange background and are 12 inches (300 mm) wide. Stop stripes at legends.

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. **HellermannTyton.**
 b. **LEM Products Inc.**
 c. **Marking Services, Inc.**

D. Floor Marking Tape: 2-inch- (50-mm-) wide, 5-mil (0.125-mm) pressure-sensitive vinyl tape, with **[black and white]** [yellow and black] stripes and clear vinyl overlay.

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. **Carlton Industries, LP.**
 b. **Seton Identification Products; a Brady Corporation company.**

E. Underground-Line Warning Tape:

1.
2. **Tape:**
 a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical utility lines.
 b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.

3. **Color and Printing:**
b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE".
c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".

4. Tag: Type IID:
 a. Reinforced, detectable three-layer laminate, consisting of a printed pigmented woven scrim, a solid aluminum-foil core, and a clear protective film that allows inspection of the continuity of the conductive core; bright-colored, compounded for direct-burial service.
 b. Width: 3 inches (75 mm).
 c. Overall Thickness: 8 mils (0.2 mm).
 d. Foil Core Thickness: 0.35 mil (0.00889 mm).
 e. Weight: 34 lb/1000 sq. ft. (16.6 kg/100 sq. m).
 f. Tensile according to ASTM D882: 300 lbf (1334 N) and 12,500 psi (86.1 MPa).

2.6 TAGS

A. Nonmetallic Preprinted Tags: Polyethylene tags, 0.023 inch (0.58 mm) thick, color-coded for phase and voltage level, with factory printed permanent designations; punched for use with self-locking cable tie fastener.

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. **Brady Corporation.**
 b. **Carlton Industries, LP.**
 c. **emdeco.**
 d. **Grafoplast Wire Markers.**
 e. **LEM Products Inc.**
 f. **Marking Services, Inc.**
 g. **Panduit Corp.**

B. Write-on Tags:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. **Brimar Industries, Inc.**
 b. **Carlton Industries, LP.**
 c. **LEM Products Inc.**

2. Polyester Tags: 0.015 inch (0.38 mm) thick, with corrosion-resistant grommet and cable tie for attachment.

3. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
2.7 SIGNS

A. Baked-Enamel Signs:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. Carlton Industries, LP.
b. Champion America.
c. emedco.
d. Marking Services, Inc.

2. Preprinted aluminum signs, high-intensity reflective, punched or drilled for fasteners, with colors, legend, and size required for application.
3. 1/4-inch (6.4-mm) grommets in corners for mounting.
4. Nominal Size: 7 by 10 inches (180 by 250 mm).

B. Laminated Acrylic or Melamine Plastic Signs:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. Brady Corporation.
b. Carlton Industries, LP.
c. emedco.
d. Marking Services, Inc.

2. Engraved legend.
3. Thickness:

a. For signs up to 20 sq. in. (129 sq. cm), minimum 1/16 inch (1.6 mm) thick.
b. For signs larger than 20 sq. in. (129 sq. cm), 1/8 inch (3.2 mm) thick.
c. Self-adhesive.
d. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.8 CABLE TIES

A. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. HellermannTyton.
2. Ideal Industries, Inc.
3. Marking Services, Inc.
4. Panduit Corp.

B. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
1. Minimum Width: 3/16 inch (5 mm).
2. Tensile Strength at 73 Deg F (23 Deg C) according to ASTM D638: 12,000 psi (82.7 MPa).
3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).

C. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.

1. Minimum Width: 3/16 inch (5 mm).
2. Tensile Strength at 73 Deg F (23 Deg C) according to ASTM D638: 12,000 psi (82.7 MPa).
3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.

B. Install identifying devices before installing acoustical ceilings and similar concealment.

C. Verify identity of each item before installing identification products.

D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.

E. Apply identification devices to surfaces that require finish after completing finish work.
F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.

G. System Identification for Raceways and Cables under 600 V: Identification shall completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.
 1. Secure tight to surface of conductor, cable, or raceway.

I. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch- (10-mm-) high letters for emergency instructions at equipment used for power transfer.

J. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.

K. Accessible Fittings for Raceways: Identify the covers of each junction and pull box of the following systems with the wiring system legend and system voltage. System legends shall be as follows:
 1. "EMERGENCY POWER."
 2. "POWER."
 3. "UPS."
 4. “COPS COMPONENT.”

L. Vinyl Wraparound Labels:
 1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
 2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.

M. Snap-around Labels: Secure tight to surface at a location with high visibility and accessibility.

N. Self-Adhesive Wraparound Labels: Secure tight to surface at a location with high visibility and accessibility.

O. Self-Adhesive Labels:
 1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
 2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high.

P. Snap-around Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.
Q. Heat-Shrink, Preprinted Tubes: Secure tight to surface at a location with high visibility and accessibility.

R. Marker Tapes: Secure tight to surface at a location with high visibility and accessibility.

S. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.

1. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding.

T. Tape and Stencil: Comply with requirements in painting Sections for surface preparation and paint application.

U. Floor Marking Tape: Apply stripes to finished surfaces following manufacturer's written instructions.

V. Underground Line Warning Tape:

1. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches (150 to 200 mm) below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches (400 mm) overall.
2. Install underground-line warning tape for direct-buried cables and cables in raceways.

W. Metal Tags:

1. Place in a location with high visibility and accessibility.
2. Secure using general-purpose cable ties.

X. Nonmetallic Preprinted Tags:

1. Place in a location with high visibility and accessibility.
2. Secure using general-purpose cable ties.

Y. Write-on Tags:

1. Place in a location with high visibility and accessibility.
2. Secure using general-purpose cable ties.

Z. Baked-Enamel Signs:

1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on minimum 1-1/2-inch- (38-mm-) high sign; where two lines of text are required, use signs minimum 2 inches (50 mm) high.

AA. Metal-Backed Butyrate Signs:
1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high sign; where two lines of text are required, use labels 2 inches (50 mm) high.

BB. Laminated Acrylic or Melamine Plastic Signs:
1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high sign; where two lines of text are required, use labels 2 inches (50 mm) high.

CC. Cable Ties: General purpose, for attaching tags, except as listed below:
1. Outdoors: UV-stabilized nylon.
2. In Spaces Handling Environmental Air: Plenum rated.

3.3 IDENTIFICATION SCHEDULE
A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.

B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.

C. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120 V to Ground: Identify with self-adhesive raceway labels.
1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.

D. Accessible Fittings for Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive labels containing the wiring system legend and system voltage. System legends shall be as follows:
1. "EMERGENCY POWER."
2. "POWER."
3. "UPS."
4. “COPS COMPONENT.”

E. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use self-adhesive vinyl tape to identify the phase.
1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.
F. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive labels with the conductor or cable designation, origin, and destination.

G. Control-Circuit Conductor Termination Identification: For identification at terminations, provide self-adhesive labels with the conductor designation.

H. Locations of Underground Lines: Underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.

I. Workspace Indication: Apply tape and stencil to finished surfaces. Show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

J. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.

K. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Baked-enamel warning signs.

1. Apply to exterior of door, cover, or other access.
2. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 a. Power-transfer switches.
 b. Controls with external control power connections.

M. Operating Instruction Signs: Self-adhesive labels.

N. Emergency Operating Instruction Signs: Self-adhesive labels with white legend on a red background with minimum 3/8-inch- (10-mm-) high letters for emergency instructions at equipment used for power transfer.

O. Equipment Identification Labels:

1. Indoor Equipment: Self-adhesive label.
2. Outdoor Equipment: Laminated acrylic or melamine sign.
3. Equipment to Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a self-adhesive, engraved, laminated acrylic or melamine label.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
 d. Switchgear.
 e. Switchboards.
 f. Transformers: Label that includes tag designation indicated on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
g. Substations.
h. Emergency system boxes and enclosures.
i. Motor-control centers.
j. Enclosed switches.
k. Enclosed circuit breakers.
l. Enclosed controllers.
m. Variable-speed controllers.
n. Push-button stations.
o. Power-transfer equipment.
p. Contactors.
q. Remote-controlled switches, dimmer modules, and control devices.
r. Battery-inverter units.
s. Battery racks.
t. Power-generating units.
u. Monitoring and control equipment.
v. UPS equipment.

END OF SECTION 260553
SECTION 260573.13 - SHORT-CIRCUIT STUDIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes a computer-based, fault-current study to determine the minimum interrupting capacity of circuit protective devices.

1.3 DEFINITIONS

A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed and salvaged, or removed and reinstalled. Existing to remain items shall remain functional throughout the construction period.

B. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.

C. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.

D. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.

E. Power Systems Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.

F. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion of the circuit from the system.

G. SCCR: Short-circuit current rating.

H. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.4 ACTION SUBMITTALS

A. Product Data:

1. For computer software program to be used for studies.
2. Submit the following after the approval of system protective devices submittals. Submittals may be in digital form.

a. Short-circuit study input data, including completed computer program input data sheets.
b. Short-circuit study and equipment evaluation report; signed, dated, and sealed by a qualified professional engineer.

1) Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.

2) Revised one-line diagram, reflecting field investigation results and results of short-circuit study.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data:

1. For Power Systems Analysis Software Developer.
2. For Power System Analysis Specialist.
3. For Field Adjusting Agency.

B. Product Certificates: For short-circuit study software, certifying compliance with IEEE 399.

1.6 QUALITY ASSURANCE

A. Study shall be performed using commercially developed and distributed software designed specifically for power system analysis.

B. Software algorithms shall comply with requirements of standards and guides specified in this Section.

C. Manual calculations are unacceptable.

1. Power System Analysis Software Qualifications: Computer program shall be designed to perform short-circuit studies or have a function, component, or add-on module designed to perform short-circuit studies.

2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.
D. Power Systems Analysis Specialist Qualifications: Professional engineer licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

E. Short-Circuit Study Certification: Short-Circuit Study Report shall be signed and sealed by Power Systems Analysis Specialist.

F. Field Adjusting Agency Qualifications:

1. Employer of a NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification responsible for all field adjusting of the Work.
2. A member company of NETA.
3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 POWER SYSTEM ANALYSIS SOFTWARE DEVELOPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. ESA Inc.
2. Power Analytics, Corporation.
3. SKM Systems Analysis, Inc.

B. Comply with IEEE 399 and IEEE 551.

1. Analytical features of power systems analysis software program shall have capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

C. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output.

2.2 SHORT-CIRCUIT STUDY REPORT CONTENTS

A. Executive summary of study findings.

B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.

C. One-line diagram of modeled power system, showing the following:

1. Protective device designations and ampere ratings.
2. Conductor types, sizes, and lengths.
3. Transformer kilovolt ampere (kVA) and voltage ratings.
4. Motor and generator designations and kVA ratings.
5. Switchgear, switchboard, motor-control center, and panelboard designations and ratings.
6. Derating factors and environmental conditions.
7. Any revisions to electrical equipment required by the study.
D. Comments and recommendations for system improvements or revisions in a written document, separate from one-line diagram.

E. Protective Device Evaluation:

1. Evaluate equipment and protective devices and compare to available short-circuit currents. Verify that equipment withstand ratings exceed available short-circuit current at equipment installation locations.
2. Tabulations of circuit breaker, fuse, and other protective device ratings versus calculated short-circuit duties.
3. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
4. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in standards to 1/2-cycle symmetrical fault current.
5. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.

F. Short-Circuit Study Input Data:

1. One-line diagram of system being studied.
2. Power sources available.
3. Manufacturer, model, and interrupting rating of protective devices.
4. Conductors.
5. Transformer data.

G. Short-Circuit Study Output Reports:

1. Low-Voltage Fault Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. Equivalent impedance.

2. Momentary Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. Calculated asymmetrical fault currents:
 1) Based on fault-point X/R ratio.
 2) Based on calculated symmetrical value multiplied by 1.6.
 3) Based on calculated symmetrical value multiplied by 2.7.

3. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
a. Voltage.
b. Calculated symmetrical fault-current magnitude and angle.
c. Fault-point X/R ratio.
d. No AC Decrement (NACD) ratio.
e. Equivalent impedance.
f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

PART 3 - EXECUTION

3.1 POWER SYSTEM DATA

A. Obtain all data necessary for conduct of the study.
 1. Verify completeness of data supplied on one-line diagram. Call any discrepancies to Architect's attention.
 2. For equipment included as Work of this Project, use characteristics submitted under provisions of action submittals and information submittals for this Project.
 3. For equipment that is existing to remain, obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers. Qualifications of technicians and engineers shall be as defined by NFPA 70E.

B. Gather and tabulate the required input data to support the short-circuit study. Comply with requirements in Section 017839 "Project Record Documents" for recording circuit protective device characteristics. Record data on a Record Document copy of one-line diagram. Comply with recommendations in IEEE 551 as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:
 1. Product Data for Project's overcurrent protective devices involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
 2. Obtain electrical power utility impedance at the service.
 3. Power sources and ties.
 4. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
 5. For reactors, provide manufacturer and model designation, voltage rating, and impedance.
 6. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip, SCCR, current rating, and breaker settings.
 7. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
 8. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.
 9. Motor horsepower and NEMA MG 1 code letter designation.
10. Conductor sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).
11. Derating factors.

3.2 SHORT-CIRCUIT STUDY

A. Perform study following the general study procedures contained in IEEE 399.

B. Calculate short-circuit currents according to IEEE 551.

C. Base study on device characteristics supplied by device manufacturer.

D. Extent of electrical power system to be studied is indicated on Drawings.

E. Begin short-circuiting current analysis at the service, extending down to system overcurrent protective devices as follows:
 1. To normal system low-voltage load buses where fault current is 10 kA or less.
 2. Exclude equipment rated 240 V ac or less when supplied by a single transformer rated less than 125 kVA.

F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.

G. Include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and apply to low- and medium-voltage, three-phase ac systems. Also account for the fault-current dc decrement to address asymmetrical requirements of interrupting equipment.

H. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and a single line-to-ground fault at each equipment indicated on one-line diagram.
 1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.

I. Include in the report identification of any protective device applied outside its capacity.

END OF SECTION 260573.13
SECTION 260573.16 - COORDINATION STUDIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes computer-based, overcurrent protective device coordination studies to determine overcurrent protective devices and to determine overcurrent protective device settings for selective tripping.

1.3 DEFINITIONS

A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled. Existing to remain items shall remain functional throughout the construction period.

B. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.

C. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.

D. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.

E. Power System Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.

F. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion of the circuit from the system.

G. SCCR: Short-circuit current rating.

H. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.4 ACTION SUBMITTALS

A. Product Data:

 1. For computer software program to be used for studies.
 2. Submit the following after the approval of system protective devices submittals. Submittals may be in digital form.

 a. Coordination-study input data, including completed computer program input data sheets.
 b. Study and equipment evaluation reports.

3. Overcurrent protective device coordination study report; signed, dated, and sealed by a qualified professional engineer.

 a. Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data:

 1. For Power System Analysis Software Developer.
 2. For Power Systems Analysis Specialist.
 3. For Field Adjusting Agency.

B. Product Certificates: For overcurrent protective device coordination study software, certifying compliance with IEEE 399.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For overcurrent protective devices to include in emergency, operation, and maintenance manuals.

1. The following are from the Coordination Study Report:

 a. Final one-line diagram.
 b. Final protective device coordination study.
 c. Coordination study data files.
 d. List of all protective device settings.
 e. Time-current coordination curves.
 f. Power system data.
1.7 QUALITY ASSURANCE

A. Studies shall be performed using commercially developed and distributed software designed specifically for power system analysis.

B. Software algorithms shall comply with requirements of standards and guides specified in this Section.

C. Manual calculations are unacceptable.

D. Power System Analysis Software Qualifications:
 1. Computer program shall be designed to perform coordination studies or have a function, component, or add-on module designed to perform coordination studies.
 2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.

E. Power Systems Analysis Specialist Qualifications: Professional engineer licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

F. Field Adjusting Agency Qualifications:
 1. Employer of a NETA ETT-Certified Technician Level III responsible for all field adjusting of the Work.
 2. A member company of NETA.
 3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 POWER SYSTEM ANALYSIS SOFTWARE DEVELOPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. ESA Inc.
 2. Power Analytics, Corporation.
 3. SKM Systems Analysis, Inc.

B. Comply with IEEE 242 and IEEE 399.

C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

D. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.
1. Optional Features:
 a. Arcing faults.
 b. Simultaneous faults.
 c. Explicit negative sequence.
 d. Mutual coupling in zero sequence.

2.2 COORDINATION STUDY REPORT CONTENTS

A. Executive summary of study findings.

B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.

C. One-line diagram of modeled power system, showing the following:
 1. Protective device designations and ampere ratings.
 2. Conductor types, sizes, and lengths.
 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 4. Motor and generator designations and kVA ratings.
 5. Switchgear, switchboard, motor-control center, and panelboard designations.
 6. Any revisions to electrical equipment required by the study.
 7. Study Input Data: As described in "Power System Data" Article.

D. Protective Device Coordination Study:
 1. Report recommended settings of protective devices, ready to be applied in the field. Use manufacturer's data sheets for recording the recommended setting of overcurrent protective devices when available.
 a. Phase and Ground Relays:
 1) Device tag.
 2) Relay current transformer ratio and tap, time dial, and instantaneous pickup value.
 3) Recommendations on improved relaying systems, if applicable.
 b. Circuit Breakers:
 1) Adjustable pickups and time delays (long time, short time, and ground).
 2) Adjustable time-current characteristic.
 3) Adjustable instantaneous pickup.
 4) Recommendations on improved trip systems, if applicable.
 c. Fuses: Show current rating, voltage, and class.
E. Time-Current Coordination Curves: Determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists between devices installed in series, including power utility company's upstream devices. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:

1. Device tag and title, one-line diagram with legend identifying the portion of the system covered.
2. Terminate device characteristic curves at a point reflecting maximum symmetrical or asymmetrical fault current to which the device is exposed.
3. Identify the device associated with each curve by manufacturer type, function, and, if applicable, tap, time delay, and instantaneous settings recommended.
4. Plot the following listed characteristic curves, as applicable:
 a. Power utility's overcurrent protective device.
 b. Medium-voltage equipment overcurrent relays.
 c. Medium- and low-voltage fuses including manufacturer's minimum melt, total clearing, tolerance, and damage bands.
 d. Low-voltage equipment circuit-breaker trip devices, including manufacturer's tolerance bands.
 e. Transformer full-load current, magnetizing inrush current, and ANSI through-fault protection curves.
 f. Cables and conductors damage curves.
 g. Ground-fault protective devices.
 h. Motor-starting characteristics and motor damage points.
 i. Generator short-circuit decrement curve and generator damage point.
 j. The largest feeder circuit breaker in each motor-control center and panelboard.

5. Maintain selectivity for tripping currents caused by overloads.
6. Provide adequate time margins between device characteristics such that selective operation is achieved.
7. Comments and recommendations for system improvements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance of the Work. Devices to be coordinated are indicated on Drawings.

1. Proceed with coordination study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to coordination study may not be used in study.

3.2 POWER SYSTEM DATA

A. Obtain all data necessary for conduct of the overcurrent protective device study.
1. Verify completeness of data supplied in one-line diagram on Drawings. Call any discrepancies to Architect's attention.

2. For equipment included as Work of this Project, use characteristics submitted under provisions of action submittals and information submittals for this Project.

3. For equipment that is existing to remain, obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers. Qualifications of technicians and engineers shall be as defined by NFPA 70E.

B. Gather and tabulate all required input data to support the coordination study. List below is a guide. Comply with recommendations in IEEE 551 for the amount of detail required to be acquired in the field. Field data gathering shall be under direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:

1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.

2. Electrical power utility impedance at the service.

3. Power sources and ties.

4. Short-circuit current at each system bus (three phase and line to ground).

5. Full-load current of all loads.

6. Voltage level at each bus.

7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.

8. For reactors, provide manufacturer and model designation, voltage rating, and impedance.

9. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.

10. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.

11. For relays, provide manufacturer and model designation, current transformer ratios, potential transformer ratios, and relay settings.

12. Maximum demands from service meters.

13. Busway manufacturer and model designation, current rating, impedance, lengths, size, and conductor material.

14. Motor horsepower and NEMA MG 1 code letter designation.

15. Low-voltage cable sizes, lengths, number, conductor material, and conduit material (magnetic or nonmagnetic).

16. Medium-voltage cable sizes, lengths, conductor material, cable construction, metallic shield performance parameters, and conduit material (magnetic or nonmagnetic).

17. Data sheets to supplement electrical distribution system one-line diagram, cross-referenced with tag numbers on diagram, showing the following:

 a. Special load considerations, including starting inrush currents and frequent starting and stopping.

 b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.
c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve.
d. Generator thermal-damage curve.
e. Ratings, types, and settings of utility company's overcurrent protective devices.
f. Special overcurrent protective device settings or types stipulated by utility company.
g. Time-current-characteristic curves of devices indicated to be coordinated.
h. Manufacturer, frame size, interrupting rating in amperes root mean square (rms) symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for circuit breakers.
i. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.
j. Switchgear, switchboards, motor-control centers, and panelboards ampacity, and SCCR in amperes rms symmetrical.

3.3 COORDINATION STUDY

A. Comply with IEEE 242 for calculating short-circuit currents and determining coordination time intervals.

B. Comply with IEEE 399 for general study procedures.

C. Base study on device characteristics supplied by device manufacturer.

D. Extent of electrical power system to be studied is indicated on Drawings.

E. Begin analysis at the service, extending down to system overcurrent protective devices as follows:

1. To normal system low-voltage load buses where fault current is 10 kA or less.
2. Exclude equipment rated 240 V ac or less when supplied by a single transformer rated less than 125 kVA.

F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.

G. Transformer Primary Overcurrent Protective Devices:

1. Device shall not operate in response to the following:
 a. Inrush current when first energized.
 b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.
 c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.

2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.
H. Motor Protection:

1. Select protection for low-voltage motors according to IEEE 242 and NFPA 70.
2. Select protection for motors served at voltages more than 600 V according to IEEE 620.

I. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and protection recommendations in IEEE 242. Demonstrate that equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.

J. Generator Protection: Select protection according to manufacturer's written instructions and to IEEE 242.

K. Include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and apply to low- and medium-voltage, three-phase ac systems. Also account for fault-current dc decrement, to address asymmetrical requirements of interrupting equipment.

L. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and a single line-to-ground fault at each equipment indicated on one-line diagram.

1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.

M. Protective Device Evaluation:

1. Evaluate equipment and protective devices and compare to short-circuit ratings.
2. Adequacy of switchgear, motor-control centers, and panelboard bus bars to withstand short-circuit stresses.
3. Include in the report identification of any protective device applied outside its capacity.

3.4 LOAD-FLOW AND VOLTAGE-DROP STUDY

A. Perform a load-flow and voltage-drop study to determine the steady-state loading profile of the system. Analyze power system performance two times as follows:

1. Determine load flow and voltage drop based on full-load currents obtained in "Power System Data" Article.
2. Determine load flow and voltage drop based on 80 percent of the design capacity of load buses.
3. Prepare load-flow and voltage-drop analysis and report to show power system components that are overloaded, or might become overloaded; show bus voltages that are less than as prescribed by NFPA 70.
3.5 MOTOR-STARTING STUDY

A. Perform a motor-starting study to analyze the transient effect of system's voltage profile during motor starting. Calculate significant motor-starting voltage profiles and analyze the effects of motor starting on the power system stability.

B. Prepare the motor-starting study report, noting light flicker for limits proposed by IEEE 141, and, and voltage sags so as not to affect operation of other utilization equipment on system supplying the motor.

3.6 FIELD ADJUSTING

A. Adjust relay and protective device settings according to recommended settings provided by the coordination study. Field adjustments shall be completed by the engineering service division of equipment manufacturer under the "Startup and Acceptance Testing" contract portion.

B. Make minor modifications to equipment as required to accomplish compliance with short-circuit and protective device coordination studies.

C. Testing and adjusting shall be by a full-time employee of the Field Adjusting Agency, who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification.

1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS. Certify compliance with test parameters. Perform NETA tests and inspections for all adjustable overcurrent protective devices.

3.7 DEMONSTRATION

A. Engage Power Systems Analysis Specialist to train Owner's maintenance personnel in the following:

1. Acquaint personnel in fundamentals of operating the power system in normal and emergency modes.

2. Hand-out and explain the coordination study objectives, study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpreting time-current coordination curves.

3. For Owner's maintenance staff certified as NETA ETT-Certified Technicians Level III or NICET Electrical Power Testing Level III Technicians, teach how to adjust, operate, and maintain overcurrent protective device settings.

END OF SECTION 260573.16
SECTION 260573.19 - ARC-FLASH HAZARD ANALYSIS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes a computer-based, arc-flash study to determine the arc-flash hazard distance and the incident energy to which personnel could be exposed during work on or near electrical equipment.

1.3 DEFINITIONS

A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

B. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.

C. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.

D. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.

E. Power Systems Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.

F. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion from the system.

G. SCCR: Short-circuit current rating.

H. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.4 ACTION SUBMITTALS

A. Product Data: For computer software program to be used for studies.

B. Study Submittals: Submit the following submittals after the approval of system protective devices submittals. Submittals may be in digital form:

1. Arc-flash study input data, including completed computer program input data sheets.
2. Arc-flash study report; signed, dated, and sealed by Power Systems Analysis Specialist.
3. Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data:

1. For Power Systems Analysis Software Developer.
2. For Power System Analysis Specialist.
3. For Field Adjusting Agency.

B. Product Certificates: For arc-flash hazard analysis software, certifying compliance with IEEE 1584 and NFPA 70E.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data:

1. Provide maintenance procedures in equipment manuals according to requirements in NFPA 70E.
2. Operation and Maintenance Procedures: In addition to items specified in Section 017823 "Operation and Maintenance Data," provide maintenance procedures for use by Owner's personnel that comply with requirements in NFPA 70E.

1.7 QUALITY ASSURANCE

A. Study shall be performed using commercially developed and distributed software designed specifically for power system analysis.

B. Software algorithms shall comply with requirements of standards and guides specified in this Section.

C. Manual calculations are unacceptable.

D. Power System Analysis Software Qualifications: An entity that owns and markets computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.
1. Computer program shall be designed to perform arc-flash analysis or have a function, component, or add-on module designed to perform arc-flash analysis.

2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.

E. Power Systems Analysis Specialist Qualifications: Professional engineer in charge of performing the arc-flash study, analyzing the arc flash, and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

F. Arc-Flash Study Certification: Arc-Flash Study Report shall be signed and sealed by Power Systems Analysis Specialist.

G. Field Adjusting Agency Qualifications:

1. Employer of a NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification responsible for all field adjusting of the Work.
2. A member company of NETA.
3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. ESA Inc.
2. Power Analytics, Corporation.
3. SKM Systems Analysis, Inc.

B. Comply with IEEE 1584 and NFPA 70E.

C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

2.2 ARC-FLASH STUDY REPORT CONTENT

A. Executive summary of study findings.

B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.

C. One-line diagram, showing the following:

1. Protective device designations and ampere ratings.
2. Conductor types, sizes, and lengths.
3. Transformer kilovolt ampere (kVA) and voltage ratings, including derating factors and environmental conditions.
4. Motor and generator designations and kVA ratings.
5. Switchgear, switchboard, motor-control center, panelboard designations, and ratings.

D. Study Input Data: As described in "Power System Data" Article.

E. Short-Circuit Study Output Data: As specified in "Short-Circuit Study Output Reports" Paragraph in "Short-Circuit Study Report Contents" Article in Section 260573.13 "Short-Circuit Studies."

F. Protective Device Coordination Study Report Contents: As specified in "Coordination Study Report Contents" Article in Section 260573.16 "Coordination Studies."

G. Arc-Flash Study Output Reports:
 1. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each equipment location included in the report:
 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. No AC Decrement (NACD) ratio.
 e. Equivalent impedance.
 f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

H. Incident Energy and Flash Protection Boundary Calculations:
 1. Arcing fault magnitude.
 2. Protective device clearing time.
 3. Duration of arc.
 5. Restricted approach boundary.
 7. Working distance.
 8. Incident energy.

I. Fault study input data, case descriptions, and fault-current calculations including a definition of terms and guide for interpretation of computer printout.

2.3 ARC-FLASH WARNING LABELS

A. Comply with requirements in Section 260553 "Identification for Electrical Systems" for self-adhesive equipment labels. Produce a 3.5-by-5-inch (76-by-127-mm) self-adhesive equipment label for each work location included in the analysis.
B. Label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:

1. Location designation.
2. Nominal voltage.
3. Protection boundaries.
 a. Arc-flash boundary.
 b. Restricted approach boundary.
 c. Limited approach boundary.
4. Arc flash PPE category.
5. Required minimum arc rating of PPE in Cal/cm squared.
6. Available incident energy.
7. Working distance.
8. Engineering report number, revision number, and issue date.

C. Labels shall be machine printed, with no field-applied markings.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals. Proceed with arc-flash study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to arc-flash study may not be used in study.

3.2 ARC-FLASH HAZARD ANALYSIS

A. Comply with NFPA 70E and its Annex D for hazard analysis study.

B. Preparatory Studies: Perform the Short-Circuit and Protective Device Coordination studies prior to starting the Arc-Flash Hazard Analysis.

2. Coordination Study Report Contents: As specified in "Coordination Study Report Contents" Article in Section 260573.16 "Coordination Studies."

C. Calculate maximum and minimum contributions of fault-current size.

1. Maximum calculation shall assume a maximum contribution from the utility and shall assume motors to be operating under full-load conditions.
2. Calculate arc-flash energy at 85 percent of maximum short-circuit current according to IEEE 1584 recommendations.
3. Calculate arc-flash energy at 38 percent of maximum short-circuit current according to NFPA 70E recommendations.
4. Calculate arc-flash energy with the utility contribution at a minimum and assume no motor contribution.

D. Calculate the arc-flash protection boundary and incident energy at locations in electrical distribution system where personnel could perform work on energized parts.

E. Include medium- and low-voltage equipment locations, except equipment rated 240 V ac or less fed from transformers less than 125 kVA.

F. Calculate the limited, restricted, and prohibited approach boundaries for each location.

G. Incident energy calculations shall consider the accumulation of energy over time when performing arc-flash calculations on buses with multiple sources. Iterative calculations shall take into account the changing current contributions, as the sources are interrupted or decremented with time. Fault contribution from motors and generators shall be decremented as follows:

1. Fault contribution from induction motors shall not be considered beyond three to five cycles.
2. Fault contribution from synchronous motors and generators shall be decayed to match the actual decrement of each as closely as possible (for example, contributions from permanent magnet generators will typically decay from 10 per unit to three per unit after 10 cycles).

H. Arc-flash energy shall generally be reported for the maximum of line or load side of a circuit breaker. However, arc-flash computation shall be performed and reported for both line and load side of a circuit breaker as follows:

1. When the circuit breaker is in a separate enclosure.
2. When the line terminals of the circuit breaker are separate from the work location.

I. Base arc-flash calculations on actual overcurrent protective device clearing time. Cap maximum clearing time at two seconds based on IEEE 1584, Section B.1.2.

3.3 POWER SYSTEM DATA

A. Obtain all data necessary for conduct of the arc-flash hazard analysis.

1. Verify completeness of data supplied on one-line diagram on Drawings. Call discrepancies to Architect's attention.
2. For new equipment, use characteristics from approved submittals under provisions of action submittals and information submittals for this Project.
3. For existing equipment, whether or not relocated, obtain required electrical distribution system data by field investigation and surveys conducted by qualified technicians and engineers.

B. Electrical Survey Data: Gather and tabulate the following input data to support study. Comply with recommendations in IEEE 1584 and NFPA 70E as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under the direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its
representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:

1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
2. Obtain electrical power utility impedance or available short circuit current at the service.
3. Power sources and ties.
4. Short-circuit current at each system bus (three phase and line to ground).
5. Full-load current of all loads.
6. Voltage level at each bus.
7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
8. For reactors, provide manufacturer and model designation, voltage rating and impedance.
9. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.
10. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
11. For relays, provide manufacturer and model designation, current transformer ratios, potential transformer ratios, and relay settings.
12. Busway manufacturer and model designation, current rating, impedance, lengths, size, and conductor material.
13. Motor horsepower and NEMA MG 1 code letter designation.
14. Low-voltage conductor sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).
15. Medium-voltage conductor sizes, lengths, conductor material, conductor construction and metallic shield performance parameters, and conduit material (magnetic or nonmagnetic).

3.4 LABELING

A. Apply one arc-flash label on the front cover of each section of the equipment and on side or rear covers with accessible live parts and hinged doors or removable plates for each equipment included in the study. Base arc-flash label data on highest values calculated at each location.

B. Each piece of equipment listed below shall have an arc-flash label applied to it:

1. Motor-control center.
2. Low-voltage switchboard.
3. Switchgear.
4. Medium-voltage switch.
5. Medium voltage transformers
6. Low voltage transformers.
7. Panelboard and safety switch over 250 V.
8. Applicable panelboard and safety switch under 250 V.
9. Control panel.

C. Note on record Drawings the location of equipment where the personnel could be exposed to arc-flash hazard during their work.
1. Indicate arc-flash energy.
2. Indicate protection level required.

3.5 APPLICATION OF WARNING LABELS

A. Install arc-flash warning labels under the direct supervision and control of Power System Analysis Specialist.

3.6 DEMONSTRATION

A. Engage Power Systems Analysis Specialist to train Owner's maintenance personnel in potential arc-flash hazards associated with working on energized equipment and the significance of arc-flash warning labels.

END OF SECTION 260573.19
SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
1. Standalone daylight-harvesting switching and dimming controls.
2. Indoor occupancy and vacancy sensors.
4. Emergency shunt relays.
B. Related Requirements:
1. Section 262726 "Wiring Devices" for wall-box dimmers, non-networkable wall-switch occupancy sensors, and manual light switches.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings:
1. Show installation details for the following:
 a. Occupancy sensors.
 b. Vacancy sensors.
2. Interconnection diagrams showing field-installed wiring.
3. Include diagrams for power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For each type of lighting control device to include in operation and maintenance manuals.
B. Software and Firmware Operational Documentation:
1. Software operating and upgrade manuals.
3. Device address list.
4. Printout of software application and graphic screens.

1.5 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace lighting control devices that fail(s) in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Faulty operation of lighting control software.
 b. Faulty operation of lighting control devices.

2. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 DAYLIGHT-HARVESTING DIMMING CONTROLS, DIGITAL

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cooper Industries, Inc.
3. Leviton Manufacturing Co., Inc.
4. Lithonia Lighting; Acuity Brands Lighting, Inc.
5. WattStopper; Legrand North America, LLC.

B. Description: Sensing daylight and electrical lighting levels, the system adjusts the indoor electrical lighting levels. As daylight increases, lights are dimmed.

1. Lighting control set point is based on the following two lighting conditions:
 a. When no daylight is present (target level).
 b. When significant daylight is present.

2. System programming is done with two hand-held, remote-control tools.
 a. Initial setup tool.
 b. Tool for occupants to adjust the target levels by increasing the set point up to 25 percent, or by minimizing the electric lighting level.

C. Ceiling-Mounted Dimming Controls: Solid-state, light-level sensor unit, with separate power pack, to detect changes in indoor lighting levels that are perceived by the eye.

D. Electrical Components, Devices, and Accessories:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Sensor Output: 0- to 10-V dc to operate luminaires. Sensor is powered by controller unit.
3. Light-Level Sensor Set-Point Adjustment Range: 20 to 60 fc (120 to 640 lux).

E. Power Pack: Digital controller capable of accepting three RJ45 inputs with two output(s) rated for 20-A incandescent or LED load at 120- and 277-V ac, for 16-A LED at 120- and 277-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc Class 2 power source, as defined by NFPA 70.

1. With integral current monitoring.
2. Compatible with digital addressable lighting interface.
3. Plenum rated.

2.2 INDOOR OCCUPANCY AND VACANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Cooper Industries, Inc.
3. Intermatic, Inc.
4. Leviton Manufacturing Co., Inc.
5. Lithonia Lighting; Acuity Brands Lighting, Inc.
7. Sensor Switch, Inc.
8. Square D; Schneider Electric USA.
9. WattStopper; Legrand North America, LLC.

B. General Requirements for Sensors:

2. Dual technology.
3. Separate power pack.
4. Hardwired connection to switch and BAS.
5. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
6. Operation:
 a. Combination Sensor: Unless otherwise indicated, sensor shall be programmed to turn lights on when coverage area is occupied and turn them off when unoccupied, or to turn off lights that have been manually turned on; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.

7. Sensor Output: Sensor is powered from the power pack.
9. Power Pack: Dry contacts rated for 20-A LED load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
10. Mounting:
 a. Sensor: Suitable for mounting in any position on a standard outlet box.
 b. Relay: Externally mounted through a 1/2-inch (13-mm) knockout in a standard electrical enclosure.
c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.

11. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
12. Bypass Switch: Override the "on" function in case of sensor failure.
13. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc (21.5 to 2152 lux); turn lights off when selected lighting level is present.

C. Dual-Technology Type: Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.

1. Sensitivity Adjustment: Separate for each sensing technology.
2. Detector Sensitivity: Detect occurrences of 6-inch- (150-mm-) minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. (232 sq. cm), and detect a person of average size and weight moving not less than 12 inches (305 mm) in either a horizontal or a vertical manner at an approximate speed of 12 inches/s (305 mm/s).
3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 12000 sq. ft. (186 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.

2.3 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Cooper Industries, Inc.
3. Intermatic, Inc.
4. Leviton Manufacturing Co., Inc.
5. Lithonia Lighting; Acuity Brands Lighting, Inc.
7. Sensor Switch, Inc.
8. Square D; Schneider Electric USA.
9. WattStopper; Legrand North America, LLC.

B. General Requirements for Sensors: Automatic-wall-switch occupancy sensor with manual on-off switch, suitable for mounting in a single gang switchbox, with provisions for connection to BAS using hardwired connection.

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Occupancy Sensor Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn lights off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
3. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F (0 to 49 deg C).
4. Switch Rating: Not less than 800-VA LED load at 120 V, 1200-VA LED load at 277 V, and 800-W incandescent.
C. Wall-Switch Sensor:
 1. Standard Range: 180-degree field of view, field adjustable from 180 to 40 degrees; with a minimum coverage area of 2100 sq. ft (196 sq. m).
 2. Sensing Technology: Dual technology - PIR and ultrasonic.
 3. Switch Type: SP.
 5. Voltage: Dual voltage - 120 and 277 V.
 6. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc (108 to 1600 lux). The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
 7. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
 8. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.
 10. Faceplate: Color matched to switch.

