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Abstract

Yes, but one needs to assume that consumers know the realized price dis-

tribution, and that they do not know which firm has what price. Even with

identical consumers and identical firms, if firms set prices in a first stage, and if

consumers search sequentially in a second stage, then price dispersion arises in

the form of a mixed strategy subgame perfect Nash Equilibrium. In contrast to

Burdett and Judd (1983), price quotes are not required to be “noisy.” Moreover,

actual search is predicted to be nontrivial. (JEL L13, D83, D21)
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1 Introduction

In his economics of information article, Stigler (1961) wrote that “it would be meta-
physical, and fruitless, to assert that all [price] dispersion is due to heterogeneity.”
Since then, several studies have confirmed the empirical significance of price dis-
persion.1 However, after Stigler’s seminal paper, Diamond (1971) presented a chal-
lenge: If firms and consumers are identical, and if consumers pay to sequentially
search for prices, the only Nash equilibrium is the monopoly price. Intuitively, if

∗ITAM, Río Hondo 1, Ciudad de México 01080, Mexico (e-mail: jtudon@itam.mx). Thanks to Alex
Frankel, Ali Hortaçsu, Philip Reny, Enrique Seira, Chad Syverson, Balázs Szentes, Gábor Virág, and
workshop participants at the University of Chicago.

1See, for example, Kaplan and Menzio (2015), Hortaçsu and Syverson (2004), or Sorensen (2000).
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all firms set the monopoly price, the consumer will not search, but if the consumer
will not search, all firms set the monopoly price. As Reinganum (1979) said, the
Diamond paradox seemed to imply that “imperfect information alone is insufficient
to support price dispersion.”

This paper adds to recent efforts by showing with minimal assumptions that im-
perfect information alone is indeed sufficient to support price dispersion. I assume
that firms fix their prices before consumers search, and that consumers know the dis-
tribution of actual prices being charged in the market, but do not know which firm
is charging which price. This paper shows that this information structure is suffi-
cient to generate price dispersion, even with homogeneous firms and homogeneous
consumers.

Intuitively, in the Diamond model, firms cannot profit from a reduction in prices,
because firms and consumers choose their strategies simultaneously. However, the
passivity of the consumer is broken when we unfold the model into two stages, be-
cause her strategy now becomes a complete contingent plan. Hence, firms anticipate
the consumer’s reaction to a cut in prices, and thus have incentives to steal the mar-
ket instead of sharing it. The main result is that, even if we have no a priori reason
to expect ex post price heterogeneity, monopoly pricing is not subgame perfect, and
price dispersion arises in the form of a mixed strategy subgame perfect Nash equi-
librium. Finally, this paper overcomes “a host of technical problems that haunt [this
information structure], e.g. troublesome integer conditions (typically overlooked)
in constructing dispersed equilibria” (Stahl II, 1996), which is a strong reason why
the literature has favored other information structures.

This paper is related to the search literature interested in obtaining price disper-
sion under minimal assumptions.2 For example, Burdett and Judd (1983) achieve
price dispersion by allowing price quotes to be stochastic. However, in contrast
with my paper, they predict no actual search in equilibrium.

Perhaps the closest paper is Menzio and Trachter (2015) where buyers search
sequentially among a continuum of small firms and a single large firm. In their
model, price dispersion arises as equilibrium mixed strategies, and price dispersion
is obtained by exploiting the heterogeneity between small firms and a single large

2See Rauh (2007), which considers heterogeneity in search costs, demand functions and produc-
tion functions, thus subsuming most of the literature as special cases. Current theoretical research fo-
cuses on the Stahl II (1989, 1996) and Wolinsky (1986) models which lend themselves easily to struc-
tural estimation.
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firm. In some sense, this paper shows that the result in Menzio and Trachter (2015)
can be extended to a market composed of identical large firms, where dispersion is
obtained through the informational assumption while maintaining ex ante homo-
geneity.

2 The model

The model has two stages. In the first stage, n identical firms produce an homoge-
neous good, and simultaneously fix their prices pi ∈ Pi, i = 1, 2, . . . , n, where Pi

may be either continuous or discrete. I assume no production costs.3 After prices
are chosen, the second stage begins, and a unique consumer enters the market.

