










to be more effective, no significant differences were detected
between single and combo treatment (Fig. 5B and C). Thus, our
data suggest that the high immunogenicity of A20 lymphomas
correlates with high sensitivity to monotherapies or combo
treatment.

To test the role of MHC class I in A20 lymphoma model, we
generated B2M-KO A20 lymphomas using CRISPR/Cas9
approach (Supplementary Fig. S6A). A20 B2M�/� lymphoma

cells harbored the same deletion on both alleles of the B2M
gene (Supplementary Fig. S6A). Because of saturated expression
of MHC class I and II on A20 lymphoma, OKI-179 had no effect
on MHC class I and II expression (Supplementary Fig. S6B).
OKI-179 was unable to induce the expression of MHC class I on
A20 B2M�/� lymphoma (Supplementary Fig. S6C). A20 B2M�/

� lymphomas were transplanted into syngeneic recipient mice
that were treated as described above. In contrast to A20 WT
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G1XP lymphomas downregulated MHC class I and class II that could be upregulated by OKI-179.A and B, Downregulation of MHC class I and II in G1XP lymphomas
compared with activated primary B cells (A) and other murine B-cell lymphomas (B). Cells were stained with anti-mouse MHC class I or class II and analyzed by
flow cytometry. C,OKI-179 treatment upregulated MHC class I and II in G1XP lymphomas in vitro. G1XP lymphomas were cultured with vehicle control or OKI-179
for 48 hours. D–F,OKI-179 treatment upregulated MHC class I and II in G1XP lymphoma in vivo. Tumor-bearing recipients were treated as described above on day
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and median fluorescence intensity (MFI) was shown (E and F). Statistical significance was calculated with one-way ANOVA, Tukey multiple comparison test (��,
P < 0.01; ��� , P < 0.001). Representative data are shown from three independent experiments.
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lymphomas, A20 B2M�/� lymphomas were resistant to single
or combined treatment of OKI-179 and anti-PD1 (Fig. 5D
and E). These data demonstrate that the sensitivity of tumor
cells to OKI-179 or anti-PD1 treatment requires tumor-derived
MHC class I expression. OKI-179 treatment inhibited prolifer-
ation and mitotic entry of A20 WT and B2M�/� lymphomas

(Supplementary Fig. S7A–S7F), and induced apoptosis of A20
WT lymphomas (Supplementary Fig. S7G). However, the treat-
ment effects of OKI-179 were abolished in A20 B2M�/� lym-
phomas (Fig. 5E), demonstrating that OKI-179's efficacy
depends on its immunoregulatory effects instead of direct
cytotoxic effects.
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Figure 3.

Combined treatment of OKI-179/anti-PD1 increased and activated CD4þ and CD8þ TILs in G1XP lymphomas. Tumor-bearing recipients were treated as indicated,
on day 15, 17, and 19 after tumor inoculation. Tumors were harvested on day 21 after inoculation (n¼ 8 per group). A–F, Cells were stained and analyzed by flow
cytometry. Numbers (A), percentages (B), and representative plots (C) of CD4þ TILs in G1XP lymphoma. Numbers (D), percentages (E), and representative plots
(F) of CD8þ TILs in G1XP lymphoma. G–L, Harvested tumors were stimulated with PMA/ionomycin for 6 hours in vitro and analyzed by flow cytometry.
Percentages (G) and representative plots (H) of IFNgþCD4þ T cells in total CD4þ TILs. Percentages (I) and representative plots (J) of IFNgþCD8þ T cells in total
CD8þ TILs. Percentages (K) and representative plots (L) of granzyme BþCD8þ T cells in total CD8þ TILs. Data were combined from two independent
experiments. Statistical significance was calculated with one-way ANOVA, Tukey multiple comparison test (�� , P < 0.01; ��� , P < 0.001).

Wang et al.