2.4 EMERGENCY SHUNT RELAY

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. Lighting Control and Design.
 2. WattStopper; Legrand North America, LLC.

B. Description: NC, electrically held relay, arranged for wiring in parallel with manual or automatic switching contacts; complying with UL 924.
 1. Coil Rating: 277 V.

2.5 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine lighting control devices before installation. Reject lighting control devices that are wet, moisture damaged, or mold damaged.

B. Examine walls and ceilings for suitable conditions where lighting control devices will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SENSOR INSTALLATION

A. Comply with NECA 1.

B. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.

C. Install and aim sensors in locations to achieve not less than 90 percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.3 CONTACTOR INSTALLATION

A. Comply with NECA 1.

3.4 WIRING INSTALLATION

A. Comply with NECA 1.

B. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch (13 mm).

C. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.

D. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.

E. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.5 IDENTIFICATION

A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."
1. Identify controlled circuits in lighting contactors.
2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.

B. Label time switches and contactors with a unique designation.

3.6 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Lighting control devices will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.7 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting lighting control devices to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.
2. For daylighting controls, adjust set points and deadband controls to suit Owner's operations.

3.8 SOFTWARE SERVICE AGREEMENT

A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.

B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

1. Upgrade Notice: At least 30 days to allow Owner to schedule and access the system and to upgrade computer equipment if necessary.

3.9 DEMONSTRATION

A. Coordinate demonstration of products specified in this Section with demonstration requirements for low-voltage, programmable lighting control systems specified in Section 260943.16 "Addressable-Luminaire Lighting Controls" and Section 260943.23 "Relay-Based Lighting Controls."
B. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 260923
SECTION 262213 - LOW-VOLTAGE DISTRIBUTION TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes distribution, dry-type transformers with a nominal primary and secondary rating of 600 V and less, with capacities up to 1500 kVA.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type and size of transformer.
 2. Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer.

B. Shop Drawings:
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.
 3. Include diagrams for power, signal, and control wiring.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Inspection: On receipt, inspect for and note any shipping damage to packaging and transformer.
 1. If manufacturer packaging is removed for inspection, and transformer will be stored after inspection, re-package transformer using original or new packaging materials that provide protection equivalent to manufacturer's packaging.

B. Storage: Store in a warm, dry, and temperature-stable location in original shipping packaging.

C. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.
D. Handling: Follow manufacturer's instructions for lifting and transporting transformers.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. ABB (Electrification Products Division).
2. Eaton.
3. Schneider Electric USA (Square D).

B. Source Limitations: Obtain each transformer type from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Transformers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the transformer will remain in place without separation of any parts when subjected to the seismic forces specified and the transformer will be fully operational after the seismic event."

2.3 GENERAL TRANSFORMER REQUIREMENTS

A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.

B. Comply with NFPA 70.

1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

C. Transformers Rated 15 kVA and Larger:

1. Comply with 10 CFR 431 (DOE 2016) efficiency levels.
2. Marked as compliant with DOE 2016 efficiency levels by an NRTL.

D. Shipping Restraints: Paint or otherwise color-code bolts, wedges, blocks, and other restraints that are to be removed after installation and before energizing. Use fluorescent colors that are easily identifiable inside the transformer enclosure.

2.4 DISTRIBUTION TRANSFORMERS

A. Comply with NFPA 70.
B. Provide transformers that are constructed to withstand seismic forces specified in Section 260548.16 "Seismic Controls for Electrical Systems."

C. Cores: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.
 1. One leg per phase.
 2. Core volume shall allow efficient transformer operation at 10 percent above the nominal tap voltage.
 3. Grounded to enclosure.

D. Coils: Continuous windings without splices except for taps.
 2. Internal Coil Connections: Brazed or pressure type.
 3. Terminal Connections: Bolted.

E. Enclosure: Ventilated.
 1. NEMA 250, Type 2: Core and coil shall be encapsulated within resin compound to seal out moisture and air.
 2. KVA Ratings: Based on convection cooling only and not relying on auxiliary fans.
 3. Wiring Compartment: Sized for conduit entry and wiring installation.
 4. Finish: Comply with NEMA 250.
 a. Finish Color: Gray weather-resistant enamel.

F. Taps for Transformers 3 kVA and Smaller: None.

G. Taps for Transformers 7.5 to 24 kVA: One 5 percent tap above, and one 5 percent tap below normal full capacity.

H. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity.

I. Insulation Class, Smaller Than 30 kVA: 180 deg C, UL-component-recognized insulation system with a maximum of 115 deg C rise above 40 deg C ambient temperature.

J. Insulation Class, 30 kVA and Larger: 220 deg C, UL-component-recognized insulation system with a maximum of 115 deg C rise above 40 deg C ambient temperature.

K. Grounding: Provide ground-bar kit or a ground bar installed on the inside of the transformer enclosure.

L. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
 2. Include special terminal for grounding the shield.

M. Wall Brackets: Manufacturer's standard brackets.
2.5 IDENTIFICATION

A. Nameplates: Engraved, laminated-acrylic or melamine plastic signs for each distribution transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Section 260553 "Identification for Electrical Systems."

2.6 SOURCE QUALITY CONTROL

A. Test and inspect transformers according to IEEE C57.12.01 and IEEE C57.12.91.

1. Resistance measurements of all windings at rated voltage connections and at all tap connections.
2. Ratio tests at rated voltage connections and at all tap connections.
3. Phase relation and polarity tests at rated voltage connections.
4. No load losses, and excitation current and rated voltage at rated voltage connections.
5. Impedance and load losses at rated current and rated frequency at rated voltage connections.
6. Applied and induced tensile tests.
7. Regulation and efficiency at rated load and voltage.
8. Insulation-Resistance Tests:
 a. High-voltage to ground.
 b. Low-voltage to ground.
 c. High-voltage to low-voltage.
9. Temperature tests.

B. Factory Sound-Level Tests: Conduct prototype sound-level tests on production-line products.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.

B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.

C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.

D. Verify that ground connections are in place and requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.

E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.
F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall-mounted transformers level and plumb with wall brackets fabricated by transformer manufacturer.
 1. Coordinate installation of wall-mounted and structure-hanging supports with actual transformer provided.
 2. Brace wall-mounted transformers as specified in Section 260548.16 "Seismic Controls for Electrical Systems."

B. Install transformers level and plumb on a concrete base with vibration-dampening supports. Locate transformers away from corners and not parallel to adjacent wall surface.

C. Construct concrete bases according to Section 033000 "Cast-in-Place Concrete" and anchor floor-mounted transformers according to manufacturer's written instructions, seismic codes applicable to Project, and requirements in Section 260529 "Hangers and Supports for Electrical Systems."
 1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

D. Secure transformer to concrete base according to manufacturer's written instructions.

E. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.

F. Remove shipping bolts, blocking, and wedges.

3.3 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Small (Up to 167-kVA Single-Phase or 500-kVA Three-Phase) Dry-Type Transformer Field Tests:

1. Visual and Mechanical Inspection.
 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, and grounding.
 c. Verify that resilient mounts are free and that any shipping brackets have been removed.
 d. Verify the unit is clean.
 e. Perform specific inspections and mechanical tests recommended by manufacturer.
 f. Verify that as-left tap connections are as specified.
 g. Verify the presence of surge arresters and that their ratings are as specified.

2. Electrical Tests:
 a. Measure resistance at each winding, tap, and bolted connection.
 b. Perform insulation-resistance tests winding-to-winding and each winding-to-ground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5. Calculate polarization index: the value of the index shall not be less than 1.0.
 c. Perform turns-ratio tests at all tap positions. Test results shall not deviate by more than one-half percent from either the adjacent coils or the calculated ratio. If test fails, replace the transformer.
 d. Verify correct secondary voltage, phase-to-phase and phase-to-neutral, after energization and prior to loading.

C. Remove and replace units that do not pass tests or inspections and retest as specified above.

D. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.

1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.
2. Perform two follow-up infrared scans of transformers, one at four months and the other at 11 months after Substantial Completion.
3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.

E. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.
B. Output Settings Report: Prepare a written report recording output voltages and tap settings.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.
THIS PAGE LEFT BLANK INTENTIONALLY
SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Distribution panelboards.
 2. Lighting and appliance branch-circuit panelboards.
 3. Electronic-grade panelboards.

1.3 DEFINITIONS
 A. ATS: Acceptance testing specification.
 B. GFCI: Ground-fault circuit interrupter.
 C. GFEP: Ground-fault equipment protection.
 D. HID: High-intensity discharge.
 E. MCCB: Molded-case circuit breaker.
 F. SPD: Surge protective device.
 G. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of panelboard.
 1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
 B. Shop Drawings: For each panelboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details.
2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
4. Detail bus configuration, current, and voltage ratings.
5. Short-circuit current rating of panelboards and overcurrent protective devices.
6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
7. Include wiring diagrams for power, signal, and control wiring.
8. Key interlock scheme drawing and sequence of operations.
9. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graph paper; include selectable ranges for each type of overcurrent protective device. Include an Internet link for electronic access to downloadable PDF of the coordination curves.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.6 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Keys: Two spares for each type of panelboard cabinet lock.
 2. Circuit Breakers Including GFCI and GFEP Types: Two spares for each panelboard.
 3. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 4. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.7 QUALITY ASSURANCE
A. Manufacturer Qualifications: ISO 9001 or ISO 9002 certified.

1.8 DELIVERY, STORAGE, AND HANDLING
A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
B. Handle and prepare panelboards for installation according to NEMA PB 1.

1.9 FIELD CONDITIONS

A. Environmental Limitations:

1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:

 a. Ambient Temperature: Not exceeding minus 22 deg F (minus 30 deg C) to plus 104 deg F (plus 40 deg C).

B. Service Conditions: NEMA PB 1, usual service conditions, as follows:

1. Ambient temperatures within limits specified.
2. Altitude not exceeding 6600 feet (2000 m).

C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify Construction Manager no fewer than two days in advance of proposed interruption of electric service.
2. Do not proceed with interruption of electric service without Construction Manager's written permission.
3. Comply with NFPA 70E.

1.10 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.

1. Panelboard Warranty Period: 18 months from date of Substantial Completion.

B. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace SPD that fails in materials or workmanship within specified warranty period.

1. SPD Warranty Period: Five years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 PANELBOARDS AND LOAD CENTERS COMMON REQUIREMENTS

A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems."

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NEMA PB 1.

E. Comply with NFPA 70.

F. Enclosures: Surface-mounted, dead-front cabinets.
 1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 e. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

 2. Height: 84 inches (2.13 m) maximum.
 3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.
 4. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.
 5. Finishes:
 a. Panels and Trim: Steel and galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 b. Back Boxes: Same finish as panels and trim.

G. Incoming Mains:
 1. Location: Convertible between top and bottom.
 2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.

H. Phase, Neutral, and Ground Buses:
THE CITY OF PHILADELPHIA
Office of Emergency Management

a. Plating shall run entire length of bus.
b. Bus shall be fully rated the entire length.

2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.

I. Conductor Connectors: Suitable for use with conductor material and sizes.
 2. Terminations shall allow use of 75 deg C rated conductors without derating.
 3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
 4. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
 5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
 6. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 7. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.

J. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.

K. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
 1. Percentage of Future Space Capacity: 25 percent.

L. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.
 1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
 2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.
2.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

B. Surge Suppression: Factory installed as an integral part of indicated panelboards, complying with UL 1449 SPD Type 2.

2.3 POWER PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. ABB (Electrification Products Division).
2. Eaton.
3. Schneider Electric USA (Square D).

B. Panelboards: NEMA PB 1, distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.

1. For doors more than 36 inches (914 mm) high, provide two latches, keyed alike.

D. Mains: Circuit breaker or Lugs only.

F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. ABB (Electrification Products Division).
2. Eaton.
3. Schneider Electric USA (Square D).

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: Circuit breaker or lugs only.
D. Branch Overcurrent Protective Devices: Plug-in circuit breakers, replaceable without disturbing adjacent units.

E. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.

2.5 ELECTRONIC-GRADE PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. ABB (Electrification Products Division).
2. Eaton.
3. Schneider Electric USA (Square D).

B. Panelboards: NEMA PB 1; with factory-installed, integral SPD; labeled by an NRTL for compliance with UL 67 and UL 1449 after installing SPD.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.

D. Main Overcurrent Protective Devices: Bolt-on thermal-magnetic circuit breakers.

E. Branch Overcurrent Protective Devices: Bolt-on thermal-magnetic circuit breakers.

F. SPD.

1. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 200 kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.

2. Protection modes and UL 1449 VPR for grounded wye circuits with 480Y/277 V and 208Y/120 V, three-phase, four-wire circuits shall not exceed the following:
 a. Line to Neutral: 1000 V for 480Y/277 V or 600 V for 208Y/120 V.
 b. Line to Ground: 1000 V for 480Y/277 V or 600 V for 208Y/120 V.
 c. Neutral to Ground: 1000 V for 480Y/277 V or 600 V for 208Y/120 V.
 d. Line to Line: 2000 V for 480Y/277 V or 1200 V for 208Y/120 V.

3. SCCR: Equal to or exceed 200 kA.
4. Inominal Rating: 20 kA.

G. Buses:

1. Copper phase and neutral buses; 200 percent capacity neutral bus and lugs.
2. Copper equipment and isolated ground buses.
2.6 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. ABB (Electrification Products Division).
2. Eaton.
3. Schneider Electric USA (Square D).

B. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.

1. Thermal-Magnetic Circuit Breakers:
 a. Inverse time-current element for low-level overloads.
 b. Instantaneous magnetic trip element for short circuits.
 c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.

3. Electronic Trip Circuit Breakers:
 a. RMS sensing.
 b. Field-replaceable rating plug or electronic trip.
 c. Digital display of settings, trip targets, and indicated metering displays.
 d. Multi-button keypad to access programmable functions and monitored data.
 e. Ten-event, trip-history log. Each trip event shall be recorded with type, phase, and magnitude of fault that caused the trip.
 f. Integral test jack for connection to portable test set or laptop computer.
 g. Field-Adjustable Settings:
 1) Instantaneous trip.
 2) Long- and short-time pickup levels.
 3) Long and short time adjustments.
 4) Ground-fault pickup level, time delay, and I squared T response.

4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.

5. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).

6. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).

9. MCCB Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Breaker handle indicates tripped status.
 c. UL listed for reverse connection without restrictive line or load ratings.
 d. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
e. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.

f. Ground-Fault Protection: Integrimly mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.

g. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage with field-adjustable 0.1- to 0.6-second time delay.

h. Rating Plugs: Three-pole breakers with ampere ratings greater than 150 amperes shall have interchangeable rating plugs or electronic adjustable trip units.

i. Alarm Switch: Single-pole, normally open contact that actuates only when circuit breaker trips.

j. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.

k. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function with other upstream or downstream devices.

l. Multipole units enclosed in a single housing with a single handle or factory assembled to operate as a single unit.

m. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.

n. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.

2.7 IDENTIFICATION

A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.

B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.

1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

2.8 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.
B. Receive, inspect, handle, and store panelboards according to NEMA PB 1.1.
C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.
D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
B. Comply with NECA 1.
C. Install panelboards and accessories according to NEMA PB 1.1.
D. Equipment Mounting:
 1. Attach panelboard to the vertical finished or structural surface behind the panelboard.
 2. Comply with requirements for seismic control devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."
E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.
F. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."
G. Mount top of trim 90 inches (2286 mm) above finished floor unless otherwise indicated.
H. Mount panelboard cabinet plumb and rigid without distortion of box.
I. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
J. Mount surface-mounted panelboards to steel slotted supports 5/8 inch (16 mm) in depth. Orient steel slotted supports vertically.
K. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.
 2. Tighten bolted connections and circuit breaker connections using calibrated torque
 wrench or torque screwdriver per manufacturer's written instructions.

L. Make grounding connections and bond neutral for services and separately derived systems to
 ground. Make connections to grounding electrodes, separate grounds for isolated ground bars,
 and connections to separate ground bars.

M. Install filler plates in unused spaces.

N. Arrange conductors in gutters into groups and bundle and wrap with wire ties.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; install warning
 signs complying with requirements in Section 260553 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads; incorporate Owner's final room
 designations. Obtain approval before installing. Handwritten directories are not acceptable.
 Install directory inside panelboard door.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements
 for identification specified in Section 260553 "Identification for Electrical Systems."

D. Install warning signs complying with requirements in Section 260553 "Identification for
 Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test,
 and adjust components, assemblies, and equipment installations, including connections.

B. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test for low-voltage air
 circuit breakers stated in NETA ATS, Paragraph 7.6 Circuit Breakers. Perform optional
 tests. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate
 compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days
 after Final Acceptance, perform an infrared scan of each panelboard. Remove front
 panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of
 each panelboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:
1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

C. Panelboards will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573.16 "Coordination Studies."

3.6 PROTECTION

A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 262416
SECTION 262713 - ELECTRICITY METERING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes Owner's electricity meters used to manage the electrical power system.

1.3 DEFINITIONS
 A. KY or KYZ Pulse: Term used by the metering industry to describe a method of measuring consumption of electricity (kWh) that is based on a relay opening and closing in response to the rotation of the disk in the meter. Electronic meters generate pulses electronically.

1.4 ACTION SUBMITTALS
 A. Product Data:
 1. For each type of meter.
 2. For metering infrastructure components.
 3. For metering software.
 B. Shop Drawings: For electricity-metering equipment.
 1. Include elevation views of front panels of control and indicating devices and control stations.
 2. Include diagrams for power, signal, and control wiring.
 3. Wire Termination Diagrams and Schedules: Include diagrams for power, signal, and control wiring. Identify terminals and wiring designations and color-codes to facilitate installation, operation, and maintenance. Indicate recommended types, wire sizes, and circuiting arrangements for field-installed wiring, and show circuit protection features. Differentiate between manufacturer-installed and field-installed wiring.
 4. Include series-combination rating data for modular meter centers with main disconnect device.
 5. Block Diagram: Show interconnections between components specified in this Section and devices furnished with power distribution system components. Indicate data communication paths and identify networks, data buses, data gateways, concentrators, and other devices used. Describe characteristics of network and other data communication lines.
1.5 FIELD CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:

1. Construction Manager shall be notified and issued written permission no fewer than two days in advance of proposed interruption of electrical service.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: An NRTL.

1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of metering equipment that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:

a. Damage from transient voltage surges.

2. Warranty Period: Cost to repair or replace any parts for two years from date of Substantial Completion.

3. Extended Warranty Period: Cost of replacement parts (materials only, f.o.b. the nearest shipping point to Project site), for eight years, that failed in service due to transient voltage surges.

1.8 COORDINATION

A. Electrical Service Connections:

1. Coordinate with utility companies and utility-furnished components.

a. Comply with requirements of utility providing electrical power services.
b. Coordinate installation and connection of utilities and services, including provision for electricity-metering components.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 916.
2.2 ELECTRICITY METERS

A. System Description: Able to meter designated activity loads, with or without external alarm, control, and communication capabilities, or other optional features. See basis of design listed in drawings.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. **ABB, Electrification Products Division.**
2. **Eaton.**
3. **E-Mon.**
4. **Siemens Industry, Inc., Energy Management Division.**
5. **Square D; Schneider Electric USA.**

 a. Circuit: 277/480-V ac, 800 A.
 b. Measure: kWh, onboard LED display.
 c. Remote-Reading Options: Modbus.

C. General Requirements for Meters:

1. Billing Meters Accuracy: 0.25 percent of reading, complying with ANSI C12.20.
2. Certify that meters comply with ANSI C12.20 requirements by a laboratory accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) of the National Institute of Standards and Technology (NIST). The laboratory shall use test equipment that is certified annually and is traceable to NIST standards.
3. Enclosure: Supplied by meter manufacturer, NEMA 250, Type 1 minimum, with provisions for locking or sealing.
4. Identification: Comply with requirements in Section 260553 "Identification for Electrical Systems."
5. Onboard Nonvolatile Data Storage: kWh, until reset.
6. Sensors: Current-sensing type, supplied by electronic meter manufacturer, with current or voltage output, selected for optimum range and accuracy for meters indicated for this application.

 a. Type: Split and solid core, complying with recommendation of meter manufacturer.

D. kWh Meter: Electronic single-phase and three-phase meters, measuring electricity use.

1. Voltage and Phase Configuration: Meter shall be designed for use on circuits with voltage rating and phase configuration indicated for its application.
2. Display: LCD with characters not less than 0.25 inch (6 mm) high, indicating accumulative kWh and current kilowatt load. Retain accumulated kWh in a nonvolatile memory, until reset.

E. kWhd Meter: Electronic single-phase and three-phase meters, measuring electricity use and demand. Demand shall be integrated over a 15-minute interval.

1. Voltage and Phase Configuration: Meter shall be designed for use on circuits with voltage rating and phase configuration indicated for its application.
2. Display: LCD with characters not less than 0.25 inch (6 mm) high, indicating the following:
 a. Accumulative kWh.
 b. Current time and date.
 c. Current demand.
 d. Historic peak demand.
 e. Time and date of historic peak demand.

3. Retain accumulated kWh and historic peak demand in a nonvolatile memory, until reset.

F. KY and KYZ Pulse Totalizer:

1. Pulse Totalizer: An instrument for demand and billing applications where one or more utility revenue meters stream KY or KYZ energy pulses. The instrument shall totalize kWh accumulated over the user-selected period and shall log the maximum and minimum kWhd for that period. Record each period with a date/time stamp. Time period shall be user selected from one to 60 minutes.

 a. Pulse Input: One, individually programmable, KYZ Form C (three-wire) contact pulse channels. Pulse interval, pulse rate, and minimum pulse width shall be field adjustable, set for the pulse stream provided by the utility revenue meter.
 b. Data Totalizing Capacity of Each Channel: Not less than 149 days at 15-minute intervals.
 d. Clock: Line frequency.

G. Remote Reading Options:

1. Pulse Output: KYZ, complete with optical sensor and interface devices.
3. USB interface.
4. TCP/IP adapter.

H. Data Transmission Cable: Comply with requirements in Section 260523 "Control-Voltage Electrical Power Cables."

I. Software: PC based, a product recommended by meter manufacturer, suitable for calculating utility cost allocation.

1. Utility Cost Allocation: Automatically import electricity-usage records to allocate electricity costs for the following:
 a. At least 12 tenants or activities.

2. Activity Billing Software: Automatically import electricity-usage records to automatically compute and prepare electricity-use statements based on electricity use and peak demand. Maintain separate directory for each allocation. Prepare summary reports in user-defined formats and time intervals.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with equipment installation requirements in NECA 1.

B. Install arc-flash labels as required by NFPA 70.

C. Wiring Method:
 1. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
 2. Install unshielded, twisted-pair cable for control and signal transmission conductors, complying with Section 271513 "Communications Copper Horizontal Cabling."
 3. Minimum conduit size shall be 1/2 inch (13 mm).

3.2 IDENTIFICATION

A. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 1. Series Combination Warning Label: Self-adhesive labels, with text as required by NFPA 70.
 2. Equipment Identification Labels: Self-adhesive labels with clear protective overlay.

3.3 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Tests and Inspections:
 1. Equipment and Software Setup:
 a. Set meter date and time clock.
 b. Test, calibrate, and connect pulse metering system.
 c. Set and verify billing demand interval for demand meters.
 d. Report settings and calibration results.
 e. Set up reporting and billing software, insert billing location names and initial constant values and variable needed for billing computations.
 2. Connect a load of known kilowatt rating, 1.5 kW minimum, to a circuit supplied by metered feeder.
 3. Turn off circuits supplied by metered feeder and secure them in off condition.
 4. Run test load continuously for eight hours minimum, or longer, to obtain a measurable meter indication. Use test-load placement and setting that ensures continuous, safe operation.
 5. Check and record meter reading at end of test period and compare with actual electricity used, based on test-load rating, duration of test, and sample measurements of supply voltage at test-load connection. Record test results.
6. Generate test report and billing for each tenant or activity from the meter reading tests.

C. Electricity metering will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.4 SOFTWARE SERVICE AGREEMENT

A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.

B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

1. Upgrade Notice: At least 30 days to allow Owner to schedule and access the system and to upgrade computer equipment if necessary.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's clerical and maintenance personnel to use, adjust, operate, and maintain the electronic metering and billing software.
SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Standard-grade receptacles, 125 V, 20 A.
 2. USB receptacles.
 3. GFCI receptacles, 125 V, 20 A.
 4. Twist-locking receptacles.
 5. Toggle switches, 120/277 V, 20 A.
 6. Occupancy sensors.
 7. Wall-box dimmers.
 8. Wall plates.
 9. Floor service fittings.

1.3 DEFINITIONS

A. AFCI: Arc-fault circuit interrupter.
B. BAS: Building automation system.
C. EMI: Electromagnetic interference.
D. GFCI: Ground-fault circuit interrupter.
E. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
F. RFI: Radio-frequency interference.
G. SPD: Surge protective device.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
C. Samples: One for each type of device and wall plate specified, in each color specified.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Floor Service-Outlet Assemblies: One for every 10, but no fewer than one.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

B. Comply with NFPA 70.

C. Comply with NFPA 70, Article 708, where applicable.

D. RoHS compliant.

E. Comply with NEMA WD 1.

F. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:
 1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
 2. Devices shall comply with requirements in this Section.

G. Devices for Owner-Furnished Equipment:
 1. Receptacles: Match plug configurations.
 2. Cord and Plug Sets: Match equipment requirements.
H. Devices designated as part of Designated Critical Operations Area as defined by NEC Article 708:
 1. Receptacles: nonlocking-type, 125-volt, 15- and 20-ampere receptacles supplied from the cops shall have an illuminated face or an indicator light to indicate that there is power to the receptacle.

I. Device Color:
 1. Wiring Devices Connected to Normal Power System: As selected by Architect unless otherwise indicated or required by NFPA 70 or device listing.
 2. Wiring Devices Connected to NEC Article 708 Electrical System: As selected by Architect, but shall be of different color than Normal power system Devices.

J. Wall Plate Color: For plastic covers, match device color.

K. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 STANDARD-GRADER RECEPTACLES, 125 V, 20 A

A. Duplex Receptacles, 125 V, 20 A:
 1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Arrow Hart, Wiring Devices; Eaton, Electrical Sector.
 b. Leviton Manufacturing Co., Inc.
 c. Pass & Seymour; Legrand North America, LLC.
 d. Wiring Device-Kellems; Hubbell Incorporated, Commercial and Industrial.
 2. Description: Two pole, three wire, and self-grounding.
 3. Configuration: NEMA WD 6, Configuration 5-20R.
 4. Active Indication: Visual, with light visible in face of device to indicate device is "active" or "no longer in service."
 5. Standards: Comply with UL 498 and FS W-C-596.

B. Weather-Resistant Duplex Receptacle, 125 V, 20 A:
 1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Arrow Hart, Wiring Devices; Eaton, Electrical Sector.
 b. Leviton Manufacturing Co., Inc.
 c. Pass & Seymour; Legrand North America, LLC.
 d. Wiring Device-Kellems; Hubbell Incorporated, Commercial and Industrial.
 2. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
3. **Configuration:** NEMA WD 6, Configuration 5-20R.
4. **Standards:** Comply with UL 498.
5. **Active Indication:** Visual, with light visible in face of device to indicate device is "active" or "no longer in service."
6. **Marking:** Listed and labeled as complying with NFPA 70, "Receptacles in Damp or Wet Locations" Article.

2.3 **USB RECEPTACLES**

A. **USB Charging Receptacles:**

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. [Arrow Hart, Wiring Devices; Eaton, Electrical Sector.](#)
 b. [Leviton Manufacturing Co., Inc.](#)
 c. [Pass & Seymour; Legrand North America, LLC.](#)
 d. [Wiring Device-Kellems; Hubbell Incorporated, Commercial and Industrial.](#)

2. **Description:** Single-piece, rivetless, nickel-plated, all-brass grounding system. Nickel-plated, brass mounting strap.
3. **USB Receptacles:** Dual and quad, USB Type A, 5 V dc, and 2.1 A per receptacle (minimum).
4. **Active Indication:** Visual, with light visible in face of device to indicate device is "active" or "no longer in service."
5. **Standards:** Comply with UL 1310 and USB 3.0 devices.

2.4 **GFCI RECEPTACLES, 125 V, 20 A**

A. **Duplex GFCI Receptacles, 125 V, 20 A:**

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. [Arrow Hart, Wiring Devices; Eaton, Electrical Sector.](#)
 b. [Leviton Manufacturing Co., Inc.](#)
 c. [Pass & Seymour; Legrand North America, LLC.](#)
 d. [Wiring Device-Kellems; Hubbell Incorporated, Commercial and Industrial.](#)

2. **Description:** Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding.
3. **Configuration:** NEMA WD 6, Configuration 5-20R.
4. **Type:** Non-feed through.
5. **Standards:** Comply with UL 498, UL 943 Class A, and FS W-C-596.

B. **Weather-Resistant, GFCI Duplex Receptacles, 125 V, 20 A:**
1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. [Arrow Hart, Wiring Devices; Eaton, Electrical Sector.](#)
 b. [Leviton Manufacturing Co., Inc.](#)
 c. [Pass & Seymour; Legrand North America, LLC.](#)
 d. [Wiring Device-Kellems; Hubbell Incorporated, Commercial and Industrial.](#)

2. **Description:** Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding. Square face.
3. **Configuration:** NEMA WD 6, Configuration 5-20R.
4. **Type:** Non-feed through.
5. **Standards:** Comply with UL 498 and UL 943 Class A.
6. **Marking:** Listed and labeled as complying with NFPA 70, "Receptacles in Damp or Wet Locations" articles.

2.5 TWIST-LOCKING RECEPTACLES

A. Twist-Lock, Single Receptacles, 120 V, 20 A:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. [Arrow Hart, Wiring Devices; Eaton, Electrical Sector.](#)
 b. [Leviton Manufacturing Co., Inc.](#)
 c. [Pass & Seymour; Legrand North America, LLC.](#)
 d. [Wiring Device-Kellems; Hubbell Incorporated, Commercial and Industrial.](#)

2. **Configuration:** NEMA WD 6, Configuration L5-20R.
3. **Standards:** Comply with UL 498.

2.6 TOGGLE SWITCHES, 120/277 V, 20 A

A. Single-Pole Switches, 120/277 V, 20 A:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. [Arrow Hart, Wiring Devices; Eaton, Electrical Sector.](#)
 b. [Leviton Manufacturing Co., Inc.](#)
 c. [Pass & Seymour; Legrand North America, LLC.](#)
 d. [Wiring Device-Kellems; Hubbell Incorporated, Commercial and Industrial.](#)

2. **Standards:** Comply with UL 20 and FS W-S-896.

B. Three-Way Switches, 120/277 V, 20 A:
1. **Manufacturers**: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Arrow Hart, Wiring Devices; Eaton, Electrical Sector.
 b. Leviton Manufacturing Co., Inc.
 c. Pass & Seymour; Legrand North America, LLC.
 d. Wiring Device-Kellems; Hubbell Incorporated, Commercial and Industrial.

2. Comply with UL 20 and FS W-S-896.

C. **Four-Way Switches, 120/277 V, 20 A**:

1. **Manufacturers**: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Arrow Hart, Wiring Devices; Eaton, Electrical Sector.
 b. Leviton Manufacturing Co., Inc.
 c. Pass & Seymour; Legrand North America, LLC.
 d. Wiring Device-Kellems; Hubbell Incorporated, Commercial and Industrial.

2. Standards: Comply with UL 20 and FS W-S-896.

D. **Key-Operated, Single-Pole Switches, 120/277 V, 20 A**:

1. **Manufacturers**: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Arrow Hart, Wiring Devices; Eaton, Electrical Sector.
 b. Leviton Manufacturing Co., Inc.
 c. Pass & Seymour; Legrand North America, LLC.
 d. Wiring Device-Kellems; Hubbell Incorporated, Commercial and Industrial.

2. Description: Factory-supplied key in lieu of switch handle.

2.7 **OCCUPANCY SENSORS**

A. **Wall Switch Sensor Light Switch, Dual Technology**:

1. **Manufacturers**: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Arrow Hart, Wiring Devices; Eaton, Electrical Sector.
 b. Leviton Manufacturing Co., Inc.
 c. Pass & Seymour; Legrand North America, LLC.
 d. Wiring Device-Kellems; Hubbell Incorporated, Commercial and Industrial.
2. Description: Switchbox-mounted, combination lighting-control sensor and conventional switch lighting-control unit using dual (ultrasonic and passive infrared) technology.
4. Rated 960 W at 120 V ac for tungsten lighting, 10 A at 120 V ac or 10 A at 277 V ac for fluorescent or LED lighting, and 1/4 hp at 120 V ac.
5. Adjustable time delay of 15 minutes.
6. Able to be locked to Automatic-On mode.
7. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc (21.5 to 2152 lux).
8. Connections: Provisions for connection to BAS.

2.8 DIMMERS

A. Wall-Box Dimmers:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Arrow Hart, Wiring Devices; Eaton, Electrical Sector.
 b. Leviton Manufacturing Co., Inc.
 c. Lutron Electronics Co., Inc.
 d. Pass & Seymour; Legrand North America, LLC.
 e. Wiring Device-Kellems; Hubbell Incorporated, Commercial and Industrial.

2. Description: Modular, full-wave, solid-state dimmer switch with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.
3. Control: Continuously adjustable toggle switch; with single-pole or three-way switching.
5. LED Lamp Dimmer Switches: Modular; compatible with LED lamps; trim potentiometer to adjust low-end dimming; capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.9 WALL PLATES

A. Single Source: Obtain wall plates from same manufacturer of wiring devices.

B. Single and combination types shall match corresponding wiring devices.

1. Plate-Securing Screws: Metal with head color to match plate finish.
2. Material for Finished Spaces: 0.035-inch- (1-mm-) thick, satin-finished, Type 302 stainless steel.
4. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.

C. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.
2.10 FLOOR SERVICE FITTINGS

A. Flush-Type Floor Service Fittings:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. **ABB, Electrification Products Division.**
 b. **Arrow Hart, Wiring Devices; Eaton, Electrical Sector.**
 c. **Hubbell Premise Wiring; Hubbell Incorporated, Commercial and Industrial.**
 d. **Wiremold; Legrand North America, LLC.**

2. **Description:** Type: Modular, flush-type, dual-service units suitable for wiring method used, with cover flush with finished floor.
3. **Compartments:** Barrier separates power from voice and data communication cabling.
4. **Service Plate and Cover:** Rectangular, die-cast aluminum with satin finish.
5. **Power Receptacle:** NEMA WD 6 Configuration 5-20R, gray finish, unless otherwise indicated.
6. **Data Communication Outlet:** Blank cover with bushed cable opening.

B. Flap-Type Service Fittings:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. **ABB, Electrification Products Division.**
 b. **Arrow Hart, Wiring Devices; Eaton, Electrical Sector.**
 c. **Hubbell Premise Wiring; Hubbell Incorporated, Commercial and Industrial.**

2. **Description:** Type: Modular, flap-type, dual-service units suitable for wiring method used, with flaps flush with finished floor.
3. **Compartments:** Barrier separates power from voice and data communication cabling.
4. **Flaps:** Rectangular, die-cast aluminum with satin finish.
5. **Service Plate:** Same finish as flaps.
6. **Power Receptacle:** NEMA WD 6 Configuration 5-20R, gray finish, unless otherwise indicated.
7. **Data Communication Outlet:** Blank cover with bushed cable opening.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:
1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes, and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:

1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
3. The length of free conductors at outlets for devices shall comply with NFPA 70, Article 300, without pigtails.
4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.

D. Device Installation:

1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

F. Dimmers:

1. Install dimmers within terms of their listing.
2. Verify that dimmers used for fan-speed control are listed for that application.
3. Install unshared neutral conductors online and load side of dimmers according to manufacturers’ device, listing conditions in the written instructions.

G. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

H. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION

A. Comply with Section 260553 "Identification for Electrical Systems."

B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

C. Essential Electrical System: Mark receptacles supplied from the NEC Article 708 electrical system to allow easy identification using a self-adhesive label.

3.4 FIELD QUALITY CONTROL

A. Test Instruments: Use instruments that comply with UL 1436.

B. Test Instrument for Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

C. Perform the following tests and inspections:
 1. Test Instruments: Use instruments that comply with UL 1436.
 2. Test Instrument for Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

D. Tests for Receptacles:
 1. Line Voltage: Acceptable range is 105 to 132 V.
 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault-current path, defective devices, or similar problems. Correct circuit conditions remove malfunctioning units and replace with new ones, and retest as specified above.
E. Wiring device will be considered defective if it does not pass tests and inspections.
F. Prepare test and inspection reports.
END OF SECTION 262726
SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Cartridge fuses rated 600 V ac and less for use in the following:
 a. Control circuits.
 b. Panelboards.
 c. Switchboards.
 d. Enclosed controllers.
 e. Enclosed switches.
 2. Spare-fuse cabinets.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:
 1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.
 2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 4. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse. Submit in PDF format.
 5. Coordination charts and tables and related data.
 6. Fuse sizes for elevator feeders and elevator disconnect switches.
1.4 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.5 FIELD CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F (5 deg C) or more than 100 deg F (38 deg C), apply manufacturer's ambient temperature adjustment factors to fuse ratings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Bussmann; Eaton, Electrical Sector.
2. Littelfuse, Inc.
3. Mersen USA.

B. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, current-limiting, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.

1. Type RK-1: -V, zero- to 600-A rating, 200 kAIC, time delay.
2. Type RK-5: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
3. Type CC: 600-V, zero- to 30-A rating, 200 kAIC, fast acting.
4. Type CD: 600-V, 31- to 60-A rating, 200 kAIC, fast acting.
5. Type J: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
6. Type L: 600-V, 601- to 6000-A rating, 200 kAIC, time delay.
7. Type T: 600-V, zero- to 800-A rating, 200 kAIC, time delay.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA FU 1 for cartridge fuses.

D. Comply with NFPA 70.
E. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.

B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.

C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

A. Cartridge Fuses:
 1. Service Entrance: Class L, time delay Class RK1, time delay Class J, time delay.
 2. Feeders: Class L, time delay Class RK1, time delay Class RK5, time delay Class J, time delay.
 4. Other Branch Circuits: Class RK1, time delay Class RK5, time delay Class J, time delay.
 5. Control Transformer Circuits: Class CC, time delay, control transformer duty.
 6. Provide open-fuse indicator fuses or fuse covers with open fuse indication.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information inside of door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 262813
SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Fusible switches.
 2. Nonfusible switches.
 3. Enclosures.