The consumer has a unit demand, and a willingness to pay normalized to 1. That
is, she will never pay more than 1 to buy the good. To be able to buy, the consumer
must pay a fixed search cost s each time she arrives at a store. The first search is
free.4 In each search, the consumer randomly arrives at one of the n stores with
equal probability. There, she must decide whether she buys the good and exits the
market, or rather continues her search. Sampling is with replacement.5

To be consistent with random search, suppose that the consumer has no recall
(assuming perfect recall yields the same results).6 Note also that s = 0 is equivalent
to perfect information, as the consumer could search forever.

Finally, the structure of the model and the rationality of the consumer and firms
are common knowledge.

The informational assumption that drives the result is that the consumer knows
the price distribution when she starts searching the market. Note that, at this sec-
ond stage of the game, such distribution is a realization of the equilibrium price
distribution. As Menzio and Trachter (2015) explain, “This is the same assumption
made in the vast majority of search models where the price distribution is exoge-
nously given (e.g., Stigler, 1961; McCall, 1970). Indeed, only a few papers model the
buyer’s problem of learning about the price distribution while searching (see, e.g.,

3Janssen, Pichler and Weidenholzer (2011) consider stochastic production costs.
4Ellison and Wolitzky (2012) consider firms that can increase the search cost by obfuscating.

Janssen, Moraga-González and Wildenbeest (2005) consider a costly first search.
5Here, I follow Carlson and Mcafee (1983), because sampling without replacement is consider-

ably harder to analyze.
6Daughety and Reinganum (1992) consider endogenous recall.
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Rothschild, 1974; Burdett and Vishwanath, 1988). The assumption is also common
in models where prices are endogenous (see, e.g., Pratt, 1979; Rob, 1985; Stiglitz,
1987). Other models, such as Reinganum (1979), Burdett and Judd (1983) and Stahl
II (1989), assume that buyers do not observe the actual price distribution, but have
rational expectations about its equilibrium value.” For example, in a heterogeneous
production cost model, the consumer is assumed to know about the distribution of
production costs in order to compute the equilibrium price distribution. However,
this assumption seems as strong as the one used on this paper, in particular in an ex-
tensive form game. I thus motivate my assumption by thinking of consumers that
learn the price distribution by reading the newspaper or searching online before
engaging in physical search. For the modern consumer, who is connected to the in-
ternet, this assumption is entirely plausible. In fact, a popular US price-comparison
website in the automobile market literally shows the actual price distribution to
consumers.

2.1 Optimal search

The goal of the consumer is to buy at the lowest price, so at each period she chooses
between either buying at the quoted price, or paying the search cost and going to
another store at random. The marginal cost of the extra search is s at any point.
The marginal benefit given the current price at hand, p, is the expected discount
1
n ∑n

j=1(p − pj)1{pj ≤ p}, where 1 is the indicator function. A reservation price,
pr(p), is a function of the vector of prices in the economy, p = (p1, . . . , pn), that
sets the marginal benefit equal to the marginal cost of the extra search. Appendix
Lemma 5 shows that such a price exists, and is implicitly defined by

pr(p) = s +
1
n ∑

j:pj≤pr(p)
pj +

#{j : pj > pr(p)}
n

pr(p), (1)

where # is the cardinality of a set, and the dependence of pr on s is omitted.
The optimal stopping rule and ending of the model is the standard condition

found in search models: stop searching when p ≤ pr(p).7 Let R∗ denote this op-
timal stopping rule, which is a dominant strategy. Also, let R denote the space of
strategies for the consumer’s stopping rules. Thus,

7Note that the optimal search rule is myopic (Weitzman, 1979).
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Lemma 1. The consumer always follows R∗.

2.2 Optimal firm’s strategy

Let the profits of firm i be denoted by πi(p, R), which is a function of prices and
the stopping rule of the consumer. Assume firms are risk neutral. Then, because of
Lemma 1, profits can be stated as:

π∗i (pi, p−i, R∗) =





pi if pi ≤ pr(p) and pj > pr(p) ∀j 6= i
pi

k
if pi ≤ pr(p) and pj ≤ pr(p)

∀j ∈ J with #J = k− 1

0 in any other case

(2)

where p−i is the vector of prices pj, with j 6= i, and J = {j|pj ≤ pr(p)}. Using
notation from Reny (1999), the game that the firms and the consumer play is defined
next.