Cancer Immunol Res; 7(8) August 2019 Cancer Immunology Research1324

on August 1, 2019. © 2019 American Association for Cancer Research. cancerimmunolres.aacrjournals.org Downloaded from 

Published OnlineFirst June 24, 2019; DOI: 10.1158/2326-6066.CIR-18-0875 

http://cancerimmunolres.aacrjournals.org/


Variable effects ofHDACi on T-cell proliferation andMHC class
I induction

To test whether different HDACi have varied effects on T-cell
proliferation and activation, we purified T cells and stimulated
them with anti-CD3/anti-CD28 beads in the presence of vehicle
control or increasing concentration of HDACi for 3 days in vitro.
OKI-179 and vorinostat did not affect the proliferation of CD4þ

or CD8þ T cells (Fig. 6A and B; Supplementary Fig. S8A). How-

ever, panobinostat inhibited both CD4þ and CD8þ T-cell prolif-
eration (Fig. 6C and D). OKI-179 and vorinostat had no effect on
IFNg production by CD4þ or CD8þ T cells (Supplementary Fig.
S8B and S8C).

To determine whether other HDACi also induce MHC class I,
we compared vorinostat with OKI-179 at the same dose range,
and found that no induction of MHC class I occurred with
vorinostat up to 1 mmol/L, whereas OKI-179 had a steady
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Sensitivity of G1XP lymphomas to treatment was affected by MHC expressions. A and B,Deletion of b2M gene resulted in the absence of MHC class I expression in
G1XP lymphoma. A, PCR products of WT versus b2M-deleted clones. B, Representative plot ofWT or b2M�/�G1XP lymphomas. C and D, Elimination of the
therapeutic effects of OKI-179 on G1XP lymphomas by b2M deletion. Recipient mice harboringWT (C) or b2M�/� (D) G1XP lymphomas were randomized into
4 groups and treated as indicated on day 13, 15, and 17 after tumor inoculation when tumor size reached 100–200mm3. Tumor size was measured daily (n¼ 6–10
per group). Data are representative results of two independent experiments for C and D. E, Ectopic expression of MHC class I in G1XP lymphomas. H2-K1 was
ectopically expressed in G1XP lymphomas by transfection. Single clones were obtained that exhibited variable expression of MHC class I and II: clone E8 (MHC-
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dose-dependent increase (Fig. 6E). Vorinostat induced less expres-
sion of MHC class II than OKI-179 (Fig. 6F). This is probably due
to the fact that vorinostat is not as potent in HDAC inhibition as
OKI-179 (Supplementary Table S2). Panobinostat has a compa-
rable class I HDAC inhibition potency to OKI-179 (Supplemen-
tary Table S2) and it can induce MHC class I and II expressions
similarly toOKI-179 (Supplementary Fig. S8D).We conclude that
different HDACi exhibit variable effects on T cells and tumors,

suggesting that not all HDACis are suitable for combination with
PD1 blockade.

OKI-179 enhances expression of PD-L1 and human HLA on
tumor cells

PD-L1þ cancers might be more sensitive to PD1 block-
ade (58, 59), such as Hodgkin lymphomas with PD-L1 amplifi-
cation (6, 60, 61), suggesting that PD-L1 upregulation may serve
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Figure 5.