1.3 DEFINITIONS
A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 4. Include evidence of a nationally recognized testing laboratory (NRTL) listing for series rating of installed devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
 6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF electronic format.
B. Shop Drawings: For enclosed switches and circuit breakers.
 1. Include plans, elevations, sections, details, and attachments to other work.
2. Include wiring diagrams for power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

 a. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 b. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF electronic format.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
2. Fuse Pullers: Two for each size and type.

1.7 FIELD CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:

1. Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).

1.8 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.

1. Warranty Period: One year(s) from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2.2 GENERAL REQUIREMENTS

A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

D. Comply with NFPA 70.

2.3 FUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. ABB, Electrification Products Division.
2. Eaton.
4. Square D; Schneider Electric USA.

B. Type HD, Heavy Duty:

1. Single throw.
2. Three pole.
3. 600-V ac.
4. 1200 A and smaller.
5. UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses.
6. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:
1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Hookstick Handle: Allows use of a hookstick to operate the handle.
4. Lugs: Mechanical type, suitable for number, size, and conductor material.
5. Service-Rated Switches: Labeled for use as service equipment.

2.4 NONFUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. ABB, Electrification Products Division.
2. Eaton.
4. Square D; Schneider Electric USA.

B. Type HD, Heavy Duty, Three Pole, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Hookstick Handle: Allows use of a hookstick to operate the handle.
4. Lugs: Mechanical type, suitable for number, size, and conductor material.
5. Service-Rated Switches: Labeled for use as service equipment.

2.5 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

B. Enclosure Finish: The enclosure shall be finished with gray baked enamel paint, electrodeposited on cleaned, phosphatized steel (NEMA 250 Type 1) or a brush finish on Type 304 stainless steel (NEMA 250 Type 4-4X stainless steel) where indicated as NEMA 4X on drawings.

C. Conduit Entry: NEMA 250 Types 4, 4X, and 12 enclosures shall contain no knockouts. NEMA 250 Types 7 and 9 enclosures shall be provided with threaded conduit openings in both endwalls.

D. Operating Mechanism: The circuit-breaker operating handle shall be externally operable with the operating mechanism being an integral part of the box, not the cover. The cover interlock mechanism shall have an externally operated override. The override shall not permanently
disable the interlock mechanism, which shall return to the locked position once the override is released. The tool used to override the cover interlock mechanism shall not be required to enter the enclosure in order to override the interlock.

E. Enclosures designated as NEMA 250 Type 4, 4X stainless steel, 12, or 12K shall have a dual cover interlock mechanism to prevent unintentional opening of the enclosure cover when the circuit breaker is ON and to prevent turning the circuit breaker ON when the enclosure cover is open.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

1. Commencement of work shall indicate Installer's acceptance of the areas and conditions as satisfactory.

3.2 PREPARATION

A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service.
2. Indicate method of providing temporary electric service.
3. Do not proceed with interruption of electric service without Owner's written permission.
4. Comply with NFPA 70E.

3.3 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS

A. Enclosed Switches and Circuit Breakers: Provide enclosures at installed locations with the following environmental ratings:

1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
2. Outdoor Locations: NEMA 250, Type 4X.
3. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4X.
4. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
3.4 INSTALLATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

C. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

D. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

E. Install fuses in fusible devices.

F. Comply with NFPA 70 and NECA 1.

3.5 IDENTIFICATION

A. Comply with requirements in Section 260553 "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.

2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Tests and Inspections for Switches:

1. Visual and Mechanical Inspection:

 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, grounding, and clearances.
 c. Verify that the unit is clean.
 d. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
 e. Verify that fuse sizes and types match the Specifications and Drawings.
 f. Verify that each fuse has adequate mechanical support and contact integrity.
 g. Inspect bolted electrical connections for high resistance using one of the two following methods:

 1) Use a low-resistance ohmmeter:

 a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
THE CITY OF PHILADELPHIA
Office of Emergency Management

2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.

a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.

h. Verify that operation and sequencing of interlocking systems is as described in the Specifications and shown on the Drawings.

i. Verify correct phase barrier installation.

j. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.

2. Electrical Tests:

a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

b. Measure contact resistance across each switchblade fuseholder. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

c. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.

d. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.

e. Perform ground fault test according to NETA ATS 7.14 "Ground Fault Protection Systems, Low-Voltage."

C. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

1. Test procedures used.
2. Include identification of each enclosed switch and circuit breaker tested and describe test results.
3. List deficiencies detected, remedial action taken, and observations after remedial action.

3.7 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.
END OF SECTION 262816

THIS PAGE LEFT BLANK INTENTIONALLY
SECTION 263213.13 - DIESEL EMERGENCY ENGINE GENERATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes packaged diesel engine generators for emergency use with the following features:

1. Diesel engine.
2. Alternator.
3. Unit-mounted radiator.
4. Double Wall Sub-Base Diesel fuel-oil system.
5. Control and monitoring.
6. Generator overcurrent and fault protection.
7. Generator, exciter, and voltage regulator
8. Vibration isolation devices.
9. Level 3 Sound Attenuated Enclosure
10. Finishes.

B. Related Requirements:
1. Section 263600 "Transfer Switches" for transfer switches, including sensors and relays to initiate automatic-starting and -stopping signals for engine generators.

1.3 DEFINITIONS

A. AREP: Auxiliary winding regulation excitation principle. Voltage support for the AVR comes from independent auxiliary windings located in the main stator.

B. AVR: Automatic voltage regulator.

C. EPS: Emergency power supply.

D. EPSS: Emergency power supply system.

E. Operational Bandwidth: The total variation, from the lowest to highest value of a parameter over the range of conditions indicated, expressed as a percentage of the nominal value of the parameter.

F. PMG: Permanent magnet generator. Voltage support for the AVR comes from an independent auxiliary permanent magnet generator which is mounted on the shaft extension of the alternator.
1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 2. Include thermal damage curve for generator.
 3. Include time-current characteristic curves for generator protective device.
 4. Include fuel consumption in gallons per hour at 0.8 power factor at 0.5, 0.75, and 1.0 times generator capacity.
 5. Include airflow requirements for cooling and combustion air in cubic feet per minute at 0.8 power factor, and reference air-supply temperature. Provide Drawings indicating requirements and limitations for location of air intake and exhausts.
 6. Include generator characteristics, including, but not limited to, kilowatt rating, efficiency, reactances, and short-circuit current capability.

B. Shop Drawings:
 1. Include plans and elevations for engine generator and other components specified. Indicate access requirements affected by height of subbase fuel tank.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Identify fluid drain ports and clearance requirements for proper fluid drain.
 4. Design calculations for selecting vibration isolators and for designing vibration isolation bases.
 5. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and supported equipment. Include base weights.
 6. Include diagrams for power, signal, and control wiring. Complete schematic, wiring, and interconnection diagrams showing terminal markings for EPS equipment and functional relationship between all electrical components.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For engine generators to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. List of tools and replacement items recommended to be stored at Project for ready access. Include part and drawing numbers, current unit prices, and source of supply.
 b. Operating instructions laminated and mounted adjacent to generator location.
 c. Training plan.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Fuses: One for every 10 of each type and rating, but no fewer than one of each.
2. Indicator Lamps: Two for every six of each type used, but no fewer than two of each.
3. Filters: One set each of lubricating oil, fuel, and combustion-air filters.
4. Tools: Each tool listed by part number in operations and maintenance manual.

1.7 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace components of packaged engine generators and associated auxiliary components that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Two years / 3000 Hour from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide MTU Onsite Energy Corporation Model MTU 12V1600 DS550 as supplied by the Emergency Systems Service Company at 215-536-4973 or a comparable product by one of the following:

1. Cummins.
2. Caterpillar.

B. Source Limitations: Obtain packaged engine generators and auxiliary components from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. B11 Compliance: Comply with B11.19.

B. NFPA Compliance:

2. Comply with NFPA 70.
4. Comply with NFPA 110 requirements for Level 1 EPSS.

C. UL Compliance: Comply with UL 2200.

A. Engine Exhaust Emissions: Comply with EPA Tier 2 requirements and applicable state and local government requirements.

B. Noise Emission: Comply with enclosure specification for maximum noise level due to sound emitted by engine generator, including engine, engine exhaust, engine cooling-air intake and discharge, and other components of installation. Comply with ISO 8528-10 for sound measurements at 23.0 feet (7 m).
C. Environmental Conditions: Engine generator system shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:

1. Ambient Temperature: Minus 20 to plus 50 deg C.
2. Relative Humidity: Zero to 100 percent.
3. Altitude: Sea level to 1000 feet

2.3 ENGINE GENERATOR ASSEMBLY DESCRIPTION

A. Factory-assembled and -tested, water-cooled engine, with brushless generator and accessories.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Service Load: 550 KW /687 kVA.

D. Power Factor: 0.8 Lagging

E. Frequency: 60 Hz

F. Voltage: 277/480V ac.

G. Phase: Three

H. Induction Method: Turbocharged.

I. Governor: Adjustable isochronous, with speed sensing.

J. Mounting Frame: Structural steel framework to maintain alignment of mounted components without depending on concrete foundation. Provide lifting attachments sized and spaced to prevent deflection of base during lifting and moving.

1. Rigging Diagram: Inscribed on metal plate permanently attached to mounting frame to indicate location and lifting capacity of each lifting attachment and engine generator center of gravity.

K. Capacities and Characteristics:

1. Power Output Ratings: Nominal ratings as indicated at 0.8 power factor.
2. Nameplates: For each major system component to identify manufacturer's name, model, and serial number, of component.

L. Engine Generator Performance:

80 degree temperature rise

1. Steady-State Voltage Operational Bandwidth: 0.25 percent of rated output voltage, from no load to full load, and one-percent for non-PMG alternators.
2. Load Factor: 85-percent load factor according to ISO 8528-1.
a. If below, supplier shall provide updated documents for performance modified to 85% load factor in regards to time before overhaul (TBO) and the respective maintenance schedule.

3. Transient Voltage Performance: Not more than 15 percent variation for 50 percent step-load increase or decrease. Voltage shall recover and remain within the steady-state operating band within 3.5-seconds.

4. Steady-State Frequency Operational Bandwidth: 0.25 percent of rated frequency, from no load to full load.

5. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.

6. Transient Frequency Performance: Less than 5 percent variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within five seconds.

7. Output Waveform: At no load, harmonic content measured line to line or line to neutral shall not exceed 5 percent total and 3 percent for single harmonics. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.

8. Sustained Short-Circuit Current: For a three-phase, bolted short circuit at system output terminals, system shall supply a minimum of 300 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically with PMG/AREP, without damage to generator system components.

9. Start Time: Comply with NFPA 110 system requirements.

2.4 DIESEL ENGINE

A. Fuel: ASTM D 975 diesel fuel oil, Grade 2-D S15.
 1. Ultra-Low Sulfur Diesel

B. Rated Engine Speed: 1800 rpm.

C. Lubrication System: Engine or skid mounted.
 1. Filter and Strainer: Select according to engine manufacturer's requirements for particle removal.
 2. Thermostatic Control Valve: Control flow in system to maintain optimum oil temperature. Unit shall be capable of full flow and is designed to be fail-safe.
 3. Crankcase Drain: Arranged for complete gravity drainage to an easily removable container with no disassembly and without use of pumps, siphons, special tools, or appliances.

D. Jacket Coolant Heater: One (1) - 5000 watt, 208 volt single phase, electric-immersion type, factory installed and wired with isolation valves in coolant jacket system. Comply with NFPA 110 requirements for Level 1 equipment for heater capacity and with UL 499

E. Cooling System: 50 degree C ambient capacity of radiator. Closed loop, liquid cooled, with radiator factory mounted on engine generator mounting frame and integral engine-driven coolant pump.
 1. Coolant: Glycol-based antifreeze and water mixture for freeze protection to 0 deg F (minus 18 deg C) with anticorrosion additives as recommended by engine manufacturer.
2. Size of Radiator: Adequate to contain expansion of total system coolant, from cold start to 100 percent load condition.

3. Expansion Tank: Rated to withstand maximum closed-loop coolant-system pressure for engine used. Equip with gauge glass and petcock.

4. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.

 a. Rating: 50-psig (345-kPa) maximum working pressure with coolant at 180 deg F (82 deg C), and noncollapsible under vacuum.
 b. End Fittings: Flanges or steel pipe nipples with clamps to suit piping and equipment connections.

F. Muffler/Silencer: Critical grade, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer's engine backpressure requirements.
 1. Minimum sound attenuation of 18 dB.

A. Air-Intake Filter: Single-stage, engine-mounted air cleaner with replaceable dry-filter element and "blocked filter" indicator.

B. Starting System: 24 V electric, with negative ground.
 1. Components: Sized so they are not damaged during a full engine-cranking cycle, with ambient temperature at maximum specified in "Performance Requirements" Article.
 2. Cranking Motor: Heavy-duty unit that automatically engages and releases from engine flywheel without binding.
 4. Battery: Lead acid, with capacity within ambient temperature range specified in "Performance Requirements" Article to provide NFPA 110 specified cranking cycle without recharging.
 5. Battery Cable: Size as recommended by engine manufacturer for cable length indicated. Include required interconnecting conductors and connection accessories.
 6. Battery Compartment: Factory fabricated of metal with acid-resistant finish and thermal insulation. Include accessories required to support and fasten batteries in place.
 8. Battery Charger: Current-limiting, automatic-equalizing, and float-charging type designed for batteries. Unit shall comply with UL 1236 and include the following features:
 a. Operation: Equalizing-charging rate of 10 A shall be initiated automatically after battery has lost charge until an adjustable equalizing voltage is achieved at battery terminals. Unit shall then be automatically switched to a lower float-charging mode and shall continue to operate in that mode until battery is discharged again.
 b. Automatic Temperature Compensation: Adjust float and equalize voltages for variations in ambient temperature to prevent overcharging at high temperatures and undercharging at low temperatures.
 c. Automatic Voltage Regulation: Maintain constant output voltage regardless of input voltage variations up to plus or minus 10 percent.
e. Safety Functions: Sense abnormally low battery voltage and close contacts providing low battery voltage indication on control and monitoring panel. Sense high battery voltage and loss of ac input or dc output of battery charger. Either condition shall close contacts that provide a battery-charger malfunction indication at system control and monitoring panel.
f. Enclosure and Mounting: NEMA 250, Type 1 factory mounted and wired DC.

2.5 CONTROL AND MONITORING: MGC 3010 (Fully Enhanced)

A. Automatic-Starting System Sequence of Operation: When mode-selector switch on the control and monitoring panel is in the automatic position, remote-control contacts in one or more separate automatic transfer switches initiate starting and stopping of engine generator. When mode-selector switch is switched to the on position, engine generator starts. The off position of same switch initiates engine generator shutdown. When engine generator is running, specified system or equipment failures or derangements automatically shut down engine generator and initiate alarms.

B. Manual-Starting System Sequence of Operation: Switching on-off switch on the generator control panel to the on position starts engine generator. The off position of same switch initiates engine generator shutdown. When engine generator is running, specified system or equipment failures or derangements automatically shut down engine generator and initiate alarms.

C. Configuration: Operating and safety indications, protective devices, basic system controls, and engine gages shall be grouped in a common control and monitoring panel mounted on the engine generator. Mounting method shall isolate the control panel from engine generator vibration. Panel shall be powered from the engine generator battery.

D. Control and Monitoring Panel:
1. Digital controller with integrated LCD display, controls, and microprocessor, capable of local and remote control, monitoring, and programming, with battery backup.
 a. PLC logic incorporating drag and drop ladder logic available for the owner/user. Logic shall be designed such that all parameters within the generator set controller can be used in addition to additional inputs and outputs.
2. Analog control panel with dedicated gages and indicator lights for the instruments and alarms indicated below.
3. Instruments: Located on the control and monitoring panel and viewable during operation.
 a. Engine lubricating-oil pressure gage.
 b. Engine-coolant temperature gage.
 c. DC voltmeter (alternator battery charging).
 d. Running-time meter.
 e. AC voltmeter, for each phase
 f. AC ammeter, for each phase
 g. AC frequency meter.
 h. Digital generator-voltage-adjusting feature to allow plus or minus 5 percent adjustment.
4. Controls and Protective Devices: Controls, shutdown devices, and common visual alarm and pre-alarm indication as required by NFPA 110 for Level 1 system, including the following:
a. Cranking control equipment.
c. Control switch not in automatic position alarm.
d. Overcrank alarm.
e. Overcrank shutdown device.
f. Low water temperature alarm.
g. High engine temperature pre-alarm.
h. High engine temperature.
i. High engine temperature shutdown device.
j. High engine exhaust temperature alarm.
k. Overspeed alarm.
l. Overspeed shutdown device.
m. Low-fuel main tank.
 1) Low-fuel-level alarm shall be initiated when the level falls below that
 required for operation for the duration required for the indicated EPSS class.

n. Coolant low-level alarm.
o. Coolant low-level shutdown device.
p. Coolant high-temperature pre-alarm.
q. Coolant high-temperature alarm.
r. Coolant low-temperature alarm.
s. Coolant high-temperature shutdown device.
t. EPS load indicator.
u. Battery high-voltage alarm.
v. Low-cranking voltage alarm.
w. Battery-charger malfunction alarm.
x. Battery low-voltage alarm.
y. Lamp test.
z. Contacts for local and remote common alarm.

E – Communications
 1 – ModBus RTU (RS-485)
 2 – ModBus TCP-IP
 3 – RDP-110
 4 – CANBus
 5 – Modem Interface (RS-232)
 6- Ethernet

Provide 4 – Relay Board

Provide Ground Fault

E. Remote Display Panel: Comply with NFPA 99. An LED indicator light labeled with proper
 alarm conditions shall identify each alarm event, and a common audible signal shall sound for
 each alarm condition. Silencing switch in face of panel shall silence signal without altering
 visual indication. Connect so that after an alarm is silenced, clearing of initiating condition will
 reactivate alarm until silencing switch is reset. Cabinet and faceplate are surface- or flush-
 mounting type to suit mounting conditions indicated.
 1. Overcrank alarm.
 2. Coolant low-temperature alarm.
3. High engine temperature prealarm.
4. High engine temperature alarm.
5. Low lube oil pressure alarm.
6. Overspeed alarm.
7. Low-fuel main tank alarm.
8. Low coolant level alarm.
9. Low-cranking voltage alarm.
10. Contacts for local and remote common alarm.
13. Control switch not in automatic position alarm.
15. Fuel tank high-level shutdown of fuel-supply alarm.
16. Lamp test.
17. Low-cranking voltage alarm.
18. Generator overcurrent protective device not closed.

F. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator unless otherwise indicated.

Pillar 3R Remote Emergency-Stop Switch: Flush; wall mounted, unless otherwise indicated; and labeled. Push button shall be protected from accidental operation.

G. Generator Circuit Breaker:

One (1) – Generator Output: 800 Amp. 100% rated, Electronic, LSI

2.6 GENERATOR, EXCITER, AND VOLTAGE REGULATOR

A. Marathon Model 573RSL4033 with PMG

B. Comply with NEMA MG 1.

C. Drive: Generator shaft shall be directly connected to engine shaft. Exciter shall be rotated integrally with generator rotor.

D. Electrical Insulation: Class H or Class F.

E. Stator-Winding Leads: Brought out to terminal box to permit future reconnection for other voltages if required.

F. Construction shall prevent mechanical, electrical, and thermal damage due to vibration, overspeed up to 125 percent of rating, and heat during operation at 110 percent of rated capacity.

G. Enclosure: Dripproof

H. Instrument Transformers: Mounted within generator enclosure.
I. Voltage Regulator: Solid-state type, separate from exciter, providing performance as specified and as required by NFPA 110.

LEVEL 3 SOUND ATTENUATED OUTDOOR ENGINE GENERATOR ENCLOSURE

J. Description: Vandal-resistant, level 3 sound-attenuating, weatherproof steel housing. Multiple panels shall be lockable and provide adequate access to components requiring maintenance. Instruments and control shall be mounted within enclosure.

K. Description: Skin Tight.

L. Hinged Doors: Manufacturer's standard construction

M. Muffler Location: Within enclosure.

N. Engine-Cooling Airflow through Enclosure: Maintain temperature rise of system components within required limits when unit operates at 100 percent of rated load for two hours with ambient temperature at top of range specified in system service conditions.

1. Louvers: Fixed-engine, cooling-air inlet and discharge.

Sound Attenuation: When measured at 23.0 feet (7 m) from sides of unit, attenuation shall be 81.2 dBA or less Open Field in accordance with ISO 8528-10 and ANSI S1. 13-2005. Octave band sound report shall be provided based on similar unit construction.

2.7 DIESEL FUEL-OIL SYSTEM

A. Comply with NFPA 30.

B. Main Fuel Pump: Mounted on engine to provide primary fuel flow under starting and load conditions.

C. Subbase-Mounted, Double-Wall, Fuel-Oil Tank: Factory installed and piped, complying with UL 142 fuel-oil tank. Features include the following:

1. Tank level indicator.
2. Fuel-Tank Capacity: 72 Hour Full Load
3. Leak detection in interstitial space.
4. Vandal-resistant fill cap.

2.8 VIBRATION ISOLATION DEVICES

A. Standard pad style vibration isolators

2.9 FINISHES

A. Outdoor Enclosures and Components: Powder-coated finish over steel enclosure.

2.10 GENERATOR OVERCURRENT AND FAULT PROTECTION

A. Overcurrent protective devices for the entire EPSS shall be coordinated to optimize selective tripping when a short circuit occurs. Coordination of protective devices shall consider both utility and EPSS as the voltage source.

1. Overcurrent protective devices for the EPSS shall be accessible only to authorized personnel.

B. Generator Circuit Breaker: Molded-case, electronic-trip type; 100 percent rated; complying with UL 489.

2. Trip Settings: Selected to coordinate with generator thermal damage curve.
3. Shunt Trip: Connected to trip breaker when engine generator is shut down by other protective devices.
4. Mounting: Adjacent to or integrated with control and monitoring panel.

2.11 SOURCE QUALITY CONTROL

A. Project-Specific Equipment Tests: Before shipment, factory test engine generator and other system components and accessories manufactured specifically for this Project. Perform tests at rated load and power factor. Include the following tests:

1. Test components and accessories furnished with installed unit that are not identical to those on tested prototype to demonstrate compatibility and reliability.
2. Test generator, exciter, and voltage regulator as a unit.
3. Full-load run.
4. Maximum power.
5. Voltage regulation.
6. Transient and steady-state governing.
8. Safety shutdown.
9. Provide 14 days’ advance notice of tests and opportunity for observation of tests by Owner’s representative.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, equipment bases, and conditions, with Installer present, for compliance with requirements for installation and other conditions affecting packaged engine generator performance.

B. Examine roughing-in for piping systems and electrical connections. Verify actual locations of connections before packaged engine generator installation.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:

1. Notify Construction Manager no fewer than five working days in advance of proposed interruption of electrical service.
2. Do not proceed with interruption of electrical service without Construction Manager's written permission.

3.3 INSTALLATION

A. Comply with NECA 1 and NECA 404.

B. Comply with packaged engine generator manufacturers' written installation and alignment instructions and with NFPA 110.

C. Equipment Mounting:
 1. Install packaged engine generators on cast-in-place concrete equipment bases. Comply with requirements.
 2. Coordinate size and location of concrete bases for packaged engine generator. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
 3. Install engine generator in sound attenuated enclosure with pad style isolators on minimum 4-inch-(100-mm-) high concrete base. Secure to anchor bolts installed in concrete bases.

D. Install packaged engine generator to provide access, without removing connections or accessories, for periodic maintenance.

E. Electrical Wiring: Install electrical devices furnished by equipment manufacturers but not specified to be factory mounted.

3.4 CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping and specialties.

B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

C. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Provide a minimum of one 90-degree bend in flexible conduit routed to the engine generator from a stationary element.
D. Balance single-phase loads to obtain a maximum of 10 percent unbalance between any two phases.

3.5 IDENTIFICATION

A. Identify system components according to Section 230553 "Identification for HVAC Piping and Equipment" and Section 260553 "Identification for Electrical Systems."

B. Install a sign indicating the generator neutral is bonded to the main service neutral at the main service location.

3.6 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.

C. Tests and Inspections:
 1. Perform tests recommended by manufacturer and in "Visual and Mechanical Inspection" and "Electrical and Mechanical Tests" subparagraphs below, as specified. Certify compliance with test parameters.
 a. Visual and Mechanical Inspection:
 1) Compare equipment nameplate data with Drawings and the Specifications.
 2) Inspect physical and mechanical condition.
 3) Inspect anchorage, alignment, and grounding.
 4) Verify that the unit is clean.
 5) Test protective relay devices.
 6) Verify phase rotation, phasing, and synchronized operation as required by the application.
 7) Functionally test engine shutdown for low oil pressure, overtemperature, overspeed, and other protection features as applicable.
 8) Conduct performance test according to NFPA 110.
 9) Verify correct functioning of the governor and regulator.
 2. NFPA 110 Acceptance Tests: Perform tests required by NFPA 110 that are additional to those specified here, including, but not limited to, single-step full-load pickup test.
 3. Battery Tests: Equalize charging of battery cells according to manufacturer's written instructions. Record individual cell voltages.
 a. Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions. Check electrolyte level and specific gravity under both conditions.
 b. Test for contact integrity of all connectors. Perform an integrity load test and a capacity load test for the battery.
 c. Verify acceptance of charge for each element of the battery after discharge.
 d. Verify that measurements are within manufacturer's specifications.
 4. Battery-Charger Tests: Verify specified rates of charge for both equalizing and float-charging conditions.
5. **System Integrity Tests:** Methodically verify proper installation, connection, and integrity of each element of engine generator system before and during system operation. Check for air, exhaust, and fluid leaks.

6. **Voltage and Frequency Transient Stability Tests:** Use recording oscilloscope to measure voltage and frequency transients for 50 and 100 percent step-load increases and decreases, and verify that performance is as specified.

7. **Noise-Level Tests:** Measure A-weighted level of noise emanating from engine generator installation, including engine exhaust and cooling-air intake and discharge, and compare measured levels with required values.

D. Coordinate tests with tests for transfer switches, and run them concurrently.

E. Test instruments shall have been calibrated within the past 12 months, traceable to NIST Calibration Services, and adequate for making positive observation of test results. Make calibration records available for examination on request.

F. **Leak Test:** After installation, charge exhaust, coolant, and fuel systems and test for leaks. Repair leaks and retest until no leaks exist.

G. **Operational Test:** After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation for generator and associated equipment.

H. **Test and adjust controls and safeties.** Replace damaged and malfunctioning controls and equipment.

I. Remove and replace malfunctioning units and retest as specified above.

J. **Retest:** Correct deficiencies identified by tests and observations, and retest until specified requirements are met.

K. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation resistances, time delays, and other values and observations. Attach a label or tag to each tested component, indicating satisfactory completion of tests.

3.7 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of manufacturer's authorized service representative. Include routine preventive maintenance as recommended by manufacturer and adjusting as required for proper operation. Parts shall be manufacturer's authorized replacement parts and supplies.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged engine generators.

END OF SECTION 263213.13
SECTION 263353 - STATIC UNINTERRUPTIBLE POWER SUPPLY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Three-phase, on-line, double-conversion, static-type, UPS units with the following features:

 a. Surge suppression.
 b. Rectifier-charger.
 c. Inverter.
 d. Controls and indications.
 e. Static bypass transfer switch.
 f. Internal maintenance bypass/isolation switch.
 g. Output distribution section.
 h. Battery and battery disconnect device.
 i. Battery monitoring.

1.3 DEFINITIONS

A. EMI: Electromagnetic interference.

B. GTO: Gate turn-off thyristor.

C. IGBT: Isolated gate bipolar transistor.

D. LCD: Liquid-crystal display.

E. LED: Light-emitting diode.

F. NiCd: Nickel cadmium.

G. PC: Personal computer.

H. SPD: Surge protection device.

I. THD: Total harmonic distortion.

J. UPS: Uninterruptible power supply.
1.4 ACTION SUBMITTALS

A. Product Data: For each type of UPS.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for UPS.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For UPS.
 1. Include plans, elevations, sections, and mounting details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Show access, workspace, and clearance requirements; details of control panels; and battery arrangement.
 4. Include diagrams for power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For UPS units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fuses: One for every 10 of each type and rating, but no fewer than one set of each.
 2. Cabinet Ventilation Filters: One complete set(s).

1.7 WARRANTY

A. Special Battery Warranties: Manufacturer and Installer agree to repair or replace UPS system storage batteries that fail in materials or workmanship within specified warranty period.
 1. Warranted Cycle Life for Valve-Regulated, Lead-Calcium Batteries: Equal to or greater than that represented in manufacturer's published table, but not less than the following, based on annual average battery temperature of 77 deg F (25 deg C):

B. Special UPS Warranties: Specified form in which manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within special warranty period.
 1. Special Warranty Period: one years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 OPERATIONAL REQUIREMENTS

A. Automatic operation includes the following:

1. Double Conversion, IGBT:
 a. Normal Conditions: Load is supplied with power flowing from the normal power input terminals, through the rectifier-charger and inverter, with the battery connected in parallel with the rectifier-charger output. High-efficiency carrier stored trench IGBT, in both rectifier-charger and inverter circuits, provides a minimum of 97 percent efficiency for the UPS system at full load and a minimum of 94 percent efficiency at 50 percent load.
 b. Abnormal Supply Conditions: If normal supply deviates from specified and adjustable voltage, voltage waveform, or frequency limits, the battery supplies energy to provide constant, regulated inverter power output to the load.
 c. Power Failure: If normal power fails, the rectifier-charger and inverter use energy from the battery to supply constant, regulated power output to the load without switching or disturbance.

2. When power is restored at the normal supply terminals of the system, controls shall automatically synchronize the inverter with the external source before transferring the load. The rectifier-charger shall supply power to the load through the inverter and simultaneously recharge the battery.

3. If the battery becomes discharged and normal supply is available, the rectifier-charger shall charge the battery. The rectifier-charger shall automatically shift to float-charge mode on reaching full charge.

4. If any element of the UPS system fails and power is available at the normal supply terminals of the system, the static bypass transfer switch shall switch the load to the normal ac supply circuit without disturbance or interruption.

5. The output power converters shall produce up to 300 percent of rated full-load current for short-circuit clearing. The inverter shall sustain steady-state overload conditions of up to 200 percent of rated full-load current for 60 seconds in normal operation.

6. The inverter shall be capable of sustaining 150 percent of system capacity for 30 seconds while powered from the battery.

7. Should overloads persist past the time limitations, the automatic static transfer switch shall switch the load to the bypass output of the UPS. When the fault has cleared, the static bypass transfer switch shall return the load to the UPS system.

8. If the battery is disconnected, the UPS shall supply power to the load from the normal supply with no degradation of its regulation of voltage and frequency of the output bus.

B. Manual operation includes the following:

1. Turning the inverter off causes the static bypass transfer switch to transfer the load directly to the normal ac supply circuit without disturbance or interruption.

2. Turning the inverter on causes the static bypass transfer switch to transfer the load to the inverter.
C. Maintenance Bypass/Isolation Switch Operation: Switch is interlocked so it cannot be operated unless the static bypass transfer switch is in the bypass mode. Device provides manual selection among the three conditions described below without interrupting supply to the load during switching:

1. Full Isolation: Load is supplied, bypassing the UPS. Normal UPS ac input circuit, static bypass transfer switch, and UPS load terminals are completely disconnected from external circuits.
2. Maintenance Bypass: Load is supplied, bypassing the UPS. UPS ac supply terminals are energized to permit operational checking, but system load terminals are isolated from the load.
3. Normal: Normal UPS ac supply terminals are energized and the load is supplied through the static bypass transfer switch and the UPS rectifier-charger and inverter, or the battery and the inverter.

D. Environmental Conditions: The UPS shall be capable of operating continuously in the following environmental conditions without mechanical or electrical damage or degradation of operating capability, except battery performance:

1. Ambient Temperature for Electronic Components: 32 to 104 deg F (0 to 40 deg C).
2. Ambient Temperature for Battery: 41 to 95 deg F (5 to 35 deg C).
3. Relative Humidity: Zero to 95 percent, noncondensing.
4. Altitude: Sea level to 3300 feet (1220 m).

2.2 PERFORMANCE REQUIREMENTS

A. UL Compliance: Listed and labeled by an NRTL to comply with UL 1778.

B. The UPS shall perform as specified in this article while supplying rated full-load current, composed of any combination of linear and nonlinear load, up to 100 percent nonlinear load with a maximum load crest factor of 3.0, under the following conditions or combinations of the following conditions:

1. Inverter is switched to battery source.
2. Steady-state ac input voltage deviates up to plus or minus 10 percent from nominal voltage.
3. THD of input voltage is 15 percent or more with a minimum crest factor of 3.0, and the largest single harmonic component is a minimum of 5 percent of the fundamental value.
4. Load is 30 percent unbalanced continuously.

C. Minimum Duration of Supply: If battery is sole energy source supplying rated full-load UPS current at 80 percent power factor, duration of supply is five minutes.

D. Input Voltage Tolerance: System steady-state and transient output performance remains within specified tolerances when steady-state ac input voltage varies plus 10 percent and minus 15 percent from nominal voltage.

E. Overall UPS Efficiency: Equal to or greater than 94 percent at 100 percent load, 94 percent at 75 percent load, and 93 percent at 25 percent load.
F. Maximum Acoustical Noise: 65dBA, "A" weighting, emanating from any UPS component under any condition of normal operation, 65dBA measured from nearest surface of component enclosure.

G. Maximum Energizing Inrush Current: Eight times the full-load current.

H. AC Output-Voltage Regulation for Loads 100 Percent Unbalanced: Maximum of plus or minus 2 percent over the full range of battery voltage.

I. AC Output-Voltage Regulation for Loads 100 Percent Balanced: Maximum of plus or minus 1 percent over the full range of battery voltage.

J. Output Frequency: 60 Hz, plus or minus 0.1 percent over the full range of input voltage, load, and battery voltage.

K. Limitation of harmonic distortion of input current to the UPS shall be as follows:

1. Description: Rectifier-charger circuits shall limit THD to 3 percent, maximum, at rated full-load UPS current, for power sources with X/R ratio between 2 and 30. Provide tuned harmonic filter if required to meet harmonic distortion limit.

L. Maximum Harmonic Content of Output-Voltage Waveform: 5 percent rms total and 3 percent rms for any single harmonic, for 100 percent rated nonlinear load current with a load crest factor of 3.0.

M. Maximum Output-Voltage Transient Excursions from Rated Value: For the following instantaneous load changes, stated as percentages of rated full UPS load, voltage shall remain within stated percentages of rated value and recover to, and remain within, plus or minus 2 percent of that value within 50 ms:

1. 50 Percent: Plus or minus 3 percent.
2. 100 Percent: Plus or minus 5 percent.
3. Loss of AC Input Power: Plus or minus 1 percent.
4. Restoration of AC Input Power: Plus or minus 1 percent.

N. Input Power Factor: A minimum of 0.90 lagging when supply voltage and current are at nominal rated values and the UPS is supplying rated full-load current without additional filters.

O. Output Power Factor Rating: Loads with power factor of 0.9 leading to 0.8 lagging shall not require derating of the UPS. For loads with power factors outside this range, derate the UPS output as follows:

1. Derate the UPS a maximum of 5 percent for 0.7 PF lagging.
2. Derate the UPS a maximum of 10 percent for 0.6 PF lagging.
3. Derate the UPS a maximum of 15 percent for 0.5 PF lagging.
4. Derate the UPS a maximum of 20 percent for a range of 0.4 to 0.1 PF lagging.

P. EMI Emissions: Comply with FCC rules and regulations and with 47 CFR 15 for Class A equipment.
2.3 UPS SYSTEMS

A. Description: Self-contained, battery backup device and accessories that provides three-phase electrical power in the event of failure or sag in the normal power system.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. APC by Schneider Electric.
2. Eaton.
3. Liebert; a brand of Vertiv.

C. Electronic Equipment: Solid-state devices using hermetically sealed, semiconductor elements. Devices include rectifier-charger, inverter, static bypass transfer switch, and system controls.

D. Enclosures: Comply with NEMA 250, Type 1, unless otherwise indicated.

E. Configuration: Field-assembled, multicabinet modular style units.

F. Control Assemblies: Mount on modular plug-ins, readily accessible for maintenance.

G. Maintainability Features: Mount rectifier-charger and inverter sections and the static bypass transfer switch on modular plug-ins, readily accessible for maintenance.

H. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

I. UPS Cabinet Ventilation: Redundant fans or blowers draw in ambient air near the bottom of cabinet and discharge it near the top rear.

2.4 SURGE SUPPRESSION

A. Protect internal UPS components from surges that enter at each ac power input connection including main disconnect switch, static bypass transfer switch, and maintenance bypass/isolation switch. Protect rectifier-charger, inverter, controls, and output components.

1. Use factory-installed surge suppressors tested according to IEEE C62.41.1.

2.5 RECTIFIER-CHARGER

A. Description: Voltage source converter, six-pulse IGBT rectifier.

B. Capacity: Adequate to supply the inverter during rated full output load conditions and simultaneously recharge the battery from fully discharged condition to 95 percent of full charge within 10 times the rated discharge time for duration of supply under battery power at full load.

C. Output Ripple: Limited by output filtration to less than 0.5 percent of rated current, peak to peak.
D. Control Circuits: Immune to frequency variations within rated frequency ranges of normal and emergency power sources.

1. Response Time: Field adjustable for maximum compatibility with local generator-set power source.

E. Battery Float-Charging Conditions: Comply with battery manufacturer's written instructions for battery terminal voltage and charging current required for maximum battery life. The battery charger shall be matched to the battery type supplied.

F. Lithium Ion Battery Charger: Sense full charge by measuring the rate of temperature increase. Battery charging shall be terminated when the rate of temperature rise reaches 1.8 deg F (1 deg C) per minute. If the battery reaches 140 deg F (60 deg C) prior to reaching this rate of temperature rise, charging shall terminate. Chargers that determine full charge by voltage measurement to sense a 10-mV drop per cell when reaching full charge are also acceptable.

2.6 INVERTER

A. Description: Pulse-width modulated, IGBT with sinusoidal output. Include a bypass phase synchronization window adjustment to optimize compatibility with local engine-generator-set power source.

2.7 CONTROLS AND INDICATIONS

A. Description: Group displays, indications, and basic system controls on a common control panel on front of UPS enclosure.