Definition 1 (Game 1). The game in extensive form that the n firms and the con-
sumer play is given by {(∆Pi, πi(·))n

i=1, (∆R,−L)}, where n is the number of firms;
Pi is the strategy space for each firm; R is the strategy space for the consumer’s
stopping rules; πi is firm i’s profit function; and L is the total payment made by the
consumer.

Because the firms will never choose a price above 1, henceforth consider two
cases: (1) a continuous Pi = [0, 1] for all i; or (2) a discrete Pi =

{
0, 1

v , 2
v , . . . , 1

}
,

where v + 1 is the number of grid points.
Define price dispersion as a nontrivial mixed strategy that arises in equilibrium.

We are interested in the cases where pure strategies equilibria do not exist, but mixed
strategies equilibria do. The following theorem shows that Game 1 always has a
Nash equilibrium, and that the equilibrium must be mixed if some conditions are
met. First, I define such conditions.

Definition 2 (Price dispersion conditions).
• For continuous pricing: s > 0 and ns < n−1

n .

• For discrete pricing: s ≥ n−1
n · 1

v and
(

ns, n−1
n

)
∩ Pi 6= ∅.
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Theorem 3 (Price dispersion). Game 1 always has a subgame perfect Nash equilib-
rium. Moreover, Game 1 has no subgame perfect Nash equilibria in pure strategies
if and only if the conditions in Definition 2 hold. That is, Game 1 exhibits price
dispersion if and only if the conditions in Definition 2 hold.

Theorem 3 formally discards pure strategy equilibria from the game under some
“Goldilocks” conditions: an intermediate range where the search cost is not too low
and not too high. Intuitively, a small search cost amounts to perfect information,
which yields competition à la Bertrand. On the other hand, if the search cost is
too high, firms enjoy market power, because information is too expensive for the
consumer, which results in a captive costumer. Thus, a high search cost yields the
Diamond equilibrium. Finally, and aligned with the intuition of Stahl II (1989), costs
accumulate when searching among many firms. Therefore, the search cost must be
weighted by the number of firms in the market.

In the proof, I show that Game 1 always has a subgame perfect Nash equilibrium
regardless of the set of parameters. However, if the search cost meets with the the
theorem’s conditions, then the equilibrium must be in mixed strategies for the firm.

2.3 Proof of Theorem 3

First, I prove existence of a subgame perfect Nash equilibrium for Game 1.
If Pi is discrete for each i, the sets Pi have finite number of elements. Further-

more, as the consumer always plays R∗, it follows that the subgame of Game 1 that
takes strategy R∗ as given—call it Γ∗—is a finite strategic form game. Therefore, it
has a mixed strategy Nash equilibrium. Corollary 7 characterizes the equilibrium.

On the other hand, the case where Pi is continuous presents serious challenges,
because the payoffs π∗i (pi, p−i, R∗) are not continuous in (pi, p−i) nor quasiconcave
in pi. It follows that the convexity and upper hemicontinuity of the best response
correspondence cannot be assured. Therefore, the existence of a mixed strategy
Nash equilibrium cannot be obtained with standard arguments. Fortunately, Reny
(1999) establishes conditions under which equilibria exist in a discontinuous game.

Let qi be the mixed strategy of firm i and q = (q1, . . . , qn). Formally, qi ∈
∆Pi is a probability measure on Borel subsets of Pi, B(Pi). Moreover, ∆Pi is a
compact metric space when endowed with the Prohorov metric (Billingsley, 1999).
Also, define Γ∗ as the subgame of Game 1 where the consumer plays R∗, π∗i (q) ≡

6



∫
P π∗i (p, R∗)dq for all q ∈ ∆P ≡ ×i∆Pi, and endow all product sets with the prod-

uct topology.
To show that a Nash Equilibrium in mixed strategies exists, we need to show that

the mixed extension of Γ∗ is better-reply secure, as in Reny (1999).8 I conduct the proof
in a series of steps. First, I show that the sum of the payoffs is upper semicontinuous
in Lemma 2. Second, I prove a property that implies that the game is payoff secure
in Lemma 3. Third, combine Lemmas 2 and 3 to show that the game is better-reply
secure, and conclude that it must have a Nash Equilibrium.

Lemma 2. ∑N
i=1 π∗i (p) is upper semicontinuous in p on P .