Sensitivity of A20 lymphomas to treatment requires MHC class I. A, Immunosuppressive phenotypes of TILs in the transplanted A20 lymphomas. WT BALB/c
mice were injected with A20 lymphomas. Tumors were harvested 15 days after inoculation and TILs or splenocytes (as control) were analyzed. B, Kaplan–Meier
curve of recipient mice inoculated with A20 lymphomas. Tumor-bearing mice were randomized into 4 groups and treated with vehicle (n¼ 12), OKI-179 (n¼ 12),
anti-PD1 (n¼ 13), or both (n¼ 12) on day 9, 11, and 13 after tumor inoculation (tumor size�200mm3). Data were combined from two independent experiments.
Log-rank (Mantel–Cox) test, vehicle versus anti-PD1: P < 0.001; vehicle versus OKI-179: P < 0.001; anti-PD1 versus combo: P¼ 0.3544; OKI-179 versus combo:
P¼ 0.3305. C, Tumor growth of A20WT lymphomas upon different treatments. Tumor-bearing recipients were treated as described in Bwhen tumor size
reaches 200mm3. Tumor size was measured daily (n¼ 12 or 14 per group). Representative data are shown from two independent experiments. D and E, Tumor
growth of A20 B2M�/� lymphomas upon different treatments. Recipient mice harboring A20 B2M�/� lymphomaswere treated as described in B on day 11, 13,
and 15 after tumor inoculation (tumor size�200mm3). Tumor size was measured daily and data are combined from two independent experiments (n¼ 12–14 per
group). Individual or combined tumor growth is shown in D or E, respectively.
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as a biomarker to predict PD1 blockade sensitivity. Our RNA-Seq
data showed that OKI-179 treatment also upregulated PD-L1
expression in both G1XP and OCI-Ly7 lymphomas (Fig. 7A and
B). However, OKI-179 had no effect on PD-L1 expression in
activated primary mouse B cells (Fig. 7C). Furthermore, PD-L1

expression was upregulated in G1XP lymphomas byOKI-179 in a
dose-dependent manner (Fig. 7D). In contrast, the expression of
costimulatory factors, including CD83, CD86, OX40L and
CD137L, were not altered by OKI-005 or OKI-179 (Supplemen-
tary Fig. S9A–S9D). OKI-179 inhibited the growth of human B-
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Different HDACi exhibit distinct effects on T cells and tumors. A–D, Effects of OKI-179 and panobinostat on T-cell proliferation. CFSE-labeled T cells were
activated with anti-CD3/anti-CD28 in the presence of vehicle control or OKI-179 (A and B) or panobinostat (C and D) for 72 hours. Panobinostat inhibited T-cell
proliferation at higher concentrations, whereas OKI-179 did not affect T-cell proliferation. Proliferation index was calculated using FlowJo proliferation analysis
program for CD4þ and CD8þ T cells treated with vehicle or OKI-179 (B) or panobinostat (D). Representative data are shown from three independent experiments
forA–D. E and F,OKI-179 upregulated MHC expression on G1XP lymphomas more than vorinostat. G1XP lymphomas were cultured with OKI-179 (E) or vorinostat
(F) for 48 hours. Cells were stained and analyzed by flow cytometry. Representative MFI data are shown from two independent experiments.
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cell lymphoma lines in a dose-dependent manner (Supplemen-
tary Fig. S10).

To establish a general concept of OKI-179-mediated MHC
upregulation, we treated various human B-cell lymphoma lines
withOKI-179. HumanOCI-Ly7 lymphomas downregulated their
HLA-A, B, and C but not HLA-DP, DQ, and DR compared with
humanprimary B cells (Fig. 7E).OKI-179 treatment enhanced the
expression of HLA-A, B, and C in OCI-Ly3 and OCI-Ly7, whereas
OKI-179 had no effect onOCI-Ly1 and little effect on SU-DHL-16
cell line (Fig. 7F). OKI-179 upregulated HLA-DP, DQ, and DR in
OCI-Ly3 cells, but not inOCI-Ly1, OCI-Ly7, and SU-DHL-16 cells
(Fig. 7G). Thus, we conclude that different human B-cell lym-
phoma lines respond differently toOKI-179 treatment in terms of
MHC upregulation.