B. Minimum displays, indicating devices, and controls include those in lists below. Provide sensors, transducers, terminals, relays, and wiring required to support listed items. Alarms include audible signals and visual displays.

C. Indications: Plain-language messages on a digital LCD.

1. Quantitative indications shall include the following:
 a. Input voltage, each phase, line to line.
 b. Input current, each phase, line to line.
 c. Bypass input voltage, each phase, line to line.
 d. Bypass input frequency.
 e. System output voltage, each phase, line to line.
 f. System output current, each phase.
 g. System output frequency.
 h. DC bus voltage.
 i. Battery current and direction (charge/discharge).
 j. Elapsed time discharging battery.

2. Basic status condition indications shall include the following:
 a. Normal operation.
b. Load-on bypass.
c. Load-on battery.
d. Inverter off.
e. Alarm condition.

3. Alarm indications shall include the following:

 a. Bypass ac input overvoltage or undervoltage.
 b. Bypass ac input over frequency or underfrequency.
 c. Bypass ac input and inverter out of synchronization.
 d. Bypass ac input wrong-phase rotation.
 e. Bypass ac input single-phase condition.
 f. Bypass ac input filter fuse blown.
 g. Internal frequency standard in use.
 h. Battery system alarm.
 i. Control power failure.
 j. Fan failure.
 k. UPS overload.
 l. Battery-charging control faulty.
 m. Input overvoltage or undervoltage.
 n. Input transformer overtemperature.
 o. Input circuit breaker tripped.
 p. Input wrong-phase rotation.
 q. Input single-phase condition.
 r. Approaching end of battery operation.
 s. Battery undervoltage shutdown.
 t. Maximum battery voltage.
 u. Inverter fuse blown.
 v. Inverter transformer overtemperature.
 w. Inverter overtemperature.
 x. Static bypass transfer switch overtemperature.
 y. Inverter power supply fault.
 z. Inverter transistors out of saturation.
 aa. Identification of faulty inverter section/leg.
 bb. Inverter output overvoltage or undervoltage.
 cc. UPS overload shutdown.
 dd. Inverter current sensor fault.
 ee. Inverter output contactor open.
 ff. Inverter current limit.

4. Controls shall include the following:

 a. Inverter on-off.
 b. UPS start.
 c. Battery test.
 d. Alarm silence/reset.
 e. Output-voltage adjustment.

D. Dry-form "C" contacts shall be available for remote indication of the following conditions:

1. UPS on battery.
2. UPS on-line.
3. UPS load-on bypass.
4. UPS in alarm condition.
5. UPS off (maintenance bypass closed).

E. Emergency Power off Switch: Capable of local operation and operation by means of activation by external dry contacts.

2.8 STATIC BYPASS TRANSFER SWITCH
A. Description: Solid-state switching device providing uninterrupted transfer with a contactor or electrically operated circuit breaker to automatically provide electrical isolation for the switch.
B. Switch Rating: Continuous duty at the rated full-load UPS current, minimum.
C. Input SPD: 80 kA.

2.9 MAINTENANCE BYPASS/ISOLATION SWITCH
A. Description: Manually operated switch or arrangement of switching devices with mechanically actuated contact mechanism arranged to route the flow of power to the load around the rectifier-charger, inverter, and static bypass transfer switch.
1. Switch shall be electrically and mechanically interlocked to prevent interrupting power to the load when switching to bypass mode.
2. Switch shall electrically isolate other UPS components to permit safe servicing.
3. Switch shall electrically isolate the rectifier-charger, inverter, and static bypass transfer switch from the load, but shall allow primary power to the UPS for testing.

B. Comply with NEMA PB 2 and UL 891.
C. Switch Rating: Continuous duty at rated full-load UPS current.
D. Mounting Provisions: Internal to system cabinet.

2.10 BATTERY
A. Description: Lithium-Ion units, factory assembled in an isolated compartment of UPS cabinet, complete with battery disconnect switch.
B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
2. Eaton.
3. EnerSys.
4. Exide Technologies.
5. Panasonic Corporation of North America; Industrial Devices.
C. Description: Lithium-Ion units, factory assembled in an isolated compartment of UPS cabinet, complete with battery disconnect switch.
 1. Factory assembled in an isolated compartment of UPS cabinet.

D. Seismic-Restraint Design: Battery racks, cabinets, assemblies, subassemblies, and components (and fastenings and supports, mounting, and anchorage devices for them) shall be designed and fabricated to withstand static and seismic forces.

2.11 BASIC BATTERY MONITORING

A. Description: Continuous, real-time capture of battery performance data.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. APC by Schneider Electric.
 2. Eaton.

C. Battery Ground-Fault Detector: Initiates alarm when resistance to ground of positive or negative bus of battery is less than 5000 ohms.

D. Battery compartment high-temperature detector initiates an alarm when smoke or a temperature greater than 167 deg F (75 deg C) occurs within the compartment.

E. Annunciation of Alarms: At UPS control panel and remotely.

2.12 ADDITIONAL BATTERY MONITORING

A. Monitoring features and components shall include the following:
 1. Factory-wired sensing leads to cell and battery terminals and cell temperature sensors.
 2. Connections for data transmission via RS-485 link, external signal wiring to electrical power monitoring and control equipment. External signal wiring and computer are not specified in this Section.
 3. USB ports for printer and accessories.

B. Performance: Automatically measure and electronically record the following parameters on a routine schedule and during battery discharge events. During discharge events, record measurements timed to nearest second; including measurements of the following parameters:
 1. Total battery voltage and ambient temperature.

2.13 SOURCE QUALITY CONTROL

A. Factory test complete UPS system before shipment. Use the same type of batteries that are part of final installation. Include the following:
1. Test and demonstration of all functions, controls, indicators, sensors, and protective devices.
2. Full-load test.
4. Overload test.
5. Power failure test.

B. Report test results. Include the following data:

1. Description of input source and output loads used. Describe actions required to simulate source load variation and various operating conditions and malfunctions.
2. List of indications, parameter values, and system responses considered satisfactory for each test action. Include tabulation of actual observations during test.
3. List of instruments and equipment used in factory tests.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for conditions affecting performance of the UPS.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

C. Verify installation conditions are representative of the conditions used in the coordination studies for the electrical system. Provide fuse protection according to Section 262813 "Fuses" if required for coordination with UPS overcurrent protective device requirements.

3.2 INSTALLATION

A. Comply with NECA 1.

1. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

C. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

D. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

E. Maintain minimum clearances and workspace at equipment according to manufacturer's written instructions and NFPA 70.
F. Connections: Interconnect system components. Make connections to supply and load circuits according to manufacturer's wiring diagrams unless otherwise indicated. Apply oxide inhibitor on battery terminals.

3.3 GROUNDING

A. Separately Derived Systems: If not part of a listed power supply for a data-processing room, comply with NFPA 70 requirements for connecting to grounding electrodes and for bonding to metallic piping near isolation transformer. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

1. Identify each battery cell individually.

3.5 BATTERY EQUALIZATION

A. Equalize charging of battery cells according to manufacturer's written instructions. Record individual-cell voltages.

3.6 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Tests and Inspections:

1. Inspect interiors of enclosures, including the following:
 a. Inspect anchorage, alignment, grounding, and required clearances.
 b. Component type and labeling verification.
 c. Ratings of installed components.

2. Test electrical and mechanical interlock systems for correct operation and sequencing.

3. Inspect bolted electrical connections for high resistance using one or more of the following methods:
 a. Use of low-resistance ohmmeter according to Section 7.22.2.2 of NETA ATS.
 b. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method according to manufacturer's published data or Table 100.12 of NETA ATS.
 c. Perform thermographic survey according to Section 9 of NETA ATS.

4. Test static transfer from inverter to bypass and back. Use normal load, if possible.
5. Test dc undervoltage trip level on inverter input breaker. Set according to manufacturer's published data.

6. Verify synchronizing indicators for static switch and bypass switches.

7. Test insulated-case and molded-case breakers.
 a. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with the circuit breaker closed, and across each open pole. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 of NETA ATS.
 b. Perform insulation-resistance tests on all control wiring for ground. Applied potential shall be 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable. Test duration shall be one minute. For units with solid-state components, follow manufacturer's recommendation.
 c. Use primary current injection to determine long time and short time, ground fault, and instantaneous pickup. Use secondary current injection to test trip functions.
 d. Perform minimum pickup voltage tests on shunt trip and close coils according to manufacturer's published data.
 e. Verify operation of charging mechanism.
 f. Verify correct operation of auxiliary features such as trip and pickup indicators, zone interlocking, electrical close and trip operation, trip-free, antipump function, and trip unit battery condition. Reset all trip logs and indicators.

8. Test automatic transfer switches.
 a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter, if applicable, according to Section 7.22.3.1 of NETA ATS.
 b. Perform insulation-resistance tests on all control wiring for ground. Applied potential shall be 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable. Test duration shall be one minute. For units with solid-state components or for control devices that cannot tolerate the applied voltage, follow manufacturer's recommendation.
 c. Perform a contact/pole-resistance test.
 d. Verify settings and operation of control devices.
 e. Calibrate and set all relays and timers according to Section 7.9 of NETA ATS.
 f. Verify phase rotation, phasing, and synchronized operation as required by the application.
 g. Perform automatic transfer tests.
 1) Simulate loss of normal power.
 2) Return to normal power.
 3) Simulate loss of emergency power.
 4) Simulate all forms of single-phase conditions.
 h. Verify correct operation and timing of the following functions:
 1) Normal source voltage-sensing and frequency-sensing relays.
 2) Time delay on transfer.
 3) Alternative source voltage-sensing and frequency-sensing relays.
 4) Automatic transfer operation.
 5) Interlocks and limit switch function.
 6) Time delay and retransfer on normal power restoration.
9. Test direct current system's batteries.
 a. Verify adequacy of battery support racks, mounting, anchorage, alignment, grounding, and clearances.
 b. Inspect spill containment installation. Measure charger float and equalizing voltage levels. Adjust to battery manufacturer's recommended settings.
 c. Measure each cell voltage and total battery voltage with charger energized and in float mode of operation.
 d. Perform a load test according to manufacturer's published data or IEEE 450.
 e. Measure charger float and equalizing voltage levels. Adjust to battery manufacturer's recommended settings.
 f. Test values.
 1) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 2) Cell voltages shall be within 0.05 V of each other or according to manufacturer's published data.
 3) Cell internal ohmic values (resistance, impedance, or conductance) shall not vary by more than 25 percent between identical cells that are in a fully charged state.
 4) Results of load tests shall be according to manufacturer's published data or IEEE 450.

10. Test communication of status and alarms to remote monitoring equipment.

11. Load the system using a variable-load bank to simulate kilovolt amperes, kilowatts, and power factor of loads for unit's rating. Use instruments calibrated within the previous 6 months according to NIST standards.
 a. Simulate malfunctions to verify protective device operation.
 b. Test duration of supply on emergency, low-battery voltage shutdown, and transfers and restoration due to normal source failure.
 c. Test harmonic content of input and output current at 25, 50, and 100 percent of rated loads.
 d. Test output voltage under specified transient-load conditions.
 e. Test efficiency at 50, 75, and 100 percent of rated loads.
 f. Test remote status and alarm panel functions.
 g. Test battery-monitoring system functions.

C. The UPS system will be considered defective if it does not pass tests and inspections.
D. Record of Tests and Inspections: Maintain and submit documentation of tests and inspections, including references to manufacturers' written instructions and other test and inspection criteria. Include results of tests, inspections, and retests.

E. Prepare test and inspection reports.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain the UPS.

END OF SECTION 263353

THIS PAGE LEFT BLANK INTENTIONALLY
SECTIOH 263600 - TRANSFER SWITCHES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes automatic and nonautomatic transfer switches rated 600 V and less, including the following:

1. Bypass/isolation switches.
2. Remote annunciator system.
3. Remote annunciator and control system.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for transfer switches.
2. Include rated capacities, operating characteristics, electrical characteristics, and accessories.

B. Shop Drawings:

1. Include plans, elevations, sections, details showing minimum clearances, conductor entry provisions, gutter space, and installed features and devices.
2. Include material lists for each switch specified.
3. Single-Line Diagram: Show connections between transfer switch, power sources, and load; and show interlocking provisions for each combined transfer switch and bypass/isolation switch.
4. Riser Diagram: Show interconnection wiring between transfer switches, bypass/isolation switches, annunciators, and control panels.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
a. Features and operating sequences, both automatic and manual.
b. List of all factory settings of relays; provide relay-setting and calibration instructions, including software, where applicable.

B. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service:

1. Notify Construction Manager no fewer than five days in advance of proposed interruption of electrical service.
2. Do not proceed with interruption of electrical service without Construction Manager's written permission.

1.5 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace components of transfer switch or transfer switch components that fail in materials or workmanship within specified warranty period.

1. Warranty Period: 12 months from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NEMA ICS 1.

C. Comply with NFPA 110.

D. Comply with UL 1008 unless requirements of these Specifications are stricter.

E. Indicated Current Ratings: Apply as defined in UL 1008 for continuous loading and total system transfer, including tungsten filament lamp loads not exceeding 30 percent of switch ampere rating, unless otherwise indicated.

F. Tested Fault-Current Closing and Short-Circuit Ratings: Adequate for duty imposed by protective devices at installation locations in Project under the fault conditions indicated, based on testing according to UL 1008.

G. Repetitive Accuracy of Solid-State Controls: All settings shall be plus or minus 2 percent or better over an operating temperature range of minus 20 to plus 70 deg C.

H. Resistance to Damage by Voltage Transients: Components shall meet or exceed voltage-surge withstand capability requirements when tested according to IEEE C62.62. Components shall meet or exceed voltage-impulse withstand test of NEMA ICS 1.
I. Electrical Operation: Accomplish by a nonfused, momentarily energized solenoid or electric-motor-operated mechanism. Switches for emergency or standby purposes shall be mechanically and electrically interlocked in both directions to prevent simultaneous connection to both power sources unless closed transition.

J. Neutral Switching: Where four-pole switches are indicated, provide neutral pole switched simultaneously with phase poles.

K. Neutral Terminal: Solid and fully rated unless otherwise indicated.

L. Heater: Equip switches exposed to outdoor temperatures and humidity, and other units indicated, with an internal heater. Provide thermostat within enclosure to control heater.

M. Annunciation, Control, and Programming Interface Components: Devices at transfer switches for communicating with remote programming devices, annunciators, or annunciator and control panels shall have communication capability matched with remote device.

N. Factory Wiring: Train and bundle factory wiring and label, consistent with Shop Drawings, by color-code or by numbered or lettered wire and cable with printed markers at terminations. Color-coding and wire and cable markers are specified in Section 260553 "Identification for Electrical Systems."

1. Designated Terminals: Pressure type, suitable for types and sizes of field wiring indicated.
2. Power-Terminal Arrangement and Field-Wiring Space: Suitable for top, side, or bottom entrance of feeder conductors as indicated.
3. Control Wiring: Equipped with lugs suitable for connection to terminal strips.
4. Accessible via front access.

O. Enclosures: General-purpose NEMA 250, Type 1 or Type 3R (as indicated on drawings), complying with NEMA ICS 6 and UL 508, unless otherwise indicated.

2.2 CONTACTER-TYPE AUTOMATIC TRANSFER SWITCHES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Eaton.
2. Emerson.
3. MTU America Inc.

B. Comply with Level 1 equipment according to NFPA 110.

C. Switch Characteristics: Designed for continuous-duty repetitive transfer of full-rated current between active power sources.

1. Limitation: Switches using molded-case switches or circuit breakers or insulated-case circuit-breaker components are unacceptable.
2. Switch Action: Double throw; mechanically held in both directions.
3. Contacts: Silver composition or silver alloy for load-current switching. Contactor-style automatic transfer-switch units, rated 600 A and higher, shall have separate arcing contacts.

4. Conductor Connectors: Suitable for use with conductor material and sizes.

6. Main and Neutral Lugs: Mechanical type.

7. Ground Lugs and Bus-Configured Terminators: Mechanical type.

8. Ground bar.

9. Connectors shall be marked for conductor size and type according to UL 1008.

D. Automatic Open-Transition Transfer Switches: Interlocked to prevent the load from being closed on both sources at the same time.

1. Sources shall be mechanically and electrically interlocked to prevent closing both sources on the load at the same time.

E. Electric Nonautomatic Switch Operation: Electrically actuated by push buttons designated "Normal Source" and "Alternative Source." Switch shall be capable of transferring load in either direction with either or both sources energized.

F. Automatic Transfer-Switch Controller Features:

1. Controller operates through a period of loss of control power.

2. Undervoltage Sensing for Each Phase of Normal and Alternate Source: Sense low phase-to-ground voltage on each phase. Pickup voltage shall be adjustable from 85 to 100 percent of nominal, and dropout voltage shall be adjustable from 75 to 98 percent of pickup value. Factory set for pickup at 90 percent and dropout at 85 percent.

3. Voltage/Frequency Lockout Relay: Prevent premature transfer to generator. Pickup voltage shall be adjustable from 85 to 100 percent of nominal. Factory set for pickup at 90 percent. Pickup frequency shall be adjustable from 90 to 100 percent of nominal. Factory set for pickup at 95 percent.

4. Time Delay for Retransfer to Normal Source: Adjustable from zero to 30 minutes, and factory set for 10 minutes. Override shall automatically defeat delay on loss of voltage or sustained undervoltage of emergency source, provided normal supply has been restored.

5. Test Switch: Simulate normal-source failure.

6. Switch-Position Pilot Lights: Indicate source to which load is connected.

 a. Normal Power Supervision: Green light with nameplate engraved "Normal Source Available."

8. Unassigned Auxiliary Contacts: Two normally open, single-pole, double-throw contacts for each switch position, rated 10 A at 240-V ac.

9. Transfer Override Switch: Overrides automatic retransfer control so transfer switch will remain connected to emergency power source regardless of condition of normal source. Pilot light indicates override status.

10. Engine Starting Contacts: One isolated and normally closed, and one isolated and normally open; rated 10 A at 32-V dc minimum.
11. Engine Shutdown Contacts: Time delay adjustable from zero to five minutes, and factory set for five minutes. Contacts shall initiate shutdown at remote engine-generator controls after retransfer of load to normal source.

12. Engine-Generator Exerciser: Solid-state, programmable-time switch starts engine generator and transfers load to it from normal source for a preset time, then retransfers and shuts down engine after a preset cool-down period. Initiates exercise cycle at preset intervals adjustable from 7 to 30 days. Running periods shall be adjustable from 10 to 30 minutes. Factory settings shall be for 7-day exercise cycle, 20-minute running period, and 5-minute cool-down period. Exerciser features include the following:

 a. Exerciser Transfer Selector Switch: Permits selection of exercise with and without load transfer.
 b. Push-button programming control with digital display of settings.
 c. Integral battery operation of time switch when normal control power is unavailable.

G. Large-Motor-Load Power Transfer:

1. In-Phase Monitor: Factory-wired, internal relay controls transfer so contacts close only when the two sources are synchronized in phase and frequency. Relay shall compare phase relationship and frequency difference between normal and emergency sources and initiate transfer when both sources are within 15 electrical degrees, and only if transfer can be completed within 60 electrical degrees. Transfer shall be initiated only if both sources are within 2 Hz of nominal frequency and 70 percent or more of nominal voltage.

2. Programmed Neutral Switch Position: Switch operator with programmed neutral position arranged to provide a midpoint between the two working switch positions, with an intentional, time-controlled pause at midpoint during transfer. Adjustable pause from 0.5 to 30 seconds minimum, and factory set for 0.5 second unless otherwise indicated. Time delay occurs for both transfer directions. Disable pause unless both sources are live.

2.3 NONAUTOMATIC TRANSFER SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. ASCO Power Technologies.
 2. Eaton.
 3. ESL Power Systems, Inc.

C. Double-Throw Switching Arrangement: Incapable of pauses or intermediate position stops during switching sequence.

D. Pilot Lights: Indicate source to which load is connected.
E. **Source-Available Indicating Lights**: Supervise sources via transfer-switch normal- and alternative-source sensing circuits.

1. **Normal Power Supervision**: Green light with nameplate engraved "Normal Source Available."

F. **Unassigned Auxiliary Contacts**: Switch shall have one set of normally closed contacts for each switch position, rated 10 A at 240-V ac.

G. **Switch Characteristics**: Designed for continuous-duty repetitive transfer of full-rated current between active power sources.

1. **Switch Action**: Double throw; mechanically held in both directions.
2. **Contacts**: Silver composition or silver alloy for load-current switching.
3. **Conductor Connectors**: Suitable for use with conductor material and sizes.
4. **Material**: Hard-drawn copper, 98 percent conductivity.
5. **Main and Neutral Lugs**: Mechanical type.
6. **Ground Lugs and Bus-Configured Terminators**: Mechanical type.
7. **Ground bar.**
8. **Connectors shall be marked for conductor size and type according to UL 1008.**

2.4 TRANSFER SWITCH ACESSORIES

A. Remote Annunciator System:

1. **Source Limitations**: Same manufacturer as transfer switch in which installed.
2. **Functional Description**: Remote annunciator panel shall annunciate conditions for indicated transfer switches.
3. **Annunciation panel display shall include the following indicators:**
 a. Sources available, as defined by actual pickup and dropout settings of transfer-switch controls.
 b. Switch position.
 c. Switch in test mode.
 d. Failure of communication link.
4. **Annunciator Panel**: LED-lamp type with audible signal and silencing switch.
 a. **Indicating Lights**: Grouped for each transfer switch monitored.
 b. Label each group, indicating transfer switch it monitors, location of switch, and identity of load it serves.
 c. **Mounting**: Flush, modular, steel cabinet unless otherwise indicated.
 d. **Lamp Test**: Push-to-test or lamp-test switch on front panel.

B. Remote Annunciator and Control System:

1. **Source Limitations**: Same manufacturer as transfer switch in which installed.
2. **Include the following functions for indicated transfer switches:**
a. Indication of sources available, as defined by actual pickup and dropout settings of transfer-switch controls.
b. Indication of switch position.
c. Indication of switch in test mode.
d. Indication of failure of digital communication link.
e. Key-switch or user-code access to control functions of panel.
f. Control of switch-test initiation.
g. Control of switch operation in either direction.
h. Control of time-delay bypass for transfer to normal source.

3. Malfunction of annunciator, annunciation and control panel, or communication link shall not affect functions of automatic transfer switch. In the event of failure of communication link, automatic transfer switch automatically shall revert to standalone, self-contained operation. Automatic transfer-switch sensing, controlling, or operating function shall not depend on remote panel for proper operation.

4. Remote Annunciation and Control Panel: Solid-state components. Include the following features:
 a. Controls and indicating lights grouped together for each transfer switch.
 b. Label each indicating light control group. Indicate transfer switch it controls, location of switch, and load it serves.
 c. Digital Communication Capability: Matched to that of transfer switches supervised.
 d. Mounting: Flush, modular, steel cabinet unless otherwise indicated.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Floor-Mounting Switch: Anchor to floor by bolting.
 1. Install transfer switches on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
 2. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases.
 3. Provide workspace and clearances required by NFPA 70.

B. Annunciator and Control Panel Mounting: Flush in wall unless otherwise indicated.

C. Identify components according to Section 260553 "Identification for Electrical Systems."

D. Set field-adjustable intervals and delays, relays, and engine exerciser clock.

E. Comply with NECA 1.
3.2 CONNECTIONS

A. Wiring to Remote Components: Match type and number of cables and conductors to generator sets, control, and communication requirements of transfer switches as recommended by manufacturer. Increase raceway sizes at no additional cost to Owner if necessary, to accommodate required wiring.

B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

C. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

D. Connect twisted pair cable according to Section 260523 "Control-Voltage Electrical Power Cables."

E. Route and brace conductors according to manufacturer's written instructions and Section 260529 "Hangers and Supports for Electrical Systems." Do not obscure manufacturer's markings and labels.

F. Brace and support equipment according to Section 260548.16 "Seismic Controls for Electrical Systems."

G. Final connections to equipment shall be made with liquid tight, flexible metallic conduit no more than 18 inches (457 mm) in length.

3.3 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Coordinate tests with tests of generator and run them concurrently.

C. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation and contact resistances and time delays. Attach a label or tag to each tested component indicating satisfactory completion of tests.

D. Transfer switches will be considered defective if they do not pass tests and inspections.

E. Remove and replace malfunctioning units and retest as specified above.

F. Prepare test and inspection reports.

G. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switch. Remove all access panels so joints and connections are accessible to portable scanner.

1. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
2. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
3. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain transfer switches and related equipment.

B. Training shall include testing ground-fault protective devices and instructions to determine when the ground-fault system shall be retested. Include instructions on where ground-fault sensors are located and how to avoid negating the ground-fault protection scheme during testing and circuit modifications.

C. Coordinate this training with that for generator equipment.

END OF SECTION 263600
SECTION 264313 - SURGE PROTECTION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes:
 1. Type 2 surge protective devices.
 2. Enclosures.
 3. Conductors and cables.

B. Related Requirements:
 1. Section 262416 "Panelboards" for integral SPDs installed by panelboard manufacturer.

1.3 DEFINITIONS

A. Inominal: Nominal discharge current.

B. MCOV: Maximum continuous operating voltage.

C. Mode(s), also Modes of Protection: air of electrical connections where the VPR applies.

D. MOV: Metal-oxide varistor; an electronic component with a significant non-ohmic current-voltage characteristic.

E. NRTL: Nationally recognized testing laboratory.

F. OCPD: Overcurrent protective device.

G. SCCR: Short-circuit current rating.

H. SPD: Surge protective device.

I. Type 1 SPDs: Permanently connected SPDs intended for installation between the secondary of the service transformer and the line side of the service disconnect overcurrent device.

J. Type 2 SPDs: Permanently connected SPDs intended for installation on the load side of the service disconnect overcurrent device, including SPDs located at the branch panel.

K. Type 3 SPDs: Point of utilization SPDs.
L. Type 4 SPDs: Component SPDs, including discrete components, as well as assemblies.

M. Type 5 SPDs: Discrete component surge suppressors, such as MOVs that may be mounted on a printed wiring board, connected by its leads or provided within an enclosure with mounting means and wiring terminations.

N. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include electrical characteristics, specialties, and accessories for SPDs.
 2. NRTL certification of compliance with UL 1449.
 a. Tested values for VPRs.
 b. Inominal ratings.
 c. MCOV, type designations.
 d. OCPD requirements.
 e. Manufacturer's model number.
 f. System voltage.
 g. Modes of protection.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For SPDs to include in maintenance manuals.

1.6 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace SPDs that fail in materials or workmanship within 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 TYPE 2 SURGE PROTECTIVE DEVICES (SPDs)

A. Manufacturers: Subject to compliance with requirements included in this section and on contract drawing E-502, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. ABB, Electrification Products Division.
2. ASCO Power Technologies.
3. Transtector.
4. Vertiv.
5. Eaton.
6. Schneider Electric USA, Inc.
B. Source Limitations: Obtain devices from single source from single manufacturer.

C. Standards:
 1. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1449, Type 2.
 2. Comply with UL 1283.

D. Product Options:
 1. Include LED indicator lights for power and protection status.
 2. Include internal thermal protection that disconnects the SPD before damaging internal suppressor components.
 3. Include two sets NEMA ICS 5, dry Form C contacts rated at 5 A and 250 V ac for remote monitoring of protection status.
 4. Include surge counter.

E. Performance Criteria:
 1. MCOV: Not less than 125 percent of nominal system voltage for 208Y/120 V and 120/240 V power systems, and not less than 115 percent of nominal system voltage for 480Y/277 V power systems.
 2. Peak Surge Current Rating: Minimum single-pulse surge current withstand rating per phase must not be less than 160 kA. Peak surge current rating must be arithmetic sum of the ratings of individual MOVs in a given mode.
 3. Protection modes and UL 1449 VPR for grounded wye circuits with 480Y/277 V and 208Y/120 V, three-phase, four-wire circuits must not exceed the following:
 a. Line to Neutral: 1000 V for 480Y/277 V & 600 V for 208Y/120 V.
 b. Line to Line: 1800 V for 480Y/277 V & 1000 V for 208Y/120 V.
 4. SCCR: Equal or exceed 200 kA.
 5. Innominal Rating: 20 kA.

2.2 ENCLOSURES

A. Indoor Enclosures: NEMA 250, Type 1.

B. Outdoor Enclosures: NEMA 250, Type 3R.

2.3 CONDUCTORS AND CABLES

A. Power Wiring: Same size as SPD leads, complying with Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1.

B. Provide OCPD and disconnect for installation of SPD in accordance with UL 1449 and manufacturer's written instructions.

C. Install leads between disconnects and SPDs short, straight, twisted, and in accordance with manufacturer's written instructions. Comply with wiring methods in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
 1. Do not splice and extend SPD leads unless specifically permitted by manufacturer.
 2. Do not exceed manufacturer's recommended lead length.
 3. Do not bond neutral and ground.

D. Use crimped connectors and splices only. Wire nuts are unacceptable.

3.2 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 1. Compare equipment nameplate data for compliance with Drawings and the Specifications.
 2. Inspect anchorage, alignment, grounding, and clearances.
 3. Verify that electrical wiring installation complies with manufacturer's written installation requirements.

B. SPDs that do not pass tests and inspections will be considered defective.

C. Prepare test and inspection reports.

3.3 STARTUP SERVICE

A. Complete startup checks in accordance with manufacturer's written instructions.

B. Do not perform insulation-resistance tests of the distribution wiring equipment with SPDs installed. Disconnect SPDs before conducting insulation-resistance tests; reconnect them immediately after the testing is over.

C. Energize SPDs after power system has been energized, stabilized, and tested.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to operate and maintain SPDs.
END OF SECTION 264313
SECTION 265119 - LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes the following types of LED luminaires:
 1. Downlight.
 2. Recessed, linear.
 4. Surface mount, linear.
 5. Surface mount, nonlinear.
 7. Suspended, nonlinear.

B. Related Requirements:
 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.
 2. Section 260926 "Lighting Control Panelboards" for panelboards used for lighting control.
 3. Section 260933 "Central Dimming Controls" or Section 260936 "Modular Dimming Controls" for architectural dimming systems and for fluorescent dimming controls with dimming ballasts specified in interior lighting Sections.
 4. Section 260943.16 "Addressable-Luminaire Lighting Controls" and Section 260943.23 "Relay-Based Lighting Controls" for manual or programmable control systems with low-voltage control wiring or data communication circuits.

1.3 DEFINITIONS

A. CCT: Correlated color temperature.

B. CRI: Color Rendering Index.

C. Fixture: See "Luminaire."

D. IP: International Protection or Ingress Protection Rating.

E. LED: Light-emitting diode.

F. Lumen: Measured output of lamp and luminaire, or both.
G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaires.
 4. Include emergency lighting units, including batteries and chargers.
 5. Include life, output (lumens, CCT, and CRI), and energy-efficiency data.
 6. Photometric data and adjustment factors based on laboratory tests, complying with IES "Lighting Measurements Testing and Calculation Guides" for each luminaire type. The adjustment factors shall be for lamps and accessories identical to those indicated for the luminaire as applied in this Project.
 a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
 b. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.

B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.
 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Lamps: Ten for every 100 of each type and rating installed. Furnish at least one of each type.
 2. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
3. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.8 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.

1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."

B. Ambient Temperature: 41 to 104 deg F (5 to 40 deg C).

1. Relative Humidity: Zero to 95 percent.

C. Altitude: Sea level to 1000 feet (300 m).

2.2 LUMINAIRE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.

1. Label shall include the following lamp characteristics:

 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage, and coating.
 c. CCT and CRI.

C. Recessed luminaires shall comply with NEMA LE 4.
2.3 DOWNLIGHT.

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Cooper Lighting Solutions; Signify North America Corp.
2. Juno Lighting Group by Schneider Electric.
3. Hubbell Lighting.
4. Lithonia Lighting; Acuity Brands Lighting, Inc.

B. Nominal Operating Voltage: 277 V ac.

C. Lamp:

1. Minimum 1000 lm.
2. Minimum allowable efficacy of 80 lm/W.
3. CRI of minimum 80. CCT of 3500 K.
4. Rated lamp life of 50,000 hours to L70.
5. Dimmable from 100 percent to 0 percent of maximum light output.
6. Internal driver.
7. User-Replaceable Lamps:

 a. Bulb shape complying with ANSI C78.79.
 b. Lamp base complying with ANSI C81.61 or IEC 60061-1.

D. Housings:

1. Extruded-aluminum housing and heat sink.
2. Clear finish.
4. Integral junction box with conduit fittings.

E. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

F. Standards:

1. ENERGY STAR certified.
2. RoHS compliant.
3. UL Listing: Listed for damp location.
4. Recessed luminaires shall comply with NEMA LE 4.

2.4 SURFACE MOUNT, STRIP LIGHT.

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
1. Cooper Lighting Solutions; Signify North America Corp.
2. Juno Lighting Group by Schneider Electric.
3. Hubbell Lighting.
4. Lithonia Lighting; Acuity Brands Lighting, Inc.

B. Nominal Operating Voltage: 277 V ac.

C. Lamp:
 1. Minimum 2500 lm.
 2. Minimum allowable efficacy of 100 lm/W.
 3. CRI of minimum 80. CCT of 3500 K.
 4. Rated lamp life of 50,000 hours to L70.
 5. Dimmable from 100 percent to 0 percent of maximum light output.
 6. Internal driver.
 7. User-Replaceable Lamps:
 a. Bulb shape complying with ANSI C78.79.
 b. Lamp base complying with ANSI C81.61 or IEC 60061-1.
 8. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

D. Housings:
 1. Extruded-aluminum housing and heat sink.
 2. Painted finish.
 3. With integral mounting provisions.

E. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping of luminaire without use of tools. Components are designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

F. Diffusers and Globes:
 1. Frosted acrylic.
 2. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 3. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

G. Standards:
 1. ENERGY STAR certified.
 2. RoHS compliant.
 3. UL Listing: Listed for damp location.

2.5 SUSPENDED, LINEAR

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
1. Cooper Lighting Solutions; Signify North America Corp.
2. Juno Lighting Group by Schneider Electric.
3. Hubbell Lighting.
4. Lithonia Lighting; Acuity Brands Lighting, Inc.

B. Nominal Operating Voltage: 277 V ac.

C. Lamp:
 1. Minimum 500 lm/FT.
 2. Minimum allowable efficacy of 110 lm/W.
 3. CRI of minimum. 90 CCT of 3500 K.
 4. Rated lamp life of 50,000 hours to L70.
 5. Dimmable from 100 percent to 0 percent of maximum light output.
 6. Internal driver.
 7. User-Replaceable Lamps:
 a. Bulb shape complying with ANSI C78.79.
 b. Lamp base complying with ANSI C81.61 or IEC 60061-1.

 8. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

D. Housings:
 1. Extruded-aluminum housing and heat sink.
 2. painted finish.
 3. With integral mounting provisions.

E. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Components are designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

F. Diffusers and Globes:
 1. Diffuse glass.
 2. Glass: Annealed crystal glass unless otherwise indicated.
 3. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

G. Standards:
 1. ENERGY STAR certified.
 2. RoHS compliant.
 3. UL Listing: Listed for damp location.

2.6 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
3. Form and support to prevent warping and sagging.

B. Steel:
 1. ASTM A36/A36M for carbon structural steel.
 2. ASTM A568/A568M for sheet steel.

C. Stainless Steel:
 1. Manufacturer's standard grade.
 2. Manufacturer's standard type, ASTM A240/240M.

D. Galvanized Steel: ASTM A653/A653M.

E. Aluminum: ASTM B209.

2.7 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.8 LUMINAIRE SUPPORT

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch (13-mm) steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.

C. Wires: ASTM A641/A641M, Class 3, soft temper, zinc-coated steel, 12 gage (2.68 mm).

D. Rod Hangers: 3/16-inch (5-mm) minimum diameter, cadmium-plated, threaded steel rod.

E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.

3.3 INSTALLATION

A. Comply with NECA 1.
B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
C. Install lamps in each luminaire.
D. Supports:
 1. Sized and rated for luminaire weight.
 2. Able to maintain luminaire position after cleaning and relamping.
 3. Provide support for luminaire without causing deflection of ceiling or wall.
 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.
E. Flush-Mounted Luminaires:
 1. Secured to outlet box.
 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 3. Trim ring flush with finished surface.
F. Wall-Mounted Luminaires:
 1. Attached to structural members in walls.
 2. Do not attach luminaires directly to gypsum board.
G. Suspended Luminaires:
 1. Ceiling Mount:
 a. Pendant mount with 5/32-inch- (4-mm-) diameter aircraft cable supports adjustable to 10 feet (3 m) in length.
 2. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging.
 4. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and wire support for suspension for each unit length of luminaire chassis, including one at each end.
 5. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.
H. Ceiling-Grid-Mounted Luminaires:
1. Secure to any required outlet box.
2. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

I. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

3.6 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to two visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.

1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION 265119
SECTION 265213 - EMERGENCY AND EXIT LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Exit signs.
 2. Luminaire supports.

1.3 DEFINITIONS

A. CCT: Correlated color temperature.
B. CRI: Color Rendering Index.
C. Emergency Lighting Unit: A lighting unit with internal or external emergency battery powered supply and the means for controlling and charging the battery and unit operation.
D. Fixture: See "Luminaire" Paragraph.
E. Lumen: Measured output of lamp and luminaire, or both.
F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of emergency lighting unit, exit sign, and emergency lighting support.
 1. Include data on features, accessories, and finishes.
 2. Include physical description of the unit and dimensions.
 3. Battery and charger for light units.
 4. Include life, output of luminaire (lumens, CCT, and CRI), and energy-efficiency data.
 5. Include photometric data and adjustment factors based on laboratory tests, complying with IES LM-45, for each luminaire type.
 a. Testing Agency Certified Data: For indicated signs, photometric data certified by a qualified independent testing agency. Photometric data for remaining signs shall be certified by manufacturer.
b. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Shop Drawings: For nonstandard or custom luminaires.

1. Include plans, elevations, sections, and mounting and attachment details.
2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Include diagrams for power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in emergency, operation, and maintenance manuals.

1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.7 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Two year(s) from date of Substantial Completion.

B. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Self-Powered Exit Sign Batteries: Five years from date of Substantial Completion. Full warranty shall apply for the entire warranty period.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."

2.2 GENERAL REQUIREMENTS FOR EMERGENCY LIGHTING

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NRTL Compliance: Fabricate and label emergency lighting units, exit signs, and batteries to comply with UL 924.