Proof. By definition, ∑n
i=1 π∗i (p) is equal to the mean of the prices that are equal

or less than the reservation price. Fix any p and any ε > 0. Notice that increasing
any element of p by some small amount δ > 0 will either increase ∑n

i=1 π∗i (p) by δ

at the most, or decrease ∑n
i=1 π∗i (p), because some pi + δ might become higher than

pr(p). Notice also that decreasing any element of p by some small amount δ > 0
will unambiguously decrease ∑n

i=1 π∗i (p) by two channels: (1) because the average
of prices decreases; and (2) because low prices being reduced may cause some of the
high prices to become higher than pr(p). Therefore, there is always a neighborhood
Nδ(ε)(p) such that

n

∑
i=1

π∗i (p
′) ≤

n

∑
i=1

π∗i (p) + ε ∀p′ ∈ Nδ(ε)(p).

∴ ∑N
i=1 π∗i (p) is upper semicontinuous in p on P .

Lemma 3. The game Γ∗ satisfies the following property: For all i = 1, . . . , n, ε > 0,
pi ∈ Pi and q−i ∈ ∆P−i, there exists p̂i ∈ Pi such that

q−i

(
{p−i ∈ P−i : π∗i is discontinuous at ( p̂i, p−i)}

)
= 0

and π∗i ( p̂i, q−i) ≥ π∗i (pi, q−i)− ε.

Proof. Note that π∗i is discontinuous in a countable set. Moreover, i can always find
a deviation p̂i that is slightly worse than pi but satisfies π∗i ( p̂i, q−i) ≥ π∗i (pi, q−i)− ε.

8For the definitions of better-reply security and payoff security, please refer to Reny (1999). The
reader might ask if Game 1 is better-reply secure. It is not. Consider n = 2, s = 1/10, p1 = 2/5 and
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A deviation such as p̂i ≡ pi − δ(ε) works for a well chosen δ(ε). See Figure 1 for ref-
erence. Finally, such deviation can always be chosen away from those discontinuity
points.

p1

π∗1
(
p1|p2 = 3

5 , p3 =
4
5

)
π∗1

Note: Qualitatively, all payoff functions are the same. Discontinuities are from the left and “jump
down” from the left with the exception of the last segment, which becomes irrelevant.

FIGURE 1: Example of a payoff function with 3 firms and s = 0.5.

As the last step, combining Lemma 2 and Proposition 5.1 in Reny (1999), we get
that Γ∗ is reciprocally upper semicontinuous. Combining Lemma 3 with Theorem
3.33 in Carmona (2013), we get that Γ∗ is payoff secure. Finally, by Proposition 3.2
in Reny (1999), Γ∗ is better-reply secure.

To complete the existence part of Theorem 3, by Corollary 5.2 in Reny (1999) and
better-reply security, Γ∗ possesses a mixed strategy Nash Equilibrium.

In the second part of the proof, I show that the equilibrium cannot be in pure
strategies if and only if the conditions of Definition 2 hold.

First, sufficiency. I will show that, for any p = (p1, . . . , pn), there exists a firm
that has incentives to deviate. The following lemma has the purpose of narrowing
the strategies that may arise in a pure strategy equilibrium.

Lemma 4. Suppose that s > 0 and (p1, . . . , pn) are such that pi > pr(p) for some i.
Then the pure strategy profile (p1, . . . , pn, R∗) is not a subgame perfect Nash equi-
librium for Game 1.

p2 = 3/5 as a counterexample.
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Proof. I will propose a deviation p∗i such that p∗i ≤ pr(p∗). If Pi is discrete, since
pi > pr(p) for some firm i, let p∗i = 1/v be a deviation. If Pi is continuous, let p∗i = ε

be a deviation with 0 < ε < s.
By way of contradiction, suppose that p∗i > pr(p∗). Then, pj ≥ pr(p∗) ∀j and by

equation (1), we have that pr(p∗) = s + pr(p∗) which is a contradiction. Therefore,
p∗i ≤ pr(p∗) and π∗i (p∗i , p−i) > π∗i (pi, p−i) = 0.

Because of Lemma 4, it suffices to review the following cases.
Case 1: pi < pr(p) ∀i
• Case 1.1: For some j, i with j 6= i, it is true that pj = mink{pk} < maxk{pk} = pi.