Discussion
We tested the therapeutic efficacy of combined OKI-179/

anti-PD1 treatment and found that: (i) OKI-179 sensitizes
G1XP lymphomas to anti-PD1 by enhancing tumor immuno-
genicity; (ii) sensitivity to single or combined treatment
required tumor-derived MHC class I and positively correlated
with MHC class II expression in tumors; (iii) the durable
antitumor effects of OKI-179 depend on antigen-specific CD8þ

T-cell-mediated immune responses; and (iv) different HDACis
exhibited distinct effects on tumors and T cells, yet the same
HDACi could differentially affect HLA expression in different
human B-cell lymphomas. Thus, our studies highlight immu-
nologic effects of HDACis on antitumor responses and suggest
that optimal treatment efficacy requires personalized design
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OKI-179 upregulated PD-L1 in murine and human B-cell lymphomas and affected MHC expressions of different human B-cell lymphomas.A–C, Increased
transcription of PD-L1 in G1XP and OCI-Ly7 lymphomas upon OKI-179 treatment. G1XP lymphomas (A), OCI-Ly7 (B), and activated primary B cells (C) were
cultured with vehicle control or OKI-179 for 16 hours. D, Upregulation of PD-L1 in G1XP lymphoma upon OKI-179 treatment. G1XP lymphomaswere cultured with
vehicle control or OKI-179 for 48 hours. Cells were stained and analyzed by flow cytometry. E, Downregulation of HLA-A, B, and C in OCI-Ly7 lymphoma
compared with activated human primary B cells. F and G, Different regulations of HLA in human B-cell lymphomas upon OKI-179 treatment. Various human B-cell
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shown from two independent experiments. Statistical significance was calculated with unpaired t test (�� , P < 0.01; ��� , P < 0.001).

Wang et al.

Cancer Immunol Res; 7(8) August 2019 Cancer Immunology Research1328

on August 1, 2019. © 2019 American Association for Cancer Research. cancerimmunolres.aacrjournals.org Downloaded from 

Published OnlineFirst June 24, 2019; DOI: 10.1158/2326-6066.CIR-18-0875 

http://cancerimmunolres.aacrjournals.org/


and rational combination based on prognostic biomarkers
(e.g., MHCs) and individual profiles of HDACis.

Human B-cell lymphomas often downregulate MHC
expression (9–15) and resist anti-PD1 (7). Lacking proper
models hinders our effort to understand the underlying
mechanisms of these observations. G1XP lymphoma is a syn-
geneic mouse model for mature B-cell lymphoma that down-
regulates MHCs and resists anti-PD1. This model provides an
opportunity to elucidate how altering lymphoma immunoge-
nicity influences cancer immunotherapy outcome. Different
lymphomas responded differentially to single anti-PD1 treat-
ment, with a correlation to their MHC expression. For instance,
MHC high–expressing A20 lymphomas are sensitive to anti-
PD1, whereas MHC low–expressing G1XP lymphomas resist
anti-PD1. Consistently, acquired resistance to PD1 blockade
associates with deletional mutation in the B2M gene in a
relapse sample of a patient with melanoma (62). PD1 block-
ade–resistant tumors downregulated MHC class I in a murine
lung cancer model (63). Although tumor-derived MHC class I is
essential for sensitivity to single or combo treatment, increasing
MHC class I alone did not render tumors sensitive to anti-PD1.
In contrast, higher expression of tumor-derived MHC class II
correlated with increased sensitivity to anti-PD1. Studies show
that therapeutic effects of PD1 blockade correlate with the
expression of MHC class II but not MHC class I in patients
with melanoma (26, 64). Collectively, these studies suggest
that sensitivity to PD1 blockade needs high MHC class II
expression.

MHC downregulation in G1XP lymphomas is reversible and
rescued by epigenetic agents, such as HDACi. However, OKI-179
is unable to restore irreversible MHC class I downregulation in B-
cell lymphomas. When tumor-derived MHC class I is removed
genetically, the therapeutic effects of single OKI-179 or combo
treatment were abolished. Thus, we consider OKI-179 to be a
personalized drug suitable for treating tumors with reversible
MHC downregulation. We suggest that MHC expression might
serve as a predictive biomarker for treatment efficacy of OKI-179.
Aside from classical MHC class I, B2M is also required for
expression of other nonclassical MHC molecules such as H2-
M5 (65), involvement of which we cannot rule out. However, our
RNA-seq data did not detect changes in the B2M-associated
molecules upon OKI-179 treatment, suggesting that these non-
classical MHC class I molecules are not necessary for mediating
responses to OKI-179.