C. Comply with NFPA 70 and NFPA 101.

D. Comply with NEMA LE 4 for recessed luminaires.

E. Comply with UL 1598 for fluorescent luminaires.

F. Lamp Base: Comply with ANSI C81.61 or IEC 60061-1.

G. Bulb Shape: Complying with ANSI C79.1.

H. Internal Type Emergency Power Unit: Self-contained, modular, battery-inverter unit, factory mounted within luminaire body and compatible with ballast.

1. Emergency Connection: Operate one lamp(s) continuously at an output of 1100 lumens each upon loss of normal power. Connect unswitched circuit to battery-inverter unit and switched circuit to luminaire ballast.

2. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.

3. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:

 a. Ambient Temperature: Less than 0 deg F (minus 18 deg C) or exceeding 104 deg F (40 deg C), with an average value exceeding 95 deg F (35 deg C) over a 24-hour period.
 b. Ambient Storage Temperature: Not less than minus 4 deg F (minus 20 deg C) and not exceeding 140 deg F (60 deg C).
 c. Humidity: More than 95 percent (condensing).
 d. Altitude: Exceeding 3300 feet (1000 m).

4. Test Push-Button and Indicator Light: Visible and accessible without opening luminaire or entering ceiling space.

 a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
5. Battery: Sealed, maintenance-free, nickel-cadmium type.
6. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.
7. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

2.3 EXIT SIGNS

A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.

B. Internally Lighted Signs:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Cooper Lighting Solutions; Signify North America Corp.
 b. Hubbell Incorporated, Lighting.
 c. Lithonia Lighting; Acuity Brands Lighting, Inc.

2. Operating at nominal voltage of 277 V ac.
3. Lamps for AC Operation: LEDs; 50,000 hours minimum rated lamp life.
4. Self-Powered Exit Signs (Battery Type): Internal emergency power unit.

2.4 MATERIALS

A. Metal Parts:

1. Free of burrs and sharp corners and edges.
2. Sheet metal components shall be steel unless otherwise indicated.
3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access:

1. Smooth operating, free of light leakage under operating conditions.
2. Designed to permit relamping without use of tools.
3. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Housings:

1. Extruded aluminum housing.
2. Clear anodized finish.

D. Conduit: Electrical metallic tubing, minimum 3/4 inch (21 mm) in diameter.
2.5 METAL FINISHES
A. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.6 LUMINAIRE SUPPORT COMPONENTS
A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.
B. Support Wires: ASTM A641/A641M, Class 3, soft temper, zinc-coated steel, 12 gage (2.68 mm).

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for conditions affecting performance of luminaires.
B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.
C. Examine walls, floors, roofs, and ceilings for suitable conditions where emergency lighting luminaires will be installed.
D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Comply with NECA 1.
B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

3.3 IDENTIFICATION
A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL
A. Perform the following tests and inspections:
 1. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.
B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

3.5 STARTUP SERVICE

A. Perform startup service:

1. Charge emergency power units and batteries minimum of one hour and depress switch to conduct short-duration test.

3.6 ADJUSTING

A. Adjustments: Within 12 months of date of Substantial Completion, provide on-site visit to do the following:

1. Inspect all luminaires. Replace lamps, emergency power units, batteries, signs, or luminaires that are defective.
 a. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

2. Conduct short-duration tests on all emergency lighting.

END OF SECTION 265213
SECTION 270526 - GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Systems, design, equipment, components, cabling, materials, installation, labeling, and testing shall comply with these reference documents, including the following:

11. All other applicable electrical and building codes.

1.2 SUMMARY

A. Section Includes:

1. Grounding conductors.
2. Grounding connectors.
3. Grounding busbars.
4. Grounding labeling.

B. Related Requirements:

1. Division 01 Section “Construction Waste Management”
2. Division 01 Section "LEED Requirements" for additional LEED requirements.
1.3 DEFINITIONS

A. BCT: Bonding conductor for telecommunications.
B. TGB: Telecommunications grounding busbar.
C. TMGB: Telecommunications main grounding busbar.
D. Service Provider: The operator of a service that provides telecommunications transmission delivered over access provider facilities.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: For communications equipment room signal reference grid. Include plans, elevations, sections, details, and attachments to other work.

1.5 INFORMATIONAL SUBMITTALS

A. As-Built Data: Plans showing as-built locations of grounding and bonding infrastructure, including the following:
 1. Ground rods.
 2. Ground and roof rings.
 3. BCT, TMGB, TGBs, and routing of their bonding conductors.
B. Qualification Data: For installation supervisor, and field inspector.
C. Qualification Data: For testing agency and testing agency's field supervisor.
D. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 a. Result of the ground-resistance test measured at the point of BCT connection.
 b. Result of the bonding-resistance test at each TGB and its nearest grounding electrode.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
1. Installation Supervision: Installation shall be under the direct supervision of ITS Level 2 Installer, who shall be present at all times when Work of this Section is performed at Project site.

2. Field Inspector: Currently registered by BICSI as a designer RCDD to perform the on-site inspection.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

2.2 CONDUCTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Harger Lightning & Grounding.
 2. Panduit Corp.
 3. TE Connectivity Ltd.

B. Comply with UL 486A-486B.

C. Insulated Conductors: Stranded copper wire, green or green with yellow stripe insulation, insulated for 600 V, and complying with UL 83.
 1. Ground wire for custom-length equipment ground jumpers shall be No. 6 AWG, 19-strand, UL-listed, Type THHN wire.
 2. Cable Tray Equipment Grounding Wire: No. 6 AWG, meeting conductor size requirements as specified in ANSI/TIA-607-C and Motorola R56.

D. Cable Tray Grounding Jumper:
 1. Factory manufactured and assembled.
 2. Minimum No. 6 AWG, Green-insulated ground wire, no longer than 12 inches, with 2-hole compression lugs, each with ¼” bolt holes spaces 5/8” apart.
 3. Attach with grounding connector provided by cable tray manufacturer.

E. Bare Copper Conductors:
 4. Bonding Cable: 28 kcmils, 14 strands of No. 17 AWG conductor, and 1/4 inch in diameter.
 5. Bonding Conductor: No. 6 AWG, stranded conductor. Refer to ANSI/TIA-607-C for the correct conductor size, based upon distance.
6. Bonding Jumper: Tinned-copper tape, braided conductors terminated with two-hole copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

2.3 CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Chatsworth Products, Inc.
2. Panduit Corp.
3. TE Connectivity Ltd.

B. Irreversible connectors listed for the purpose. Listed by an NRTL as complying with NFPA 70 for specific types, sizes, and combinations of conductors and other items connected. Comply with UL 486A-486B.

C. Compression Wire Connectors: Crimp-and-compress connectors that bond to the conductor when the connector is compressed around the conductor. Comply with UL 467.

1. Electroplated tinned copper, C and H shaped.

D. Signal Reference Grid Connectors: Combination of compression wire connectors, access floor grounding clamps, bronze U-bolt grounding clamps, and copper split-bolt connectors, designed for the purpose.

E. Busbar Connectors: Cast silicon bronze, solderless compression-type, mechanical connector; with a long barrel and two holes spaced on 5/8- or 1-inch centers for a two-bolt connection to the busbar.

F. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.4 GROUNDING BUSBARS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Chatsworth Products, Inc.
2. Harger Lightning & Grounding.
3. Panduit Corp.

B. TMGB: Predrilled, wall-mounted, rectangular bars of hard-drawn solid copper, 1/4 by 4 inches in cross section, length as indicated on Drawings. The busbar shall be NRTL listed for use as TMGB and shall comply with ANSI/TIA-607-C and Motorola R56 for use as an TMGB.

1. Predrilling shall be with holes for use with lugs specified in this Section.
2. Mounting Hardware: Stand-off brackets that provide a 4-inch clearance to access the rear of the busbar. Brackets and bolts shall be stainless steel.
3. Stand-off insulators for mounting shall be Lexan or PVC. Comply with UL 891 for use in 600-V switchboards, impulse tested at 5000 V.
C. TGB: Predrilled rectangular bars of hard-drawn solid copper, 1/4 by 2 inches in cross section, length as indicated on Drawings. The busbar shall be for wall mounting, shall be NRTL listed as complying with UL 467, and shall comply with ANSI/TIA-607-C and Motorola R56 for use as TGB.

1. Predrilling shall be with holes for use with lugs specified in this Section.
2. Mounting Hardware: Stand-off brackets that provide at least a 2-inch clearance to access the rear of the busbar. Brackets and bolts shall be stainless steel.
3. Stand-off insulators for mounting shall be Lexan or PVC. Comply with UL 891 for use in 600-V switchboards, impulse tested at 5000 V.

D. Rack and Cabinet Grounding Busbars: Rectangular bars of hard-drawn solid copper, accepting conductors ranging from No. 14 to No. 2/0 AWG, NRTL listed as complying with UL 467, and complying with ANSI/TIA-607-C. Predrilling shall be with holes for use with lugs specified in this Section.

1. Cabinet-Mounted Busbar: Terminal block, with stainless-steel or copper-plated hardware for attachment to the cabinet.
2. Rack-Mounted Horizontal Busbar: Designed for mounting in 19- or 23-inch equipment racks. Include a copper splice bar for transitioning to an adjoining rack, and stainless-steel or copper-plated hardware for attachment to the rack.
3. Rack-Mounted Vertical Busbar: 72 or 36 inches long, with stainless-steel or copper-plated hardware for attachment to the rack.

2.5 IDENTIFICATION

A. Comply with ANSI/TIA-606-C and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

B. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

PART 3 - EXECUTION

3.1 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section "Construction Waste Management."

3.2 EXAMINATION

A. Examine the ac grounding electrode system and equipment grounding for compliance with requirements for maximum ground-resistance level and other conditions affecting performance of grounding and bonding of the electrical system.

B. Inspect the test results of the ac grounding system measured at the point of BCT connection.
C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

D. Proceed with connection of the BCT only after unsatisfactory conditions have been corrected.

3.3 INSTALLATION

A. Bonding shall include the ac utility power service entrance, the communications cable entrance, and the grounding electrode system. The bonding of these elements shall form a loop so that each element is connected to at least two others.

B. Comply with NECA 1.

C. Comply with ANSI/TIA-607-C and Motorola R56.

3.4 APPLICATION

A. Conductors: Install stranded conductors for No. 6 AWG and larger unless otherwise indicated.

1. The bonding conductors between the TGB and structural steel of steel-frame buildings shall not be smaller than No. 6 AWG.

2. The bonding conductors between the TMGB and structural steel of steel-frame buildings shall not be smaller than No. 1 AWG.

B. Conductor Terminations and Connections:

1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.

2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.

3. Connections to Ground Rods at Test Wells: Bolted connectors.

C. Conductor Support:

1. Secure grounding and bonding conductors at intervals of not less than 36 inches.

D. Grounding and Bonding Conductors:

1. Install in the straightest and shortest route between the origination and termination point, and no longer than required. The bend radius shall not be smaller than eight times the diameter of the conductor. No one bend may exceed 90 degrees.

2. Install without splices.

3. Support at not more than 36-inch intervals.

4. Install grounding and bonding conductors in 3/4-inch PVC conduit until conduit enters a telecommunications room. The grounding and bonding conductor pathway through a plenum shall be in EMT. Conductors shall not be installed in EMT unless otherwise indicated.

 a. If a grounding and bonding conductor is installed in ferrous metallic conduit, bond the conductor to the conduit using a grounding bushing that complies with
requirements in Section 270528 "Pathways for Communications Systems," and bond both ends of the conduit to a TGB.

3.5 GROUNDING ELECTRODE SYSTEM

A. The BCT between the TMGB and the ac service equipment ground shall not be smaller than No. 4/0 AWG, and as required by ANSI/TIA-607-C and Motorola R56.

3.6 GROUNDING BUSBARS

A. Indicate locations of grounding busbars on Drawings. Install busbars horizontally, on insulated spacers 2 inches minimum from wall, 12 inches above finished floor unless otherwise indicated.

B. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

3.7 CONNECTIONS

A. Bond metallic equipment in a telecommunications equipment room to the grounding busbar in that room, using equipment grounding conductors not smaller than No. 6 AWG.

B. Stacking of conductors under a single bolt is not permitted when connecting to busbars.

C. Assemble the wire connector to the conductor, complying with manufacturer's written instructions and as follows:
 1. Use crimping tool and the die specific to the connector.
 2. Pretwist the conductor.
 3. Apply an antioxidant compound to all bolted and compression connections.

D. Primary Protector: Bond to the TMGB with insulated bonding conductor.

E. Interconnections: Interconnect all TGBs with the TMGB with the telecommunications backbone conductor. If more than one TMGB is installed, interconnect TMGBs using the grounding equalizer conductor. The telecommunications backbone conductor and grounding equalizer conductor size shall not be less than 2 kcmils/linear foot of conductor length, up to a maximum size of No. 3/0 AWG unless otherwise indicated.

F. Telecommunications Enclosures and Equipment Racks: Bond metallic components of enclosures to the telecommunications bonding and grounding system. Install top-mounted rack grounding busbar unless the enclosure and rack are manufactured with the busbar. Bond the equipment grounding busbar to the TGB using individual minimum 6 AWG bonding conductors.

G. Structural Steel: Where the structural steel of a steel frame building is readily accessible within the room or space, bond each TGB and TMGB to the vertical steel of the building frame using minimum 2 AWG bonding conductor.
H. Electrical Power Panelboards: Where an electrical panelboard for telecommunications equipment is located in the same room or space, bond each TGB to the ground bar of the panelboard using minimum 2 AWG bonding conductor.

I. Shielded Cable: Bond the shield of shielded cable to the TGB in communications rooms and spaces. Comply with TIA-568-C.1 and TIA-568-C.2 when grounding shielded balanced twisted-pair cables.

J. Rack- and Cabinet-Mounted Equipment: Bond powered equipment chassis to the cabinet or rack grounding bar. Power connection shall comply with NFPA 70; the equipment grounding conductor in the power cord of cord- and plug-connected equipment shall be considered as a supplement to bonding requirements in this Section.

K. Access Floors: Bond all metal parts of access floors to the TGB.

3.8 IDENTIFICATION

A. Labels shall be preprinted or computer-printed type.

1. Label TMGB(s) with "fs-TMGB," where "fs" is the telecommunications space identifier for the space containing the TMGB.

2. Label TGB(s) with "fs-TGB," where "fs" is the telecommunications space identifier for the space containing the TGB.

3. Label the BCT and each telecommunications backbone conductor at its attachment point: "WARNING! TELECOMMUNICATIONS BONDING CONDUCTOR. DO NOT REMOVE OR DISCONNECT!"

3.9 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:

1. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.

2. Test the bonding connections of the system using an ac earth ground-resistance tester, taking two-point bonding measurements in each telecommunications equipment room containing a TMGB and a TGB and using the process recommended by BICSI TDMM. Conduct tests with the facility in operation.

 a. Measure the resistance between the busbar and the nearest available grounding electrode. The maximum acceptable value of this bonding resistance is 100 milliohms.
3. Test for ground loop currents using a digital clamp-on ammeter, with a full-scale of not more than 10 A, displaying current in increments of 0.01 A at an accuracy of plus/minus 2.0 percent.

 a. With the grounding infrastructure completed and the communications system electronics operating, measure the current in every conductor connected to the TMGB and in each TGB. Maximum acceptable ac current level is 1 A.

D. Excessive Ground Resistance: If resistance to ground at the BCT exceeds 5 ohms, notify Architect promptly and include recommendations to reduce ground resistance.

E. Grounding system will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

END OF SECTION 270526
THIS PAGE LEFT BLANK INTENTIONALLY
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Systems, design, equipment, components, cabling, materials, installation, labeling, and testing shall comply with these specifications and associated referenced documents, including the following:

10. All other applicable electrical and building codes.

1.2 SUMMARY

A. Section Includes:

1. Metal conduits and fittings.
2. Nonmetallic conduits and fittings.
3. Optical-fiber-cable pathways and fittings.

B. Related Requirements:

1. Division 01 Section “Construction Waste Management”
2. Division 01 Section "LEED Requirements" for additional LEED requirements.
1.3 DEFINITIONS

A. ARC: Aluminum rigid conduit.
B. GRC: Galvanized rigid conduit.
C. IMC: Intermediate metal conduit.
D. EMT: Electrical Metallic Tubing.
E. PVC: Polyvinyl Chloride.
F. RNC: Rigid No-metallic conduit for use as sleeves.
G. RTRC: Reinforced thermosetting resin conduit.

1.4 ACTION SUBMITTALS

A. Product data for the following:
 1. Surface pathways
 2. Wireways and fittings.

B. LEED Submittals:
 1. Product Data for Credit IEQ 4.1: For solvent cements and adhesive primers, documentation including printed statement of VOC content.
 2. Laboratory Test Reports for Credit IEQ 4: For solvent cements and adhesive primers, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Pathway routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 1. Structural members in paths of pathway groups with common supports.
 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.
 3. Underground ducts, piping, and structures in location of underground enclosures and handholes.

B. Qualification Data: For professional engineer.
C. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

A. Description: Metal raceway of circular cross section with manufacturer-fabricated fittings.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Southwire Company.
3. Western Tube and Conduit Corporation.

C. General Requirements for Metal Conduits and Fittings:

1. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.
2. Comply with TIA-569-D.

D. GRC: Comply with ANSI C80.1 and UL 6.

E. ARC: Comply with ANSI C80.5 and UL 6A.

F. IMC: Comply with ANSI C80.6 and UL 1242.

G. EMT: Comply with ANSI C80.3 and UL 797.

H. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.

1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.
2. Fittings for EMT:
 a. Material: Steel or die cast.
 b. Type: Compression.
3. Expansion Fittings: PVC or steel to match conduit type, complying with UL-467, rated for environmental conditions were installed, and including flexible external bonding jumper.
4. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

I. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.
2.2 OPTICAL-FIBER-CABLE PATHWAYS AND FITTINGS

A. Description: Comply with UL 2024; flexible-type pathway with a circular cross section, approved for plenum installation unless otherwise indicated.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Carlon; a brand of Thomas & Betts Corporation.
 2. Dura-Line.
 3. IPEX USA LLC.

C. Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

D. Comply with TIA-569-D.

2.3 BOXES, ENCLOSURES, AND CABINETS

A. Description: Enclosures for communications.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Quazite; Hubbell Incorporated, Power Systems.
 3. Wiremold; Legrand North America, LLC.

C. General Requirements for Boxes, Enclosures, and Cabinets:
 1. Comply with TIA-569-D.
 2. Boxes, enclosures, and cabinets installed in wet locations shall be listed and labeled as defined in NFPA 70, by an NRTL, and marked for use in wet locations.
 3. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
 4. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.
 5. Gangable boxes are allowed.

D. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

E. Metal Floor Boxes:
 1. Material: Sheet metal.
 2. Type: Fully adjustable fire-rated where installed in an existing structural floor slab. Fire rating of enclosure should be consistent with the fire rating of the structural floor slab.
 3. Shape: Rectangular for raised floor and circular for poke-thru.
 4. Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

F. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 with continuous-hinge cover with flush latch unless otherwise indicated.
1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
2. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.
3. NEMA 250, Type 3R for damp and wet locations.

G. Cabinets:

1. NEMA 250, Type 1 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
2. Hinged door in front cover with flush latch and concealed hinge.
3. Key latch to match panelboards.
4. Metal barriers to separate wiring of different systems and voltage.

PART 3 - EXECUTION

3.1 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section "Construction Waste Management."

3.2 PATHWAY APPLICATION

A. Indoors: Apply pathway products as specified below unless otherwise indicated:

1. Exposed, Not Subject to Physical Damage: EMT or RNC.
2. Exposed, Not Subject to Severe Physical Damage: EMT.
3. Exposed and Subject to Severe Physical Damage: GRC or IMC.
5. Damp or Wet Locations: GRC or IMC.
6. Pathways for Optical-Fiber or Communications Cable in Spaces Used for Environmental Air: Plenum-type, communications-cable pathway as applicable for entire length throughout in EMT.
7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel units in institutional and commercial kitchens and damp or wet locations.

B. Minimum Pathway Size: 1-inch trade size for copper and aluminum cables, and 1 inch for optical-fiber cables.

1. Pathway size shall be in accordance with the manufacturer’s specifications, instructions, and recommendations to maintain minimum bend radius unless otherwise indicated.
2. Pathway quantities and sizes shall be sufficient to accommodate the quantities, sizes, and types of cables indicated on the drawings.
 a. Fill calculations shall be performed to determine the quantities and sizes of pathways based upon the indicated cables for the initial installation.

C. Pathway Fittings: Compatible with pathways and suitable for use and location.
1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. EMT: Use compression, steel fittings. Comply with NEMA FB 2.10.

D. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

E. Install surface pathways only where indicated on Drawings.

F. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.3 INSTALLATION

A. Comply with the following standards for installation requirements except where requirements on Drawings or in this Section are stricter:

1. NECA 1.
2. NECA/BICSI 568.
3. TIA-569-D.
4. NECA 101
5. NECA 102.
6. NECA 105.
7. NECA 111.

B. Comply with NFPA 70 limitations for types of pathways allowed in specific occupancies and number of floors.

C. Keep pathways at least 12 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal pathway runs above water and steam piping.

D. Complete pathway installation before starting conductor installation.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of two 90-degree bends in any pathway run. Support within 12 inches of changes in direction. Utilize long radius ells for all optical-fiber cables.

G. Conceal rigid conduit within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches of enclosures to which attached.

I. Stub-ups to Above Recessed Ceilings:

1. Use EMT, IMC, or RMC for pathways.
2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

J. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of pathway and fittings before making up joints. Follow compound manufacturer's written instructions.
K. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install insulated bushings on conduits terminated with locknuts.

L. Install pathways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus one additional quarter-turn.

M. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure, to assure a continuous ground path.

N. Cut conduit perpendicular to the length. For conduits of 2-inch trade size and larger, use roll cutter or a guide to ensure cut is straight and perpendicular to the length.

O. Install pull wires in empty pathways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Secure pull wire, so it cannot fall into conduit. Cap pathways designated as spare alongside pathways in use.

P. Surface Pathways are not permitted:

Q. Pathways for Optical-Fiber and Communications Cable: Install pathways, metal and nonmetallic, rigid and flexible, as follows:

1. 1-Inch Trade Size and Larger: Install pathways in maximum lengths of 75 feet.
2. Install with a maximum of two 90-degree bends or equivalent for each length of pathway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.

R. Expansion-Joint Fittings:

1. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
2. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
3. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

S. Hooks:

1. Size to allow a minimum of 25 percent future capacity without exceeding design capacity limits.
2. Shall be supported by dedicated support wires. Do not use ceiling grid support wire or support rods.
3. Hook spacing shall allow no more than 6 inches of slack. The lowest point of the cables shall be no less than 6 inches adjacent to ceilings, mechanical ductwork and fittings, luminaires, power conduits, power and telecommunications outlets, and other electrical and communications equipment.
4. Space hooks no more than 5 feet o.c.
5. Provide a hook at each change in direction.
T. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to bottom of box unless otherwise indicated.

U. Do not install raceway and boxes within existing concrete or masonry walls.

V. Horizontally separate boxes mounted on opposite sides of walls, so they are not in the same vertical channel.

W. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

X. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

Y. Set metal floor boxes level and flush with finished floor surface.

Z. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.4 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR COMMUNICATIONS PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 270544 "Sleeves and Sleeve Seals for Communications Pathways and Cabling."

3.5 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.6 PROTECTION

A. Protect coatings, finishes, and cabinets from damage or deterioration.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.

2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 270528
SECTION 270536 - CABLE TRAYS FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Systems, design, equipment, components, cabling, materials, installation, labeling, and testing shall comply with these specifications and associated referenced documents, including the following:

11. All other applicable electrical and building codes.

1.2 SUMMARY

A. Section Includes:

1. Wire-mesh cable tray.
2. Cable Supports.
3. Warning signs.

B. Related Requirements:

1. Division 01 Section “Construction Waste Management”
2. Division 01 Section "LEED Requirements" for additional LEED requirements
3. Section 260536 "Cable Trays for Electrical Systems" for cable trays and accessories serving electrical systems.
1.3 ACTION SUBMITTALS

A. Product Data: For each type of cable tray.
 1. Include data indicating dimensions and finishes for each type of cable tray indicated.
 2. Include data for supports and connecting hardware.

B. Shop Drawings: For each type of cable tray.
 1. Show fabrication and installation details of cable trays, including plans, elevations, and sections of components and attachments to other construction elements. Designate components and accessories, including clamps, brackets, hanger rods, splice-plate connectors, expansion-joint assemblies, straight lengths, and fittings.
 2. Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 a. Vertical and horizontal offsets and transitions.
 b. Clearances for access above and to sides of cable trays.
 c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans and sections, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Scaled cable tray layout and relationships between components and adjacent structural, electrical, and mechanical elements.
 2. Vertical and horizontal offsets and transitions.
 3. Clearances for access above and to side of cable trays.
 4. Vertical elevation of cable trays above the floor or below bottom of ceiling structure.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design cable tray supports and seismic bracing.

B. Seismic Performance: Cable trays and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the cable trays will remain in place without separation of any parts when subjected to the seismic forces specified."
 2. Component Importance Factor: 1.5.

C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes in cable tray installed outdoors.
1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 GENERAL REQUIREMENTS FOR CABLE TRAYS AND J-HOOKS

A. Cable Trays and Accessories: Identified as defined in NFPA 70 and marked for intended location, application, and grounding.

B. Obtain cable trays and all required hardware and associated components from a single manufacturer.

C. Sizes and Configurations: See the Drawings for specific requirements for types, materials, sizes, and configurations.

D. Structural Performance: See articles for individual cable tray types for specific values for the following parameters:

 1. Uniform Load Distribution: Capable of supporting a uniformly distributed load on the indicated support span when supported as a simple span and tested according to NEMA VE 1.
 2. Concentrated Load: A load applied at midpoint of span and centerline of tray.
 3. Load and Safety Factors: Applicable to both side rails and rung capacities.

2.3 WIRE-MESH CABLE TRAY

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. B-line; Eaton, Electrical Sector.
 2. Cablofil; Legrand North America, LLC.
 3. MP Husky USA Cable Tray & Cable Bus.

B. Description:

 1. Provide wire basket cable tray of types and sizes indicated with connector assemblies, clamp assemblies, connector plates, splice plates and splice bars. Construct units with rounded edges and smooth surfaces; in compliance with applicable standards; and with the additional construction highlighted in Section 2.2
 2. All straight section longitudinal wires shall be constructed with a continuous top wire safety edge. Safety edge must be kinked and T-welded on all tray sizes.
 3. Wire basket cable tray shall be made of high strength steel wires and formed into a standard 2 inch by 4-inch wire mesh pattern with intersecting wires welded together. All mesh sections must have at least one bottom longitudinal wire along entire length of straight section.

C. Wire basket cable tray sizes shall conform to the following nominal criteria:

 1. Straight sections shall be furnished in standard 118.3-inch lengths.
 2. Wire diameter shall be 0.196” (5mm) minimum on all mesh sections (minimum size of 4.5mm on stainless steel).
 3. Wire basket cable tray shall have a 2 inch or 4-inch usable loading depth with widths shown on the drawings provided.
D. Material and Finishes: Straight sections shall be made from steel meeting the minimum mechanical properties of ASTM A510, Grade 1008 and shall be hot dipped galvanized after fabrication in accordance with ASTM A123.

E. All fittings shall be field formed from straight sections in accordance with manufacturer’s instructions.

F. Dividers to separate copper and fiber optic cabling and patch cords shall be provided as shown on the drawings.

G. Wire basket cable tray supports shall be center support hangers, trapeze hangers or wall brackets as provided by cable tray manufacturer.

H. Trapeze hangers or center support hangers shall be supported by ¼” inch or 3/8” inch diameter rods.

I. Special accessories shall be furnished as required to protect, support and install a wire basket cable tray system.

2.4 CABLE SUPPORTS/J-HOOKS

A. Cable supports that will be utilized to transport cabling shall meet or exceed the following requirements:

1. Designed to support Category-5e/6/6A cabling while maintaining the minimum required bend radius for the cabling installed.
2. Available in sizes from 1” through 4” diameters.
3. Designed to be placed in an air-handling plenum environment.
4. Furnished with required support hardware to allow for independent attachment to overhead support structure.

B. Manufacturers:

1. Erico/Caddy.
2. Cooper B-Line.
3. Panduit

2.5 WARNING SIGNS

A. Lettering: 1-1/2-inch high, black letters on yellow background with legend "WARNING! NOT TO BE USED AS WALKWAY, LADDER, OR SUPPORT FOR LADDERS OR PERSONNEL."

2.6 SOURCE QUALITY CONTROL

A. Testing: Test and inspect cable trays according to NEMA VE 1.
PART 3 - EXECUTION

3.1 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section "Construction Waste Management."

3.2 CABLE TRAY INSTALLATION

A. Install cable trays according to NEMA VE 2.

B. Install cable trays as a complete system, including fasteners, hold-down clips, support systems, barrier strips, adjustable horizontal and vertical splice plates, elbows, reducers, tees, crosses, cable dropouts, adapters, covers, and bonding.

C. Install cable trays so that the tray is accessible for cable installation and all splices are accessible for inspection and adjustment.

D. Remove burrs and sharp edges from cable trays.

E. Join cable tray with splice plates; use four square neck-carriage bolts and locknuts.

F. Fasten cable tray supports to building structure and install seismic restraints.

G. Design fasteners and supports to carry cable tray, the cables, and a concentrated load of 200 lb.

H. Place supports so that spans do not exceed maximum spans on schedules and provide clearances shown on Drawings. Install intermediate supports when cable weight exceeds the load-carrying capacity of the tray rungs.

I. Construct supports from channel members, threaded rods, and other appurtenances furnished by cable tray manufacturer. Arrange supports in trapeze or wall-bracket form as required by application.

J. Locate and install supports according to NEMA VE 2. Do not install more than one cable tray splice between supports.

K. Make connections to equipment with flanged fittings fastened to cable trays and to equipment. Support cable trays independent of fittings. Do not carry weight of cable trays on equipment enclosure.

L. Make changes in direction and elevation using manufacturer's recommended fittings.

M. Make cable tray connections using manufacturer's recommended fittings.

N. Seal penetrations through fire and smoke barriers. Comply with requirements in Section 078413 "Penetration Firestopping."
O. Install capped metal sleeves for future cables through firestop-sealed cable tray penetrations of fire and smoke barriers.

P. Install cable trays with enough workspace to permit access for installing cables.

Q. Install warning signs in visible locations on or near cable trays after cable tray installation.

3.3 CABLE TRAY SUPPORTS

A. Support cable tray assemblies in accordance with the following:

1. Provide supports on both sides of a splice connecting two straight horizontal sections within the distance between the splice and the adjacent straight section quarter point (at a distance not more than 24” from the splice point).
2. Provide a support at each straight horizontal section within 24” of its entry into a tee or cross or elbow fitting.
3. Provide a support at the mid-point of each elbow except for 12” radius and 30 degree and 45 degree elbows.
4. Provide a support for each side rail of each tee and cross.
5. Provide intermediate supports where necessary to eliminate unsupported horizontal spans in excess of 10'-0”.
6. Provide supports for vertical runs on centers not in excess of 8'-0”.
7. Supports and their fastenings to building structure shall be sized to support safely the weight of the cable tray assemblies plus one pound for each twelve cubic inches of volume they contain based on their nominal dimensions.
8. Each support shall be equipped with a hold down device to eliminate a relative motion between it and the cable tray section it carries.

B. The inside of cable tray systems shall present no sharp edges, burrs or projections which could damage cable insulation.

C. Expansion connectors shall be provided in accordance with NEMA standards and the manufacturer's recommendations.

D. At support points, threaded rod must be hung from concrete inserts, clamps or devices that are securely fastened into the slab, wall or beam sufficiently to carry the load of the tray and its contents with a safety factor of 3.

E. Cable tray systems shall not be used as walkways unless specifically designed and installed for that purpose.

F. Cable tray shall be installed with complete access from either side to allow cable to be laid directly into the tray in lieu of pulling.
3.4 CABLE TRAY GROUNDING

A. Ground cable trays according to NFPA 70 unless additional grounding is specified. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems."

B. Cable trays shall be bonded together with splice plates listed for grounding purposes or with listed bonding jumpers.

C. Cable trays with control conductors shall be bonded together with splice plates listed for grounding purposes or with listed bonding jumpers.

D. When using epoxy- or powder-coat painted cable trays as a grounding conductor, completely remove coating at all splice contact points or ground connector attachment. After completing splice-to-grounding bolt attachment, repair the coated surfaces with coating materials recommended by cable tray manufacturer. Provide anti-oxidizing compound at each bonding connection.

E. Bond cable trays to power source for cables contained within with bonding conductors sized according to NFPA 70, Article 250.122, "Size of Equipment Grounding Conductors."

3.5 J-HOOK INSTALLATION

A. Furnish and install the specified J-Hook assemblies in the sizes shown on the drawings provided.

B. Each J-Hook shall be supported independently from the structure. Do not attached J-Hooks to the supports of other structures (light fixtures, electrical conduits, HVAC ducts, etc.).

3.6 CABLE INSTALLATION

A. Install cables only when each cable tray run has been completed and inspected.

B. Fasten cables on horizontal runs with cable clamps or cable ties according to NEMA VE 2. Tighten clamps only enough to secure the cable, without indenting the cable jacket. Install cable ties with a tool that includes an automatic pressure-limiting device.

C. Fasten cables on vertical runs to cable trays every 18 inches.

D. Fasten and support cables that pass from one cable tray to another or drop from cable trays to equipment enclosures. Fasten cables to the cable tray at the point of exit and support cables independent of the enclosure. The cable length between cable trays or between cable tray and enclosure shall be no more than 72 inches.

3.7 CONNECTIONS

A. Remove paint from all connection points before making connections. Repair paint after the connections are completed.

B. Connect pathways to cable trays according to requirements in NEMA VE 2 and NEMA FG 1.
3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. After installing cable trays and after electrical circuitry has been energized, survey for compliance with requirements.
2. Visually inspect cable insulation for damage. Correct sharp corners, protuberances in cable trays, vibrations, and thermal expansion and contraction conditions, which may cause or have caused damage.
3. Verify that the number, size, and voltage of cables in cable trays do not exceed that permitted by NFPA 70. Verify that communications or data-processing circuits are separated from power circuits by barriers or are installed in separate cable trays.
4. Verify that there are no intruding items such as pipes, hangers, or other equipment in the cable tray.
5. Remove dust deposits, industrial process materials, trash of any description, and any blockage of tray ventilation.
6. Visually inspect each cable tray joint and each ground connection for mechanical continuity. Check bolted connections between sections for corrosion. Clean and retorque in suspect areas.
7. Check for improperly sized or installed bonding jumpers.
8. Check for missing, incorrect, or damaged bolts, bolt heads, or nuts. When found, replace with specified hardware.
9. Perform visual and mechanical checks for adequacy of cable tray grounding; verify that all takeoff raceways are bonded to cable trays. Test entire cable tray system for continuity. Maximum allowable resistance is 1 ohm.

B. Prepare test and inspection reports.

3.9 PROTECTION

A. Protect installed cable trays and cables.

1. Install temporary protection for cables in open trays to safeguard exposed cables against falling objects or debris during construction. Temporary protection for cables and cable tray can be constructed of wood or metal materials and shall remain in place until the risk of damage is over.
2. Repair damage to galvanized finishes with zinc-rich paint recommended by cable tray manufacturer.
3. Repair damage to paint finishes with matching touchup coating recommended by cable tray manufacturer.

END OF SECTION 270536
SECTION 271513 - COMMUNICATIONS COPPER HORIZONTAL CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Systems, design, equipment, components, cabling, materials, installation, labeling, and testing shall comply with these reference documents, including the following:
 11. All other applicable electrical and building codes.

1.2 SUMMARY

A. Section Includes:
 1. Category 6 twisted pair cable.
 2. Category 6a twisted pair cable.
 3. Twisted pair cable hardware, including plugs and jacks.
 4. Cable management system.
 5. Cabling identification products.
 7. Source quality control requirements for twisted pair cable.

B. Related Requirements:
 1. Division 01 Section “Construction Waste Management”
 2. Division 01 Section "LEED Requirements" for additional LEED requirements.
1.3 DEFINITIONS

A. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.

B. EMI: Electromagnetic interference.

C. FTP: Shielded twisted pair.

D. F/FTP: Overall foil screened cable with foil screened twisted pair.

E. F/UTP: Overall foil screened cable with unscreened twisted pair.

F. IDC: Insulation displacement connector.

G. LAN: Local area network.

H. Jack: Also commonly called an "outlet," it is the fixed, female connector.

I. Plug: Also commonly called a "connector," it is the removable, male telecommunications connector.

J. RCDD: Registered Communications Distribution Designer.

K. Screen: A metallic layer, either a foil or braid, placed around a pair or group of conductors.

L. Shield: A metallic layer, either a foil or braid, placed around a pair or group of conductors.

M. S/FTP: Overall braid screened cable with foil screened twisted pair.

N. S/UTP: Overall braid screened cable with unscreened twisted pairs.

O. UTP: Unscrened (unshielded) twisted pair.

1.4 COPPER HORIZONTAL CABLING DESCRIPTION

A. Horizontal cable cabling system shall provide interconnections between Distributor A, Distributor B, or Distributor C, and the equipment outlet, otherwise known as "Cabling Subsystem 1," in the telecommunications cabling system structure. Cabling system consists of horizontal cables, intermediate and main cross-connects, mechanical terminations, and patch cords or jumpers used for horizontal-to-horizontal cross-connection.

1. TIA-568-C.1 requires that a minimum of two equipment outlets be installed for each work area.

2. Horizontal cabling shall contain no more than one transition point or consolidation point between the horizontal cross-connect and the telecommunications equipment outlet.

3. Bridged taps and splices shall not be installed in the horizontal cabling.

B. A work area is approximately 100 sq. ft., and includes the components that extend from the equipment outlets to the station equipment.
C. The maximum allowable horizontal cable length is 295 feet. This maximum allowable length does not include an allowance for the length of 16 feet to the workstation equipment or in the horizontal cross-connect.

1.5 ACTION SUBMITTALS

A. Manufacturer Certification: The contractor shall be manufacturer-certified to install the specified cabling system that will provide a manufacturer’s extended warranty of 20-years (minimum). The contractor shall submit proof of the manufacturer’s certification as part of the bid response.