Consider the deviation p∗j = maxk{pk} = pi. Then, p∗j = pi < pr(p) ≤ pr(p∗),
because pr(p) is nondecreasing in p.
• Case 1.2: pi = pj < 1 ∀ i, j.
– If Pj is discrete, then consider the deviation p∗j = pj +

1
v . By way of contradiction,

suppose that p∗j > pr(p∗). Then, equation (1) implies that

pr(p∗) = s +
n− 1

n
pj +

pr(p∗)
n

⇔ pr(p∗)
(

n− 1
n

)
= s +

n− 1
n

pj

⇔ pr(p∗) =
s

n−1
n

+ pj

⇒ s <
n− 1

n
· 1

v
. (contradiction)

The contradiction implies that p∗j ≤ pr(p∗). Thus, π∗i (p∗i , p−i) > π∗i (pi, p−i).
– If Pj is continuous, then consider the deviation p∗j = pj + ε, such that 0 < ε < s

and p∗j ≤ v. Analogous to the discrete case, equation (1) implies that s < n−1
n ε,

which is a contradiction. Therefore, p∗j ≤ pr(p∗) and π∗i (p∗i , p−i) > π∗i (pi, p−i).
• Case 1.3: pi = 1 ∀i.

I will construct a deviation p∗j = pj − δ with δ ∈
(

ns, n−1
n

)
∩ Pj such that the

following conditions are satisfied.
1. p∗j ≤ pr(p∗).
2. p∗i > pr(p∗) ∀ i 6= j.
3. π∗j (p∗j ) > π∗j (pj).

Condition 1 is satisfied because pr(p) is nondecreasing (Lemma 5).
Condition 2 requires firm j to win the whole market. Suppose, by way of contra-
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diction, that pi ≤ pr(p∗), for i 6= j. Recall that pi = 1 for all i. Then,

pr(p∗) = s +
1
n

n

∑
i=1

pi = s + 1− δ

n
≥ pi = 1⇒ δ ≤ ns. (contradiction)

The contradiction implies that p∗i > pr(p∗) ∀ i 6= j.
Finally, since firm j wins the entire market under the first two conditions, Condi-
tion 3 requires the firm to be better off:

π∗j (p∗j ) > π∗j (pj)⇔ 1− δ >
1
n
⇔ δ <

n− 1
n

,

but due to the hypothesis, such δ exists, and p∗j = pj − δ ∈ Pj. Therefore, p∗j is a
deviation.

Case 2: pi < pr(p) and pj = pr(p) for some i ∈ I and some j ∈ J such that I ∪ J =

{1, 2, . . . , n} and I ∩ J = ∅. For any i ∈ I consider the deviation p∗i = pj > pi. Then,
p∗i = pr(p) ≤ pr(p∗), which implies that π∗i (p∗i ) > π∗i (pi).

Therefore, Game 1 has no subgame perfect Nash equilibria in pure strategies if
the conditions of Definition 2 hold.

Finally, for necessity, note that if there are no subgame perfect Nash equilibria
in pure strategies for Game 1, then there always exists a profitable deviation. Since
0 is not an equilibrium, this implies that s > 0 for the continuous case, or s >
n−1

n · 1
v for the discrete case. Moreover, going again through Case 1.3 of the proof

and using a contradiction argument, it follows that
(

ns, n−1
n

)
∩ Pi 6= ∅. Therefore,

the conditions of Definition 2 hold.
As a corollary, it is straightforward to show that s = 0 implies a Bertrand equi-

librium, and that the Diamond equilibrium arises if s > 0 and the conditions of
Definition 2 do not hold.

3 Equilibrium properties and discussion

In general, the equilibrium has no analytical solution. However, we can use the
discrete pricing equilibrium as an arbitrarily good approximation of the continuous
pricing equilibrium by increasing the number of grid points, v. For practical pur-

9A strategic approximation of the normal form game (Pi, π∗i )
n
i=1 in which the firms take R∗ as

given is a countable set of pure strategies P∞ = P∞
1 × · · · × P∞

n contained in P = P1 × · · · ×
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poses, we can always think of the willingness to pay in cents of a dollar. Formally,
we have a Strategic Approximation (Reny, 2011).9

Corollary 4. Suppose that Pi is continuous for each i. Then Game 1 has a Strategic
Approximation given by the discrete pricing equilibrium.