HDACis modulate antitumor immunity (43). For instance,
anticancer effects of vorinostat require immune system (66, 67).
However, not all HDACis are created equal and their net effects
are dependent on the specific inhibitors used and the HDACs
they target (44, 50). Typically, inhibitors are developed on the
basis of on-target activity; however, off-target activity could
result in undesirable side effects or toxicity. For example,
panobinostat and romidepsin are potent HDACis but are also
toxic. The narrow window for therapeutic success makes such
HDACis unsuitable for combined therapies with ICIs. Pan-
HDACi such as vorinostat target all 11 HDACs, which is
problematic because class IIa HDACs have opposing functions
to class I HDACs in modulating immune responses (e.g., Treg;
ref. 68). In addition, not all HDACis are equally potent at
reprogramming cancer epigenome. For example, vorinostat did
not upregulate MHC class I in G1XP tumors. A large dose of
vorinostat will be needed to achieve MHC class I induction in

vivo, quite a challenge given its poor drug metabolism and
pharmacokinetics profile. Thus, when interpreting the immu-
nologic effects of HDACis, we must be aware of the dose,
cellular context, and selectivity of agents, and the impact of
HDACi on both tumors and T cells.

OKI-179 has favorable properties compared with previously
reportedHDACis,with its selectivity, oral availabilitywith abroad
therapeutic window, direct inhibition of B-cell lymphoma pro-
liferation, and no toxic effects on T-cell proliferation and activa-
tion, providing improved therapeutic effects due to its potent
immune-enhancing activity. OKI-179 can also effectively inhibit
HDAC3, which has been implicated in regulating MHC class II
expression in B-cell lymphomas (69). Thus, OKI-179 is a prom-
ising agent for treating cancers with reversible MHC downregula-
tion, such as B-cell lymphomas.

OKI-179 upregulates PD-L1 in G1XP and human B-cell lym-
phomas. PD-L1 interacts with PD1 expressed onCD4þ and CD8þ

TILs, thereby leading to inhibition of effector functions and
exhaustion of T cells (70). To overcome the detrimental effects
of OKI-179–mediated PD-L1 upregulation on antitumor immu-
nity, anti-PD1 needs to be employed together with OKI-179.
Indeed, combo treatment more effectively inhibits B-cell lym-
phomas, providing a rationale for developing combinatorial
therapy using epigenetic agents and ICIs. HDACis also upregulate
PD-L1 and augment therapeutic efficiency of PD1 blockade in
melanoma (71) or lung cancers (42), suggesting the applicability
of such combined strategies to other types of cancers.

PD-L1þ cancers might be more sensitive to PD1 block-
ade (58, 59). PMBCL and Hodgkin lymphomas harbor recurrent
chromosomal translocations or amplifications of PD-L1 and PD-
L2, leading to overexpression of PD-L1 and PD-L2 (60, 61).
Consistently, Hodgkin lymphomas are very sensitive to PD1
blockade. Clinical trials of PD1 therapy showed promising results
in PMBCL (6, 72). These data suggest that PD-L1 upregulation
may serve as a biomarker to predict combo treatment sensitivity.
Prior studies show that tumor-derived PD-L1 is not required for
the efficacy of anti-PD-L1 treatment because host cells still express
PD-L1 (73). It remains to be determined whether altering tumor-
derived PD-L1will affect the efficacy of combo treatment in our B-
cell lymphomamodel. On the other hand, HDACi-mediated PD-
L1 upregulation may explain why these agents generally fail to
treat cancers as a single agent. Our studies may provide insights
intowhyHDACis alone failed andwhy there should be a renewed
emphasis on the effects of HDACi on PD-L1 upregulation.
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