B. Product Data: For each type of product.

C. Shop Drawings: Reviewed and stamped by RCDD.
 1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
 2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
 3. Cabling administration Drawings and printouts.
 4. Wiring diagrams and installation details of telecommunications equipment, to show location and layout of telecommunications equipment, including the following:
 a. Telecommunications rooms plans and elevations.
 b. Telecommunications pathways.
 c. Telecommunications system access points.
 d. Telecommunications grounding system.
 e. Telecommunications conductor drop locations.
 f. Typical telecommunications details.
 g. Mechanical, electrical, and plumbing systems.

D. Twisted pair cable testing plan.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer, installation supervisor, and field inspector.

B. Product Certificates: For each type of product.

C. Source quality-control reports.

D. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Test Records and Reports, in both printed and electronic formats.

B. As-built drawings.
1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Connecting Blocks: One of each type.
2. Faceplates: One of each type.
3. Jacks: Ten of each type.
4. Patch-Panel Units: One of each type.
5. Plugs: Ten of each type.

1.9 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.

1. Layout Responsibility: Preparation of Shop Drawings and cabling administration Drawings, and field testing program development by an RCDD.
2. Installation Supervision: Installation shall be under the direct supervision of Technician, who shall be present at all times when Work of this Section is performed at Project site.
3. Testing Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

B. Testing Agency Qualifications: Testing agency must have personnel certified by BICSI on staff.

1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD.

1.10 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.

1. Test each pair of twisted pair cable for open and short circuits.

B. Factory test UTP cable in reels in accordance with ANSI/TIA 568.2.D

C. Cable will be considered defective if it does not pass tests and inspections.

1.11 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.12 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA-568-C.1, when tested according to test procedures of this standard.

B. Telecommunications Pathways and Spaces: Comply with TIA-569-D.

C. Grounding: Comply with TIA-607-B.

D. The solution offered by the bidder shall be a complete systems solution. The bidder shall be certified by the manufacturer (or manufacturers) to provide the Owner with a manufacturer’s extended warranty of 20 years (minimum).

1. All Category-6 cabling shall be supplied by the same manufacturer.
2. All Category-6 connectivity, such as jack inserts, patch panels, and patch cords, shall be supplied by the same manufacturer.
3. All Category-6a cabling shall be supplied by the same manufacturer.
4. All Category-6a connectivity, such as jack inserts, patch panels, and patch cords, shall be supplied by the same manufacturer.

2.2 CATEGORY 6 TWISTED PAIR CABLE

A. Description: Four-pair, balanced-twisted pair cable, with internal spline, certified to meet transmission characteristics of Category 6 cable at frequencies up to 250MHz.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Belden CDT Networking Division/NORDX.
2. Berk-Tek Leviton; a Nexans/Leviton alliance.
3. SYSTIMAX Solutions; a CommScope Inc. brand.

D. Conductors: 100-ohm, 23 AWG solid copper.

E. Shielding/Screening: Unshielded twisted pairs (UTP)

F. Cable Rating: Plenum.

G. Jacket:

2. Blue thermoplastic: Data cabling.
2.3 CATEGORY 6a TWISTED PAIR CABLE

A. Description: Four-pair, balanced-twisted pair cable, with internal spline, certified to meet transmission characteristics of Category 6a cable at frequencies up to 500MHz.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Belden CDT Networking Division/NORDX.
2. Berk-Tek Leviton; a Nexans/Leviton alliance.
3. SYSTIMAX Solutions; a CommScope Inc. brand.

C. Standard: Comply with TIA-568-C.2 for Category 6a cables.

D. Conductors: 100-ohm, 23 AWG solid copper.

E. Shielding/Screening: Unshielded twisted pairs (UTP).

F. Cable Rating: Plenum.

G. Jacket: Blue thermoplastic.

2.4 TWISTED PAIR CABLE HARDWARE

A. Description: Hardware designed to connect, splice, and terminate twisted pair copper communications cable.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Belden CDT Networking Division/NORDX.
2. Berk-Tek Leviton; a Nexans/Leviton alliance.
3. SYSTIMAX Solutions; a CommScope Inc. brand.

C. General Requirements for Twisted Pair Cable Hardware:

1. Comply with the performance requirements of Category 6, Category 6a.
2. Comply with TIA-568-C.2, IDC type, with modules designed for punch-down caps or tools.
3. Cables shall be terminated with connecting hardware of same category or higher.

D. Source Limitations: Obtain twisted pair cable hardware from single source from single manufacturer.

E. Connecting Blocks:

1. 110-style IDC for Category 6.
2. 110-style IDC for Category 6a.
3. Provide blocks for the number of cables terminated on the block, plus 25 percent spare, integral with connector bodies, including plugs and jacks where indicated.
F. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.
 1. Number of Terminals per Field: One for each conductor in assigned cables.

G. Patch Panel: Modular panels housing numbered jack units with IDC-type connectors at each jack location for permanent termination of pair groups of installed cables.
 1. Features:
 a. Universal T568A and T568B wiring labels.
 b. Labeling areas adjacent to conductors.
 c. Replaceable connectors.
 d. 48 ports, “Black” in color.
 2. Construction: 16-gauge steel and mountable on 19-inch equipment racks.
 3. Number of Jacks per Field: One for each four-pair cable indicated.

H. Patch Cords: Factory-made, four-pair cables in 36-inch lengths; terminated with an eight-position modular plug at each end.
 1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure performance. Patch cords shall have latch guards to protect against snagging.
 2. Patch cords shall have color-coded boots for circuit identification.

I. Plugs and Plug Assemblies:
 1. Male; eight position; color-coded modular telecommunications connector designed for termination of a single four-pair, 100-ohm, unshielded or shielded twisted pair cable.
 3. Marked to indicate transmission performance.

J. Jacks and Jack Assemblies:
 1. Female; eight position; modular; fixed telecommunications connector designed for termination of a single four-pair, 100-ohm, unshielded or shielded twisted pair cable.
 2. Designed to snap-in to a patch panel or faceplate.
 4. Marked to indicate transmission performance.
 A. Jack inserts shall be supplied in the following colors:
 2. “Blue” in color: Data cabling.

K. Faceplate:
 1. Faceplate for Fixed Wall Installation:
 a. High-impact plastic, 1-, 2-, and 4-port configurations. Coordinate color with owner.
 b. For use with snap-in jacks accommodating any combination of UTP and coaxial work area cords.

2. Faceplate for Systems Furniture Installation:
 a. High-impact plastic, maximum of 4-port configurations. Coordinate color with owner.
 b. Designed to fit and function with the specified and installed systems furniture.
 c. For use with snap-in jacks accommodating any combination of UTP and coaxial work area cords.
 d. Furnish and install bank inserts for all unused port.
 e. Identification: Machine printed, using adhesive-tape label.

3. Surface-Mounted Box:
 b. For use with snap-in jacks accommodating any combination of UTP and coaxial work area cords.

4. Module Frames:
 a. High-impact plastic, 1-, 2-, and 4-port configurations. Coordinate color with owner.
 b. Available for installation in either 106 Duplex or Decora faceplates or spaces.
 c. For use with snap-in jacks accommodating any combination of UTP and coaxial work area cords.
 d. Identification: Machine printed, in the field, using adhesive-tape label.

5. Coordinate colors with Owner and architect before purchase.

L. Approved Manufacturers:

3. Ortronics.
4. Commscope Uniprise.
5. Leviton.
6. Hubbell.
7. Or approved equal

M. Legend:

1. Machine printed, in the field, using adhesive-tape label.
2. Snap-in, clear-label covers and machine-printed paper inserts.
3. Direct download circuit labeling into labeling printer.

2.5 IDENTIFICATION PRODUCTS

A. Comply with ANSI/TIA-606-C and UL 969 for labeling materials, including label stocks, laminating adhesives, and inks used by label printers.
2.6 GROUNDING

A. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.

2.7 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate cables.

B. Factory test cables on reels according to TIA-568-C.1.

C. Factory test twisted pair cables according to TIA-568-C.2.

D. Cable will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 CONSTRUCTION WASTE MANAGEMENT (LEED)

A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section "Construction Waste Management."

3.2 WIRING METHODS

A. Wiring Method: Install cables in pathways within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Conceal pathways and cables except in unfinished spaces.

1. Install plenum cable in environmental air spaces, including plenum ceilings.
2. Comply with requirements for raceways and boxes specified in Section 270528 "Pathways for Communications Systems."

B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

C. Wiring within Enclosures: Bundle, lace, and train cables within enclosures. Connect to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools. Install conductors parallel with or at right angles to sides and back of enclosure.
3.3 INSTALLATION OF PATHWAYS
A. Comply with Section 270528 "Pathways for Communications Systems."
B. Comply with Section 270536 "Cable Trays for Communications Systems."
C. Drawings indicate general arrangement of pathways and fittings.

3.4 INSTALLATION OF TWISTED-PAIR HORIZONTAL CABLES
A. Comply with NECA 1 and NECA/BICSI 568.
B. General Requirements for Cabling:
 1. Comply with TIA-568-C.0, TIA-568-C.1, and TIA-568-C.2.
 3. Install 110-style IDC termination hardware unless otherwise indicated.
 4. Do not untwist twisted pair cables more than 1/2 inch from the point of termination to maintain cable geometry.
 5. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
 6. MUTOA shall not be used as a cross-connect point.
 7. Consolidation points may be used only for making a direct connection to equipment outlets:
 a. Do not use consolidation point as a cross-connect point, as a patch connection, or for direct connection to workstation equipment.
 b. Locate consolidation points for twisted-pair cables at least 49 feet from communications equipment room.
 8. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 9. Install lacing bars to restrain cables, prevent straining connections, and prevent bending cables to smaller radii than minimums recommended by manufacturer.
 10. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI Information Transport Systems Installation Methods Manual, Ch. 5, "Copper Structured Cabling Systems," "Cable Termination Practices" Section. Use lacing bars and distribution spools.
 11. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation, and replace it with new cable.
 12. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
 13. In the communications equipment room, install a 10-foot-long service loop on each end of cable.

C. Open-Cable Installation:
 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 2. Suspend twisted pair cabling, not in a wireway or pathway, a minimum of 8 inches above ceilings by cable supports not more than 48 inches apart. Provide J-Hook cable supports that are dedicated to horizontal cabling.
 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

D. Installation of Cable Routed Exposed under Raised Floors:
 1. Install plenum-rated cable only.
 2. Install cabling after the flooring system has been installed in raised floor areas.
 3. Coil cable 6 feet long not less than 12 inches in diameter below each feed point.

E. Group connecting hardware for cables into separate logical fields.

F. Separation from EMI Sources:
 1. Comply with recommendations from BICSI's "Telecommunications Distribution Methods Manual" and TIA-569-D for separating unshielded copper communication cable from potential EMI sources, including electrical power lines and equipment.
 2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.
 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.
 4. Separation between communications cables in grounded metallic raceways, power lines, and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.
 5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.
6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.5 FIRESTOPPING

A. Comply with requirements in Section 078413 "Penetration Firestopping."
B. Comply with TIA-569-D, Annex A, "Firestopping."

3.6 GROUNDING

3.7 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA-606-B.
 1. Administration Class: Class 2.
 2. Color-code cross-connect fields and apply colors to voice and data service backboards, connections, covers, and labels.
B. Paint and label colors for equipment identification shall comply with TIA-606-B for Class 2 level of administration, including optional identification requirements of this standard.
C. Cable Schedule: Install in a prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.
D. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors.
E. Cable and Wire Identification:
 1. Label each cable within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
 2. Each wire connected to building-mounted devices is not required to be numbered at the device if wire color is consistent with associated wire connected and numbered within panel or cabinet.
 3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet.
 4. Label each terminal strip, and screw terminal in each cabinet, rack, or panel.
a. Individually number wiring conductors connected to terminal strips, and identify each cable or wiring group, extended from a panel or cabinet to a building-mounted device, with the name and number of a particular device.
b. Label each unit and field within distribution racks and frames.

5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and -connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.

F. Labels shall be preprinted or computer-printed type, with a printing area and font color that contrast with cable jacket color but still comply with TIA-606-B requirements for the following:

1. Cables use flexible vinyl or polyester that flexes as cables are bent.

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Visually inspect UTP jackets for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments, and inspect cabling connections for compliance with ANSI/TIA-568.1-D.
2. Visually confirm Category 6 and 6a marking of outlets, faceplates, jack inserts, connectors, and patch panels.
3. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
4. Provide test results for each cable in electronic and printed format.
5. UTP Performance Tests:
 a. Test each Category-6 and Category-6a cable between patch panel and individual outlet locations for compliance with ANSI/TIA-568.1-D and ANSI/TIA-568.2.D for a Category-6 and 6a permanent link.
 b. Perform the following tests according to ANSI/TIA-568.1-D and ANSI/TIA-568.2.D:
 1) Wire map.
 2) Length (physical vs. electrical, and length requirements).
 3) Insertion loss.
 4) Near-end crosstalk (NEXT) loss.
 5) Power sum near-end crosstalk (PSNEXT) loss.
 6) Attenuation to crosstalk ratio far-end (ACR-F) loss.
 7) Power-sum attenuation to crosstalk ratio far-end (PSACR-F) loss.
 8) Return loss.
 9) Propagation delay.
 10) Delay skew.

B. Document data for each measurement. Save and present all test results for each cable in graphical format.

C. Remove and replace cabling where test results indicate that they do not comply with specified requirements.
D. End-to-end cabling will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports. Testing results shall be provided in both printed and electronic format to the Owner for review and approval prior to final acceptance. The Owner reserves the right to reject any installation that does not comply with the requirements, and will require the Contractor to provide such documentation at no additional cost.

F. Test reports shall indicate testing instrument(s) utilized, factory calibration dates, testing methods, tests performed, dates performed, and results. Save all test results in graphical and tabular format.

END OF SECTION 271513
SECTION 281500 - ACCESS CONTROL HARDWARE DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Access control system shall conform to the City’s existing communications protocols, hardware, software, and credential requirements and systems.

1.2 SUMMARY

A. Section Includes:
 1. Card readers, credential cards, and keypads
 2. Cables
 3. Transformers

1.3 DEFINITIONS

A. Credential: Data assigned to an entity and used to identify that entity.

B. DTS: Digital Termination Service. A microwave-based, line-of-sight communication provided directly to the end user.

C. Identifier: A credential card; keypad personal identification number; or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.

D. Location: A Location on the network having a PC-to-controller communications link, with additional controllers at the Location connected to the PC-to-controller link with a TIA 485-A communications loop. Where this term is presented with an initial capital letter, this definition applies.

E. PC: Personal computer. Applies to the central station, workstations, and file servers.

F. RAS: Remote access services.

G. RF: Radio frequency.

H. ROM: Read-only memory. ROM data are maintained through losses of power.

I. TCP/IP: Transport control protocol/Internet protocol.

J. TWAIN: Technology without an Interesting Name. A programming interface that lets a graphics application, such as an image editing program or desktop publishing program, activate a scanner, frame grabber, or other image-capturing device.
K. WMP: Windows media player.

L. Wiegand: Patented magnetic principle that uses specially treated wires embedded in the credential card.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Reference each product to a location on Drawings. Test and evaluation data presented in Product Data shall comply with SIA BIO-01.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Diagrams for cable management system.
 2. System labeling schedules, including electronic copy of labeling schedules that are part of the cable and asset identification system of the software specified in Parts 2 and 3.
 3. Wiring Diagrams. For power, signal, and control wiring. Show typical wiring schematics including the following:
 a. Workstation outlets, jacks, and jack assemblies.
 b. Patch cords.
 c. Patch panels.
 5. Battery and charger calculations for central station, workstations, and controllers.

C. Product Schedules.

D. Samples: For workstation outlets, jacks, jack assemblies, and faceplates. For each exposed product and for each color and texture specified.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For security system to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Hard copies of manufacturer's specification sheets, operating specifications, design guides, user's guides for software and hardware, and PDF files on USB media of the hard-copy submittal.
 2. System installation and setup guides with data forms to plan and record options and setup decisions.
1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses of all kinds, power and electronic, equal to 10 percent of amount installed for each size used, but no fewer than three units.
2. 1 Card Reader

1.8 QUALITY ASSURANCE

A. Installer Qualifications: An employer of workers trained and approved by manufacturer.

1. Cable installer must have on staff an RCDD certified by Building Industry Consulting Service International.

B. Source Limitations: Obtain central station, workstations, controllers, Identifier readers, and all software through one source from single manufacturer.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Store in temperature- and humidity-controlled environment in original manufacturer's sealed containers. Maintain ambient temperature between 50 and 85 deg F, and not more than 80 percent relative humidity, noncondensing.

B. Open each container; verify contents against packing list; and file copy of packing list, complete with container identification, for inclusion in operation and maintenance data.

C. Mark packing list with the same designations assigned to materials and equipment for recording in the system labeling schedules that are generated by software specified in "Cable and Asset Management Software" Article.

D. Save original manufacturer's containers and packing materials and deliver as directed under provisions covering extra materials.

1.10 PROJECT CONDITIONS

A. Environmental Conditions: System shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:

1. Indoor, Controlled Environment: NEMA 250, Type 1 enclosure. System components, except the central-station control unit, installed in temperature-controlled indoor environments shall be rated for continuous operation in ambient conditions of 36 to 122 deg F dry bulb and 20 to 90 percent relative humidity, noncondensing.
2. Indoor, Uncontrolled Environment: NEMA 250, enclosures. System components installed in non-temperature-controlled indoor environments shall be rated for continuous operation in ambient conditions of 0 to 122 deg F dry bulb and 20 to 90 percent relative humidity, noncondensing.
PART 2 - PRODUCTS

2.1 OPERATION

A. Security access system hardware shall use a single database for access-control and credential-creation functions.

2.2 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70, "National Electrical Code."

C. Comply with SIA CP-01 And SIA CP-07.

2.3 INTELLIGENT CONTROLLERS

A. Controllers: The system shall be configured with the ACS software connected via an Ethernet link to any configurable number of Intelligent System Controllers. Intelligent peripheral control unit, complying with UL 294, that stores time, date, valid codes, access levels, and similar data downloaded from the central station or workstation for controlling its operation.

B. The system shall employ a distributed architecture so that all access decisions are made locally at the Intelligent System Controller (ISC). All decisions to grant access shall be made by the local ISC.

C. The ISC shall link the ACS software to all other field hardware. It shall provide full distributed processing for access control and alarm monitoring operations. Access levels, hardware configurations and programmed alarm outputs assigned at the administrative workstation shall be downloaded immediately to the ACS software. All access granted/denied decisions shall be made at the ISC to provide fast responses to card reader transactions.

D. The ISC shall be required to operate in a stand-alone and peer-to-peer mode in the event it loses communication with system software. It shall continue to make access granted/denied decisions and maintain a log of events. Events shall be stored in local memory, and then uploaded automatically to the system when communications are restored. Furthermore, an individual ISC shall be able to communicate with another ISC to distribute cardholder locations and to perform scheduled and alarm events.

E. Ethernet Communications

1. The ISC shall communicate with the ACS via any standard WAN / LAN communications link. The ISC shall provide integrated on-board port for direct Ethernet connection. This connection shall not be an RS-485 communications channel that has simply been converted into an Ethernet connection using a “Terminal Server” or similar conversion device.

2. The ISC shall be IP addressable and support standard TCP/IP transmission.

F. Dial-up capabilities

1. The system shall be capable of communicating with remotely located ISCs using dial-up modem connectivity. The system shall provide the capability to download database changes to such a controller incrementally.

2. The ISCs shall also provide the additional functionality of dialing into the ACS Server to communicate alarm events, and other events deemed severe enough for this activity. All other transactions that occur at
the remote ISC shall be stored in its internal buffer until that buffer reaches 80% capacity or the server requests the buffer contents, at which point the ISC will upload the entire contents of its transaction buffer.

G. Redundant Communications

1. In the case of main communications line failure with the host system, the ISC shall be able to activate an alternative communications method. This alternative method will be activated automatically and ensure that all critical events and alarm messages are forwarded to the host.

H. Internal Memory

1. The ISCs will be supplied complete with internal non-volatile memory. This memory will allow all program, access permissions, time schedules and the current date and time data stored in the ISC memory to be retained during periods of power failure. The purpose is to ensure the ISC returns to full operation after the event of absolute power failure. In addition, the ISC memory will not require the connection of a battery to permanently store system information.

I. Expandable Memory

1. The ISCs will support the installation of an expandable memory card. This memory card will be used to increase the overall capacity of the ISC and allow the backup of programmed and transaction data locally for recovery immediately following a power failure.

J. Local Alarm Input and Output

1. The ISC shall support the onboard direct connection of a tamper input. This input connection shall be reserved for connecting a tamper switch of the equipment cabinet in which the ISC has been installed.

2. Upon the Tamper input being triggered the ISC shall also provide a local output that is capable of connecting an output device that can be triggered as a result of cabinet tempering.

K. LED diagnostics

1. As a minimum the ISC shall provide at LEDs that can be easily viewed for diagnostic purposes. These LEDs shall indicate the state of power and communications at any given time.

L. Dual Reader Interface Module

1. A Dual Reader Interface Module (DRIM) shall be available for each controlled door and provide the ability to connect up to two card readers or entry devices. This DRIM shall:
 a. Monitor the door position (door contact)
 b. Allow the connection of a Request-to-Exit (REX) switch for exit
 c. Control an electric door lock or strike
 d. Provide the facility for up to 3 auxiliary input devices to be connected
 e. Allow the connection of an alarm buzzer that can be triggered in the case of an alarm event, or more specifically locally trigger a buzzer for a door held event before this alarm is registered at the host.

2. All events that occur at the door must be reported from the DRIM to the ISC.

3. To allow for situations where an entry and exit reader may be required at the one door a DRIM will allow two readers to be connected. However, in circumstances where a door shall only require one reader the DRIM can be configured to operate in a two door mode, whereby a reader, door lock and door monitoring device can be connected for each door.
4. In addition, the DRIM shall also provide connection for single advanced reader that connects via an RS-485 or Wiegand / Clock/Data connections.

5. Finally, the DRIM shall also provide the ability to work offline in cases where communications with ISC has have been lost and still continue to accept a set of specified cards as being valid to the door(s) which it controls: Standard mouse, keyboard, video card and color monitor.

M. Battery Backup: Sealed, lead acid; sized to provide run time during a power outage of 90 minutes, complying with UL 924.

N. Entry-Control Controller:
 1. Function: Provide local entry-control functions including one- and two-way communications with access-control devices such as card readers, keypads, biometric personnel identity-verification devices, door strikes, magnetic latches, gate and door operators, and exit push buttons.
 a. Operate as a stand-alone portal controller using the downloaded database during periods of communication loss between the controller and the field-device network.
 b. Accept information generated by the entry-control devices; automatically process this information to determine valid identification of the individual present at the portal:
 1) On authentication of the credentials or information presented, check privileges of the identified individual, allowing only those actions granted as privileges.
 2) Privileges shall include, but are not limited to, time of day control, day of week control, group control, and visitor escort control.
 c. Maintain a date-, time-, and Location-stamped record of each transaction. A transaction is defined as any successful or unsuccessful attempt to gain access through a controlled portal by the presentation of credentials or other identifying information.
 2. Inputs:
 a. Data from entry-control devices; use this input to change modes between access and secure.
 b. Database downloads and updates from the central station that include enrollment and privilege information.
 3. Outputs:
 a. Indicate success or failure of attempts to use entry-control devices and make comparisons of presented information with stored identification information.
 b. Grant or deny entry by sending control signals to portal-control devices and mask intrusion-alarm annunciation from sensors stimulated by authorized entries.
 c. Maintain a date-, time-, and Location-stamped record of each transaction and transmit transaction records to the central station.
 d. Door Prop Alarm: If a portal is held open for longer than 30 seconds, alarm sounds.
 4. With power supplies sufficient to power at voltage and frequency required for field devices and portal-control devices.
 5. Data Line Problems: For periods of loss of communication with the central station, or when data transmission is degraded and generating continuous checksum errors, the controller shall continue to control entry by accepting identifying information, making authentication decisions, checking privileges, and controlling portal-control devices. Additionally, each controller shall store up to 2000 transactions during periods of communication loss between the controller and access-control devices for subsequent upload to the central station on restoration of communication.
 6. Controller Power: NFPA 70, Class II power-supply transformer, with 12- or 24-V ac secondary, backup battery and charger.
 a. Backup Battery: Valve-regulated, recombinant-sealed, lead-calcium battery; spill proof; with a full one-year warranty and a pro rata 19 9-year warranty. With single-stage, constant-voltage-current, limited battery charger, comply with battery manufacturer's written instructions for battery terminal voltage and charging current recommendations for maximum battery life.
 b. Backup Battery: Valve-regulated, recombinant-sealed, lead-acid battery; spill proof. With single-stage, constant-voltage-current, limited battery charger, comply with battery manufacturer's written
instructions for battery terminal voltage and charging current recommendations for maximum battery life.

c. Backup Power-Supply Capacity: 24 hours of battery supply. Submit battery and charger calculations.

d. Power Monitoring: Provide manual, dynamic battery-load test, initiated and monitored at the control center; with automatic disconnection of the controller when battery voltage drops below controller limits. Report by using local controller-mounted digital displays and by communicating status to central station. Indicate normal power on and battery charger on trickle charge. Indicate and report the following:
 1) Trouble Alarm: Normal power-off load assumed by battery.
 2) Trouble Alarm: Low battery.
 3) Alarm: Power off.

7. Controller Capacity:
 a. 128 reader-controlled doors.
 b. 100,000 total-access credentials.
 c. 50,000 event buffer.
 d. 2048 supervised alarm inputs.
 e. 2048 programmable outputs.
 f. 32,000 custom action messages per location to instruct operator on action required when alarm is received.

O. Manufacturer:
 1. Genetec

2.5 CARD READERS, CREDENTIAL CARDS, AND KEYPADS

A. Card-Reader Power: Powered from its associated controller, including its standby power source, and shall not dissipate more than 5 W.

B. Response Time: Card reader shall respond to passage requests by generating a signal that is sent to the controller. Response time shall be 800 ms or less, from the time the card reader finishes reading the credential card until a response signal is generated.

C. Enclosure: Suitable for surface, semi-flush, pedestal, or weatherproof mounting. Mounting types shall additionally be suitable for installation in the following locations:

 1. Indoors, controlled environment.
 2. Indoors, uncontrolled environment.
 3. Outdoors, with built-in heaters or other cold-weather equipment to extend the operating temperature range as needed for operation at the site.
D. Display: Digital visual indicator shall provide visible and audible status indications and user prompts. Indicate power on or off, whether user passage requests have been accepted or rejected, and whether the door is locked or unlocked.

E. Touch-Plate and Proximity Readers:
 1. Active-detection proximity card readers shall provide power to compatible credential cards through magnetic induction, and shall receive and decode a unique identification code number transmitted from the credential card.
 2. Passive-detection proximity card readers shall use a swept-frequency, RF field generator to read the resonant frequencies of tuned circuits laminated into compatible credential cards. The resonant frequencies read shall constitute a unique identification code number.
 3. The card reader shall read proximity cards in a range from direct contact to at least 6 inches from the reader.

F. Access Control Cards:
 1. Wiegand 26-Bit Technology
 2. Capable of supporting Double-Sided printing and photographs.
 3. Manufacturer:
 a. HID
 b. Allegion
 c. Or approved equal.

G. Card Readers:
 1. Supports the use of multiple types or card technologies.
 2. Communications: Wiegand, clock and data, OSDP via RS-485.
 3. Shall be compatible with the specified and approved access control platform.
 4. Manufacturer:
 a. HID
 b. Allegion
 c. Or approved equal.

2.6 PUSH-BUTTON SWITCHES

A. Push-Button Switches:
 1. Momentary-contact mushroom-type push buttons with stainless-steel switch enclosures.
 2. Single-gang, with “PUSH TO EXIT” knob, RED in color.
3. Push-button switches shall be powered from their associated controller, using DC power.
4. Push-button switches shall be equipped with an adjustable 1 to 45 second pneumatic time delay.

B. Mounts
1. Flush or surface mounting.
2. Push buttons shall be suitable for flush mounting in the switch enclosures.
3. Enclosures shall additionally be suitable for installation in a controlled and uncontrolled indoor environment.

C. Manufacturer: Rutherford Controls 991E Series, or approved equal.

2.7 DOOR HARDWARE INTERFACES

A. Piezoelectric Exit Alarm:
1. Operation of a monitored door shall generate an audible alarm.
2. Horn shall be flush-mounted, and capable to be installed in a single-gang box.
3. Horn shall be powered from the security system power supply, and shall provide a steady audible output of 87-dB at 10 feet.
4. Manufacturer/Part Number: Revere Siren/RVL-18C/SRN-SC, or approved equal.

B. Electric Door Strikes: Use end-of-line resistors to provide power-line supervision. Signal switches shall transmit data to controller to indicate when the bolt is not engaged and the strike mechanism is unlocked, and they shall report a forced entry. Power and signal shall be from the controller. Electric strikes are specified in Section 087100 "Door Hardware."

C. Electromagnetic Locks:
1. End-of-line resistors shall provide power-line supervision. Lock status sensing signal shall positively indicate door is secure. Power and signal shall be from the controller.
2. Electromagnetic locks shall be rated for 600 lbs. holding force, and be equipped with an integrated door position switch.
3. Manufacturer/Part Number: Securitron M32 Series, or approved equal.

D. Door Contacts:
1. Door contacts shall be capable of detecting a 1” separating movement between magnet and switch housing. Upon detection, the door contact shall transmit an alarm signal to the security management system.
2. Manufacturer: Interlogix, or approved equal.

E. Panic Devices
1. Designed to support alarm message requirements to the Security Desk via push-button.
2. Mounted on wall or under desk.
3. Connected to Access Control System.

4. Manufacturer, Wall-Mounted: Safety Technology International Part No. SS-2-3-2AB-0- EMERGENCY

5. Manufacturer, Desk-Mounted: Sentrol Part No.3400

F. External Passive Infrared (PIR) Request-to-Exit Devices:
 1. Designed for use with surface-mounted magnetic locks.
 2. Wall or ceiling mount, with adjustable field pattern.
 3. Manufacturer: Securitron XMS, or approved equal.

2.4 CABLES

A. General Cable Requirements: Comply with requirements in Division 28 Section "Conductors and Cables for Electronic Safety and Security" and as recommended by system manufacturer for integration requirement.

B. Plenum-Rated TIA 485-A Cables:
 1. Two pairs, No. 22 AWG, stranded tinned copper conductors, fluorinated-ethylene-propylene insulation, unshielded, and fluorinated-ethylene-propylene jacket.
 2. NFPA 70, Type CMP.
 4. Manufacturer: Belden or approved equal.

C. Multiconductor Reader Cable:
 1. Cable shall be Siamese type composite cable, with multiple sheaths under a common jacket:
 a. GRAY Jacket: 4 conductor 18 AWG stranded unshielded bare copper, for Lock Power.
 b. ORANGE Jacket: 6 conductor 18 AWG stranded shielded bare copper with an overall shield, for Card Reader.
 c. WHITE Jacket: 2 conductor 18 AWG stranded unshielded bare copper, for door contacts.
 d. BLUE Jacket: 4 conductor 18 AWG stranded unshielded bare copper, for Request-to-Exit device and spare conductors.
 2. NFPA 70, Type CMP.
 3. Belden Part No. 638AFS, or approved equal.

D. Paired, Plenum-Type, Lock Cables:
 1. 2 conductor, 16 AWG, stranded tinned copper conductors.
 2. NFPA 70, Type CMP.
 4. Manufacturer: Belden, or approved equal.
E. LAN Cabling:
 1. Comply with requirements in Section 271513 "Communications Copper Horizontal Cabling."

2.5 POWER SUPPLY FOR SURFACE-MOUNTED ELECTRIC LOCKS
 A. Dedicated power supply for surface-mounted electronic locks shall be:
 1. UL listed and NFPA 72 approved.
 2. 12V DC/24V DC outputs. This will be set for 24V DC
 3. Wall-mounted
 4. Equipped with fire alarm relay for connection to fire alarm control panel.
 B. Manufacturer: Altronix, or approved equal.

2.6 POWER SUPPLY FOR ACCESS CONTROL SYSTEM
 A. Dedicated power supply for access control equipment shall be:
 1. UL listed and NFPA 72 approved.
 2. 12V DC/24V DC outputs. This will be set for 12V DC
 3. Wall-mounted
 4. Equipped with fire alarm relay for connection to fire alarm control panel.
 B. Additionally, provide and install a dedicated 7-Amp battery backup for each power supply.
 C. Manufacturer: Altronix, or approved equal.

PART 3 - EXECUTION

3.1 CONSTRUCTION WASTE MANAGEMENT (LEED)
 A. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section "Construction Waste Management."

3.2 EXAMINATION
 A. Examine pathway elements intended for cables. Check raceways, cable trays, and other elements for compliance with space allocations, installation tolerances, hazards to cable installation, and other conditions affecting installation.
 B. Examine roughing-in for LAN and control cable conduit systems to PCs, controllers, card readers, and other cable-connected devices to verify actual locations of conduit and back boxes before device installation.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 PREPARATION

A. Comply with recommendations in SIA CP-01 and CP-07.

C. Product Schedules: Obtain detailed product schedules from manufacturer of access-control system or develop product schedules to suit Project. Fill in all data available from Project plans and specifications and publish as Product Schedules for review and approval.

D. In meetings with Architect and Owner, present Product Schedules and review, adjust, and prepare final setup documents. Use approved, final Product Schedules to set up system software.

3.4 CABLING

A. Comply with NECA 1, "Good Workmanship in Electrical Construction."

B. Furnish and install cables and wiring in accordance with these specifications and the requirements in Section 280513 "Conductors and Cables for Electronic Safety and Security."

C. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters. Conceal raceway and wiring except in unfinished spaces.

D. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Use UL-listed plenum cable in environmental airspaces, including plenum ceilings. Conceal raceway and cables except in unfinished spaces.

E. Install LAN cables using techniques, practices, and methods that are consistent with Category 5e rating of components and optical fiber rating of components, and that ensure Category 6 and optical fiber performance of completed and linked signal paths, end to end.

F. Boxes and enclosures containing security-system components or cabling, and which are easily accessible to employees or to the public, shall be provided with a lock. Boxes above ceiling level in occupied areas of the building shall not be considered accessible. Junction boxes and small device enclosures below ceiling level and easily accessible to employees or the public shall be covered with a suitable cover plate and secured with tamperproof screws.

G. Furnish and install end-of-line resistors at the field device location and not at the controller or panel location.

3.5 CABLE APPLICATION

A. Comply with TIA 569-D, "Commercial Building Standard for Telecommunications Pathways and Spaces."
B. Cable application requirements are minimum requirements and shall be exceeded if recommended or required by manufacturer of system hardware.

C. TIA 232-F Cabling: Install at a maximum distance of 50 ft. between terminations.

D. TIA 485-A Cabling: Install at a maximum distance of 4000 ft. between terminations.

E. Card Readers and Keypads:
 1. Install number of conductor pairs recommended by manufacturer for the functions specified.
 2. Unless manufacturer recommends larger conductors, install No. 22 AWG wire if maximum distance from controller to the reader is 250 ft., and install No. 20 AWG wire if maximum distance is 500 ft.
 3. For greater distances, install "extender" or "repeater" modules recommended by manufacturer of the controller.
 4. Install minimum No. 18 AWG shielded cable to readers and keypads that draw 50 mA or more.

F. Install minimum No. 16 AWG cable from controller to electrically powered locks. Do not exceed 500 ft. between terminations.

G. Install minimum No. 18 AWG ac power wire from transformer to controller, with a maximum distance of 25 ft. between terminations.

3.6 GROUNDING

A. Comply with Section 270526 "Grounding and Bonding for Communications Systems."

B. Comply with IEEE 1100, "Recommended Practice for Power and Grounding Electronic Equipment."

C. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.

D. Bond shields and drain conductors to ground at only one point in each circuit.

E. Signal Ground:
 1. Terminal: Locate in each equipment room and wiring closet; isolate from power system and equipment grounding.
 2. Bus: Mount on wall of main equipment room with standoff insulators.
 3. Backbone Cable: Extend from signal ground bus to signal ground terminal in each equipment room and wiring closet.

3.7 INSTALLATION

A. Push Buttons: Where multiple push buttons are housed within a single switch enclosure, they shall be stacked vertically with each push-button switch labeled with 1/4-inch-high text and symbols as required. Push-button switches shall be connected to the controller associated with
the portal to which they are applied, and shall operate the appropriate electric strike, electric bolt, or other facility release device.

B. Furnish and install card readers, keypads, magnetic locks, push buttons, door contacts, and request-to-exit devices. Provide connectivity to these devices if these devices have been furnished as part of the door hardware.

3.8 IDENTIFICATION

A. In addition to requirements in this article, comply with applicable requirements in Section 260553 "Identification for Electrical Systems" and with ANSI/TIA-606C.

B. Develop and provide as-built device and cable administration drawings for system identification, testing, and management. Use unique, alphanumeric designation for each cable, and label cable and jacks, connectors, and terminals to which it connects with the same designation. Use logical and systematic designations for facility's architectural arrangement.

C. Label each terminal strip and screw terminal in each cabinet, rack, or panel.

1. All wiring conductors connected to terminal strips shall be individually numbered, and each cable or wiring group being extended from a panel or cabinet to a building-mounted device shall be identified with the name and number of the particular device as shown.

2. Each wire connected to building-mounted devices is not required to be numbered at the device if the color of the wire is consistent with the associated wire connected and numbered within the panel or cabinet.

D. At completion, cable and asset management software shall reflect as-built conditions.

3.9 SYSTEM SOFTWARE AND HARDWARE

A. Develop, install, and test software and hardware, and perform database tests for the complete and proper operation of systems involved. Assign software license to Owner.

3.10 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

1. LAN Cable Procedures: Inspect for physical damage and test each conductor signal path for continuity and shorts. Use tester approved for type and kind of installed cable. Test for faulty connectors, splices, and terminations. Test according to TIA 568-C.1, "Commercial Building Telecommunications Cabling Standards - Part 1: General Requirements." Link performance for balanced twisted-pair cables must comply with minimum criteria in TIA 568-C.1.
2. Test each circuit and component of each system. Tests shall include, but are not limited to, measurements of power-supply output under maximum load, signal loop resistance, and leakage to ground where applicable. System components with battery backup shall be operated on battery power for a period of not less than 10 percent of the calculated battery operating time. Provide special equipment and software if testing requires special or dedicated equipment.