Proof. The existence of a strategic approximation is immediate given that the game is
better-reply secure, and by Theorems 1 and 2 in Reny (2011). Moreover, the discrete
pricing equilibrium is an ε−equilibrium of the continuous pricing game. To see this,
note that for a fixed ε, a fine enough grid can approximate any price with arbitrary
precision. Because the payoff functions are semicontinuous10, there exists v(ε) large
enough such that a price in the grid ε−approximates, either from above or below,
the payoff of any price in [0,1]. Finally, limits of ε−equilibria are equilibria of the
continuous pricing game, because the game is better reply secure (Reny, 1999).

I henceforth focus on the discrete pricing equilibrium, which is characterized by
Appendix Corollary 7 in a system of nonlinear equations.

Consider the following example. Let an economy consist of two firms, and Pi ={
0, 1

5 , 2
5 , 3

5 , 4
5 , 1
}

. That is, discrete pricing with n = 2 and v = 5. Assume s = 1/10,
which meets the conditions of Definition 2. Therefore, no pure strategy equilibria
exist, but it can be shown that multiple symmetric mixed Nash equilibria exist (see
Appendix B).

Figure 2 shows the distribution of prices played with positive probability when
the grid increases from v = 5 to 10, 25 and 50 points. Remarkably, the equilibrium
price distribution is bimodal. In this example, firms charge high prices almost all
the time but, occasionally, we have a sale with 50% discount.

In general, some basic properties of the equilibrium can be obtained, even with-
out analytical solutions. First, the price distribution shifts to the right when the
search cost increases, yielding higher profits for firms, and lower surplus for the
consumer. Second, holding fixed the absolute size of the search cost, increasing the

Pn, such that whenever for each player i, P1
i ⊆ P2

i ⊆ · · · is an increasing sequence of finite
subsets of Pi whose union contains P∞

i , any limit of equilibria of the sequence of finite games
(P1

i , π∗i )
n
i=1, (P2

i , π∗i )
n
i=1, . . . is an equilibrium of (Pi, π∗i )

n
i=1.

10The payoffs are upper semicontinuous in own prices over some segments, and lower semicon-
tinuous over other segments (there are no isolated points on the graph, see Figure 1). Moreover, be-
cause pr(p) is continuous, the same is true with respect to the other firms’ prices.
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FIGURE 2: Equilibrium distributions with 2 firms and s = 1/10 for grids of size 10,
25 and 50.

number of firms results in monopolistic pricing. The following corollaries formalize
the results. The discussion that follows illustrate them.

Corollary 5. In the symmetric equilibrium, the expected price is nondecreasing in
the search cost. Moreover, the equilibrium payoff of the firms is also nondecreasing
in the search cost, while the consumer surplus is nonincreasing in the search cost.

Proof. From Lemma 5, the reservation price is nondecreasing in the search cost.
Then, from equation (2), πi(p, R∗) is nonincreasing in s when pi ≤ pr(p) and p−i >

pr(p). Analogously, πi(p, R∗) is nondecreasing in s in any other case. A Nash equi-
librium requires i to be indifferent between choosing pi and p′i whenever both pi and
p′i have positive weights in the equilibrium mixed strategy. It follows that strategies
yielding pi ≤ pr(p) and p−i > pr(p) must receive zero weight when the search
cost is high enough. Then, the equilibrium weights shift to the right as s increases.
Then, the expected price is nondecreasing. Since, the consumer faces weakly higher
prices, her surplus weakly decreases.
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Corollary 6. For a fixed s > 0, as n → ∞, the unique equilibrium is the Diamond
equilibrium. That is, pi = 1, for all i.

Proof. Follows immediately from Theorem 3.

The next figures illustrate the effects of increasing the search cost and entry
through simulation. I only consider sets of parameters that create price dispersion,
because the discussion becomes trivial otherwise. All the results are qualitatively
robust to different specifications of the parameters, and are selected for clarity of
exposition.

Figure 3 considers different search costs when the grid size v = 10, and when
the number of firms n = 2. Increasing the search cost has a clear effect: a higher
search cost moves the price distribution to the right whence firms benefit from more
monopolistic power.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Equilibrium pdf with v = 10, n = 2, s in [0.05,0.25]

Prices j

P
ro
b
a
b
il
it
ie
s
q j

 

 
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14
0.16
0.17
0.18
0.19
0.20
0.21
0.22
0.23
0.24
0.25

FIGURE 3: Comparative statics on the search cost.