3. Operational Test: After installation of cables and connectors, demonstrate product capability and compliance with requirements. Test each signal path for end-to-end performance from each end of all pairs installed. Remove temporary connections when tests have been satisfactorily completed.

C. Devices and circuits will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

3.11 STARTUP SERVICE

A. Engage a factory-authorized service representative to supervise and assist with startup service.

1. Complete installation and startup checks according to approved procedures that were developed in "Preparation" Article and with manufacturer's written instructions.

2. Enroll and prepare badges and access cards for Owner's operators, management, and security personnel.

3.12 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain security access system. See Section 017900 "Demonstration and Training."

B. Develop separate training modules for the following:

1. Computer system administration personnel to manage and repair the LAN and databases and to update and maintain software.

2. Operators who prepare and input credentials to man the control station and workstations and to enroll personnel.

4. Hardware maintenance personnel.

5. Corporate management.

END OF SECTION 281500
SECTION 282000 - VIDEO SURVEILLANCE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes a video surveillance system consisting of cameras, digital video recorder, data transmission wiring, and a control station with its associated equipment.

B. Related Requirements:

1. Division 01 Section “Construction Waste Management”
2. Division 01 Section "LEED Requirements" for additional LEED requirements.

1.3 DEFINITIONS

A. AGC: Automatic gain control.

B. BNC: Bayonet Neill-Concelman - type of connector.

C. B/W: Black and white.

D. CCD: Charge-coupled device.

E. FTP: File transfer protocol.

F. IP: Internet protocol.

G. LAN: Local area network.

H. MPEG: Moving picture experts group.

I. NTSC: National Television System Committee.

J. PC: Personal computer.

K. PTZ: Pan-tilt-zoom.

L. RAID: Redundant array of independent disks.

M. TCP: Transmission control protocol - connects hosts on the Internet.
N. UPS: Uninterruptible power supply.

O. WAN: Wide area network.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include dimensions and data on features, performance, electrical characteristics, ratings, and finishes.

B. Shop Drawings: For video surveillance. Include plans, elevations, sections, details, and attachments to other work.

1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

2. Functional Block Diagram: Show single-line interconnections between components for signal transmission and control. Show cable types and sizes.

3. Dimensioned plan and elevations of equipment racks, control panels, and consoles. Show access and workspace requirements.

4. UPS: Sizing calculations.

5. Wiring Diagrams: For power, signal, and control wiring.

C. Design Data: Include an equipment list consisting of every piece of equipment by model number, manufacturer, serial number, location, and date of original installation. Add pretesting record of each piece of equipment, listing name of person testing, date of test, set points of adjustments, name and description of the view of preset positions, description of alarms, and description of unit output responses to an alarm.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For cameras, power supplies, infrared illuminators, monitors, videotape recorders, digital video recorders, video switches, and control-station components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

1. Lists of spare parts and replacement components recommended to be stored at the site for ready access.

1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NECA 1.

C. Comply with NFPA 70.

D. Electronic data exchange between the video surveillance system and access-control system shall comply with SIA TVAC.
1.7 PROJECT CONDITIONS

A. Environmental Conditions: Capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:

1. Control Station: Rated for continuous operation in ambient temperatures of 60 to 85 deg F and a relative humidity of 20 to 80 percent, noncondensing.
2. Interior, Controlled Environment: System components, except central-station control unit, installed in temperature-controlled interior environments shall be rated for continuous operation in ambient temperatures of 36 to 122 deg F dry bulb and 20 to 90 percent relative humidity, noncondensing. Use NEMA 250, Type 1 enclosures.
3. Interior, Uncontrolled Environment: System components installed in non-air-conditioned or temperature-controlled interior environments shall be rated for continuous operation in ambient temperatures of 0 to 122 deg F dry bulb and 20 to 90 percent relative humidity, noncondensing. Use NEMA 250 enclosures.
4. Security Environment: Camera housing for use in high-risk areas where surveillance equipment may be subject to physical violence.

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of cameras, equipment related to camera operation, and control-station equipment that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Three years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SYSTEM REQUIREMENTS

A. The video surveillance system for this project shall conform to the standards and requirements of the City of Philadelphia’s video surveillance system architecture, and shall easily interface with existing CCTV systems and equipment.

B. Surge Protection: Protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads. Include surge protection for external wiring of each conductor's entry connection to components.

C. Tamper Protection: Tamper switches on enclosures, control units, pull boxes, junction boxes, cabinets, and other system components shall initiate a tamper-alarm signal when unit is opened.
or partially disassembled. Control-station, control-unit alarm display shall identify tamper alarms and indicate locations.

2.2 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NECA 1.

C. Comply with NFPA 70.

D. Electronic data exchange between video surveillance system with an access-control system shall comply with SIA TVAC.

2.3 DIGITAL VIDEO MANAGEMENT SYSTEM

A. The video surveillance system for this project shall use IP based network cameras and shall be capable of operating and being managed by the existing video network management system by Genetec being provided by the base building.

2.4 IP CAMERAS

A. Indoor:
 1. Color Dome Camera: Assembled and tested as a manufactured unit, containing fixed color camera, varifocal lens, and vandal resistant dome assembly.
 2. Comply with UL 639.
 3. Sensitivity: Camera shall provide usable images in low-light conditions, delivering an image at a scene illumination.
 4. Networked device, operating via IEEE 802.3 Power over Ethernet.
 5. Camera Electronics:
 b. Image Sensor: 1/4” or 1/3” CMOS.
 c. Maximum of 3 Megapixel resolution
 d. DC Auto-Iris lens control.
 6. Lens types:
 a. Auto-iris
 b. True day/night functionality.
 c. Camera systems available with a variety of lens types and focal lengths.
 7. Manually selectable modes for backlight compensation or normal lighting.
 8. Available as “Standard” and 180-Degree systems
 9. Provide all wall and ceiling mounting hardware and brackets. Coordinate color of mounting hardware with owner and architect before installation.
 10. Manufacturers and Part Numbers:
 a. Bosch Flexidome Series
 b. Or approved equal
2.5 NETWORK VIDEO RECORDING EQUIPMENT

A. Cameras added under this project will utilize existing network video recording equipment by Genetec being provided by the base building.

2.6 POWER SUPPLIES

A. Low-voltage power supplies matched for voltage and current requirements of cameras and accessories, and of type as recommended by manufacturer of camera.

B. Annunciation: Indicate change in system condition and switching of system or component to backup power.

PART 3 - EXECUTION

3.1 EXAMINATION

A. CONSTRUCTION WASTE MANAGEMENT (LEED)

1. The contractor, subcontractors, and their personnel shall follow the procedures and practices for waste separation, collection and transport as defined in the contractor’s “Waste Management Plan” as required by Division 01 Section "Construction Waste Management."

B. Examine pathway elements intended for cables. Check raceways and other elements for compliance with space allocations, installation tolerance, hazards to camera installation, and other conditions affecting installation.

C. Examine roughing-in for LAN, WAN, and IP network before device installation.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 WIRING

A. Comply with requirements in Section 270528 "Pathways for Communications Systems."

B. Wiring Method: Install cables in raceways unless otherwise indicated.

1. Except raceways are not required in accessible indoor ceiling spaces and attics.

2. Except raceways are not required in hollow gypsum board partitions.

3. Conceal raceways and wiring except in unfinished spaces.

C. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

D. Splices, Taps, and Terminations: For power and control wiring, use numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Tighten electrical
connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

E. For communication wiring, comply with the following:

1. Section 271313 "Communications Copper Backbone Cabling."
2. Section 271323 "Communications Optical Fiber Backbone Cabling."
3. Section 271333 "Communications Coaxial Backbone Cabling."
4. Section 271513 "Communications Copper Horizontal Cabling."
5. Section 271523 "Communications Optical Fiber Horizontal Cabling."
6. Section 271533 "Communications Coaxial Horizontal Cabling."

F. Grounding: Provide independent-signal circuit grounding recommended in writing by manufacturer.

3.3 VIDEO SURVEILLANCE SYSTEM INSTALLATION

A. Install cameras and infrared illuminators level and plumb.

B. Install cameras with 84-inch- minimum clear space below cameras and their mountings. Change type of mounting to achieve required clearance.

C. Set pan unit and pan-and-tilt unit stops to suit final camera position and to obtain the field of view required for camera. Connect all controls and alarms, and adjust.

D. Install power supplies and other auxiliary components at control stations unless otherwise indicated.

E. Install tamper switches on components indicated to receive tamper switches, arranged to detect unauthorized entry into system-component enclosures and mounted in self-protected, inconspicuous positions.

F. Avoid ground loops by making ground connections only at the control station.

1. For 12- and 24-V dc cameras, connect the coaxial cable shields only at the monitor end.

G. Identify system components, wiring, cabling, and terminals according to Section 270553 "Identification for Communications Systems."

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:

1. Inspection: Verify that units and controls are properly installed, connected, and labeled, and that interconnecting wires and terminals are identified.
2. Pretesting: Align and adjust system and pretest components, wiring, and functions to verify that they comply with specified requirements. Conduct tests at varying lighting levels, including day and night scenes as applicable. Prepare video-surveillance equipment for acceptance and operational testing as follows:
 a. Prepare equipment list described in "Informational Submittals" Article.
 b. Verify operation of auto-iris lenses.
 c. Set back-focus of fixed focal length lenses. At focus set to infinity, simulate nighttime lighting conditions by using a dark glass filter of a density that produces a clear image. Adjust until image is in focus with and without the filter.
 d. Set back-focus of zoom lenses. At focus set to infinity, simulate nighttime lighting conditions by using a dark glass filter of a density that produces a clear image. Additionally, set zoom to full wide angle and aim camera at an object 50 to 75 feet away. Adjust until image is in focus from full wide angle to full telephoto, with the filter in place.
 e. Set and name all preset positions; consult Owner's personnel.
 f. Set sensitivity of motion detection.
 g. Connect and verify responses to alarms.
 h. Verify operation of control-station equipment.
3. Test Schedule: Schedule tests after pretesting has been successfully completed and system has been in normal functional operation for at least 14 days. Provide a minimum of 10 days' notice of test schedule.
4. Operational Tests: Perform operational system tests to verify that system complies with Specifications. Include all modes of system operation. Test equipment for proper operation in all functional modes.

E. Video surveillance system will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

3.5 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose. Tasks shall include, but are not limited to, the following:

1. Check cable connections.
2. Check proper operation of cameras and lenses. Verify operation of auto-iris lenses and adjust back-focus as needed.
3. Adjust all preset positions; consult Owner's personnel.
4. Recommend changes to cameras, lenses, and associated equipment to improve Owner's use of video surveillance system.
5. Provide a written report of adjustments and recommendations.

3.6 CLEANING

A. Clean installed items using methods and materials recommended in writing by manufacturer.

B. Clean video-surveillance-system components, including camera-housing windows, lenses, and monitor screens.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain video-surveillance equipment.

END OF SECTION 282000
SECTION 284621.11 - ADDRESSABLE FIRE-ALARM SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 RELATED WORK
A. Work covered by this section includes the furnishing of labor, equipment, and materials for installation of the fire alarm equipment as indicated on the schematic design drawings and related construction documents including General and Supplementary Conditions and Division 01 General Requirements, shall be included in and made part of this Section.

1.3 DESCRIPTION OF WORK
A. This section of the specifications includes the furnishing, installation, and connection of the fire alarm equipment to form a complete coordinated system ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, Fire Alarm Control Panel (FACP) modifications, auxiliary control devices, and wiring as shown on the drawings and specified herein.
B. The new equipment shall be an extension to the base-building Siemens Industry fire alarm system. All new equipment shall be fully compatible with the existing voice signaling fire alarm control panel. The extension to the existing Addressable Fire Alarm System shall perform and function as herein specified to meet the contract drawing design intent. The extension shall be wired, connected, and left in approved operating condition in accordance with all applicable life safety codes, related specification sections and manufacturer requirements. All new wiring methods shall match existing site installations and the existing/approved sequence of operations shall be maintained, unless otherwise directed by the AHJ.
 1. The system shall be an addressable fire detection and voice signaling system in accordance with the schematic design drawings. It shall utilize distributed modular control panels that utilize digital communications to provide optimal fault-tolerance and support future modification and expansion with a minimum of future wiring and hardware additions, in full compliance with all applicable codes and standards. The features and capacities described in this specification are required as a minimum for this project and shall be furnished by the successful contractor. All materials and equipment used shall be standard components, regularly manufactured for this and/or other systems and not custom designed specifically for this project.
 2. The system shall be scalable in nature and shall permit expansion of both capacity and functionality. It shall include all necessary hardware, software and peripheral devices to perform the following functions, but not limited to:
 a. Fire and smoke detection
 b. Manual alarm activation
c. Occupant audible, visual and auxiliary notification
d. Automatic and manual one-way emergency and mass notification voice communications
e. Two-way in-building emergency communications
f. Life safety functions to include:
 1) Elevator Service
 2) Smoke management
 3) Smoke door release service
g. Integration with and status monitoring of related systems as required and specified:
 1) Fire protection suppression systems
 2) HVAC and building automation systems (BAS)
 3) Security, communications and information technology systems
h. Report system events to the Listed Supervising Station via the approved means.
i. System programming and re-programming of all changes as necessary to accommodate the phased construction, alteration and demolition activities.

4. The system shall be installed per the Engineer of Record’s schematic design drawings, project specifications and installed in full compliance with National, State and local Codes. These published editions of following reference standards shall be used in system design, installation, operation and maintenance unless the applicable legally referenced standard provides more stringent requirements:
 c. Underwriters Laboratories (UL) Listings.
 d. City of Philadelphia Fire Department Regulations
 e. Americans with Disabilities Act (ADA), the Architectural Barriers Act (ABA), and Accessibility Regulations of the local jurisdiction.
 f. Applicable FM Global (Factory Mutual) Property Loss Data sheets.

5. The system shall include all required hardware, raceways, interconnecting wiring and software to accomplish the requirements of this specification and the schematic design drawings, whether or not specifically itemized herein. All devices installed outdoors or within areas exposed to unconditioned spaces or wet locations shall be listed for “outdoor use”. Electrical raceway, fittings and enclosures shall be NEMA Type 4.

6. Provide the services of qualified system designers to generate shop drawings, and field technicians to provide installation oversight during construction and system startup. Technicians shall inspect, program, test and make any necessary adjustments to the completed system, to ensure compliance with the manufacturer's recommended practices and the approved shop drawings.

7. The system as specified shall be supplied, installed, tested and approved by the local Authority Having Jurisdiction, and turned over to the owner in an operational condition.

8. In the interest of job coordination and responsibilities, the installing contractor shall contract directly with the local Siemens factory-direct branch for fire alarm equipment, engineering, programming, inspection and tests. All control panel assemblies and connected field appliances shall be provided by the same system supplier. It shall be
designed and tested to ensure that the system operates as specified and is compatible with
the core & shell system. The fire alarm platform specified shall be that of Siemens
Industry, model Desigo Modular which meets the project requirements. Being listed as
an acceptable Manufacturer in no way relieves obligation to provide all equipment and
features in accordance with these specifications. Alternate products will not be
accepted.

a. For equipment support contact Steve Friel, Siemens Industry Smart Infrastructure,
1450 Union Meeting Road Blue Bell, PA 19422; Mobile: 609-548-8169; email:
stephen.friel@siemens.com

9. Strict conformance to this specification is required to ensure that the installed and
programmed system will function as design and will accommodate the future
requirements and operations of the building owner. All specified operational features
must be met without exception.

1.4 SUMMARY

A. Section includes, but is not limited to:

1. Fire-alarm control unit.
3. System smoke detectors.
4. Air-sampling smoke detectors.
5. Nonsystem smoke detectors.
6. Heat detectors.
8. Device guards.
9. Firefighters' two-way telephone communication service.
10. Firefighters' smoke-control station.
15. Digital alarm communicator transmitter.
17. Network communications.

B. Related Requirements:

1. Section 271513 "Communications Copper Horizontal Cabling" for cables and conductors
for fire-alarm systems.

1.5 DEFINITIONS AND ACRONYMS

A. Acoustically Distinguishable Space (ADS). An emergency communications system
notification zone, or subdivision thereof, that might be an enclosed or otherwise physically
defined space, or that might be distinguished from other spaces because of different acoustical,
environmental, or use characteristics, such as reverberation time and ambient sound pressure
level.
B. AHJ: Authority Having Jurisdiction, the individual or agency that has legal responsibility for reviewing the design for conformance with local codes and regulations.

C. ASME: American Society of Mechanical Engineers.

D. Broadcast Media: The speakers, radio, cell phone, and other media that will carry the selected message to the selected audience.

E. Engineer of Record: Design professional responsible for the Schematic design drawings and project specifications

F. FACP: Fire alarm control panel.

G. FM: FM Global (Factory Mutual).

H. Furnish: To supply the stated equipment or materials.

I. Install: To set in position and connect or adjust for use.

J. LED: Light-emitting diode.

K. LOC: Local Operating Console.

L. MNS: Mass Notification System.

M. NFPA: National Fire Protection Association. Definitions in NFPA 72 apply to fire alarm terms used in this Section.

N. NICET: National Institute for Certification in Engineering Technologies.

O. Schematic design drawings: drawings which establish the objectives and design criteria of the system along with locations of fire alarm equipment, a system concept riser diagram, identification of interface(s) required with fire safety functions, and identification of all initiating device and notification appliance locations.

P. Provide: To furnish and install the stated equipment or materials.

Q. UL: Underwriters Laboratories.

1.6 SEQUENCE OF INSTALLATION

A. This system is being installed as part of a new construction tenant improvement project and shall be coordinated with the other trades and any construction phasing schedules. The new work is an extension of the existing Siemens fire alarm system

1. Furnish and install an extension to the existing fire alarm system, complete as shown on the plans. All new devices shall be fully compatible with existing fire alarm control panel. All new initiating devices shall be addressable type devices unless otherwise described. The extension to the existing Addressable Fire Alarm System shall perform and function as herein specified to meet the contract drawing design intent. The extension to the existing system shall be wired, connected, and left in approved operating condition
in accordance with all applicable life safety codes, related specification sections and manufacturer requirements. All new network panels shall match existing installations.

a. All new devices and appliances shall be UL cross listed with existing fire alarm control panel.

b. Existing equipment shall be expanded, modified, or supplemented as necessary to extend the existing functions to the new points or zones. New components shall be capable of merging with the existing configuration without degrading the performance of either system. The scope of the acceptance tests of paragraph Testing shall include aspects of operation that involve combined use of both new and existing portions of the final configuration.

c. Interfacing components shall be furnished as required to connect to subsystems or devices which interact with the fire alarm system, such as supervisory or alarm contacts in suppression systems, operating interfaces for smoke control systems, door releases, etc.

d. The existing equipment and new equipment shall be clearly identified on the shop drawings.

e. The existing fire alarm system shall allow for loading and editing special instructions and operating sequences as required. The system shall be capable of onsite programming to accommodate system expansion and facilitate changes in operation.

f. Existing Fire-Alarm Equipment: Maintain existing equipment fully operational until new equipment has been tested and accepted. As new equipment is installed, label it "NOT IN SERVICE" until it is accepted. Remove labels from new equipment when put into service, and label existing fire-alarm equipment "NOT IN SERVICE" until removed from the building.

1.7 FIRE CONTROL PANEL – The system shall be a complete, electrically supervised fire detection and notification system, with a microprocessor-based operating system having the following capabilities, features, and capacities:

A. All control equipment shall be listed to the latest edition of UL Standard 864 (9th Edition)-categories UOJZ, UOXX and UUKL as applicable with the following features:

2. The control panel shall allow control and monitoring from a wireless handheld display device during maintenance, inspection and troubleshooting tasks
3. The control panel shall allow complete control and monitoring from a wireless handheld display device during one-man testing of the system
4. Testing supported should be real smoke testing of devices, automatically logged and made available in NFPA format reports. Manual test entries will not be accepted.
5. System shall provide an output port for monitoring purposes by external systems. Communications to an external system shall be RS-232 or RS-485 communications.
6. A single node or system shall support at least 50 remote transponders.
7. Communications between network nodes, each supporting an interactive, self-standing, intelligent local control panel, with system wide display. Any network node shall be capable of supporting a local system in excess of 4000 input/output points.
8. The local system shall provide status indicators and control switches for all of the following functions:

a. Audible notification alarm circuit zone control for high-rise applications.

b. Remote Alarm Transmission By-pass Switch: Shall prevent transmission of all signals to the main fire alarm control unit when in the "off" position. A system trouble signal shall be energized when switch is in the off position.

c. Drill Switch: Shall activate all notification devices without tripping the remote alarm transmitter. This switch is required only for general evacuation systems specified herein.

d. Door Holder By-Pass Switch: Shall prevent doors from releasing during fire alarm tests. A system trouble alarm shall be energized when switch is in the abnormal position.

e. Elevator recall By-Pass Switch: Shall prevent the elevators from recalling upon operation of any of the devices installed to perform that function. A system trouble alarm shall be energized when the switch is in the abnormal position.

f. HVAC/Smoke Damper By-Pass: Provide a means to disable HVAC fans from shutting down and/or smoke dampers from closing upon operation of an initiating device designed to interconnect with these devices.

g. Any additional status or control functions as indicated on the schematic design drawings, including but not limited to emergency generator functions, fire pump functions, door unlocking and security with bypass capabilities.

9. The system shall be UL 1076 listed for monitoring and reporting security System Zoning.

10. Each intelligent addressable device or conventional zone on the system shall be displayed at the main fire alarm panel and each local fire alarm remote annunciator by a unique alphanumeric label identifying its location.

B. The system shall be complete, electrically supervised voice evacuation system having the following capabilities, features and capacities:

1. Voice amplification shall be supervised and backed up with like amplifiers. Back up shall be provided one per panel and transfer automatically upon a primary amplifier failure. Backup amplifiers shall not share components and must be fully stand-alone.

2. Amplifiers shall be rated for 25V or 70.7V RMS.

 Amplifiers shall be sized as minimum, to accommodate speakers in mechanical spaces at 2 watts and other locations 1 watt. Minimum 25% space capacity.

3. Audio shall be synchronized between panels in order to take into account common areas.

4. The network, and audio, risers between nodes shall be copper and support Class A loop configuration to allow communication to continue in the event of a fault.
5. Speakers shall have the ability to play both voice and coded audio tones, including low frequency 520Hz required for sleeping areas.

6. The system shall provide status indicators and control switches for all of the following voice functions:
 a. Audible and visual notification alarm circuit zone control.
 b. Speaker circuit zone control.

1.8 TWO-WAY IN-BUILDING EMERGENCY COMMUNICATIONS

A. The existing base-building system utilizes a Philadelphia-approved Fire Fighter Phone System for two-way emergency response personnel to speak with one another during emergency situations. The master phone in the Fire Command Center can connect to the emergency telephones or telephone jacks located throughout a building. It is designed to be used in areas where radio communication is not effective or available. Provide an approved two-way hard-wired firefighter communication system integrated with the fire alarm control panel. It shall utilize dedicated telephone voice communication links between the fire command center, and remote firefighters' telephone jacks. All circuits are be supervised telephone and provide the following:
 a. Locations as shown on the schematic design drawings, not limited to:
 1) Each elevator car
 2) Elevator lobbies
 3) Entry inside the stair enclosure at each floor level
 4) Each Fire Pump Room
 5) Each Elevator Machine Room
 6) Emergency Power Transfer Room
 2. Handsets: push-to-talk-type sets with noise-canceling microphone stored in a cabinet adjacent to fire-alarm control unit in the fire command center. Quantity of six.
 3. Handset storage cabinet at the fire command center to house a minimum of 6 portable firefighter's telephone handsets for remote use.
 4. The two-way telephone system shall be capable of handling single or simultaneous conversations with all phones connected into the system. The phone system circuits shall be so designed to prevent static, hum or other interference for clear, intelligible 2-way conversation between all phones of the system.
 a. Wired NFPA 72 Class B.
 5. When the phone is plugged in the phone jack, the system shall indicate to the person attempting to use the remote phone, by beeping busy signal, that the signal is being received at the fire command center and that the lines are intact. As many as six (6) phones shall be able to be connected into the active conversation at the discretion of the person at the fire command center.

1.9 PERFORMANCE REQUIREMENTS

A. Comply with NFPA 72 installation methods, all contract documents and specification requirements.
1. The FACP and auxiliary power panels shall provide power, annunciation, supervision
and control for the system.
2. The voice evacuation system amplifiers shall be configured as either bulk or distributed
audio. Provide a multi-channel system if sequence of operations requires partial
evacuations.
3. Strobes shall be synchronized throughout the entire building.
4. Provide electrical supervision of the primary power (AC) supply, presence of the battery,
battery voltage, and placement of system modules within the control panel.
5. Incorporate firefighter emergency communication systems, as specified.

B. The system shall be designed such that in the event of a network communications failure, any
remaining interconnected panels will operate as a sub-network and any isolated panels will
operate in standalone mode. Upon communications failure, a trouble condition will be
reported across the network and the disconnected panel shall continue to function in
standalone mode.

C. Circuits and Pathways
 1. Network Communications and vertical trunk wiring: all data wiring and audio risers shall
 be Class A, circuits as defined in NFPA 72, utilizing physically separated outgoing and
 return loops and Level 2 survivability (minimum).
 2. Addressable Signaling Line Circuit (SLC) wiring shall be configured as Class B circuits,
 with a minimum Level 1.
 a. SLC wiring shall utilize fault isolation modules so that a single wiring fault on the
 conductors serving one floor or evacuation signaling zone will not affect the
 operation of devices serving any other zone.
 b. SLCs shall not exceed 75% of the number of each type of device the circuit is
 capable of supporting.
 3. Visual Notification Appliance Circuit (NAC) wiring shall be configured as Class B
 circuits.
 a. Minimum Level 2 pathway survivability from their point of origin to the area
 served, and Level 1 within the evacuation signaling zone served.
 b. The system shall be provided with a minimum of two (2) visual NACs for each
 floor, evacuation zone or smoke compartment; whichever is greater. The actual
 number of circuits to be installed shall be coordinated with the supplier's shop
 drawings. Appliance circuits shall be zoned to correspond with the building fire
 barriers and other building features.
 4. Speaker Notification Appliance Circuits (NAC) shall be configured as Class B circuits.
 Appliance circuits shall be zoned to correspond with the building fire barriers and other
 building features. The system shall be provided with the minimum listed speaker circuits
 as follows:
 a. Minimum Level 2 pathway survivability from their point of origin to the area
 served, and Level 1 within the evacuation signaling zone served.
 1) One (1) speaker circuit for each stairwell, configured as a vertical paging zone.
 2) One (1) speaker circuit for each elevator group.
 3) Minimum (1) speaker circuits for each evacuation signaling zone or smoke
 compartment; whichever is greater.
 4) Speaker circuits shall be individually selective by evacuation signaling zones
 and shall be zoned to correspond with the building fire barriers and other
 building features.
D. The existing / approved sequence of operations for this fire alarm system utilizes partial evacuation and relocation. The system components and circuits shall be designed and installed such that attack by fire within an evacuation signaling zone does not impair control and operation of the notification appliances outside the evacuation signaling zone.

1. Where the separation of in-building fire emergency voice/alarm control equipment locations results in the portions of the system controlled by one location being dependent upon the control equipment in other locations, the circuits between the dependent controls shall be protected against attack by fire by the protection provided by the pathway survivability level required in NFPA 72 or by performance alternatives approved by the authority having jurisdiction.
 a. Protection of circuits between redundant control equipment locations that are not mutually dependent shall not be required.
 b. All circuits necessary for the operation of the notification appliances shall be protected until they enter the evacuation signaling zone that they serve by the protection provided by the pathway survivability level required per NFPA 72 or by performance alternatives approved by the authority.

E. Alarm functions shall override trouble or supervisory functions. Supervisory functions shall override trouble functions.

1.10 SUBMITTALS

A. The equipment supplier responsibilities will include the selection of equipment, devices and materials based on the schematic design drawings and project requirements, and their proper application based on the manufacturer’s limitations, operating characteristics and recommended practices.

1. Equipment quantities and locations shown on the schematic design drawing floorplans shall not be altered or modified without written approval of the Engineer of Record. Any deviation from the Engineer’s coordinated layout or design intent will constitute the submission as incomplete and shop drawings will not be approved.

2. Minor deviations, variations, changes, and corrections from layouts shown on the drawings (based on coordination, conditions, manufacturer's instructions, codes and standards, shop drawings, and verification of measurements and conditions) are permitted to facilitate construction provided the changes do not represent potential changes in scope of work and provided the changes are acceptable to the owner, architect, and engineer.

3. The equipment supplier shall coordinate the installation and system operation with the work of related trades.

B. Catalog manufacturer’s product data sheets for all equipment, accessories and wiring with all applicable components being submitted for this project clearly noted. All equipment shall be subject to approval and no equipment shall be ordered without prior approval.

1. Data Sheets with multiple product shall highlight or identify the specific products utilized for this project.

C. System Calculations - Circuit calculations shall use the end-loading or point-to-point method described in NFPA recommended practices including both standby and active conditions. Complete calculations shall be provided which show the electrical load for all equipment and field circuits. (identify all mathematical formulas, variables, and constants used in all calculations) on the following system components:

1. Voice amplifier wattage, speaker loads and spare capacity.
2. Strobe 24VDC loads and spare capacity.

3. Show wire size, estimated circuit length, and maximum allowable wiring distance as designed. Voltage drop calculations for wiring runs demonstrating worst-case condition.

4. Power supply rating justification showing power requirements for each of the system power supplies. Power supplies shall be sized to furnish the total connected load in a worst-case condition plus 25% spare capacity.

5. NAC circuit (audible and visual) design shall incorporate a 20% spare capacity for future expansion.

D. The shop drawing submittal shall clearly indicate all proposed equipment and devices (type and quantity), with wiring diagrams, detailed operational sequences, and interfaces to related systems. They shall be prepared in accordance with NFPA 72 recommended practices and include the following:

1. Floor plans showing all devices and equipment to be installed with corresponding field settings, circuit, and device designations noted. Settings shall include the device address and candela rating as applicable. Circuit identifiers, device numbers and symbols used shall be clearly defined and consistent between all related documents.
 a. Floor plans at a scale of 1/8” = 1’-0”
 b. When candela ratings are not shown on the schematic design drawings, utilize NFPA 72 visual coverage area tables to select coverage.

2. Complete point-to-point riser diagrams showing all equipment including size, type, number and reference designations for all circuits and devices. Each device shall be shown with address numbers or any other required field device settings including candela rating of notification appliances.
 a. For multiple panel configurations, proved a separate block diagram to show the overall network system architecture with interconnection network circuits.

3. System panel drawings showing cabinet dimensions, internal module placement, field wiring terminations with spare capacity allowances, and any applicable operator’s display and panel switch label assignments. Where multiple equipment cabinets are used in a single location these shall be shown together in elevation for coordination of equipment installation and wireways, and to ensure proper space allocation.

4. Provide a complete sequence of operation in the form of an NFPA Input/Output programming matrix for the entire system as shown in NFPA 72. The matrix shall reflect each unique programmed sequence, whether the sequence is initiated by an individual or common group of similar devices. Matrix shall illustrate alarm input/output events in association with initiation devices. Matrix summary shall include system supervisory and trouble output functions.

5. Installation drawings shop drawings, and as-built drawings shall be prepared by a NICET II or higher individual experienced with the work specified herein.

6. Incomplete submittals shall be returned without review, unless with prior approval of the Engineer.
a. Disposition of shop drawings shall not relieve the Contractor from responsibility for deviations from drawings and specifications, unless the deviations are specifically noted in writing at the time of submission, and written acknowledgement has been received from the Engineer or Record. The disposition of shop drawings shall not relieve the Contractor from responsibility for errors in shop drawings or schedules.

b. Copies of the approved shop drawings shall be maintained on-site to serve as working documents during installation for preparing as-builts.

E. Delegated Design Review of Shop Drawings: As required per the AHJ, in addition to items listed above, provide a compliance and code review by an individual with the required credentials and submit documentation, including any evaluation analysis of the shop drawing submittal. Provide the required review’s credentials and seal/signature by the qualified professional engineer responsible for the preparation, as required. The equipment supplier’s shop drawings shall not be stamped or sealed by an Engineer unless the work is performed under their direct supervision and control.

1.11 QUALITY ASSURANCE

A. The following shall be adhered:

1. State and Local Building Codes as adopted and/or amended by The Authority Having Jurisdiction, ADA, and/or State and local equivalency standards as adopted by The Authority Having Jurisdiction.

2. Owner’s best practices for fire alarm installations/operations including compliance with site standard operating procedures (SOP’s).

B. Equipment Supplier Qualifications

1. The supplied products must utilize the current fire alarm service provider for the modifications to the existing system.
 a. For equipment support contact Steve Friel, Siemens Industry Smart Infrastructure, 1450 Union Meeting Road Blue Bell, PA 19422; Mobile: 609-548-8169; email: stephen.friel@siemens.com

2. The supplied products must utilize multi-channel product distribution on a national basis to be considered for this bid. The distribution shall be from factory branches as well as independent distributors to allow the end user with the ability to utilize factory trained and authorized competitive service providers after system installation and commissioning. Single source system suppliers are not acceptable. The initial installation and commissioning shall be provided by a factory direct branch to ensure a high level of quality for the customer.

3. Shall be licensed in the jurisdiction, if required.

4. The equipment supplier shall have a licensed fire protection engineer on staff to assist with all aspects of the installation including interfacing with the local AHJ and code consulting.

5. The technician shall supervise installation, software documentation, adjustment, preliminary testing, final testing and certification of the system. The technician shall
provide the required instruction to the owner's personnel in the system operation and maintenance.

6. The Equipment Supplier shall have in-house engineering and project management capability consistent with the requirements of this project. Factory trained representatives of the system manufacturer shall perform the detailed engineering of the system.

C. Installer Qualifications:

1. Before commencing work, submit data showing that the manufacturer has successfully installed fire alarm systems of the same scope, type and design as specified.

2. The contractor shall submit copies of all required licenses and bonds as required in the State having jurisdiction.

3. The system installer shall work with the system supplier/designers to ensure all equipment is installed as shown in the Shop Drawings and manufacturer’s requirements and programmed to comply with the project requirements.

4. The installing contractor is responsible for coordination with related trades, and complete (1st party) testing of the system as installed, to include verification that the system performs as intended, and all devices and fault conditions are properly supervised and reported as specified herein.

D. Testing Agency Qualifications: Qualified for testing indicated.

E. Source Limitations for fire alarm equipment: Obtain fire alarm equipment from single source.

1.12 DELIVERY, STORAGE, AND HANDLING

A. Deliver products to project site in original, unopened packages with intact and legible manufacturers’ labels identifying product and manufacturer, date of manufacture, and shelf life if applicable.

B. Store materials inside, under cover, above ground, and kept dry and protected from physical damage until ready for use. Remove from site and discard wet or damaged materials.

1.13 PROJECT CONDITIONS

A. Installed products or materials shall be free from any damage including, but not limited to, physical insult, dirt and debris, moisture, and mold damage.

B. Environmental Limitations: Do not deliver or install products or materials until spaces are enclosed and weather-tight, wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.14 WARRANTY
A. The equipment and wiring shall be warranted to be free from electrical, mechanical and performance defects, within the specified warranty period. Equipment and components that fail in materials or workmanship must be repaired or replaced. It shall include all labor/travel time, parts and programming. The warranty also provides for the adjustment of smoke detector sensitivities due to unwarranted or nuisance detector activations.

1. Warranty Period: One year.
2. Warranty Initiation: Commencing with start-up and owners beneficial use of any portion of the system.
3. The warranty does not cover cases involving component failure due to abuse, misuse, and/or “Acts of God” including but not limited to lightning strikes, flooding, power surges, and fire.
4. This warranty is void if the product is altered, repaired, or serviced by anyone other than original equipment installer.
5. A copy of the manufacturer's warranty shall be provided with closeout documentation and included with the operation and installation manuals.

B. All labor for administering and servicing the warranty, including actual replacement of parts, will be the responsibility of the Installer for the warranty period.

C. This Warranty does not apply to the replacement of consumable parts such as internal standby batteries. These components are designed to diminish over time unless failure has occurred due to a defect in materials, equipment malfunction, or expose to ambient conditions beyond their UL listing. As with all batteries, the maximum capacity and performance of the battery will decrease with time and use; this is not a defect. The expected lifespan of a fire alarm battery under normal conditions is 3 years. Only defective batteries and batteries that leak are covered by this warranty.

D. The Owner reserves the right to make changes to the fire alarm system during the Warranty Period. Such changes do not constitute a waiver of warranty. Contractor shall warrant parts and installation work regardless of any such changes made by Owner, unless the Contractor provides clear and convincing evidence that a specific problem is the result of such changes to the fire alarm system.

1.15 SERVICE AGREEMENT

A. Technical Support: Beginning with Substantial Completion, provide software support for 1 year.

B. Upgrade Service: Update software, firmware, to latest version at project completion. Install and program software upgrades that become available within one year from date of substantial completion. Upgrading software, firmware shall include operating system. Upgrade shall include new or revised licenses for use of software.

1. Provide 30 days' notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.

1.16 EXTRA MATERIALS

A. No extra materials required for this fitout project.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. The equipment and service described in this specification are those supplied and supported by Siemens Industry and represent the base bid for the equipment. Alternate products will not be accepted.
 1. Being listed as an acceptable Manufacturer in no way relieves obligation to provide all equipment and features in accordance with these specifications.

2.2 CONTROL PANEL

A. The fire alarm control panel shall be microprocessor-based using multiple microprocessors throughout the system, providing rapid processing of smoke detector and other initiation device information to control system output functions.

B. There shall be a watchdog circuit, which shall verify the system processors and the software program. Problems with either the processors or the system program the panel shall activate a trouble signal and reset the panel.

C. The system modules shall communicate with an RS 485 network communications protocol. All module wiring shall be to terminal blocks, which will plug into the system card cage. The control panel shall be capable of expansion via up to 100 SLC’s. Maximum system capacity shall be at least 2500 intelligent initiation devices per panel.

D. The signal line circuits (SLC) shall be polarity insensitive for all addressable devices. This permits the fire detection devices to operate even when detector and module wiring polarity are inverted on the wrong screw terminals.

E. The system shall have the capability to provide a 300-message capacity with 100 minutes of recording time and enables multi-layered and custom (pinpoint specific) messages. The format shall support MP3 and WAV files.