In a simple model such as this one, the total surplus from the Bertrand and Dia-
mond equilibria are the same, because there is no search in either equilibrium. Either
the consumer or the producer extract all surplus, and no dead weight loss exists. In
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the Dispersed equilibrium, however, the search cost must be subtracted from the
consumer surplus, which in turn decreases total surplus.

The producer surplus, π, is obtained with Corollary 7. Once the equilibrium
distribution is obtained, one can construct the consumer surplus by Monte Carlo
simulation.11 Finally, total surplus is equal to the consumer surplus plus n times
the producer surplus. Figure 4 summarizes these observations where the price dis-
creteness causes the five-points pattern in which firms use the same strategy. As
expected, the consumer is worse off when the search cost rises, but the producer is
better off. Moreover, the total surplus shows the dead weight loss due to search for
intermediate search cost levels.
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Producer Surplus (1 firm)

FIGURE 4: Welfare analysis. v = 10, n = 2 and s ∈ [0.5, 2.5).

Finally, Figure 5 shows an example of the effect of increasing the number of firms.
As more firms enter the market, the average price and the variance increase. Ad-
ditionally, the equilibrium distribution shows nonmonotonic behavior on kurtosis,

11Simulate draws of equilibrium prices, construct the reservation price and calculate the expected
number of searches and the expected price paid. The Matlab codes used for these calculations, and
for those of Section 3, are available upon request or at jtudon.com.
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which measures the tails of the distribution. In this case, the distribution has fatter
tails with 3 firms, but is less dispersed than with 4 firms.
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n=2, µ =6.3, σ2 =1.29, kurt=2.1
n=3, µ =6.5, σ2 =1.03, kurt=6.4
n=4, µ =7.1, σ2 =1.05, kurt=5.7

FIGURE 5: Increasing the number of firms

Admittedly, the noncompetitive effect of increasing the number of firms is a limi-
tation, but is not new to search models; see Robert and Stahl II (1993), Stahl II (1989)
or Rosenthal (1980) for example. The probability of being the lowest-priced store
decreases exponentially with entry, disrupting the ability of firms to steal the mar-
ket. However, while the condition ns < (n− 1)/n becomes rapidly stringent as the
number of firms in the market grow, real life examples show that search costs can be
within a Goldilocks zone. De los Santos, Hortaçsu and Wildenbeest (2013) estimate
the search costs of consumers buying MP3 players. The authors consider up to 10
different firms offering several devices whose prices range considerably. Though
their baseline model is different, their results show that the constraint is plausible.12

Moreover, note that the result is not driven by a “small” n: even for 2 firms, if the

12Specifically, from Table 4 in De los Santos, Hortaçsu and Wildenbeest (2013) one can obtain a
lower bound on the willingness to pay, and an upper bound on the marginal cost by looking at the
maximum and minimum price. Then, from their estimated search costs, we can conclude that some
Goldilocks conditions hold for most of their products.
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firms and the consumer act simultaneously, the unique equilibrium is the Diamond
paradox.

On the other hand, if the search cost decreases with the number of firms in the
market, one could derive a pro competitive effect of entry. For instance, suppose
that sn ∝ 1/n. In a spatial model, one could think of business clusters where firms
concentrate information in a certain area, thus decreasing the search cost per firm.
In such an extension, price dispersion can be sustained even as n→ ∞.

Finally, note that consumer search is not trivial. The expected number of searches
is not limited to one or two, because realized prices can be above the reservation
price. Possibly, consumers search for several periods, in contrast with previous ap-
proaches such as Burdett and Judd (1983).

4 Concluding remarks

The strongest assumption of this paper regards how the consumer knows the price
distribution, and why firms do not react to it. Alternatively, suppose that consumers
search from an unknown distribution of which they have an uninformative Dirichlet
prior. Rothschild (1974) showed that the optimal search rule will have a reservation
price that satisfies properties analogous to those of Lemma 5. Therefore, there is no
great loss of making such a simplifying assumption towards accomplishing the goal
of this paper. While searching from a known distribution is a strong assumption,
one can only expect that relaxing the assumption would reinforce the result rather
than reverse it.13

On the other hand, firms do not react to prices because they move simultane-
ously. Yet, consumers do “react” because they move later in the game. Thus, I
assume an informational asymmetry. If firms are allowed to react, the issue is com-
mitment as in Daughety (1992). But, if the consumer is prohibited to react, we re-
turn to the Diamond setup. A more symmetric informational assumption is that
neither firms nor the consumer know the distribution of prices, which implies that
firms cannot react to other prices. But as I discussed above, we can approximate
the consumer’s behavior in the second stage by assuming that she knows the price
distribution.

13Indeed, using some uninformative prior will assume away the Diamond paradox since con-
sumers will search more than once. Parakhonyak and Sobolev (2015) consider search without priors.
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On the plus side, the model offers a novel existence theorem that does not de-
pend on exogenous heterogeneity or stochastic shocks. With minimal assumptions,
this paper produces nontrivial consumer search and price dispersion. Finally, by
proving that information frictions are sufficient, and not only necessary for price
dispersion, we can now think of heterogeneity in models as a tool and not as a ne-
cessity.
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A Proofs

Lemma 5 (Properties of the reservation price pr(p)).
1. pr(p) exists and is increasing in s; in particular, pr(0) = s.
2. pr(p) is bounded above by s + p̄.
3. pr(p) is continuous in p.
4. p ≥ p∗ ⇒ pr(p) ≥ pr(p∗); where ≥ is element-wise.

Proof. Existence comes from the fact that the right hand side of equation (1) is
continuous, concave in pr and equal to s > 0 when pr = 0. Note also that the right
hand side of equation (1) becomes s + 1

n ∑n
j=1 pj when pr > maxj{pj}.

Continuity of pr(p) is straightforward. Finally, increasing any price will not de-
crease the right hand side of equation (1).

Corollary 7. (Symmetric equilibrium) Let Pi be discrete for all i. Define qi
j as the

symmetric equilibrium probabilities of firm i choosing the jth price in the set Pi,
and π as the symmetric equilibrium payoff for all firms. Then, R∗ and the mixed
strategy (q1, . . . , qv) for all firms are a subgame perfect Nash equilibrium of Game
1 if and only if (q1, . . . , qv, π) is the solution of the following system of nonlinear
equations.

[
v

∑
k2=1
· · ·

v

∑
kn=1

qk2 · · · qkn π∗
(

1
j
,

1
k2

, . . . ,
1
kn

, R∗
)
− π

]
qj = 0 j = 1, . . . , v

v

∑
k2=1
· · ·

v

∑
kn=1

qk2 · · · qkn π∗
(

1
j
,

1
k2

, . . . ,
1
kn

, R∗
)
≤ π j = 1, . . . , v

qj ≥ 0 j = 1, . . . , v
v

∑
j=1

qj = 1 (3)
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With π∗
(

1
j , . . . , R∗

)
as defined in equation (2).

Proof. See Theorem 7.1 in Jehle and Reny (2011) for example.

B Calculations in the example

The example has three Nash equilibria. Here I will show that the firms playing{
2
5 , 3

5 , 4
5

}
with probabilities

(
1
4 , 1

4 , 1
2

)
is a symmetric Nash equilibrium of the game.

Call this strategy q, and note that the consumer does not mind about 1
5 dollar differ-

ences. Then,

π∗
(

2
5

, q
)
=

1
4

π∗
(

2
5

,
2
5

)
+

1
4

π∗
(

2
5

,
3
5

)
+

1
2

π∗
(

2
5

,
4
5

)

=
1
4

1
5
+

1
4

1
5
+

1
2

2
5

=
3

10

π∗
(

3
5

, q
)
=

1
2

3
5

(
1
4
+

1
4
+

1
2

)
=

3
10

π∗
(

4
5

, q
)
=

1
4

2
5
+

1
2

2
5
=

3
10

Finally, π∗ (0, q) = 0,

π∗
(

1
5

, q
)
=

1
4

1
2

1
5
+

1
4

1
5
+

1
2

1
5
=

7
40

and π∗ (1, q) =
1
2

1
2

1 =
1
4

which are all less than 3/10. Therefore, q is a Nash equilibrium.
The other equilibria include: playing

{
3
5 , 4

5 , 1
}

with probabilities
(

1
5 , 7

15 , 1
3

)
; and,{

2
5 , 3

5 , 4
5 , 1
}

with probabilities
(

1
6 , 1

6 , 5
9 , 1

9

)
. These equilibria can be verified in a simi-

lar manner. This example was first presented in García P. and Tudón M. (2010).
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