F. The primary control panel interface shall provide the system information on a minimum ¼ VGA Color LCD, with Touch Screen and LED display. Color must be event specific based on regulatory requirements alarms-red, Supervisory-blue, security-magenta, trouble yellow. Graphic user interface shall be menu driven with (4) tabs showing the level and the total events for each tab. The tabs shall be: Alarm, Supervisory, Trouble and Security. At least five (5) events shall be shown simultaneously with two full lines of text message for each event. Each event shall have a minimum 32-character custom message describing the event’s location. In addition, the time stamp and category of the event (i.e. Smoke, Water flow, Manual, etc) shall be displayed. When configured for Canadian operation, nine (9) events shall be displayed simultaneously. The LED displays shall indicate Power, Audibles On or Silenced, and Partial System Disabled. Systems not having the above LEDs shall provide separate LEDs within the control panel enclosure with appropriate labels. Selection buttons shall be backlit to aid the operator in the selection process. There shall be controls for scrolling throughout the event list. The following addition device information shall also have the ability to display a detailed screen that provides the following:

 a. 200-character custom message associated with the group of the device and physical location in the building to alert personnel
b. NFPA symbols representing fire service equipment in the area
c. NFPA symbols representing hazards in the area
d. NFPA symbols representing people in the area
e. Number of devices in the associated group that are in alarm
f. Name and phone number of emergency contact

G. System response time from alarm to output shall be an average of three (3) seconds.

H. To expedite system troubleshooting, the system cards shall have ground fault detection and diagnostic LEDs by card.

I. All system cards and modules shall have Flash memory for downloading the latest module firmware.

J. Passwords:
 1. Maintenance/Control Password - There shall be a 5-character password that a user must enter into the control panel in order to perform such maintenance- and control-related functions.

K. Software Modifications: The system structure and software shall place no limit on the type or extent of software modifications on-site. Modification of software shall not require power-down of the system or loss of system fire protection while modifications are being made. Systems that require the use of external programmers or change of EPROMs are not acceptable.

L. Mass Notification Interface: The fire alarm control panel shall be capable of connection to external and internal building paging subsystems UL2572 Mass Notification system.

M. Logic: The fire alarm system shall support generic functions that deal with binary states (True/False, high/low), and produce desired outputs from one or more binary inputs (for example, alarm outputs from spot detectors, VESDA detectors, monitor modules or manual station inputs). AND, OR, NOT, Any N, D Latch, RS Latch, Time Base Control, Start Timer, Restart Timer are generic functions. Generic functions can be used as inputs to other function. The system shall support 2500 logic functions.

N. History: The system shall store 5000 events in history while in straight mode and 4500 in circular mode. In straight mode, trouble warnings will occur at 4000 and 4500 events. In circular mode, the control panels shall maintain a 2000 event Alarm History buffer, which consists of the 2000 most recent alarm events from the 4500-event history file.

2.3 PRIMARY POWER SUPPLY

 A. The control panels, transponders, NAC power booster panels, system workstation, and any other fire alarm equipment shall receive their primary power from a dedicated 120VAC disconnect circuit.
 1. The circuit must be properly sized and protected in accordance with NEC requirements.
2. This requirement does not limit that one dedicated branch circuit to serving only one power supply within a system. The dedicated branch circuit could supply several fire alarm power supplies within a control unit or within multiple interconnected control units that serve the signaling system.
 a. The dedicated circuit can be supplied from any properly installed electrical panel board or sub-panel.

3. The circuit disconnecting means shall be labeled ‘FIRE ALARM’ and any other local identification requirements. Its location must be listed at the point of connection to the fire alarm control equipment. Provide a dedicated breaker lock unless the breaker is located in locked panel board or if it is in a locked electrical room.

4. The 120VAC power circuit must be on emergency power for high-rise compliance.

B. The fire alarm control panel and transponder panel power supply/charger (PSC) shall be a 12-amp supply with battery charger. The power supply shall be filtered and regulated. The power supply shall have a minimum of 1 power limited output rated at 4 amps, and a minimum of 1 output rated at 12 amps. Each panel shall have the capacity to be expanded up to 48 amps. The auxiliary power supply module shall share common batteries with the primary power supply. The system power supply shall have 4 relays, 1 for common alarm, one for common trouble and two programmable relays. The power supply shall be rated for 120/240V AC 50/60 Hz.

1. Provide sufficient capacity to operate the complete alarm system and 100% of the notification appliances in alarm operated at the same time, under both the primary (AC) power conditions. Under no circumstances shall the power supplies exceed a MAXIMUM of 70% of the power supplies battery capabilities throughout the entire project.

2. The primary power supply shall be sized be the equipment vendor

3. The battery charger shall be able to charge the system batteries up to 100 AH batteries. Battery charging shall be microprocessor controlled and programmed with an optional thermistor for monitoring battery temperature to control charging rate shall be available. All battery charging and recharging operations shall be automatic.
 a. The system batteries shall be supervised so that a low battery or a depleted battery condition, or disconnection of the battery shall be indicated at the control unit and displayed for the specific fault type.

4. The power supply shall have a plug for an AC adapter cable, which allows a technician to plug in a laptop computer for up or downloading program information or test equipment.

5. Transfer from AC to battery power shall be instantaneous when AC voltage drops less than 90% or brown out conditions it is not sufficient for normal operation.

C. Loss of primary AC power shall sound a trouble signal at the FACP. The FACP shall indicate when the system is operating on an alternate power supply.

2.4 SECONDARY POWER SUPPLY

A. When the primary AC power is lost, the system shall automatically switch to the secondary power supply.
B. The control panels, transponders, and NAC power booster panels shall receive their secondary power from batteries.
 1. Battery shall be of the sealed lead-acid, maintenance free type, 24-volt nominal, suitable for life safety application.
 2. Provide sufficient capacity to operate the complete alarm system in quiescent standby load (system operating in a non-alarm condition) for a period of 4 hours and shall have sufficient capacity to operate all alarm notification appliances and all other connected loads for a period of 15 minutes.
 3. Batteries shall be secured in seismic areas 2B, 3, or 4 as defined by the Building Code.

2.5 SYSTEM ENCLOSURE

A. The control unit shall be housed in a cabinet suitable for both recessed and surface mounting. Cabinet and front shall be corrosion protected, given a rust resistant prime coat, and manufacturer's standard finish. The outer doors shall be capable of being a left hand open or a right hand open. The inner door shall have a left-hand opening. System enclosure doors shall provide where required ventilation for the modules or cards in the enclosure.

B. Enclosure needed to hold all the cards and modules as specified with at least 25% spare capacity for extra cards.

C. Provide system enclosure for all amplifiers. Where required by the manufacturer, provide means for venting heat from the enclosure either by having enclosure sides and top vented or the doors vented.

2.6 INITIATING DEVICES

A. General
 1. The initiating device shall provide an alarm indication within less than four (4) seconds.
 2. All initiation devices shall be insensitive to initiating loop polarity. Specifically, the devices shall be insensitive to plus/minus voltage connections.
 3. Operating Voltage: 24 VDC, nominal.

B. Multi-criteria Smoke Detectors – Addressable
 1. The multi-criteria fire detectors shall be an intelligent digital photoelectric detector with a programmable heat detector. Detectors shall be listed for use as open area protective coverage, in-duct installation and sampling assembly installation and shall be insensitive to air velocity changes. The detectors’ communications shall allow the detectors to provide alarm input to the system and alarm output from the system within four (4) seconds. So as to minimize the effort required by the installing and maintenance technician to appropriately configure the detector to ensure optimal system design, the detectors shall be programmable as application specific. Application settings shall be selected in software for a minimum of 19 environmental fire profiles unique to the devices installed location.
 a. UL Listed as “direct in-duct” mounting.
 2. Smoke detectors shall be analog sensors that utilize photoelectric-type sensing principles mounted within a smoke chamber to detect particles of combustion. They must provide at least 3 environmental parameter sets to assist the device sensitivity configuration.
3. The control panel shall continually analyze the analog signal from each sensor to determine calibration, sensitivity and environmental changes that may affect sensor operation. The analog values from each device shall be displayed (in terms of percent of obscuration) at the control panel upon command.

4. The detectors shall have a tri-color LED to streamline system maintenance/inspection by plainly indicating detector status as follows: green for normal operation, amber for maintenance required, red for alarm. Each detector shall include an LED that will flash periodically to indicate an active polling cycle. When the sensor reaches a predetermined alarm threshold (2% obscuration unless otherwise directed), the detector shall latch in LED shall flash continuously until reset at the control panel.
 a. The system shall have the ability to disable the detector’s LED.

5. The detectors shall be UL listed for operation in a 95% relative humidity (RH) environment.

6. The intelligent smoke detector shall be capable of providing three distinct outputs from the control panel. The outputs shall be from an input of smoke obscuration, a thermal condition or a combination of obscuration and thermal conditions. The detector shall be designed to eliminate calibration errors associated with field cleaning of the chamber.

7. The detector shall be designed to eliminate the possibility of false indications caused by dust, moisture, RFI/EMI, chemical fumes, and air movement while factoring in conditions of ambient temperature rise, obscuration rate changes and hot/cold smoke phenomenon into the alarm decision to give the earliest possible real alarm condition report.

8. The detectors shall support the use of a relay, or LED remote indicator without requiring an additional software address.

9. Where indicated on the schematic design drawings, provide remote indicator lamps and identification plates for detectors concealed from view. Each indicator will illuminate when the detector is in alarm. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position in the nearest common corridor or otherwise designated on the floorplans.

10. The multi-criteria detector with CO sensor shall support the use of an ambient Carbon Monoxide (CO) warning signal at the panel. This ambient CO level shall be user-configurable in parts per million (PPM) for the set threshold of the warning and event type generated by the warning. This event can be used to trigger system logic.

11. The detectors shall support the use of an ambient temperature warning signal at the panel. This temperature shall be user-configurable for the set temperature of the warning and the event type generated by the warning. This event can be used to trigger system logic.

C. Heat Detectors – Addressable

1. Thermal Detectors shall be analog/addressable sensors individually programmable for either fixed temperature, rate-of-rise or combined operation, except where otherwise dictated. The thermal detector shall be Model FDT421 and have the following temperature settings:
 a. Fixed temperature at 135°F, 145°F, 155°F, 165°F, 174°F
 b. Rate of Rise at 15°F/ min at 135°F
 c. Rate of Rise at 15°F/ min at 174°F

2. Analog sensors will also provide a low temperature warning (Supervisory condition) when the ambient temperature in a protected area reaches 40 degrees F.
3. The detectors shall have a tri-color LED to streamline system maintenance/inspection by plainly indicating detector status as follows: green for normal operation, amber for maintenance required, red for alarm. Each detector shall include an LED that will flash periodically to indicate an active polling cycle.

4. Where ambient conditions dictate, provide conventional fixed temperature, weatherproof or explosion-proof heat detectors in lieu of analog detectors. Conventional devices shall be individually addressable via a dedicated addressable monitor module which shall be installed in an appropriately heated, ventilated location.

5. The detectors furnished shall have a listed spacing for coverage on smooth ceiling rating of up to 2,500 square feet and shall be installed according to the requirements of NFPA 72 for open area coverage.

D. Duct Smoke Detectors – Addressable

1. The system supplier shall select the appropriate detector type, quantity and environmental configuration based on the manufacturer limitations, code requirements and the project HVAC system operating characteristics for air flow, velocity and environmental conditions.

2. Photoelectric type FDBZ-Series, with sampling tube of design and dimensions as recommended by the manufacturer for the specific duct size and installation conditions where applied. Where required there shall be available a duct housing with an on-board relay for fan shutdown.
 a. Environmental compensation, programmable sensitivity settings, status testing, and monitoring of sensor dirt accumulation for the duct smoke sensor shall be provided by the FACP.
 b. The detector shall be mounted in a duct detector housing listed for that purpose. The duct detector shall support the use of a remote test switch, relay or LED remote indicator.
 c. Duct Housing shall have a transparent cover to monitor for the presence of smoke. Cover shall secure to housing by means of four (4) captive fastening screws.
 d. Duct Housing shall provide two (2) Test Ports for measuring airflow and for testing. These ports will allow aerosol injection in order to test the activation of the duct smoke sensor.
 e. Duct smoke detector housing shall allow use in duct systems with air velocity ranging from 100 to 4,000 feet per minute, within temperature ranges of 32°F to 120°F per minute, and with relative humidity ranging from 0 to 95%.

3. Provide a remote LED indicator associated with the duct detector, as shown on the design drawings.

4. Where duct detectors are exposed to the weather a weatherproof enclosure shall be available. A NEMA-3R and NEMA-4X option shall be available. The duct housing cover shall include a test port for functional testing of the detector without cover removal. The duct housing shall include a cover removal switch capable of indicating cover removal status to the fire alarm control panel.

5. Traditional area detectors may be substituted on ducts with access hatches within the manufacturer’s limitations and applicable standards. When mounted directly in the
HVAC air stream, detectors shall be rated for airflows ranging from 0 – 1000 feet per minute. Utilize pendant mounting to get the device in the center of the air flow. It must be mounted to an appropriate electrical box mounted rigidly to withstand the pressure and resonant vibrations caused by the air velocity. The box pendant extension arrangement should be mounted from either the top or side walls extending to the center of the air duct stream. The access hatch shall be labeled to identify both the detector and HVAC unit it protects.

E. Detector Bases – Addressable

1. The plug-in detector bases shall be UL compatible with the selected detector head. They shall utilize screw clamp terminals and field circuits shall terminate directly to the base. Bases shall be installed directly on an industry standard 3 1/2-inch, 4-inch octagon boxes, and 4-inch square boxes (with or without plaster). Position decorative ring around the base as required per the manufacture. Provide the ability to make the detector base tamperproof to prevent the removal of the detector head without the use of a tool.
 a. The standard DB-11 base shall be - 6” version.
 b. The reduced footprint DB-11E shall be - 4” version.
 c. Audible (sounder) base shall be a UL Listed supplementary detection device that meets or exceeds capable of generating a 3,000 Hz tone that provides a signal up to 85dBA at 10 feet for localized annunciation. Provide a NFPA 72 Temporal-3 sound pattern. The base shall be UL listed for both local and general evacuation signals; power calculations shall support capable of sounding simultaneously, individually or in any combination. It shall meet the requirements of UL464. When used with a Desigo intelligent detector, Model ABHW-4B has the option of being powered directly from a signal line circuit (SLC) in a two-wire configuration. The base shall be UL listed for both local and general evacuation signals; power calculations shall support capable of sounding simultaneously, individually or in any combination. Base shall be capable of sounding simultaneously, individually or in any combination: operation shall be independent from the detector and controllable independently via FACP programming. Base shall provide a minimum of two (2) volume levels.
 1) Audible base shall be UL268, UL464 & UL2075 Listed. When used in conjunction with compatible smoke detector, the audible base may be used in lieu of single- or multiple-station smoke alarms to achieve enhanced, system-level functionality.
 d. Low frequency audible (sounder) base shall be a UL Listed supplementary detection device that meets or exceeds the 85dB at 10 ft. audibility requirement, including the low-frequency requirement of 520 Hz for ‘Sleeping Areas’ for localized annunciation. Provide a NFPA 72 Temporal-3 sound pattern for smoke events, and Temporal-4 for CO events. The base shall be UL listed for both local and general evacuation signals; power calculations shall support capable of sounding simultaneously, individually or in any combination. Base shall be capable of sounding simultaneously, individually or in any combination: operation shall be independent from the detector and controllable independently via FACP programming. Base shall provide a minimum of two (2) volume levels.
 1) Audible base shall be UL268, UL464 & UL2075 Listed. When used in conjunction with compatible smoke detector, the audible base may be used in lieu of single- or multiple-station smoke alarms to achieve enhanced, system-level functionality.
e. Auxiliary Alarm Relay base shall be a UL Listed supplementary smoke-detection device that provides a Form C latching relay contacts for an auxiliary function and controllable independently via FACP programming. The relay shall be programmable to operates with 4 seconds (nominally) after activation of the sensor head or controlled (individual or group) via software programming. Minimum relay ratings: Power limited, 1 A @ 28 VDC; Non-power limited, 1/2 A @ 120 VAC

F. Carbon Monoxide Detectors

1. Carbon Monoxide Detectors: Provide Analog/Addressable sensors that include a CO sensing element where shown and required. Detectors may be either standalone sensors, or employ multi-sensing technology integrated with smoke sensors, and shall be Listed to the appropriate ANSI/UL standards, including UL 2075 (carbon monoxide), UL 268 (smoke) and UL 521 (thermal) as applicable.

2. The CO element shall operate between 30-560 parts per million (ppm), with a standard set point of 70ppm for exposure of 60 minutes accordance with NFPA 720. CO Sensors shall operate on non-resettable 24vdc power provided by the FACP and provide full analog values directly to the FACP. The detector shall have associated programmable control module outputs, and an integral piezo horn that produces 85dbA at 10ft. Activation of a CO Detector shall initiate a Priority 2 Supervisory CO Alarm event at the local Control Unit and Fire Response Center, and remote system Annunciators as described herein.

3. Multi-Criteria Fire Detector Model FDOOTC441 shall be listed as providing CO detection in duct application.

4. CO Sensors that are integrated into Mechanical Systems shall be designed for duct mounting or area detection, with a CO Alarm set point of not less than 50ppm and be appropriately Listed by a Nationally Recognized Testing Laboratory.

5. Sensors shall be provided and installed in accordance with the manufacturer’s instructions. Sensors shall be monitored by the local Fire Alarm System for multiple alarm thresholds with corresponding addressable outputs to initiate equipment shutdown procedures and related life safety functions. Sensors will support periodic functional testing.

6. CO Sensors shall be monitored and programmed for Supervisory CO Alarm reporting in accordance with NFPA 720 and applicable code.

G. Linear Beam Smoke Detectors

1. Line-of-sight beam type smoke detectors shall consist of infrared transmitter and receivers to detect smoke obscuration across large distances. The beam shall traverse the protected area and its’ signal will be processed by the receiver to initiate the appropriate alarm response.

2. The detector shall cover distances from 30 to 325 feet and shall be designed, installed and adjusted to ensure there will be no interference from sunlight or high output lighting in the space.

3. Each beam detector set shall include transmitter, receiver, addressable monitor module and remote key-operated test station with LED alarm indicator and be powered from auxiliary 24VDC power from the local Fire Alarm Control Panel.
 a. For areas with direct exposed sunlight, utilize and end-to-end beam detector with powered senders and receivers.
 b. For areas without direct sunlight, utilize a single-point beam detector with a prism reflector with the ability to correct for slight building movement and self-correction alignment. Flat reflectors are not acceptable.
H. Manual Pull Stations – Addressable

1. Provide single-action addressable manual stations where shown on the schematic design drawings, to be flush or surface mounted as required. Manual stations shall contain the intelligence for reporting unique numeric address, identity, alarm and trouble to the fire alarm control panel.

 a. Station will mechanically latch upon operation and remain so until manually reset by opening with a supplied alien wrench.

 b. Stations shall be of single action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE".

 c. The manual station shall be equipped with terminal strip and pressure style screw terminals for the connection of field wiring. Flying lead terminals are not permitted.

 d. Surface mounted stations where indicated on the drawings shall be mounted using a manufacturer's prescribed matching red enamel outlet box.

2. Where shown on the schematic design drawings, provide a protective shield.

 a. Shall be constructed of a clear LEXAN shield and red frame that easily fits over manual pull stations.

 b. When shield is lifted to gain access to the station, a battery powered piercing warning speaker shall be activated. The horn shall be silenced by lowering and realigning the shield. The horn shall provide 85dB at 10 feet and shall be powered by a 9 VDC battery.

3. Where required, there shall also be available pull stations with break glass, capable of explosion proof installation, capable of weatherproof installation, reset key operation, and metal housings.

I. Addressable Interface Devices

1. Addressable Interface Devices shall be provided to monitor contacts for such items as water-flow, tamper, and PIV switches connected to the fire alarm system. These interface devices shall be able to monitor a single or dual contacts. An address will be provided for each contact. Where remote supervised relay is required the interface shall be equipped with a SPDT relay rated for 4 amps resistive and 3.5 amps inductive. The addressable interface modules shall be model number HTRI or FDCIO Series.

2. Isolator Module: Isolator module provides short circuit isolation for addressable notification appliance SLC wiring. Isolator shall be listed to UL 864. The Isolator shall mount directly to a minimum 2 1/8" deep, standard 4" square electrical box, without the use of special adapter or trim rings. Power and communications shall be supplied by the Addressable Controller channel SLC; dual port design shall accept communications and power from either port and shall automatically isolate one port from the other when a short circuit occurs. The following functionality shall be included in the Isolator module:

 a. Report faults to the host FACP.

 b. On-board Yellow LED provides module status.
c. After the wiring fault is repaired, the Isolator modules shall test the lines and automatically restore the connection.

2.7 DEVICE PROGRAMMING / TEST UNIT

A. The device programming unit is a tool used for installation, commissioning, maintenance and servicing of addressable devices. It shall program the intelligent devices with the assigned addresses and provide an electronic test to ensure proper operation. Programming dipswitches and/or rotary switches shall not be acceptable. The portable unit shall provide the following features:
 1. Liquid-crystal display (LCD) screen with keypad
 2. Built in addressable base as well as two external terminals for use with all other addressable ancillary devices.
 3. Powered from on-board standard NiMH rechargeable batteries or standard ‘AA’ Alkaline battery or an external AC adaptor.
 4. Reads analogue values of addressable loops and preform maintenance features such as ground fault detection.
 5. Nonvolatile Flash memory with ability to download software upgrades.

2.8 NOTIFICATION APPLIANCES

A. General requirements: Provide combination or individual audible and visual notification appliances as shown and permitted. All appliances shall be direct-wired; devices that utilize a multi-part assembly with swipe or non-mechanical pressure-type contact connections will not be considered acceptable.
 1. All inputs shall employ terminals that accept #12 to #18 AWG wire sizes
 2. Appliances shall have no identifying labels and have a red or white finish as directed by the Architect.
 3. The contractor shall provide fitted surface mount backboxes supplied by the appliance manufacturer and outdoor-rated appliances where site conditions dictate.

B. Audible Speaker Appliances:
 a. Speaker appliances shall be SLSPC and SLSPSC series appliances or approved equals for maximum output (at minimum wattage) across a sizeable frequency range, 300 to 8000 Hz.
 1) High-fidelity speakers UL Listed (for indoor use under Standard 1971 and 464).
 2) Wall-mounted Speakers: Provide multi-tapped cone speakers with square or rectangular grille with where shown or required. Each speaker shall have selective 1/4, 1/2, 1, or 2-watt taps. Each speaker shall produce a sound output level of 84dBa at 10’ (1-watt setting).
 3) Ceiling-mounted Speakers: Provide multi-tapped cone speakers with 7” round white grille and the appropriate backbox/baffle and ceiling tile bridge assemblies for ceiling mounting where shown or required. Each speaker shall have selective 1/4, 1/2, 1, or 2-watt taps. Each speaker shall produce a sound output level of 84dBa at 10’ (1-watt setting).
 b. Provide high output re-entrant-type speakers with the appropriate weatherproof listings in outdoor or other high ambient noise areas, as shown on the schematic design drawings.
 1) Multiple tap setting up to 15 watts.
c. Speakers shall be UL Listed under Standard 1480 for Fire Protective Service, and speakers equipped with strobes shall be listed under UL Standard 1971 for Emergency Devices for the Hearing-Impaired. Speaker with strobes shall be certified to meet the requirements of FCC Part 15, Class B.

d. All speakers shall be designed for a field-selectable input of either 25 or 70 VRMS.

C. Visual Strobe Appliances:
 b. Strobe shall be listed for indoor use, and shall meet the requirements of FCC Part 15 Class B.
 c. LED multi-candela strobe shall have field-selectable settings, and be rated per UL Standard 1971 for:
 1) Wall-mount: 15/30/75/110cd
 2) Ceiling mount: 15/30/75/95cd or 115/177cd

2. The LED portions of the strobes shall meet the 20-millisecond light-pulse duration requirements of the 2016 edition of NFPA 72.

3. All inputs shall be compatible with standard, reverse polarity supervision of circuit wiring by a Fire Alarm Control Panel (FACP)

4. The selector switch for selecting the candela shall be tamper resistant

5. The strobes shall not drift out of synchronization at any time during operation
 a. If the sync module or Power Supply fails to operate, (i.e. - contacts remain closed), the strobe shall revert to a non-synchronized flash rate

2.9 MAGNETIC DOOR HOLD OPEN DEVICES

A. Door Hold Open Devices: Door hold open devices shall be operate from 24vdc power supplied by the local FACP. The Contractor shall coordinate the proper voltage of these devices with the door hardware supplier to ensure that all required hardware and wiring is provided

 1. Electromagnets: Require no more than 3 W to develop 25-lbf (111-N) holding force.
 2. Wall-Mounted Units: Flush mounted unless otherwise indicated.

B. Material and Finish: Match door hardware.

2.10 REMOTE ANNUNCIATOR

A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.

 1. Mounting: Flush Surface cabinet, NEMA 250, Type 1.
B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.11 ADDRESSABLE INTERFACE DEVICE

A. General:
 1. Include address-setting means on the module.
 2. Store an internal identifying code for control panel use to identify the module type.
 3. Listed for controlling HVAC fan motor controllers.

B. Monitor Module: Microelectronic module providing a system address for alarm-initiating devices for wired applications with normally open contacts.

C. Integral Relay: Capable of providing a direct signal to elevator controller to initiate elevator recall to circuit-breaker shunt trip for power shutdown.
 1. Allow the control panel to switch the relay contacts on command.
 2. Have a minimum of two normally open and two normally closed contacts available for field wiring.

D. Control Module:
 1. Operate notification devices.
 2. Operate solenoids for use in sprinkler service.

2.12 DIGITAL COMMUNICATOR

A. Program the new addressable devices to provide notification to the existing facility’s fire alarm off-site communicator, per the approved sequence of operations.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Perform work in accordance with the requirements of NFPA 70, NFPA 72, NFPA 13, NFPA 2001, and NECA, Standard of Good Workmanship in Electrical Contracting.

B. Fasten equipment to structural members of building or metal supports attached to structure, or to concrete surfaces.
C. In the event that limited energy cable installation is allowed, all cable runs shall be run at right angles to building walls, supported from structure at intervals not exceeding 3 feet and where installed in environmental air plenums, be rated for such use and tied/supported by components listed for environmental air plenums installation.

D. Backing Boards: Provide 3/4-inch marine plywood backing boards for support of all fire alarm equipment panels surface mounted on masonry walls.
 1. Paint both sides of boards with two (2) coats of Gray enamel, including all edges.

E. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Conceal raceway and cables except in unfinished spaces.

F. Wiring Integrity and survivability requirements – Specified on shop drawings per NFPA72, Chapter 12

G. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

H. Provide Surge Protection Devices (SPD) on all fire alarm wiring, which extends beyond the main building. Locate the SPD as close as practicable to the point at which the circuit leave or enter the building where the Fire Alarm Control Panel is located. Protection devices shall be shown on the schematic design drawings and shall be UL listed or in accordance with written manufacturer's requirements.
 1. Provide equipment ground and connected to the building grounding electrode system per NEC.
 2. Provide a dedicated enclosure to house the SPD and label it.

I. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

J. Provide primary power for each panel from normal/ emergency panels as indicated on the Electrical Power Plans. Power shall be 120V AC service, transformed through a two-winding, isolation type transformer and rectified to low voltage DC for operation of all circuits and devices.

3.3 BOXES, ENCLOSURES AND WIRING DEVICES

A. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas.

B. Fire Alarm: Terminal cabinets shall be provided in locations shown and as otherwise required to support wiring terminations, troubleshooting and future tenant fit-up. Cabinets shall be painted red and contain terminal blocks to support the system wiring where the Control Panels are remote from the devices served. Cabinets shall include accommodation for all wiring including SLCs, notification circuits, and related addressable and fault isolation modules for future expansion and modification.
1. Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.

C. Boxes shall be installed plumb and firmly in position.

D. Extension rings with blank covers shall be installed on junction boxes where required.

E. Junction boxes served by concealed conduit shall be flush mounted.

F. Upon initial installation, all wiring outlets, junction, pull and outlet boxes shall have dust covers installed. Dust covers shall not be removed until wiring installation, when permanent dust covers, or devices are installed.

G. "Fire alarm system" decal or silk-screened label shall be applied to all junction box covers.

H. Panel enclosures shall be installed to meet clearance requirements per NFPA 70 and local codes. Minimum requirements shall be 3-foot clearance in front of the enclosure.

3.4 CONDUCTORS

A. Each conductor shall be identified as shown on the shop drawings at each with wire markers at terminal points. Attach permanent wire markers within 2 inches of the wire termination. Marker legends shall be visible.

B. All wiring shall be supplied and installed in compliance with the requirements of the National Electric Code, NFPA 70, Article 760, and that of the manufacturer.

C. Wiring for strobe and audible circuits shall be a minimum 14 AWG, signal line circuits; 18 AWG twisted shielded, speaker circuits; 18 AWG twisted, telephone circuit; 18 AWG twisted shielded.

D. All splices shall be made using solder-less connectors. All connectors shall be installed in conformance with the manufacturer recommendations.

E. Crimp-on type spade lugs shall be used for terminations of stranded conductors to binder screw or stud type terminals. Spade lugs shall have upset legs and insulation sleeves sized for the conductors.

F. The installation contractor shall submit for approval prior to installation of wire, a proposed color code for system conductors to allow rapid identification of circuit types.

G. Wiring within sub panels shall be arranged and routed to allow accessibility to equipment for adjustment and maintenance.

3.5 DEVICES

A. Relays and other devices to be mounted in auxiliary panels are to be securely fastened to avoid false indications and failures due to shock or vibration.

B. Wiring within panels shall be arranged and routed to allow accessibility to equipment for adjustment and maintenance.
C. All devices and appliances shall be mounted to or in an approved electrical box.

3.6 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

B. Permanently label or mark each conductor with alphanumeric wire markers at the main control panel, transponders, terminal cabinet and NAC booster panels.

C. A consistent color code for fire alarm system conductors throughout the installation.

3.7 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Testing General:

1. All Alarm Initiating Devices shall be observed and logged for correct zone and sensitivity. These devices and their bases shall be tagged with adhesive tags located in an area not visible when installed, showing the initials of the installing technician and date.

2. Wiring runs shall be tested for continuity, short circuits and grounds before system is energized. Resistance, current and voltage readings shall be made as work progresses.

3. The acceptance inspector shall be notified before the start of the required tests. All items found at variance with the schematic design drawings or this specification during testing or inspection by the acceptance inspector shall be corrected.

4. Test reports shall be delivered to the acceptance inspector as completed.

5. All test equipment, instruments, tools and labor required to conduct the system tests shall be made available by the installing contractor. The following equipment shall be a minimum for conducting the tests:
 a. Ladders and scaffolds as required to access all installed equipment.
 b. Multi-meter for reading voltage, current and resistance.
 c. Two-way radios and flashlights.
 d. A manufacturer recommended device for measuring air flow through air duct smoke detector sampling assemblies.
 e. Decibel meter
 f. Intellibility meter
 g. In addition to the testing specified to be performed by the installing contractor, the installation shall be subject to test by the authority having jurisdiction.
3.8 ACCEPTANCE TESTING

A. A written acceptance test procedure (ATP) for testing the fire alarm system components and installation will be prepared by the engineer in accordance with NFPA 72 and this specification. The contractor shall be responsible for the performance of the ATP, demonstrating the function of the system and verifying the correct operation of all system components, circuits, and programming.

1. A program matrix shall be prepared by the installing contractor referencing each alarm input to every output function affected as a result of an alarm condition on that input.
2. The installing contractor prior to the ATP shall prepare a complete listing of all device labels for alphanumeric annunciator displays.

B. Preliminary Testing: Conduct preliminary tests to ensure that all devices and circuits are functioning properly. After preliminary testing is complete, provide a letter certifying that the installation is complete and fully operable. The letter shall state that each initiating and indicating device was tested in place and functioned properly. The letter shall also state that all panel functions were tested and operated properly. The Contractor and an authorized representative from each supplier of equipment shall attend the preliminary testing to make necessary adjustments.

1. Verify that the control unit is in the normal condition as detailed in the manufacturer's O&M manual.
2. Visually inspect wiring.
3. Test the battery charger and batteries.
4. Verify that software control and data files have been entered or programmed into the FACP.
5. Measure the current in circuits to ensure there is the calculated spare capacity for the circuits.
6. Measure voltage readings for circuits to ensure that voltage drop is not excessive.
7. Measure the voltage drop at the most remote appliance (based on wire length) on each notification appliance circuit.
8. Megger Tests: After wiring has been installed, and prior to making any connections to panels or devices, wiring shall be meger tested for insulation resistance, grounds, and/or shorts. Conductors with 300 volt rated insulation shall be tested at a minimum of 250 VDC. Conductors with 600 volt rated insulation shall be tested at a minimum of 500 VDC. Test results recorded for use at the final acceptance test.
9. Loop Resistance Tests: Measure and record the resistance of each circuit with each pair of conductors in the circuit short-circuited at the farthest point from the circuit origin. The tests shall be witnessed by the owner and test results recorded for use at the final acceptance test.
10. Verify the absence of unwanted voltages between circuit conductors and ground. The tests shall be accomplished at the preliminary test with results available at the final system test.
11. Test each initiating device and notification appliance and circuit for proper operation and response at the control unit. Smoke sensors shall be tested in accordance with manufacturer's recommended calibrated test method. Use of magnets is prohibited. Testing of duct smoke detectors shall comply with the requirements of NFPA 72 except that, for item 12(e) (Supervision) in Table 14.4.2.2, disconnect at least 20 percent of devices. If there is a failure at these devices, then supervision shall be tested at each device.
12. All readings for Sound Pressure Level (SPL) and Intelligibility score shall be recorded on the installation drawings next to the speaker symbol. The readings shall then be added as propertied to each ADS on the "as-Built" drawings to be submitted at the conclusion of the Final Acceptance test.

13. Verify with all parties the required survivability of wiring, raceways, and junction boxes.

14. Determine that the system is operable under trouble conditions as specified.

C. Final Acceptance Test: Notify the owner in writing when the system is ready for final acceptance testing. Submit request for test at least 30 calendar days prior to the test date. A final acceptance test will not be scheduled until the Preliminary Testing has been completed.

1. Provide documentation of Preliminary Testing results.
2. Test the system in accordance with the procedures outlined in NFPA 72 acceptance testing.
3. Demonstrate the performance of the required number and type of initiating devices and notification appliances per the AHJ’s requirements.
4. Verify that Shop Drawings reflecting as-built conditions are accurate. Upon final approval by all parties, provide two sets of As-built documents in a cabinet adjacent to the main FACP or designated area within the building. Per NFPA 72 7.7.2 Measure the current in Notification appliance circuits under full load to assure that there is the calculated spare capacity for every circuit.

D. The acceptance inspector shall use the system record drawings in combination with the documents specified in this specification during the testing procedure to verify operation as programmed. In conducting the ATP, the acceptance inspector shall request demonstration of any or all input and output functions. The items tested shall include but not be limited to the following:

1. System wiring shall be tested to demonstrate correct system response and correct subsequent system operation in the event of:
 a. Open, shorted and grounded signal line circuits.
 b. Open, shorted and grounded notification, releasing circuits.
 c. Primary power or battery disconnected.

2. System notification appliances shall be demonstrated as follows:
 a. All alarm notification appliances actuate as programmed
 b. Audibility and visibility at required levels.
 c. VOICE Intelligibility measurements at the time of commissioning and with a follow up inspection six months after substantial competition to verify conditions

3. System indications shall be demonstrated as follows:
a. Correct message display for each alarm input at the control display.

b. Correct annunciator light for each alarm input at each annunciator and graphic display as shown on the drawings.

c. Correct history logging for all system activity.

4. System off-site reporting functions shall be demonstrated as follows:
 a. Correct zone transmitted for each alarm input
 b. Trouble signals received for disconnect

5. Secondary power capabilities shall be demonstrated as follows:
 a. System primary power shall be disconnected for a period of time as specified herein. At the end of that period, an alarm condition shall be created, and the system shall perform as specified for a period as specified.
 b. System primary power shall be restored for forty-eight hours and system-charging current shall be normal trickle charge for a fully charged battery bank.
 c. System battery voltages and charging currents shall be checked at the fire alarm control panel.

3.9 DOCUMENTATION

A. System documentation shall be furnished to the owner and shall include but not be limited to the following:

1. System record drawings and wiring details including one set of reproducible drawings, and a CD ROM or memory stick (thumb drive) with digital copies of the record drawings in PDF format.

2. System operation, installation and maintenance manuals.

3. System matrix showing interaction of all input signals with output commands.

4. Documentation of system voltage, current and resistance readings taken during the installation, testing and ATP phases of the system installation.

5. System program showing system functions, controls and labeling of equipment and devices.

3.10 PROTECTION

A. Remove and replace devices and panel components that are wet, moisture damaged, or mold damaged.

3.11 DEMONSTRATION
A. Instructor: Include in the project the services of an instructor, who shall have received specific training from the manufacturer for the training of other persons regarding the inspection, testing and maintenance of the system provided. The instructor shall train the employees designated by the owner, in the care, adjustment, maintenance, and operation of the fire alarm system.

B. Training sessions shall cover all aspects of system performance, including system architecture, signaling line circuit configurations, sensor and other initiating device types, locations, and addresses, fire alarm control panel function key operation, and other functions as designated by the owner.

C. Required Instruction Time: Provide 8 hours of instruction after final acceptance of the system. The instruction shall be given during working hours on such dates and times as are selected by the owner. The instruction may be divided into two or more periods at the discretion of the owner. One training session shall be videotaped by the contractor. Required owner format shall be delivered to the owner.

D. Provide a typeset printed or typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame. Install the frame in a conspicuous location observable from the FACP. The card shall show those steps to be taken by an operator when a signal is received as well as the functional operation of the system under all conditions, normal, alarm, supervisory and trouble. The instructions shall be approved by the owner.

E. Comprehensive system troubleshooting training shall be provided for a single individual designated by the owner. This session shall be separate and distinct from the above described sessions.

F. All training sessions shall be conducted following final system certification and acceptance. Three additional training sessions shall be provided for all security personnel on all shifts six months after final system certification.

G. All training sessions shall be conducted by an authorized fire alarm system distributor representative, who has received specific training from the manufacturer for the training of other persons regarding the inspection, testing, and maintenance of the system provided.

END OF SECTION 284621.11